JP4918899B2 - Threaded electrodeposition tool - Google Patents

Threaded electrodeposition tool Download PDF

Info

Publication number
JP4918899B2
JP4918899B2 JP2007237652A JP2007237652A JP4918899B2 JP 4918899 B2 JP4918899 B2 JP 4918899B2 JP 2007237652 A JP2007237652 A JP 2007237652A JP 2007237652 A JP2007237652 A JP 2007237652A JP 4918899 B2 JP4918899 B2 JP 4918899B2
Authority
JP
Japan
Prior art keywords
screw
thread
respect
wall
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007237652A
Other languages
Japanese (ja)
Other versions
JP2009066706A (en
Inventor
和寛 藤嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007237652A priority Critical patent/JP4918899B2/en
Publication of JP2009066706A publication Critical patent/JP2009066706A/en
Application granted granted Critical
Publication of JP4918899B2 publication Critical patent/JP4918899B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Description

本発明は、工具本体の外周部に砥粒が電着されたネジ状部が形成されて歯車の歯形を加工するネジ状電着工具に関するものである。   The present invention relates to a screw-shaped electrodeposition tool in which a screw-shaped portion in which abrasive grains are electrodeposited is formed on the outer peripheral portion of a tool body to process a gear tooth shape.

歯車の歯形を加工する工具として、例えば特許文献1、2には、外形略円柱状の工具本体の外周部にネジ状部が形成されて、その表面にダイヤモンドやcBN等の超砥粒が電着されたネジ状電着工具が記載されている。このようなネジ状電着工具では、工具本体をその中心軸線回りに回転させつつ上記ネジ状部を歯車に噛み合わせることによって超砥粒により研削し、所定の精度の歯形に形成してゆく。
特開2003−266241号公報 特開2007−98527号公報
As a tool for processing a gear tooth profile, for example, in Patent Documents 1 and 2, a screw-like portion is formed on the outer peripheral portion of a substantially cylindrical tool body, and superabrasive grains such as diamond and cBN are electroplated on the surface. An attached threaded electrodeposition tool is described. In such a screw-shaped electrodeposition tool, the tool body is rotated around its central axis, and the screw-shaped portion is meshed with a gear to be ground with superabrasive grains to form a tooth profile with a predetermined accuracy.
JP 2003-266241 A JP 2007-98527 A

ところで、このようなネジ状電着工具による歯車の研削においても、研削により生じた切屑の除去や研削部位の冷却のためにクーラント(研削油剤)が供給されながら加工が行われる。しかしながら、このネジ状電着工具による歯車の研削は、一般的な平砥石やカップ型砥石によるワークの表面研削のように平面や円筒面の接触による研削ではなく、上述のように砥粒が電着されたネジ状部を歯車の歯に噛み合わせて行われるものであるため、クーラントを確実に研削部位に供給するのが難しいという問題がある。   By the way, also in grinding of a gear by such a screw-shaped electrodeposition tool, processing is performed while coolant (grinding fluid) is supplied for removing chips generated by grinding and cooling of a grinding part. However, the grinding of gears with this screw-shaped electrodeposition tool is not grinding by contact with a flat surface or a cylindrical surface as in the case of surface grinding of a workpiece with a general flat grindstone or cup-type grindstone. There is a problem that it is difficult to reliably supply the coolant to the grinding site because the attached screw-like portion is engaged with the gear teeth.

特に、歯車の歯底の部分は奥まった部分であるため、切屑の除去が一層困難であるとともに研削熱も籠もり易い反面、クーラントは行き届き難い。このため、この歯底部分に残留した切屑が研削熱によってそのまま溶着を生じてしまい、これにより歯車の品位や精度を著しく損なうおそれがあた。   In particular, since the tooth bottom portion of the gear is a recessed portion, it is more difficult to remove chips and the heat of grinding tends to be trapped, but the coolant is difficult to reach. For this reason, the chips remaining on the tooth bottom portion are directly welded by the grinding heat, which may significantly impair the quality and accuracy of the gear.

本発明は、このような背景の下になされたもので、上述のようなネジ状電着工具による歯車の研削において、特に歯底の部分に十分にクーラントを行き渡らせることができ、確実な研削部位の冷却および切屑の除去を図ることが可能なネジ状電着工具を提供することを目的としている。   The present invention has been made under such a background, and in grinding a gear with the above-described screw-shaped electrodeposition tool, the coolant can be sufficiently distributed particularly to the root portion, and reliable grinding is performed. An object of the present invention is to provide a screw-shaped electrodeposition tool capable of cooling a part and removing chips.

上記課題を解決して、このような目的を達成するために、本発明は、軸線回りに回転させられる外形略円柱状をなす工具本体の外周部に、上記軸線回りに螺旋状に捩れたネジ状部が形成され、このネジ状部の表面に砥粒が電着されてなるネジ状電着工具であって、上記ネジ状部の外周部には、このネジ状部がなすネジ山の頂部を上記軸線方向に切り欠くように延びるスリットが形成されていて、上記軸線を含む断面において上記ネジ状部がなすネジ山は、上記軸線に対する径方向外周側に向かうに従いこの径方向に対してそれぞれ傾斜角αで傾斜しつつ互いに接近するように延びる一対の壁部と、これらの壁部に滑らかに接する半径Rの円弧状をなして上記ネジ山の頂部に至るコーナ部とを有しており、上記スリットの深さHがR(1−sinα)以下とされていることを特徴とする。 In order to solve the above-described problems and achieve such an object, the present invention provides a screw that is spirally twisted around the axis on the outer periphery of a tool body having a substantially cylindrical shape that is rotated around the axis. A screw-shaped electrodeposition tool in which abrasive grains are electrodeposited on the surface of the screw-shaped portion, and the top of the thread formed by the screw-shaped portion on the outer periphery of the screw-shaped portion Are formed so as to cut out in the axial direction, and the thread formed by the screw-like portion in the cross section including the axial line is directed to the radial direction toward the radially outer side with respect to the axial line. A pair of wall portions extending so as to approach each other while being inclined at an inclination angle α, and a corner portion having an arc shape with a radius R smoothly contacting these wall portions and reaching the top of the screw thread. , The depth H of the slit is R (1-si characterized in that it is the alpha) or less.

このようなネジ状電着工具によれば、歯車を研削する際に供給されたクーラントは、ネジ状部がなすネジ山の頂部に形成された上記スリットに保持されて、このネジ状部が歯車と噛み合うことによりその歯底部分に確実に供給される。従って、この歯底部分を効率的に冷却することができるとともに、歯底に残留する切屑を確実に除去することができ、かかる切屑が研削熱によって溶着を生じたりするのを防止することができる。   According to such a screw-shaped electrodeposition tool, the coolant supplied when grinding the gear is held in the slit formed at the top of the thread formed by the screw-shaped portion, and the screw-shaped portion becomes the gear. Is reliably supplied to the root portion of the tooth. Therefore, the tooth bottom portion can be efficiently cooled, chips remaining on the tooth bottom can be surely removed, and the chips can be prevented from being welded by grinding heat. .

ところで、このようなネジ状電着工具では、上記軸線を含む断面において上記ネジ状部がなすネジ山の形状は、加工する歯車の歯形に応じて、上記軸線に対する径方向外周側に向かうに従いこの径方向に対してそれぞれ傾斜角αで傾斜しつつ互いに接近するように延びる一対の壁部を備えるとともに、これらの壁部とネジ山の頂部の間は、欠けを防ぐために該壁部に滑らかに接する半径Rの円弧状をなして上記ネジ山の頂部に至るコーナ部とされるが、本発明において上記スリットの深さHはR(1−sinα)以下とされるすなわち、スリットの深さHがこれよりも深くなると、スリットがコーナ部を越えて上記壁部にまで達することになり、この壁部によって研削される歯車の歯面にスリットの跡が残されるおそれが生じるが、本発明によれば、かかるスリットを形成したことによって歯車の歯面にスリットの跡が残ったりするようなこともなく、一層高品位の研削を行うことが可能となる。 By the way, in such a screw-shaped electrodeposition tool, the shape of the thread formed by the thread-shaped portion in the cross section including the axis depends on the outer peripheral side in the radial direction with respect to the axis according to the tooth profile of the gear to be processed. A pair of wall portions extending so as to approach each other while being inclined at an inclination angle α with respect to the radial direction are provided, and between these wall portions and the top of the screw thread, the wall portions are smoothly provided to prevent chipping. The corner portion reaching the top of the thread is formed in an arc shape with a radius R in contact with the slit. In the present invention , the depth H of the slit is set to R (1-sin α) or less . That is, when the depth H of the slit becomes deeper than this, the slit reaches the wall portion beyond the corner portion, and there is a risk that the mark of the slit is left on the tooth surface of the gear ground by the wall portion. However , according to the present invention, the formation of such a slit does not leave a trace of the slit on the tooth surface of the gear, and it is possible to perform further high-quality grinding.

また、工具本体の周方向に対向するように配される上記スリットの一対の内壁は、上記軸線に対する径方向外周側に向かうに従いこの径方向に対して上記工具本体の回転方向側とこの回転方向とは反対側とに離間するようにされるのが望ましく、これにより、スリットは外周側に向けて周方向に漸次幅広になるのでクーラントの収容・排出性がよくなり、さらにはこれらの内壁がネジ山の頂部に対してなす交差角も鈍角になるため、電着の際にこの交差部に砥粒が集中して加工精度が損なわれたりするのを防ぐことができる。   In addition, the pair of inner walls of the slit arranged to face the circumferential direction of the tool body is directed to the rotational direction side of the tool body and the rotational direction with respect to the radial direction toward the radially outer circumferential side with respect to the axis. It is desirable that the slits be spaced apart from the opposite side, so that the slits are gradually widened in the circumferential direction toward the outer peripheral side, so that the coolant can be accommodated and discharged, and further, these inner walls are Since the crossing angle formed with respect to the top of the screw thread is also an obtuse angle, it is possible to prevent the abrasive grains from concentrating on the crossing part during electrodeposition and impairing the machining accuracy.

そして、この場合には、これら一対の内壁のうち上記回転方向とは反対側の内壁が上記ネジ山の頂部に対してなす交差角を、上記回転方向側の内壁が上記ネジ山の頂部に対してなす交差角と等しくか、または大きくすることにより、工具本体の回転方向を向くことになる上記反対側の内壁とネジ山の頂部との交差部が鋭利な形状になるのを防いで、この交差部が歯車の歯底に食い付くことにより歯底部分が傷つけられたりするのを防止することができる。なお、少なくともこの回転方向とは反対側の内壁が上記ネジ山の頂部と交差する交差部を凸曲面状に形成すれば、このような食い付きを一層確実に防止することができる。   In this case, the inner wall of the pair of inner walls opposite to the rotation direction forms an intersection angle with the top of the screw thread, and the inner wall on the rotation direction side with respect to the top of the screw thread. By making the crossing angle equal to or larger than the crossing angle, the crossing between the opposite inner wall and the top of the screw thread that faces the rotation direction of the tool body is prevented from becoming a sharp shape. It is possible to prevent the tooth bottom portion from being damaged by the intersection portion biting into the tooth bottom of the gear. It is to be noted that such biting can be more reliably prevented if at least the inner wall on the opposite side to the rotational direction is formed with a convex curved surface at the intersection where the top of the screw thread intersects.

以上説明したように、本発明によれば、研削される歯車にクーラントを十分に供給することが可能となり、特に歯車の歯底部分を効率的に冷却するとともに切屑を確実に除去することができて、この歯底部分に切屑が溶着したりするのを未然に防止することが可能となる。また、スリットを形成したことによって歯車の歯面にスリットの跡が残ったりするようなこともなく、一層高品位の研削を行うことが可能となる。 As described above, according to the present invention, it is possible to sufficiently supply coolant to the gear to be ground, and in particular, it is possible to efficiently cool the tooth bottom portion of the gear and to remove chips reliably. Thus, it is possible to prevent chips from welding to the tooth bottom portion. Further, since the slits are formed, no traces of the slits remain on the tooth surface of the gear, and it becomes possible to perform higher quality grinding.

図1ないし図4は、本発明のネジ状電着工具の一実施形態を示すものである。本実施形態におけるネジ状電着工具は、鋼材等からなる外形が概略多段円柱状の工具本体1の外周部に、この工具本体1の軸線O回りに捩れる1または複数条の螺旋状のネジ状部2が形成され、このネジ状部2の表面にダイヤモンドやcBN等の超砥粒が電着されたものである。なお、このネジ状部2の両端側は1段小径とされて、当該工具本体1をホブ盤等の歯車加工機の回転軸に取り付ける際の取付部3とされる。   1 to 4 show an embodiment of the threaded electrodeposition tool of the present invention. The threaded electrodeposition tool according to the present embodiment includes one or a plurality of spiral screws that are twisted around the axis O of the tool body 1 on the outer periphery of the tool body 1 having an outer shape made of steel or the like and having an approximately multistage cylindrical shape. A shaped part 2 is formed, and superabrasive grains such as diamond and cBN are electrodeposited on the surface of the threaded part 2. Note that both ends of the screw-like portion 2 have a one-step small diameter, and serve as attachment portions 3 when the tool body 1 is attached to a rotating shaft of a gear processing machine such as a hobbing machine.

上記ネジ状部2は、その軸線Oを含む断面におけるネジ山の形状が、図3に示すように工具本体1の軸線Oに直交する径線Lの方向、すなわち軸線Oに対する径方向の外周側(図3において上側)に向かうに従いこの径方向に対して等しい傾斜角αでそれぞれ傾斜しつつ互いに接近するように延びる一対の壁部4と、径方向最外周に位置して軸線Oに平行に延びる頂部5とを有する台形ネジ状とされており、さらにこれらの壁部4と頂部5とが交差する部分は、これら壁部4と頂部5とに滑らかに接する半径Rの断面円弧状をなすコーナ部6とされている。   The thread-like portion 2 has a thread shape in a cross section including the axis O, as shown in FIG. 3, in the direction of the radial line L perpendicular to the axis O of the tool body 1, that is, on the outer peripheral side in the radial direction with respect to the axis O. A pair of wall portions 4 extending so as to approach each other while being inclined at an equal inclination angle α with respect to the radial direction toward the upper side in FIG. 3, and located on the outermost outer periphery in the radial direction and parallel to the axis O A trapezoidal screw shape having an extending top portion 5 is formed, and a portion where the wall portion 4 and the top portion 5 intersect with each other has a circular arc shape having a radius R that smoothly contacts the wall portion 4 and the top portion 5. The corner portion 6 is used.

そして、このネジ状部2の外周部には、該ネジ状部2がなすネジ山の上記頂部5を軸線O方向に切り欠くように延びるスリット7が形成されている。このスリット7は、軸線O方向視において図4に示すように、軸線Oに対する径方向に垂直とされた底面7aと、この底面7aから径方向外周側(図4において上側)に向かうに従い該径方向に対して工具本体1の回転方向T側に離間するように傾斜する内壁7bと、これとは逆に径方向外周側に向かうに従い該径方向に対して回転方向Tとは反対側に離間するように傾斜する内壁7cとから構成されている。   A slit 7 extending so as to cut out the top 5 of the thread formed by the screw-like portion 2 in the direction of the axis O is formed on the outer peripheral portion of the screw-like portion 2. 4, the slit 7 has a bottom surface 7a perpendicular to the radial direction with respect to the axis O as viewed in the direction of the axis O, and the diameter from the bottom surface 7a toward the outer peripheral side in the radial direction (upper side in FIG. 4). The inner wall 7b that inclines so as to be separated from the direction toward the rotation direction T of the tool body 1, and conversely, as it moves toward the outer peripheral side in the radial direction, the inner wall 7b is separated from the rotation direction T with respect to the radial direction. It is comprised from the inner wall 7c which inclines so.

ここで、上記ネジ状部2の外径(半径)と軸線Oからスリット7の底面7aまでの距離との差、すなわちスリット7の深さHは、本実施形態ではネジ状部2におけるコーナ部6の上記半径Rと壁部4の傾斜角αに対してH≦R(1−sinα)とされている。従って、このスリット7は、ネジ状部2がなすネジ山の上記壁部4とコーナ部6との境界を越えて壁部4側にはみ出すことはない。ただし、勿論この深さHが0となることはなく、例えば0.1mm以上とされるのが望ましい。   Here, the difference between the outer diameter (radius) of the screw-like portion 2 and the distance from the axis O to the bottom surface 7a of the slit 7, that is, the depth H of the slit 7, is a corner portion in the screw-like portion 2 in this embodiment. H ≦ R (1-sin α) with respect to the radius R of 6 and the inclination angle α of the wall 4. Therefore, the slit 7 does not protrude to the wall 4 side beyond the boundary between the wall 4 and the corner 6 of the thread formed by the screw-like portion 2. However, of course, the depth H does not become 0, and is preferably 0.1 mm or more, for example.

また、内壁7b,7cは、本実施形態ではいずれも傾斜平面状に形成されていて、これによりスリット7の軸線Oに直交する断面は台形状を呈することになる。ただし、このうち径方向に対して回転方向Tとは反対側に離間するように傾斜する内壁7cは、その頂部5との交差角βが、回転方向T側に離間するように傾斜する内壁7bの頂部5との交差角γに対して等しいか、または交差角βが交差角γよりも大きくなるようにされており、すなわちβ≧γの関係を満たすようにされていて、本実施形態では図4に示すようにβ>γとされている。   Further, in this embodiment, the inner walls 7b and 7c are both formed in an inclined plane shape, whereby the cross section perpendicular to the axis O of the slit 7 has a trapezoidal shape. However, the inner wall 7c that inclines so as to be spaced apart from the rotational direction T with respect to the radial direction is the inner wall 7b that inclines so that the intersection angle β with the apex 5 is separated toward the rotational direction T. In this embodiment, the crossing angle γ is equal to the crossing angle γ with the apex 5 or the crossing angle β is larger than the crossing angle γ, that is, β ≧ γ is satisfied. As shown in FIG. 4, β> γ.

なお、本実施形態では、同形同大の複数のこのようなスリット7が、図2に示すように周方向に等間隔に、かつ図1に示すようにネジ状部2の軸線O方向に隣接するネジ山同士でこの周方向の位相が互いに等しくなるように、配設されている。また上記超砥粒は、これらのスリット7の底面7aや内壁7b,7cも含めて、ネジ状部2の表面に電着されている。また、上記交差角β,γはともに鈍角とされている。   In the present embodiment, a plurality of such slits 7 having the same shape and the same size are arranged at equal intervals in the circumferential direction as shown in FIG. 2 and in the direction of the axis O of the screw-like portion 2 as shown in FIG. It arrange | positions so that this circumferential phase may become mutually equal between adjacent screw threads. The superabrasive grains are electrodeposited on the surface of the screw-like portion 2 including the bottom surface 7a of the slit 7 and the inner walls 7b and 7c. The crossing angles β and γ are both obtuse.

このように構成されたネジ状電着工具は、上述のようにその軸線O回りに回転方向Tに回転させられつつ上記ネジ状部2が歯車に噛み合わされることにより、その表面に電着された超砥粒によって所定の精度に研削してゆく。そして、この研削の際にはクーラントがネジ状部2による歯車の研削部位に供給されるが、上記構成のネジ状電着工具では、このクーラントをネジ状部2がなすネジ山の頂部5に形成された上記スリット7内に保持することにより、歯車の歯形の特に歯底の部分に確実に行き渡らせることができる。   The screw-shaped electrodeposition tool configured as described above is electrodeposited on the surface of the screw-shaped portion 2 while meshing with the gear while being rotated in the rotation direction T around the axis O as described above. Grinding to a specified accuracy with superabrasive grains. In this grinding, the coolant is supplied to the grinding portion of the gear by the screw-shaped portion 2. In the screw-shaped electrodeposition tool having the above configuration, the coolant is applied to the top 5 of the thread formed by the screw-shaped portion 2. By holding in the formed slit 7, the tooth profile of the gear, in particular, the root portion can be reliably distributed.

従って、研削熱が籠もり易い一方で研削で生じた切屑が滞留しがちなこの歯底部分を効果的に冷却することができるとともに確実な切屑の除去を図ることができ、かかる歯底部分に研削熱によって切屑が溶着を生じたりするのを未然に防止することが可能となる。このため、研削される歯車に上記所定の精度を確実に与えることができるとともに、面粗さの滑らかな高品位の歯車を提供することが可能となる。   Therefore, it is possible to effectively cool the tooth bottom portion where the grinding heat tends to be trapped but the chips generated by grinding tend to stay and to remove the chips reliably. It is possible to prevent chips from welding due to grinding heat. Therefore, it is possible to reliably give the predetermined accuracy to the gear to be ground and to provide a high-quality gear with smooth surface roughness.

また、本実施形態では、このスリット7の深さHがネジ状部2のコーナ部6の半径Rと壁部4の傾斜角αに対してH≦R(1−sinα)とされていて、このスリット7がこれら壁部4とコーナ部6との境界から頂部5までの範囲に形成されており、歯車の歯面を研削する壁部4にはみ出すことがないようにされている。このため、かかるスリット7を形成したことによって歯車の歯面にスリット7の跡が残ったりするようなこともなく、一層高品位の研削を行うことが可能となる。   In the present embodiment, the depth H of the slit 7 is H ≦ R (1-sin α) with respect to the radius R of the corner portion 6 of the screw-like portion 2 and the inclination angle α of the wall portion 4. The slit 7 is formed in a range from the boundary between the wall portion 4 and the corner portion 6 to the top portion 5 so as not to protrude into the wall portion 4 where the tooth surface of the gear is ground. For this reason, since the slit 7 is formed, no trace of the slit 7 remains on the tooth surface of the gear, and it becomes possible to perform further high-quality grinding.

一方、このスリット7を形成する内壁7b,7cは、本実施形態では径方向外周側に向かうに従いこの径方向(径線L)に対して、回転方向T側に位置する内壁7bがこの回転方向T側に向けて離間するように、また回転方向Tの反対側に位置する内壁7cはこの回転方向Tの反対側に向けて離間するように、それぞれ傾斜させられており、従ってスリット7はその周方向の幅が径方向外周側に向けて幅広となるため、供給されたクーラントを確実にこのスリット7内に収容して保持することができるとともに、歯底部分では回転方向Tの反対側に離間する内壁7cに沿って保持したクーラントを円滑に排出することができる。   On the other hand, in this embodiment, the inner walls 7b and 7c forming the slit 7 are arranged so that the inner wall 7b positioned on the rotation direction T side in the radial direction (diameter line L) is directed in the rotation direction with respect to the radial direction (diameter line L). The inner wall 7c located on the opposite side of the rotation direction T is inclined so as to be separated toward the T side, and the slit 7 is therefore inclined so as to be separated toward the opposite side of the rotation direction T. Since the width in the circumferential direction becomes wider toward the outer circumferential side in the radial direction, the supplied coolant can be reliably accommodated and held in the slit 7, and at the bottom of the tooth, the opposite side of the rotational direction T The coolant held along the separated inner wall 7c can be discharged smoothly.

また、砥粒を電着する際には鋭角に尖った部分に砥粒が集中して固着されやすいが、このように内壁7b,7cが傾斜させられていることにより、これら内壁7b,7cと頂部5との交差角β,γを鈍角とすることができるので、この内壁7b,7cと頂部5とが交差した部分に砥粒が集中して固着されるのを抑制することができる。このため、ネジ状部2の頂部5側によって研削される歯車の歯底部分が、このように集中した超砥粒によって削られすぎたり傷つけられたりするすることもなく、加工精度や品位を一層向上させることができる。   In addition, when electrodepositing abrasive grains, the abrasive grains tend to concentrate and adhere to sharply sharp parts, but the inner walls 7b and 7c are inclined as described above, so that the inner walls 7b and 7c Since the crossing angles β and γ with the top 5 can be made obtuse, it is possible to suppress the abrasive grains from being concentrated and fixed on the portion where the inner walls 7b and 7c and the top 5 cross each other. For this reason, the tooth bottom portion of the gear to be ground by the top portion 5 side of the screw-like portion 2 is not excessively ground or damaged by the concentrated superabrasive grains, and the processing accuracy and quality are further improved. Can be improved.

そして、さらに本実施形態では、このうち回転方向Tの反対側に位置して、すなわち回転方向T側を向くことになる内壁7cと頂部5との交差角γが、回転方向T側の内壁7bと頂部5との交差角βに対してβ≧γとされていて、交差角γが交差角βより大きくなることがないようにされており、従ってこの回転方向T側を向く内壁7cと頂部5とが交差する部分における砥粒の集中をより確実に防ぐことができる。従って、この部分に集中した砥粒が歯底に鋭く食い付いて傷をつけるようなことも避けることが可能となり、さらに一層高品位の研削加工を促すことが可能となる。   Further, in the present embodiment, the crossing angle γ between the inner wall 7c and the apex 5 that is located on the opposite side of the rotation direction T, that is, facing the rotation direction T side, is the inner wall 7b on the rotation direction T side. Β ≧ γ with respect to the crossing angle β between the top wall 5 and the top 5 so that the crossing angle γ does not become larger than the crossing angle β. It is possible to more reliably prevent abrasive grains from concentrating at the portion where 5 intersects. Therefore, it is possible to avoid a situation where abrasive grains concentrated on this portion sharply bite and damage the bottom of the tooth, and further promote high-quality grinding.

なお、本実施形態では、これらの内壁7b,7cがともに傾斜平面状とされていて、頂部5とは鈍角であっても角度をもって交差させられているが、このうち少なくとも上記回転方向Tとは反対側の内壁7cについては、図5に示す本発明の他の実施形態のように頂部5と交差する部分を、頂部5に滑らかに接するような凸曲面状に形成してもよい。これにより、砥粒の集中をさらに確実に防いで上述したような歯底への食い付きを効果的に防止することができる。   In the present embodiment, the inner walls 7b and 7c are both inclined flat and intersect with the top 5 at an angle even if it is an obtuse angle. About the opposite inner wall 7c, you may form the part which cross | intersects the top part 5 in the convex curve shape which touches the top part 5 smoothly like other embodiment of this invention shown in FIG. Thereby, the concentration of abrasive grains can be prevented more reliably, and the biting to the tooth bottom as described above can be effectively prevented.

また、これらの実施形態では、スリット7は径線Lに関して非対称に形成されることになるが、例えば上記交差角β,γをβ=γとしたり、あるいは図5に示した実施形態において回転方向T側の内壁7bと頂部5との交差部分も図6に示すその他の実施形態のように凸曲面状に形成したりして、スリット7が径線Lに関して対称となるように形成してもよい。これら場合には、工具本体1を上記回転方向Tと逆向きに回転させて加工を行う場合でも同様の効果を得られる上、特に後者の場合には内壁7bと頂部5との交差部分に集中した砥粒による歯底への食い付きも防止することができる。   In these embodiments, the slit 7 is formed asymmetrically with respect to the radial line L. For example, the crossing angles β and γ are set to β = γ, or the rotation direction in the embodiment shown in FIG. The intersection between the inner wall 7b on the T side and the top portion 5 may be formed in a convex curved shape as in the other embodiments shown in FIG. 6 so that the slit 7 is symmetric with respect to the radial line L. Good. In these cases, the same effect can be obtained even when machining is performed by rotating the tool body 1 in the direction opposite to the rotation direction T. In particular, in the latter case, the tool body 1 is concentrated at the intersection of the inner wall 7b and the top portion 5. It is also possible to prevent biting of the tooth bottom by the abrasive grains.

本発明の一実施形態の一部破断側面図である。It is a partially broken side view of one embodiment of the present invention. 図1に示す実施形態を軸線O方向から見た正面図である。It is the front view which looked at embodiment shown in FIG. 1 from the axis line O direction. 図1に示す実施形態におけるネジ状部2がなすネジ山の軸線Oに沿った拡大断面図である。It is an expanded sectional view along the axis line O of the thread which the screw-shaped part 2 in embodiment shown in FIG. 1 makes. 図1に示す実施形態におけるスリット7を軸線O方向から見た拡大正面図である。It is the enlarged front view which looked at the slit 7 in embodiment shown in FIG. 1 from the axis line O direction. 本発明の他の実施形態におけるスリット7を軸線O方向から見た拡大正面図である。It is the enlarged front view which looked at the slit 7 in other embodiment of this invention from the axis line O direction. 本発明のその他の実施形態におけるスリット7を軸線O方向から見た拡大正面図である。It is the enlarged front view which looked at the slit 7 in other embodiment of this invention from the axis line O direction.

符号の説明Explanation of symbols

1 工具本体
2 ネジ状部
4 ネジ状部2がなすネジ山の壁部
5 ネジ状部2がなすネジ山の頂部
6 コーナ部
7 スリット
7a スリット7の底面
7b スリット7の回転方向T側の内壁
7c スリット7の回転方向Tとは反対側の内壁
O 工具本体1の軸線
L 軸線Oに対する径線
H スリット7の深さ
R コーナ部6の半径
α 壁部4が径方向(径線L)に対してなす傾斜角
β 内壁7cと頂部5との交差角
γ 内壁7bと頂部5との交差角
DESCRIPTION OF SYMBOLS 1 Tool main body 2 Thread part 4 Thread wall part which the screw part 2 makes 5 Thread top part which the screw part 2 makes 6 Corner part 7 Slit 7a Bottom surface of the slit 7b Inner wall on the rotation direction T side of the slit 7 7c Inner wall opposite to the rotation direction T of the slit 7 O The axis line of the tool body 1 L The diameter line with respect to the axis line H The depth of the slit 7 R The radius of the corner portion 6 Angle of inclination β Crossing angle between inner wall 7c and top 5 Crossing angle between inner wall 7b and top 5

Claims (3)

軸線回りに回転させられる外形略円柱状をなす工具本体の外周部に、上記軸線回りに螺旋状に捩れたネジ状部が形成され、このネジ状部の表面に砥粒が電着されてなるネジ状電着工具であって、上記ネジ状部の外周部には、このネジ状部がなすネジ山の頂部を上記軸線方向に切り欠くように延びるスリットが形成されていて、上記軸線を含む断面において上記ネジ状部がなすネジ山は、上記軸線に対する径方向外周側に向かうに従いこの径方向に対してそれぞれ傾斜角αで傾斜しつつ互いに接近するように延びる一対の壁部と、これらの壁部に滑らかに接する半径Rの円弧状をなして上記ネジ山の頂部に至るコーナ部とを有しており、上記スリットの深さHがR(1−sinα)以下とされていることを特徴とするネジ状電着工具。 A screw-like part helically twisted around the axis is formed on the outer periphery of the tool body having a substantially cylindrical shape that is rotated around the axis, and abrasive grains are electrodeposited on the surface of the screw-like part. A screw-shaped electrodeposition tool, wherein an outer peripheral portion of the screw-like portion is formed with a slit extending so as to cut out a top portion of a thread formed by the screw-like portion in the axial direction, and includes the axis. A thread formed by the screw-like portion in cross section has a pair of wall portions extending toward each other while being inclined at an inclination angle α with respect to the radial direction toward the outer peripheral side in the radial direction with respect to the axis, and A corner portion that reaches an apex of the thread and forms a circular arc shape having a radius R that smoothly contacts the wall portion, and that the depth H of the slit is R (1-sin α) or less. Characteristic screw-type electrodeposition tool. 上記スリットは、上記軸線に対する径方向外周側に向かうに従いこの径方向に対して上記工具本体の回転方向側とこの回転方向とは反対側とに離間する一対の内壁を有しており、このうち上記回転方向とは反対側の内壁が上記ネジ山の頂部に対してなす交差角は、上記回転方向側の内壁が上記ネジ山の頂部に対してなす交差角と等しくか、または大きくされていることを特徴とする請求項1に記載のネジ状電着工具。 The slit has a pair of inner walls that are spaced apart from the rotation direction side of the tool main body and the opposite side of the rotation direction with respect to the radial direction toward the outer peripheral side in the radial direction with respect to the axis. The crossing angle formed by the inner wall opposite to the rotational direction with respect to the top of the thread is equal to or larger than the crossing angle formed by the inner wall on the rotational direction with respect to the top of the thread. The screw-shaped electrodeposition tool according to claim 1 . 少なくとも上記回転方向とは反対側の内壁が上記ネジ山の頂部と交差する交差部は、凸曲面状に形成されていることを特徴とする請求項2に記載のネジ状電着工具。 The threaded electrodeposition tool according to claim 2 , wherein at least an intersecting portion where an inner wall opposite to the rotation direction intersects with the top of the screw thread is formed in a convex curved shape.
JP2007237652A 2007-09-13 2007-09-13 Threaded electrodeposition tool Expired - Fee Related JP4918899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007237652A JP4918899B2 (en) 2007-09-13 2007-09-13 Threaded electrodeposition tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007237652A JP4918899B2 (en) 2007-09-13 2007-09-13 Threaded electrodeposition tool

Publications (2)

Publication Number Publication Date
JP2009066706A JP2009066706A (en) 2009-04-02
JP4918899B2 true JP4918899B2 (en) 2012-04-18

Family

ID=40603510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007237652A Expired - Fee Related JP4918899B2 (en) 2007-09-13 2007-09-13 Threaded electrodeposition tool

Country Status (1)

Country Link
JP (1) JP4918899B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3202695A1 (en) * 1982-01-28 1983-08-04 Kapp & Co Werkzeugmaschinenfabrik, 8630 Coburg TOOL FOR THE PRODUCTION OF EXTERNAL PROFILES
JP4141438B2 (en) * 2004-12-24 2008-08-27 株式会社ノリタケスーパーアブレーシブ Grinding wheel

Also Published As

Publication number Publication date
JP2009066706A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP2007331097A (en) Cutting tool
JP2009220188A (en) End mill
JP5194637B2 (en) End mill
JP6221660B2 (en) Roughing end mill
KR20110094088A (en) Insert for cutting and interchangeable knife edge-type gear cutting tool using same
JP6232187B2 (en) Chipping resistant cutting tap
KR20100116530A (en) Method and device for removing a secondary burr on end-cut work piece wheel
JP2013537854A (en) End mill with different helix angles
JP7006276B2 (en) Threading cutter
JP4918899B2 (en) Threaded electrodeposition tool
JP2018069442A (en) Producing method of cut insert for thread cutter and male screw member by thread waring machining
JP7071778B1 (en) Deburring tool and deburring method
JP6825400B2 (en) Taper ball end mill
CN112605718B (en) Twist drill with rake angle correction and machining method of twist drill
JP5895654B2 (en) End mill
JP2018164946A (en) Radius end mill
JP5241557B2 (en) Self tapping insert
JP2009220245A (en) Cutting tap
JP2010173056A (en) Roughening end mill
JP7152673B2 (en) Rib groove wall processing method and taper end mill
WO2022064595A1 (en) End mill
WO2023100909A1 (en) Tap
JP7040039B2 (en) Radius end mill
JP2024004594A (en) Deburring tool and deburring method
JP2005271167A (en) End mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees