JP4918897B2 - Silicon single crystal pulling method - Google Patents

Silicon single crystal pulling method Download PDF

Info

Publication number
JP4918897B2
JP4918897B2 JP2007223059A JP2007223059A JP4918897B2 JP 4918897 B2 JP4918897 B2 JP 4918897B2 JP 2007223059 A JP2007223059 A JP 2007223059A JP 2007223059 A JP2007223059 A JP 2007223059A JP 4918897 B2 JP4918897 B2 JP 4918897B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
luminance
silicon
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007223059A
Other languages
Japanese (ja)
Other versions
JP2009057216A (en
Inventor
啓一 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2007223059A priority Critical patent/JP4918897B2/en
Priority to US12/199,070 priority patent/US8187378B2/en
Priority to TW097132824A priority patent/TWI395842B/en
Priority to DE102008044761A priority patent/DE102008044761B4/en
Priority to CN2008101714018A priority patent/CN101377008B/en
Priority to KR1020080085037A priority patent/KR101028684B1/en
Publication of JP2009057216A publication Critical patent/JP2009057216A/en
Application granted granted Critical
Publication of JP4918897B2 publication Critical patent/JP4918897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/26Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using television detectors; using photo or X-ray detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明はチョクラルスキー法によりシリコン融液からシリコン単結晶を引上げる際に、シリコン単結晶の直径を的確に制御することによって、結晶欠陥の少ない高品質なシリコン単結晶を得ることが可能なシリコン単結晶引上方法に関する。   The present invention makes it possible to obtain a high-quality silicon single crystal with few crystal defects by accurately controlling the diameter of the silicon single crystal when pulling up the silicon single crystal from the silicon melt by the Czochralski method. The present invention relates to a silicon single crystal pulling method.

従来より、シリコン単結晶を製造するには種々の方法があるが、最も代表的なシリコン単結晶の製造方法としてチョクラルスキー法(以下、CZ法と称する)が挙げられる。このCZ法によるシリコン単結晶の育成では、ポリシリコンをルツボで溶解してシリコン融液を形成する。そして、このシリコン融液に種結晶を浸漬して、所定の回転速度、引上速度で種結晶を引き上げることによって、種結晶の下方に円柱状のシリコン単結晶が育成されるものである。   Conventionally, there are various methods for producing a silicon single crystal, and the most typical method for producing a silicon single crystal is the Czochralski method (hereinafter referred to as CZ method). In growing a silicon single crystal by this CZ method, polysilicon is melted with a crucible to form a silicon melt. Then, by immersing the seed crystal in this silicon melt and pulling up the seed crystal at a predetermined rotational speed and pulling speed, a cylindrical silicon single crystal is grown below the seed crystal.

半導体デバイスの材料となるシリコンウェーハは、このようなシリコン単結晶をスライス、研磨などを行うことによって得られる。こうしたシリコンウェーハの各種特性を一定レベル以上に保つためには、素材であるシリコン単結晶の育成時に、直胴部の直径が一定の範囲内になるように制御することが、製品品質ならびに製造費用の観点から極めて重要である。   A silicon wafer as a material for a semiconductor device can be obtained by slicing, polishing and the like of such a silicon single crystal. In order to keep these various characteristics of silicon wafers above a certain level, it is necessary to control the diameter of the straight body part within a certain range when growing the silicon single crystal material. From the viewpoint of

こうした、シリコン単結晶の育成時における直胴部の直径制御方法として、例えば、実際に引上げたシリコン単結晶の直径の計測値と、予め設定した直径の設定値とのズレ(差分)を算出し、シリコン融液の温度や引上速度にフィードバックして直径を制御することによって、シリコン単結晶の直径を予め設定した直径に近づけることが知られている(例えば、特許文献1,2参照)。   As a method for controlling the diameter of the straight body portion during the growth of the silicon single crystal, for example, a deviation (difference) between a measured value of the diameter of the actually pulled silicon single crystal and a preset value of the diameter is calculated. It is known that the diameter of a silicon single crystal is brought close to a preset diameter by controlling the diameter by feeding back to the temperature or pulling speed of the silicon melt (see, for example, Patent Documents 1 and 2).

しかし、上述したように、引上げられたシリコン単結晶の直径を測定してから、予め設定した直径の設定値とのズレを算出してフィードバックする方法では、シリコン単結晶の直径を精度よく制御することは困難であった。即ち、固液界面近傍に直径の測定位置を設定したとしても、既に引上げられたシリコン単結晶の直径にズレが検出された時点からシリコン融液の温度や引上速度を変化させたのでは、シリコン単結晶の実際の直径が設定値に近づくまでには相当の時間がかかる。このため、シリコン単結晶に直径の変動によるうねりが生じてしまい、シリコン単結晶の直胴部の直径を一定に保つことは難しい。   However, as described above, in the method in which the diameter of the pulled silicon single crystal is measured and then the deviation from the preset value of the diameter is calculated and fed back, the diameter of the silicon single crystal is accurately controlled. It was difficult. That is, even if the measurement position of the diameter is set near the solid-liquid interface, the temperature of the silicon melt and the pulling speed are changed from the time when the deviation is detected in the diameter of the already pulled silicon single crystal. It takes considerable time for the actual diameter of the silicon single crystal to approach the set value. For this reason, undulation due to the variation in diameter occurs in the silicon single crystal, and it is difficult to keep the diameter of the straight body portion of the silicon single crystal constant.

一方、シリコン単結晶の引上げ時に固液界面付近に生じる高輝度帯(フュージョンリングなどとも言う)を利用してシリコン単結晶の直径制御を行う方法も知られている(例えば、特許文献3参照)。この高輝度帯(フュージョンリング)は、引上中のシリコン単結晶の表面張力により持ち上がったシリコン融液の表面に、ルツボ壁からの放射光が反射して、固液界面でシリコン単結晶を取り巻く環状の高輝度領域が形成されたものである。こうした高輝度帯(フュージョンリング)を傾斜面とみなしてこの傾斜角度を継続して測定し、この高輝度帯における傾斜角度の変動を検出することにより、シリコン単結晶の直径の変化を検出するものである。   On the other hand, there is also known a method for controlling the diameter of a silicon single crystal by utilizing a high luminance band (also referred to as a fusion ring) generated near the solid-liquid interface when the silicon single crystal is pulled up (for example, see Patent Document 3). . This high-intensity band (fusion ring) surrounds the silicon single crystal at the solid-liquid interface by reflecting the radiation from the crucible wall to the surface of the silicon melt lifted by the surface tension of the silicon single crystal being pulled up. An annular high luminance region is formed. This high-intensity band (fusion ring) is regarded as an inclined surface, and this inclination angle is continuously measured, and changes in the inclination angle in this high-intensity band are detected to detect changes in the diameter of the silicon single crystal. It is.

また、ルツボからの放射光を抑制して、傾斜面とみなした高輝度帯(フュージョンリング)の外径あるいは幅を検出する構造も知られている(例えば、特許文献4参照)。   Also known is a structure that detects the outer diameter or width of a high-luminance zone (fusion ring) that is regarded as an inclined surface by suppressing the radiation light from the crucible (see, for example, Patent Document 4).

しかしながら、傾斜面とみなした高輝度帯(フュージョンリング)の角度や径寸法を検出し、これ基づいてシリコン単結晶の直径を制御する方法では、検出対象となる高輝度帯(フュージョンリング)の境界面が必ずしも明瞭ではなく、高輝度帯(フュージョンリング)の幅や直径を正確に検出することは困難である。従って、こうした高輝度帯(フュージョンリング)の幅や直径の変動をフィードバックさせてシリコン単結晶の直径を精度良く制御することは、困難であるのが現状であった。
特許第2939920号公報 特許第2787042号公報 特開平7−309694号公報 特開2005−41705号公報
However, in the method of detecting the angle and diameter of the high luminance band (fusion ring) regarded as an inclined surface and controlling the diameter of the silicon single crystal based on this, the boundary of the high luminance band (fusion ring) to be detected The surface is not always clear, and it is difficult to accurately detect the width and diameter of the high-intensity band (fusion ring). Therefore, it has been difficult to accurately control the diameter of the silicon single crystal by feeding back the variation in the width and diameter of such a high luminance band (fusion ring).
Japanese Patent No. 2939920 Japanese Patent No. 2787042 JP 7-309694 A JP 2005-41705 A

本発明は上記課題を解決するためになされたものであり、チョクラルスキー法によりシリコン融液からシリコン単結晶を引上げる際に、シリコン単結晶の直径を正確に制御することによって、結晶欠陥の少ない高品質なシリコン単結晶を得ることが可能なシリコン単結晶引上方法を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and when the silicon single crystal is pulled from the silicon melt by the Czochralski method, the diameter of the silicon single crystal is accurately controlled, so that the crystal defects are eliminated. An object of the present invention is to provide a silicon single crystal pulling method capable of obtaining a small number of high quality silicon single crystals.

上記課題を解決するために、本発明は次のようなシリコン単結晶引上方法を提供する。
すなわち、本発明のシリコン単結晶引上方法は、ルツボに収容した多結晶シリコンを溶融して前記ルツボにシリコン融液を形成する溶融工程と、チョクラルスキー法により前記シリコン融液からシリコン単結晶を引上げる引上工程とを有するシリコン単結晶引上方法であって、
前記引上工程において、撮像装置を用いて前記シリコン単結晶を撮像し、該撮像装置で撮像した画像中の前記シリコン融液と前記シリコン単結晶との固液界面近傍に生じる高輝度帯の輝度分布を各画像走査線毎に測定し、前記シリコン融液の液面位置と、前記固液界面位置とをそれぞれ検出する工程と、
前記液面位置と前記固液界面位置との差分であるメニスカス高さに基づいて、前記シリコン単結晶の直径制御を行う工程とを備え、
前記メニスカス高さは、前記画像中の固液界面近傍に生じる高輝度帯の前記各走査線毎の輝度分布において輝度が最も高い輝度ピーク部での検出位置を円近似し算出した中心位置による固液界面位置と、前記輝度ピーク部に対して前記シリコン融液側の輝度分布裾野部での位置を円近似し算出した中心位置による液面位置との差分であり、
前記液面位置を算出する際の輝度分布の裾野部分を前記輝度ピーク部の値に所定の閾値割合を乗算して求めた輝度閾値を用いて検出された位置とし、前記閾値割合は、70%以上90%以下の範囲であることを特徴とする。
本発明のシリコン単結晶引上方法は、ルツボに収容した多結晶シリコンを溶融して前記ルツボにシリコン融液を形成する溶融工程と、チョクラルスキー法により前記シリコン融液からシリコン単結晶を引上げる引上工程とを有するシリコン単結晶引上方法であって、
前記引上工程において、撮像装置を用いて前記シリコン単結晶を撮像し、撮像した画像中の前記シリコン融液と前記シリコン単結晶との固液界面近傍に生じる高輝度帯の、輝度分布を各画像走査線毎に測定し、前記シリコン融液の液面位置と、前記固液界面位置とをそれぞれ検出する工程と、
前記液面位置と前記固液界面位置との差分であるメニスカス高さに基づいて、前記シリコン単結晶の直径制御を行う工程とを備えたことを特徴とする。


In order to solve the above problems, the present invention provides the following silicon single crystal pulling method.
That is, the silicon single crystal pulling method of the present invention includes a melting step of melting polycrystalline silicon contained in a crucible to form a silicon melt in the crucible, and a silicon single crystal from the silicon melt by the Czochralski method. A silicon single crystal pulling method having a pulling step of pulling up,
In the pulling-up step, the silicon single crystal is imaged using an imaging device, and the brightness of a high-luminance zone generated in the vicinity of the solid-liquid interface between the silicon melt and the silicon single crystal in the image captured by the imaging device Measuring the distribution for each image scanning line, and detecting each of the liquid surface position of the silicon melt and the solid-liquid interface position;
A step of controlling the diameter of the silicon single crystal based on a meniscus height which is a difference between the liquid surface position and the solid-liquid interface position;
The meniscus height is a fixed value based on the center position calculated by circularly approximating the detection position at the luminance peak portion where the luminance is highest in the luminance distribution for each scanning line in the high luminance band generated near the solid-liquid interface in the image. The difference between the liquid interface position and the liquid surface position by the center position calculated by circularly approximating the position at the luminance distribution skirt part on the silicon melt side with respect to the luminance peak part,
The base part of the luminance distribution at the time of calculating the liquid surface position is a position detected by using a luminance threshold value obtained by multiplying the value of the luminance peak part by a predetermined threshold ratio, and the threshold ratio is 70% It is characterized by being in the range of 90% or less.
The silicon single crystal pulling method of the present invention includes a melting step in which polycrystalline silicon contained in a crucible is melted to form a silicon melt in the crucible, and a silicon single crystal is drawn from the silicon melt by the Czochralski method. A silicon single crystal pulling method having a pulling step to raise,
In the pulling-up step, the silicon single crystal is imaged using an imaging device, and each of the luminance distributions of the high luminance band generated in the vicinity of the solid-liquid interface between the silicon melt and the silicon single crystal in the captured image is displayed. Measuring each image scanning line, and detecting each of the liquid surface position of the silicon melt and the solid-liquid interface position;
And a step of controlling the diameter of the silicon single crystal based on a meniscus height that is a difference between the liquid surface position and the solid-liquid interface position.


このようなシリコン単結晶引上方法によれば、輝度測定手段によって高輝度帯(フュージョンリング)の、シリコン単結晶を引上方向に沿った輝度分布を各画像走査線毎に測定し、測定した輝度分布に基づいて、シリコン融液の液面位置と、固液界面位置とをそれぞれ検出する。そして、液面位置と固液界面位置との差分であるメニスカス高さの変動を連続して監視(測定)することによって、シリコン単結晶の直径が変動し始める兆候をいち早く検知して、シリコン単結晶の直径制御を迅速、かつ確実に行うことが可能になる。
ここで、フュージョンリングは、単結晶を中心とした曲面状をなしており、ほぼ円筒状である単結晶下端縁部から、水平面である融液面まで、結晶中心から放射状になだらかに変化する曲面となっている。本願発明では、このなだらかなフュージョンリグの結晶引上方向における寸法、すなわち、メニスカス高さの値を正確に測定して、この値の変化から、より精密な結晶径寸法制御が可能な引上方法を提供するものである。
According to such a silicon single crystal pulling method, the luminance measurement means measures the luminance distribution along the pulling direction of the silicon single crystal in the high luminance band (fusion ring) for each image scanning line. Based on the luminance distribution, the liquid surface position of the silicon melt and the solid-liquid interface position are detected. Then, by continuously monitoring (measuring) the fluctuation of the meniscus height, which is the difference between the liquid surface position and the solid-liquid interface position, the signs of the silicon single crystal starting to fluctuate are quickly detected, and the silicon single crystal is detected. It becomes possible to control the diameter of the crystal quickly and reliably.
Here, the fusion ring has a curved surface centered on the single crystal, and the curved surface gradually changes radially from the crystal center from the substantially cylindrical single crystal lower end edge to the melt surface which is a horizontal surface. It has become. In the present invention, the size of the gentle fusion rig in the crystal pulling direction, that is, the value of the meniscus height is accurately measured, and from this change in the pulling method, the crystal diameter can be controlled more precisely. Is to provide.

このように、シリコン単結晶の直径制御に、高輝度帯(フュージョンリング)の、シリコン単結晶を引上方向に沿った輝度分布を利用する方法は、従来のような、傾斜面とみなしてその形状が正確でない上、境界が明瞭でない高輝度帯(フュージョンリング)の傾斜角度や水平方向の径寸法である直径の変動を検出する方法と比較して、引上中のシリコン単結晶の直径の変化を正確、かつ迅速に検出することができる。
本発明のような、引上制御の正確性は、ドーナツ状の曲面の下内側4半分を切り取ったようなフュージョンリグをそのまま曲面として測定し、かつ、その引上方向における寸法、つまり、メニスカス高さを直径変動にかかるパラメータとして設定したことによって、はじめて実現されるものである。
As described above, the method of using the luminance distribution along the pulling direction of the silicon single crystal in the high luminance band (fusion ring) for the diameter control of the silicon single crystal is regarded as an inclined surface as in the conventional case. Compared to the method of detecting the tilt angle of the high-intensity zone (fusion ring) where the shape is inaccurate and the boundary is not clear and the variation of the diameter, which is the horizontal dimension, the diameter of the silicon single crystal being pulled is Changes can be detected accurately and quickly.
The accuracy of the pull-up control as in the present invention is measured by measuring a fusion rig obtained by cutting the lower inner four-half of a donut-shaped curved surface as a curved surface, and measuring the dimension in the pull-up direction, that is, the meniscus height. This is realized for the first time by setting the thickness as a parameter related to the diameter variation.

よって、シリコン単結晶の直径が予め設定した規定値よりも大幅にズレてしまう前に、シリコン単結晶の直径が予め設定した規定値内に収まるように、シリコン単結晶の引上速度および加熱ヒータの出力など、シリコン単結晶の直径制御に係る手段に対して、迅速にフィードバックすることが可能になる。これにより、直胴部の直径が一定に保たれた、結晶欠陥の少ない高品質なシリコン単結晶を得ることが可能になる。   Therefore, the pulling speed of the silicon single crystal and the heater are adjusted so that the diameter of the silicon single crystal falls within the preset specified value before the diameter of the silicon single crystal is significantly deviated from the preset specified value. It is possible to quickly feed back the means related to the diameter control of the silicon single crystal, such as the output of. Thereby, it is possible to obtain a high-quality silicon single crystal with few crystal defects, in which the diameter of the straight body portion is kept constant.

前記メニスカス高さは、液面位置と固液界面位置の差分であればよい。
具体的には、固液界面位置は前記高輝度帯(フュージョンリング)の輝度ピーク部での位置を円近似し算出した中心位置から求め、液面位置は前記高輝度帯(フュージョンリング)の輝度ピーク部より融液側の裾野部での位置を円近似し算出した中心位置から求める。メニスカス高さはその両者の差分となる。液面位置を算出する際に必要な高輝度帯(フュージョンリング)の裾野部の検出には固液界面検出に用いた高輝度帯の輝度ピーク部の値に所定の閾値割合乗算して求める。前記閾値割合は、70%以上90%以下の範囲であるのが好ましい。また、前記シリコン単結晶の直径制御は、前記シリコン単結晶の引上速度および前記シリコン融液の温度を、それぞれ制御することによって行えばよい。
具体的には、前記メニスカス高さを直径変化が0となる高さに引き上げ速度、およびヒータ温度を制御する。制御方法はPID制御が一般的であるが、その他の手法でもかまわない。ここで目標となるメニスカス高さが必要となるが、その目標メニスカス高さは事前にテストを行い、直径変動が0となるメニスカス高さを求めておく。
The meniscus height may be a difference between the liquid surface position and the solid-liquid interface position.
Specifically, the solid-liquid interface position is obtained from the center position calculated by circularly approximating the position at the luminance peak portion of the high luminance band (fusion ring), and the liquid surface position is the luminance of the high luminance band (fusion ring). The position at the skirt part on the melt side from the peak part is obtained from the center position calculated by circular approximation. The meniscus height is the difference between the two. The detection of the base part of the high luminance band (fusion ring) necessary for calculating the liquid surface position is obtained by multiplying the value of the luminance peak part of the high luminance band used for solid-liquid interface detection by a predetermined threshold ratio. The threshold ratio is preferably in the range of 70% to 90%. The diameter control of the silicon single crystal may be performed by controlling the pulling speed of the silicon single crystal and the temperature of the silicon melt.
Specifically, the meniscus height is increased to a height at which the diameter change becomes 0, and the heater temperature is controlled. The control method is generally PID control, but other methods may be used. Here, the target meniscus height is required, but the target meniscus height is tested in advance to obtain the meniscus height at which the diameter variation is zero.

引き上げ中に炉内をカメラで測定する場合、カメラは斜め上方より炉内を撮影することとなり、カメラ画角の影響で結晶中心部の固液界面は隠される。そのため、結晶中心部付近では高輝度帯全体を観察することは困難である。本発明では、前記液面位置と前記固液界面位置を測定の際に用いる前記シリコン高輝度帯の範囲を引き上げ中の結晶の中心より所定の距離だけ手前にある高輝度帯データに限定することができる。測定時に設定する所定の距離はカメラ設置条件、レンズの焦点距離等の光学条件、および測定対象の結晶の大きさ、形状により決定される。実際には前記条件で決定された距離にオフセットを加えた値に設定することが好ましく、その値は10mm程度がよい。これにより、前記液面位置と前記固液界面位置との測定精度を向上することが可能となる。なお、上記の範囲外だと、前記液面位置と前記固液界面位置とを正確に測定することが難しくなるので、好ましくない。   When the inside of the furnace is measured with a camera during the pulling, the camera takes an image of the inside of the furnace from obliquely above, and the solid-liquid interface at the center of the crystal is hidden by the influence of the camera angle of view. For this reason, it is difficult to observe the entire high luminance band in the vicinity of the center of the crystal. In the present invention, the range of the silicon high-intensity band used when measuring the liquid surface position and the solid-liquid interface position is limited to high-intensity band data that is a predetermined distance before the center of the crystal being pulled up. Can do. The predetermined distance set at the time of measurement is determined by camera installation conditions, optical conditions such as the focal length of the lens, and the size and shape of the crystal to be measured. Actually, it is preferable to set a value obtained by adding an offset to the distance determined under the above conditions, and the value is preferably about 10 mm. Thereby, it becomes possible to improve the measurement accuracy of the liquid surface position and the solid-liquid interface position. In addition, if it is outside the above range, it is difficult to accurately measure the liquid surface position and the solid-liquid interface position, which is not preferable.

また、カメラで直径測定する場合、その測定対象までの距離が変動するとその見かけの大きさが変化する。前記見かけの大きさから実際の大きさに換算する際は測定対象までの距離をもとに補正は可能であるが、そのためにはその距離変化を測定する必要がある。本発明では、前記液面位置をもとに、前記ルツボの位置を所定位置に制御することで前記液面位置を制御することができ、これにより、メニスカス高さ測定値への液面位置変化の影響を除去することが可能となる。通常前記の所定位置は結晶の引き上げ条件で決定される値であり、引き上げ中に一定である必要は無い。   Also, when measuring the diameter with a camera, the apparent size changes when the distance to the measurement object fluctuates. When converting from the apparent size to the actual size, correction is possible based on the distance to the object to be measured. To that end, it is necessary to measure the distance change. In the present invention, the liquid surface position can be controlled by controlling the position of the crucible to a predetermined position based on the liquid surface position, thereby changing the liquid surface position to the meniscus height measurement value. Can be removed. Usually, the predetermined position is a value determined by the crystal pulling condition and does not have to be constant during the pulling.

本発明のシリコン単結晶引上方法によれば、シリコン単結晶の直径制御に、高輝度帯(フュージョンリング)より算出される液面位置と固液界面位置の差分となるメニスカス高さを利用することにより、シリコン単結晶の直径が予め設定した規定値よりも大幅にズレてしまう前に、シリコン単結晶の直径が予め設定した規定値内に収まるように、シリコン単結晶の引上速度およびシリコン融液の温度など、シリコン単結晶の直径制御に係る手段に対して、迅速にフィードバックすることが可能になる。また、本発明にて同時に検出される液面位置をもとに液面位置を所望の高さに制御することが可能となる。これにより、所望の液面位置で、直胴部の直径が一定に保たれた、結晶欠陥の少ない高品質なシリコン単結晶を得ることが可能になる。   According to the silicon single crystal pulling method of the present invention, the meniscus height, which is the difference between the liquid surface position calculated from the high luminance band (fusion ring) and the solid-liquid interface position, is used for the diameter control of the silicon single crystal. As a result, the pulling speed of the silicon single crystal and the silicon are adjusted so that the diameter of the silicon single crystal falls within the predetermined specified value before the diameter of the silicon single crystal greatly deviates from the predetermined specified value. It is possible to provide quick feedback to the means related to the diameter control of the silicon single crystal, such as the temperature of the melt. In addition, the liquid surface position can be controlled to a desired height based on the liquid surface position detected simultaneously in the present invention. This makes it possible to obtain a high-quality silicon single crystal with few crystal defects, in which the diameter of the straight body portion is kept constant at a desired liquid level position.

以下、本発明に係るシリコン単結晶引上方法の最良の実施形態について、図面に基づき説明する。なお、本実施形態は発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。   The best mode for carrying out a silicon single crystal pulling method according to the present invention will be described below with reference to the drawings. In addition, this embodiment is specifically described in order to make the gist of the invention better understood, and does not limit the present invention unless otherwise specified.

図1は、チョクラルスキー法によってシリコン単結晶を引上る(育成する)様子を示した説明図である。シリコン単結晶の引上にあたっては、単結晶引上装置10を構成する、例えば石英からなるルツボ11にポリシリコンを投入し、ルツボ11を取り巻くように配されたヒータ12によってルツボ11を加熱する。そして、ポリシリコンを溶融し、ルツボ11内にシリコン融液13を形成する(溶融工程)。   FIG. 1 is an explanatory view showing a state in which a silicon single crystal is pulled (grown) by the Czochralski method. When pulling up the silicon single crystal, polysilicon is charged into a crucible 11 made of, for example, quartz, which constitutes the single crystal pulling apparatus 10, and the crucible 11 is heated by a heater 12 arranged so as to surround the crucible 11. Then, the polysilicon is melted to form a silicon melt 13 in the crucible 11 (melting step).

次に、種結晶をシリコン融液13に接触させ、所定の回転速度で回転させつつ、直径を漸増させたショルダー部15aを形成し、続いて、予め設定した所定の直径を保った直胴部15bを育成し、所定の長さのシリコン単結晶15を得る。   Next, the shoulder portion 15a having a gradually increased diameter is formed while the seed crystal is brought into contact with the silicon melt 13 and rotated at a predetermined rotation speed, and then a straight body portion having a predetermined diameter set in advance. 15b is grown to obtain a silicon single crystal 15 having a predetermined length.

このようなシリコン単結晶15の育成にあたって、直胴部15bの直径を一定に保ちつつ引上ることは、結晶欠陥の少ない高品質なシリコン単結晶を得るために重要である。本発明のシリコン単結晶引上方法では、シリコン単結晶15の引上(育成)時に、シリコン融液13とシリコン単結晶15との固液界面近傍に生じる高輝度帯(フュージョンリング)FRの輝度を、輝度測定手段16によって測定する。   In growing such a silicon single crystal 15, pulling up while keeping the diameter of the straight body portion 15b constant is important for obtaining a high-quality silicon single crystal with few crystal defects. In the silicon single crystal pulling method of the present invention, the brightness of the high brightness band (fusion ring) FR generated near the solid-liquid interface between the silicon melt 13 and the silicon single crystal 15 when the silicon single crystal 15 is pulled (grown). Is measured by the luminance measuring means 16.

この高輝度帯(フュージョンリング)FRは、引上中のシリコン単結晶の表面張力により持ち上がったシリコン融液の表面に、ルツボ壁からの放射光が反射して、固液界面でシリコン単結晶を取り巻く環状の高輝度領域が形成されたものである。   This high-intensity band (fusion ring) FR reflects the radiated light from the crucible wall to the surface of the silicon melt lifted by the surface tension of the silicon single crystal being pulled up, so that the silicon single crystal is formed at the solid-liquid interface. An annular high brightness region is formed.

本発明においては、シリコン単結晶15の育成中、輝度測定手段16によって継続して高輝度帯(フュージョンリング)FRの輝度を測定する。測定にあたっては、画像中の水平方向での高輝度帯(フュージョンリング)FRの輝度分布を測定する。そして、得られた高輝度帯(フュージョンリング)FRの輝度分布に基づいて、シリコン融液13の液面位置と、固液界面位置とをそれぞれ検出する。   In the present invention, while the silicon single crystal 15 is grown, the luminance of the high luminance band (fusion ring) FR is continuously measured by the luminance measuring means 16. In the measurement, the luminance distribution of the high luminance band (fusion ring) FR in the horizontal direction in the image is measured. Then, based on the luminance distribution of the obtained high luminance band (fusion ring) FR, the liquid surface position of the silicon melt 13 and the solid-liquid interface position are detected.

輝度測定手段16によって測定された高輝度帯(フュージョンリング)FRの輝度分布は、例えば、図2の右側に示すグラフのようになる。即ち、高輝度帯(フュージョンリング)FRの輝度のピークは、シリコン単結晶15の固液界面、高輝度帯(フュージョンリング)FRの輝度の裾野部分は、シリコン融液13が傾いている部分に相当することがわかる。そのため高輝度帯(フュージョンリング)FRのピーク輝度部を用いて算出された近似円の中心位置は、シリコン単結晶の固液界面の位置、一方、高輝度帯(フュージョンリング)FRの裾野部のデータを用いて算出した場合は、固液界面より下の融液部の位置を検出することになる。   The luminance distribution of the high luminance band (fusion ring) FR measured by the luminance measuring means 16 is, for example, as shown in the graph on the right side of FIG. That is, the luminance peak of the high-intensity band (fusion ring) FR is at the solid-liquid interface of the silicon single crystal 15, and the base of the luminance of the high-intensity band (fusion ring) FR is at the portion where the silicon melt 13 is inclined. You can see that it corresponds. Therefore, the center position of the approximate circle calculated using the peak luminance part of the high-intensity band (fusion ring) FR is the position of the solid-liquid interface of the silicon single crystal, on the other hand, at the base of the high-intensity band (fusion ring) FR. When calculated using data, the position of the melt part below the solid-liquid interface is detected.

そして、シリコン単結晶15の引上中に、直胴部15bの直径が変化すると、結晶の固液界面の位置は変化する。例えば、引上中のシリコン単結晶の直径が減少しはじめると、それに対応して固液界面の位置が降下する。その時、高輝度帯(フュージョンリング)FRは、図3に示すように、輝度のピーク位置が変化する。高輝度帯(フュージョンリング)FRの輝度ピーク位置では、シリコン単結晶の直径が変動する際の固液界面の位置が反映される。これにより、高輝度帯(フュージョンリング)FRの輝度の測定結果を用いて算出された近似円の中心位置は、シリコン結晶の直径変動時における、固液界面高さの変動を反映した結果が得られる。   When the diameter of the straight body portion 15b changes during the pulling of the silicon single crystal 15, the position of the solid-liquid interface of the crystal changes. For example, when the diameter of the silicon single crystal being pulled starts to decrease, the position of the solid-liquid interface is lowered accordingly. At that time, in the high luminance band (fusion ring) FR, as shown in FIG. 3, the luminance peak position changes. In the luminance peak position of the high luminance band (fusion ring) FR, the position of the solid-liquid interface when the diameter of the silicon single crystal varies is reflected. As a result, the center position of the approximate circle calculated using the measurement result of the luminance of the high luminance band (fusion ring) FR is obtained by reflecting the variation of the solid-liquid interface height when the diameter of the silicon crystal varies. It is done.

以上のように、輝度測定手段16によって高輝度帯(フュージョンリング)FRの、シリコン単結晶を引上方向に沿った輝度分布を測定し、測定した輝度分布に基づいて、シリコン融液の液面位置と、固液界面位置とをそれぞれ検出する。そして、液面位置と固液界面位置との差分であるメニスカス高さの変動を連続して監視(測定)することによって、シリコン単結晶の直径が変動し始める兆候をいち早く検知して、シリコン単結晶の直径制御を迅速、かつ確実に行うことが可能になる。   As described above, the luminance measurement means 16 measures the luminance distribution along the pulling direction of the silicon single crystal in the high luminance band (fusion ring) FR, and based on the measured luminance distribution, the liquid surface of the silicon melt The position and the solid-liquid interface position are detected. Then, by continuously monitoring (measuring) the fluctuation of the meniscus height, which is the difference between the liquid surface position and the solid-liquid interface position, the signs of the silicon single crystal starting to fluctuate are quickly detected, and the silicon single crystal is detected. It becomes possible to control the diameter of the crystal quickly and reliably.

このように、シリコン単結晶の直径制御に、高輝度帯(フュージョンリング)FRの、シリコン単結晶を引上方向に沿った輝度分布を利用する方法は、従来のような、境界が明瞭でない高輝度帯(フュージョンリング)の幅や直径の変動を検出する方法と比較して、引上中のシリコン単結晶の直径の変化を正確、かつ迅速に検出することができる。   As described above, the method of using the luminance distribution along the pulling-up direction of the silicon single crystal in the high-luminance band (fusion ring) FR for controlling the diameter of the silicon single crystal has a high boundary where the boundary is not clear. Compared with a method for detecting variations in the width and diameter of a luminance band (fusion ring), a change in the diameter of a silicon single crystal during pulling can be detected accurately and rapidly.

よって、シリコン単結晶の直径が予め設定した規定値よりも大幅にズレてしまう前に、シリコン単結晶の直径が予め設定した規定値内に収まるように、シリコン単結晶の引上速度およびシリコン融液の温度など、シリコン単結晶の直径制御に係る手段に対して、迅速にフィードバックすることが可能になる。これにより、直胴部15bの直径が一定に保たれた、結晶欠陥の少ない高品質なシリコン単結晶を得ることが可能になる。   Therefore, before the diameter of the silicon single crystal is significantly deviated from the preset specified value, the pulling speed of the silicon single crystal and the silicon melt are adjusted so that the diameter of the silicon single crystal is within the preset specified value. It is possible to provide quick feedback to means relating to the diameter control of the silicon single crystal, such as the temperature of the liquid. This makes it possible to obtain a high-quality silicon single crystal with few crystal defects, in which the diameter of the straight body portion 15b is kept constant.

図4は、実際の単結晶引上装置で測定した、シリコン単結晶の直径、直径変化量(直径微分値)、およびシリコン融液のメニスカス高さの測定結果を示すグラフである。図4に示した結果から、シリコン単結晶の直径変化量とメニスカス高さとは、逆位相で非常に高く一致する傾向を示した。   FIG. 4 is a graph showing measurement results of the silicon single crystal diameter, diameter change (diameter differential value), and silicon melt meniscus height measured with an actual single crystal pulling apparatus. From the results shown in FIG. 4, it was found that the amount of change in diameter of the silicon single crystal and the meniscus height tended to be very high in antiphase.

図5は、図4に示したシリコン単結晶の直径変化量と、メニスカス高さとの相関を示す分布図である。この図5からも、引上中のシリコン単結晶の直径が増加し始める際には、メニスカス高さが減少し、逆に、直径が減少し始める際には、メニスカス高さが増加することが確認された。   FIG. 5 is a distribution diagram showing the correlation between the change in diameter of the silicon single crystal shown in FIG. 4 and the meniscus height. Also from FIG. 5, when the diameter of the silicon single crystal being pulled starts to increase, the meniscus height decreases, and conversely, when the diameter starts to decrease, the meniscus height increases. confirmed.

従来、単結晶引上装置における単結晶の直径制御は、直径値を入力し、実際に測定した直径値の目標値からのズレに基づき、PIDにて引き上げ速度およびヒータ温度を制御することにより直径制御を行っている。しかし、現状のようにシリコン単結晶が大口径化し、初期のポリシリコンの投入量が増大すると、引上時の直径制御が困難となる。
そこで直径の測定値に代えて直径変化量を入力、即ち直径変化量を目標値(直胴部では0)にするように制御することによって、従来の直径制御よりも早いタイミングでの操作が可能なり、直径制御性の向上を図ることができるとされていた。
Conventionally, the diameter control of the single crystal in the single crystal pulling apparatus is performed by inputting the diameter value and controlling the pulling speed and the heater temperature with the PID based on the deviation of the actually measured diameter value from the target value. Control is in progress. However, when the diameter of the silicon single crystal is increased as in the present situation and the initial amount of polysilicon is increased, it becomes difficult to control the diameter during pulling.
Therefore, it is possible to operate at a timing earlier than the conventional diameter control by inputting the diameter change amount instead of the measured diameter value, that is, by controlling the diameter change amount to be the target value (0 in the case of the straight body portion). Therefore, it was said that the diameter controllability could be improved.

しかしながら、図4に示したグラフからも分かるように、実際に制御に適用可能なレベルの直径変化量を算出するためには、移動平均などを用いたSNの向上が必須であり、そのため直径変化量を用いたことによって得られる、迅速なタイミングでの直径制御による効果は相殺されてしまう。   However, as can be seen from the graph shown in FIG. 4, in order to calculate the amount of change in diameter at a level that can be actually applied to control, it is essential to improve SN using a moving average or the like. The effect of diameter control at a quick timing obtained by using the quantity is offset.

一方、本発明においては、メニスカス高さは移動平均なしの値にも関わらず、シリコン単結晶の直径変化量の結果とほぼ同等のSNを確保しており、移動平均等の処置は必要ない。そのため、メニスカス高さを用いた直径制御によりも早いタイミングでの直径制御のための操作が実現可能となり、直径制御性を大きく改善することが可能になる。   On the other hand, in the present invention, although the meniscus height is a value without a moving average, an SN substantially equal to the result of the diameter change amount of the silicon single crystal is secured, and a treatment such as a moving average is not necessary. Therefore, an operation for controlling the diameter at an earlier timing can be realized than the diameter control using the meniscus height, and the diameter controllability can be greatly improved.

こうしたメニスカス高さに基づいた直径制御においては、目標となるメニスカス高さは図5に示すような、直径変化に対する相関解析に基づいて設定する。例えば、図4に示すグラフの場合、目標となるメニスカス高さは2.5mmあり、メニスカス高さ2.5mmでの直径変化量は0mmであるため、シリコン単結晶の直胴部は、メニスカス高さを2.5mmなるように、メニスカス高さをもとにPID演算によって、引上速度、ヒータ温度(シリコン融液温度)を制御すればよい。   In the diameter control based on the meniscus height, the target meniscus height is set based on the correlation analysis with respect to the diameter change as shown in FIG. For example, in the case of the graph shown in FIG. 4, the target meniscus height is 2.5 mm, and the diameter variation at the meniscus height of 2.5 mm is 0 mm. The pulling speed and heater temperature (silicon melt temperature) may be controlled by PID calculation based on the meniscus height so that the thickness is 2.5 mm.

図5から、メニスカス高さと直径変化とは傾き−0.08の比例関係にありその相関係数は0.8以上となることがわかる。ここからメニスカス高さと直径変化との関係はy=−0.08x+0.2で表される。つまり、この相関関係に基づいて、メニスカス高さの変化に対応して、引上速度、ヒータ温度を制御することができる。
そして、メニスカス高さが上昇した場合は、引き上げ速度を低下もしくはヒータ温度低下、逆にメニスカス高さが低下した場合は、引き上げ速度を増加もしくはヒータ温度上昇させる操作を行うこととする。
From FIG. 5, it can be seen that the meniscus height and the diameter change have a proportional relationship of slope -0.08, and the correlation coefficient is 0.8 or more. From this, the relationship between meniscus height and diameter change is expressed as y = −0.08x + 0.2. That is, based on this correlation, the pulling speed and the heater temperature can be controlled in accordance with the change in meniscus height.
When the meniscus height is increased, the pulling speed is decreased or the heater temperature is decreased. Conversely, when the meniscus height is decreased, the pulling speed is increased or the heater temperature is increased.

メニスカス高さを算出する際にシリコン融液の液面位置を示す高輝度帯(フュージョンリング)FRのエッジ部の設定は、高輝度帯(フュージョンリング)の輝度分布を測定して得られた輝度ピーク値に対して、所定の閾値割合を乗算して求めた輝度閾値であればよい。例えば、図6に示すグラフのように、高輝度帯(フュージョンリング)の輝度ピーク値に対して、閾値割合を90%に設定し、この閾値割合を90%とした横線と輝度分布を示す連続線との交点を輝度閾値、即ち、シリコン融液の液面位置を示す値として用いればよい。なお、この閾値割合は、輝度ピーク値に対して70〜95%、例えば、90%であればよい。   When calculating the meniscus height, the setting of the edge portion of the high luminance band (fusion ring) FR indicating the position of the silicon melt surface is obtained by measuring the luminance distribution of the high luminance band (fusion ring). Any luminance threshold value obtained by multiplying the peak value by a predetermined threshold ratio may be used. For example, as shown in the graph of FIG. 6, the threshold ratio is set to 90% with respect to the luminance peak value in the high luminance band (fusion ring), and the horizontal line and the luminance distribution with the threshold ratio set to 90% are shown. The intersection with the line may be used as a luminance threshold value, that is, a value indicating the liquid surface position of the silicon melt. The threshold ratio may be 70 to 95%, for example, 90% with respect to the luminance peak value.

本発明のシリコン単結晶引上方法の説明図である。It is explanatory drawing of the silicon single crystal pulling method of this invention. 高輝度帯(フュージョンリング)の輝度分布を示す説明図である。It is explanatory drawing which shows the luminance distribution of a high-intensity zone (fusion ring). 高輝度帯(フュージョンリング)の輝度分布を示す説明図である。It is explanatory drawing which shows the luminance distribution of a high-intensity zone (fusion ring). 本発明のシリコン単結晶引上方法における、直径変化とメニスカス高さを示すグラフである。It is a graph which shows a diameter change and meniscus height in the silicon single crystal pulling method of the present invention. 本発明のシリコン単結晶引上方法における、直径変化とメニスカス高さとの相関を示す相関図である。It is a correlation diagram which shows the correlation with a diameter change and meniscus height in the silicon single crystal pulling method of this invention. 輝度分布の閾値を設定する方法の一例を示したグラフである。It is the graph which showed an example of the method of setting the threshold value of luminance distribution.

符号の説明Explanation of symbols

10 単結晶引上装置、11 ルツボ、13 シリコン融液、15 シリコン単結晶、16 輝度検出手段。

10 single crystal pulling device, 11 crucible, 13 silicon melt, 15 silicon single crystal, 16 luminance detection means.

Claims (4)

ルツボに収容した多結晶シリコンを溶融して前記ルツボにシリコン融液を形成する溶融工程と、チョクラルスキー法により前記シリコン融液からシリコン単結晶を引上げる引上工程とを有するシリコン単結晶引上方法であって、
前記引上工程において、撮像装置を用いて前記シリコン単結晶を撮像し、該撮像装置で撮像した画像中の前記シリコン融液と前記シリコン単結晶との固液界面近傍に生じる高輝度帯の輝度分布を各画像走査線毎に測定し、前記シリコン融液の液面位置と、前記固液界面位置とをそれぞれ検出する工程と、
前記液面位置と前記固液界面位置との差分であるメニスカス高さに基づいて、前記シリコン単結晶の直径制御を行う工程とを備え、
前記メニスカス高さは、前記画像中の固液界面近傍に生じる高輝度帯の前記各走査線毎の輝度分布において輝度が最も高い輝度ピーク部での検出位置を円近似し算出した中心位置による固液界面位置と、前記輝度ピーク部に対して前記シリコン融液側の輝度分布裾野部での位置を円近似し算出した中心位置による液面位置との差分であり、
前記液面位置を算出する際の輝度分布の裾野部分を前記輝度ピーク部の値に所定の閾値割合を乗算して求めた輝度閾値を用いて検出された位置とし、前記閾値割合は、70%以上90%以下の範囲であることを特徴とするシリコン単結晶引上方法。
A silicon single crystal pulling method comprising: a melting step of melting polycrystalline silicon contained in a crucible to form a silicon melt in the crucible; and a pulling step of pulling up the silicon single crystal from the silicon melt by the Czochralski method. The above method,
In the pulling-up step, the silicon single crystal is imaged using an imaging device, and the brightness of a high-luminance zone generated in the vicinity of the solid-liquid interface between the silicon melt and the silicon single crystal in the image captured by the imaging device Measuring the distribution for each image scanning line, and detecting each of the liquid surface position of the silicon melt and the solid-liquid interface position;
A step of controlling the diameter of the silicon single crystal based on a meniscus height which is a difference between the liquid surface position and the solid-liquid interface position;
The meniscus height is a fixed value based on the center position calculated by circularly approximating the detection position at the luminance peak portion where the luminance is highest in the luminance distribution for each scanning line in the high luminance band generated near the solid-liquid interface in the image. The difference between the liquid interface position and the liquid surface position by the center position calculated by circularly approximating the position at the luminance distribution skirt part on the silicon melt side with respect to the luminance peak part,
The base part of the luminance distribution at the time of calculating the liquid surface position is a position detected by using a luminance threshold value obtained by multiplying the value of the luminance peak part by a predetermined threshold ratio, and the threshold ratio is 70% features and to Resid silicon single crystal pulling method to be a range of 90% or less.
前記シリコン単結晶の直径制御は、前記シリコン単結晶の引上速度および前記シリコン融液を加熱する加熱ヒータの温度を、それぞれ制御することによって行うことを特徴とする請求項1記載のシリコン単結晶引上方法。   2. The silicon single crystal according to claim 1, wherein the diameter control of the silicon single crystal is performed by controlling a pulling speed of the silicon single crystal and a temperature of a heater for heating the silicon melt. Pulling method. 前記液面位置と前記固液界面位置を測定の際に用いる前記シリコン高輝度帯の範囲を引き上げ中の結晶中心より手前にある高輝度帯データに限定することを特徴とする請求項1または2記載シリコン単結晶引上方法。 Claim 1, characterized in that to limit the high-brightness zone data in the crystal center O retainer before during pulling range of the high silicon luminance band used in the measurement of the solid-liquid interface position and the liquid level position Or 2. A silicon single crystal pulling method according to 2. 前記液面位置をもとに、前記ルツボの位置を所定位置に制御することで前記液面位置を制御することを特徴とする請求項1または2記載のシリコン単結晶引上方法。 3. The silicon single crystal pulling method according to claim 1, wherein the liquid surface position is controlled by controlling the position of the crucible to a predetermined position based on the liquid surface position.
JP2007223059A 2007-08-29 2007-08-29 Silicon single crystal pulling method Active JP4918897B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007223059A JP4918897B2 (en) 2007-08-29 2007-08-29 Silicon single crystal pulling method
US12/199,070 US8187378B2 (en) 2007-08-29 2008-08-27 Silicon single crystal pulling method
TW097132824A TWI395842B (en) 2007-08-29 2008-08-27 Silicon single crystal pulling method
DE102008044761A DE102008044761B4 (en) 2007-08-29 2008-08-28 Siliciumeinkristallziehverfahren
CN2008101714018A CN101377008B (en) 2007-08-29 2008-08-29 Silicon single crystal pulling method
KR1020080085037A KR101028684B1 (en) 2007-08-29 2008-08-29 Silicon single crystal pulling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007223059A JP4918897B2 (en) 2007-08-29 2007-08-29 Silicon single crystal pulling method

Publications (2)

Publication Number Publication Date
JP2009057216A JP2009057216A (en) 2009-03-19
JP4918897B2 true JP4918897B2 (en) 2012-04-18

Family

ID=40384624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007223059A Active JP4918897B2 (en) 2007-08-29 2007-08-29 Silicon single crystal pulling method

Country Status (6)

Country Link
US (1) US8187378B2 (en)
JP (1) JP4918897B2 (en)
KR (1) KR101028684B1 (en)
CN (1) CN101377008B (en)
DE (1) DE102008044761B4 (en)
TW (1) TWI395842B (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5302556B2 (en) 2008-03-11 2013-10-02 Sumco Techxiv株式会社 Silicon single crystal pulling apparatus and silicon single crystal manufacturing method
JP2009292654A (en) * 2008-06-02 2009-12-17 Sumco Corp Method for pulling silicon single crystal
JP5446277B2 (en) * 2009-01-13 2014-03-19 株式会社Sumco Method for producing silicon single crystal
JP5708171B2 (en) 2010-04-26 2015-04-30 株式会社Sumco Silicon single crystal pulling apparatus and silicon single crystal manufacturing method
JP5758986B2 (en) 2011-03-23 2015-08-05 トヨタ自動車株式会社 SiC single crystal manufacturing method and manufacturing apparatus
CN102220632B (en) * 2011-06-23 2012-12-12 英利能源(中国)有限公司 Technical method of N-type Czochralski silicon monocrystal
KR101444519B1 (en) * 2012-01-27 2014-09-24 주식회사 엘지실트론 Apparatus of ingot growing and method of meitgap measurement
KR101366726B1 (en) * 2012-07-18 2014-02-25 주식회사 엘지실트론 Apparatus and method for growing monocrystalline silicon ingots
CN102995111B (en) * 2012-11-07 2015-05-27 北京七星华创电子股份有限公司 Method and device for measuring silicon material liquid level position in single crystal furnace in non-contact manner
JP5924246B2 (en) 2012-11-22 2016-05-25 トヨタ自動車株式会社 Pull-up continuous casting apparatus, pull-up continuous casting method, and solidification interface detection apparatus
DE102013210687B4 (en) * 2013-06-07 2018-12-06 Siltronic Ag Method for controlling the diameter of a single crystal to a nominal diameter
WO2015047816A1 (en) * 2013-09-30 2015-04-02 Gt Crystal Systems, Llc Method of automatically measuring seed melt back of crystalline material
JP6119578B2 (en) * 2013-11-26 2017-04-26 トヨタ自動車株式会社 Pull-up type continuous casting apparatus and pull-up type continuous casting method
JP6119579B2 (en) 2013-11-26 2017-04-26 トヨタ自動車株式会社 Pull-up type continuous casting apparatus and pull-up type continuous casting method
TW201600654A (en) * 2014-06-17 2016-01-01 Bo-Zhong Wang Molten crystal surface flow speed measurement method for artificial crystal growth and crystal growth device using the same
CN105463584A (en) * 2014-09-05 2016-04-06 苏州恒嘉晶体材料有限公司 Method, system, solid-liquid conversion time point determination method and device for crystal growth
DE112015003765B4 (en) * 2014-09-12 2022-02-03 Shin-Etsu Handotai Co., Ltd. Method of making a single crystal
JP2016121023A (en) 2014-12-24 2016-07-07 株式会社Sumco Production method of single crystal
JP6519422B2 (en) * 2015-09-15 2019-05-29 株式会社Sumco Method and apparatus for producing single crystal
CN105350071B (en) * 2015-10-23 2017-09-22 西安理工大学 A kind of straight pulling silicon single crystal furnace liquid-level detecting method for suppressing fluctuation
JP6447537B2 (en) * 2016-02-29 2019-01-09 株式会社Sumco Single crystal manufacturing method and manufacturing apparatus
TWI593836B (en) * 2016-04-13 2017-08-01 環球晶圓股份有限公司 A method of controlling a liquid level of a melt flow
KR101874712B1 (en) * 2016-12-07 2018-07-04 에스케이실트론 주식회사 Ingot growth control apparatus and control method thereof
JP6935790B2 (en) * 2018-10-15 2021-09-15 株式会社Sumco Evaluation method of the inner peripheral surface of the quartz crucible and the evaluation device of the inner peripheral surface of the quartz crucible
CN113825862A (en) * 2019-04-11 2021-12-21 环球晶圆股份有限公司 Process for preparing ingot with reduced deformation of main body length of rear section
CN112080793B (en) * 2019-12-24 2022-06-03 徐州鑫晶半导体科技有限公司 System and method for temperature control in semiconductor single crystal growth
TWI770661B (en) * 2020-04-20 2022-07-11 日商Sumco股份有限公司 Single crystal manufacturing apparatus and single crystal manufacturing method
CN114990688B (en) * 2022-06-28 2024-01-26 西安奕斯伟材料科技股份有限公司 Single crystal diameter control method and device and single crystal silicon crystal pulling furnace

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649631B2 (en) * 1986-10-29 1994-06-29 信越半導体株式会社 Crystal size measuring device
US5078830A (en) * 1989-04-10 1992-01-07 Mitsubishi Metal Corporation Method for growing single crystal
JPH0663824B2 (en) * 1990-04-29 1994-08-22 信越半導体株式会社 Method and apparatus for measuring surface vibration
JP2787042B2 (en) 1992-03-30 1998-08-13 住友金属工業株式会社 Single crystal pulling method
JP2939920B2 (en) 1993-02-10 1999-08-25 コマツ電子金属株式会社 Semiconductor single crystal manufacturing equipment
JP3484758B2 (en) 1994-05-17 2004-01-06 三菱住友シリコン株式会社 Crystal growth apparatus and crystal growth method
JP3611364B2 (en) 1995-03-03 2005-01-19 東海カーボン株式会社 Single crystal diameter control method
US5653799A (en) * 1995-06-02 1997-08-05 Memc Electronic Materials, Inc. Method for controlling growth of a silicon crystal
US5918196A (en) * 1996-11-29 1999-06-29 Cognex Corporation Vision system for analyzing solid-of-revolution radius profile
US5846318A (en) 1997-07-17 1998-12-08 Memc Electric Materials, Inc. Method and system for controlling growth of a silicon crystal
EP0903428A3 (en) * 1997-09-03 2000-07-19 Leybold Systems GmbH Apparatus and method for determining crystal diameters
GB9810207D0 (en) * 1998-05-14 1998-07-08 Secr Defence Crystal growth apparatus and method
US6170227B1 (en) * 1998-11-05 2001-01-09 Storopack, Inc. Cushioning product and machine and method for producing same
JP4035924B2 (en) 1999-07-12 2008-01-23 株式会社Sumco Single crystal diameter control method and crystal growth apparatus
US6203611B1 (en) * 1999-10-19 2001-03-20 Memc Electronic Materials, Inc. Method of controlling growth of a semiconductor crystal to automatically transition from taper growth to target diameter growth
JP2003521432A (en) 2000-02-01 2003-07-15 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Method for controlling the growth of silicon crystals to minimize growth rate and diameter deviations
JP3570343B2 (en) * 2000-06-09 2004-09-29 三菱住友シリコン株式会社 Single crystal manufacturing method
JP4246561B2 (en) 2003-07-22 2009-04-02 コバレントマテリアル株式会社 Single crystal diameter control method
US7635414B2 (en) 2003-11-03 2009-12-22 Solaicx, Inc. System for continuous growing of monocrystalline silicon
JP4206919B2 (en) 2003-12-19 2009-01-14 株式会社Sumco Method and apparatus for pulling single crystal
JP4784401B2 (en) 2006-05-30 2011-10-05 株式会社Sumco Molten liquid level monitoring device in silicon single crystal growth process

Also Published As

Publication number Publication date
CN101377008B (en) 2013-03-27
JP2009057216A (en) 2009-03-19
DE102008044761B4 (en) 2012-10-04
US8187378B2 (en) 2012-05-29
CN101377008A (en) 2009-03-04
TWI395842B (en) 2013-05-11
KR101028684B1 (en) 2011-04-12
KR20090023267A (en) 2009-03-04
US20090064923A1 (en) 2009-03-12
TW200916616A (en) 2009-04-16
DE102008044761A1 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP4918897B2 (en) Silicon single crystal pulling method
JP4929817B2 (en) Method for measuring distance between reference reflector and melt surface, method for controlling melt surface position using the same, and apparatus for producing silicon single crystal
JP5446277B2 (en) Method for producing silicon single crystal
US9708731B2 (en) Method of producing silicon single crystal
US9260796B2 (en) Method for measuring distance between lower end surface of heat insulating member and surface of raw material melt and method for controlling thereof
TWI588304B (en) Single crystal manufacturing method
JP5109928B2 (en) Single crystal diameter detection method, single crystal manufacturing method using the same, and single crystal manufacturing apparatus
CN109750352B (en) Method and apparatus for producing single crystal
TW202140865A (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP4930487B2 (en) Method for measuring distance between melt surface and lower end of in-furnace structure, method for controlling position of melt surface using the same, method for producing single crystal and single crystal production apparatus
JP6645406B2 (en) Single crystal manufacturing method
JP6939714B2 (en) Method for measuring the distance between the melt surface and the seed crystal, method for preheating the seed crystal, and method for producing a single crystal
JP6477356B2 (en) Single crystal manufacturing method and manufacturing apparatus
JP2001019588A (en) Method for controlling diameter of single crystal and device for growing crystal
WO2022075061A1 (en) Method for producing single crystals
KR101781463B1 (en) Apparatus and method for growing silicon single crystal ingot
JP6090501B2 (en) Single crystal pulling method
JP2023154794A (en) Method and apparatus for producing silicon single crystal and method for producing silicon wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Ref document number: 4918897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250