JP4917467B2 - Refrigerator system - Google Patents

Refrigerator system Download PDF

Info

Publication number
JP4917467B2
JP4917467B2 JP2007093614A JP2007093614A JP4917467B2 JP 4917467 B2 JP4917467 B2 JP 4917467B2 JP 2007093614 A JP2007093614 A JP 2007093614A JP 2007093614 A JP2007093614 A JP 2007093614A JP 4917467 B2 JP4917467 B2 JP 4917467B2
Authority
JP
Japan
Prior art keywords
water tank
temperature water
cooling
temperature
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007093614A
Other languages
Japanese (ja)
Other versions
JP2007292448A (en
Inventor
允和 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2007093614A priority Critical patent/JP4917467B2/en
Publication of JP2007292448A publication Critical patent/JP2007292448A/en
Application granted granted Critical
Publication of JP4917467B2 publication Critical patent/JP4917467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

本発明は、空気調和装置などに用いる冷凍機システムに関する。
The present invention relates to a refrigeration system for use in such an air conditioner.

従来、この種の冷凍機システムは、例えば、オフィスビルの中央式空気調和装置や半導体工場など比較的大容量の空気調和装置などで用いる冷水を製造している(例えば、特許文献1参照)。
その一例を図9に基づいて説明する。
例えば、オフィスビルの中央式空気調和装置や半導体工場など比較的大容量の空気調和装置などの空気調和装置7の冷却コイル8に用いる冷水は、冷凍機1の蒸発器で冷却され、循環ポンプ2から矢印で示すように往きヘッダ5を経て冷水往き路で搬送される。空気調和装置7の冷却コイル8で暖められた冷水は、矢印で示すように冷水還り路から還りヘッダ6を経て冷凍機1に戻る。冷凍機1はその機内に、蒸発器〜圧縮機〜凝縮器〜膨張弁〜蒸発器という冷媒ガスの蒸発潜熱を利用する冷凍サイクルを構成するが、屋外に設置された冷却塔3から冷却水ポンプ4を介して矢印で示すように冷却水往き路で搬送される冷却水は、冷凍機1の凝縮器に導入されて冷凍サイクルの冷媒と熱交換されて加熱され、冷却水還り路により冷却塔3へ搬送される。そして、冷却塔3で大気と熱交換され冷却された冷却水は、矢印で示すように冷却水ポンプ4を介して冷却水往き路で搬送される。また、複数の冷凍機1と冷却塔3とを併用する場合には、各冷凍機1が往きヘッダ5と還りヘッダ6とに接続され、それぞれの冷凍機1の凝縮器に接続される冷却水往き路および冷却水還り路がそれぞれ複数の冷却塔に接続されたり、大型の集合冷却塔にまとめて接続されたりする。
特開平10−9796号公報の図3
Conventionally, this kind of refrigerator system manufactures the cold water used by the air conditioning apparatus of comparatively large capacity | capacitances, such as a central type air conditioning apparatus of an office building, a semiconductor factory, etc. (for example, refer patent document 1).
One example will be described with reference to FIG.
For example, chilled water used in the cooling coil 8 of the air conditioner 7 such as a central air conditioner in an office building or a relatively large capacity air conditioner such as a semiconductor factory is cooled by the evaporator of the refrigerator 1 and the circulation pump 2. As shown by the arrow, it is conveyed on the cold water going path through the going header 5. The cold water heated by the cooling coil 8 of the air conditioner 7 returns from the cold water return path to the refrigerator 1 via the return header 6 as indicated by the arrow. The refrigerator 1 constitutes a refrigeration cycle that uses the latent heat of evaporation of refrigerant gas such as an evaporator, a compressor, a condenser, an expansion valve, and an evaporator, and a cooling water pump from a cooling tower 3 installed outdoors. As shown by the arrow through 4, the cooling water conveyed in the cooling water going path is introduced into the condenser of the refrigerator 1, is heat-exchanged with the refrigerant of the refrigeration cycle, is heated, and is cooled by the cooling water return path. 3 is conveyed. Then, the cooling water which is cooled by exchanging heat with the atmosphere in the cooling tower 3 is conveyed through the cooling water going path via the cooling water pump 4 as indicated by arrows. When a plurality of refrigerators 1 and cooling towers 3 are used in combination, each refrigerator 1 is connected to a forward header 5 and a return header 6 and is connected to a condenser of each refrigerator 1. The forward path and the cooling water return path are each connected to a plurality of cooling towers, or connected together to a large collective cooling tower.
FIG. 3 of JP-A-10-9796

しかし、従来の冷凍機システムの凝縮器側の冷却水系では、冷凍機1の凝縮器と冷却塔3と冷却水ポンプ4とを一本の配管で結びつけて独立した1ヶの閉回路を形成するので、その回路のどの機器に不調が生じても、その独立した系が断の状態に陥り、複数の系統を並列させていても、大きな出力不足となる虞がある。また、機器の不調でなくとも系の中の1機器を定期メンテナンスするだけでも、その系全体を停止しなければならない。
本発明は斯かる従来の問題点を解決するために為されたもので、その目的は、冷凍機システムの凝縮器側の冷却水系において、冷凍機と冷却塔とを冷却水槽を介することで、機器毎に分割独立させることによって、複数の冷凍機の中の1台、複数の冷却塔の中の1台、もしくは複数の冷却水ポンプの1台何れかの機器に不調が生じても、その他の同種の正常機器と他の機器とを組み換えてバックアップすることにより大きな出力不足には陥らず、かつメンテナンスを自由に行える冷凍機システムを提供することにある。
However, in the cooling water system on the condenser side of the conventional refrigerator system, the condenser of the refrigerator 1, the cooling tower 3, and the cooling water pump 4 are connected by a single pipe to form an independent closed circuit. Therefore, even if any device in the circuit malfunctions, the independent system falls into a disconnected state, and even if a plurality of systems are arranged in parallel, there is a possibility that a large output shortage occurs. Further, even if one device in the system is regularly maintained even if the device is not malfunctioning, the entire system must be stopped.
The present invention was made in order to solve such a conventional problem, and its purpose is to provide a refrigerator and a cooling tower via a cooling water tank in the cooling water system on the condenser side of the refrigerator system. Even if a malfunction occurs in any one of a plurality of refrigerators, one of a plurality of cooling towers, or one of a plurality of cooling water pumps. It is an object of the present invention to provide a refrigerator system in which maintenance can be freely performed without causing a large output shortage by rearranging and backing up normal devices of the same type and other devices.

請求項1に係る発明は、冷凍機システムの凝縮器側の冷却水系において、冷凍機と冷却水ポンプとを有する冷凍機回路と、冷却塔と冷却塔ポンプとを有する冷却塔回路と、低温水用水槽、中温水用水槽および高温水用水槽に仕切った冷却水槽とを備え、冷凍機回路は、中温水用水槽と高温水用水槽との間に配され、冷却塔回路は、低温水用水槽と高温水用水槽との間に配され、低温水用水槽と中温水用水槽とを仕切る槽間隔壁は、低温水用水槽から中温水用水槽へ冷却水を落下する開口を設け、低温水用水槽と中温水用水槽とを仕切る槽間隔壁と、中温水用水槽と高温水用水槽とを仕切る槽間隔壁との間に、低温水用水槽の開口から流出する冷却水を導く棚を設けるとともに、低温水用水槽と中温水用水槽との水位差を利用して低温水用水槽から冷却水を中温水用水槽へ落下する滝を形成する堰を棚の先端部に設け、中温水用水槽と高温水用水槽とを仕切る槽間隔壁は、高温水用水槽から冷却水を中温水用水槽へ落下する開口を設け、低温水用水槽と中温水用水槽とを仕切る槽間隔壁と、中温水用水槽と高温水用水槽とを仕切る槽間隔壁との間に、高温水用水槽の開口から流出する冷却水を導く棚を設けるとともに、高温水用水槽と中温水用水槽との水位差を利用して高温水用水槽から冷却水を中温水用水槽へ落下する滝を形成する堰を棚の先端部に設けていることを特徴とする。   In the cooling water system on the condenser side of the refrigerator system, the invention according to claim 1 is a refrigerator circuit having a refrigerator and a cooling water pump, a cooling tower circuit having a cooling tower and a cooling tower pump, and low-temperature water. A cooling water tank partitioned into a water tank, a medium-temperature water tank and a high-temperature water tank, the refrigerator circuit is arranged between the medium-temperature water tank and the high-temperature water tank, and the cooling tower circuit is for low-temperature water The tank interval wall, which is arranged between the water tank and the hot water tank and separates the low temperature water tank and the medium temperature water tank, provides an opening for dropping the cooling water from the low temperature water tank to the medium temperature water tank. A shelf that guides cooling water flowing out from the opening of the low temperature water tank between the tank interval wall that partitions the water tank and the intermediate temperature water tank and the tank interval wall that partitions the intermediate temperature water tank and the high temperature water tank Low temperature water tank using the difference in water level between the low temperature water tank and the medium temperature water tank A weir is formed at the tip of the shelf to form a waterfall that drops cooling water into the medium-temperature water tank, and the tank separation wall that separates the medium-temperature water tank and the high-temperature water tank contains cooling water from the high-temperature water tank. For high-temperature water, an opening is provided to drop into the hot water tank, and between the tank interval wall that separates the low-temperature water tank and the medium-temperature water tank, and the tank interval wall that separates the medium- and high-temperature water tanks. In addition to providing a shelf to guide the cooling water flowing out from the tank opening, a waterfall is formed that drops cooling water from the high-temperature water tank to the medium-temperature water tank using the difference in water level between the high-temperature water tank and the medium-temperature water tank. The weir to be provided is provided at the tip of the shelf.

請求項2に係る発明は、請求項1記載の冷凍機システムにおいて、低温水用水槽と中温水用水槽とを仕切る槽間隔壁に設けた開口は、高温水用水槽と中温水用水槽とを仕切る槽間隔壁に設けた開口より高所に位置することを特徴とする。
請求項3に係る発明は、請求項1または請求項2記載の冷凍機システムにおいて、低温水用水槽と中温水用水槽とを仕切る槽間隔壁と、中温水用水槽と高温水用水槽とを仕切る槽間隔壁との間に設けた2つの棚は、それぞれ開口の下端部と面一となるように設けられていることを特徴とする。
請求項4に係る発明は、請求項1ないし請求項3の何れか記載の冷凍機システムにおいて、熱交換器と循環ポンプとを有する熱交換器回路を、高温水用水槽と低温水用水槽との間に配してなることを特徴とする。
According to a second aspect of the present invention, in the refrigerator system according to the first aspect, the opening provided in the tank interval wall that separates the low temperature water tank and the intermediate temperature water tank includes the high temperature water tank and the intermediate temperature water tank. It is located higher than the opening provided in the tank space | interval wall which partitions off.
The invention according to claim 3 is the refrigerator system according to claim 1 or claim 2, wherein a tank interval wall that partitions the low-temperature water tank and the medium-temperature water tank, a medium-temperature water tank, and a high-temperature water tank. The two shelves provided between the partitioning wall and the partition wall are provided so as to be flush with the lower end of the opening.
According to a fourth aspect of the present invention, in the refrigerator system according to any one of the first to third aspects, a heat exchanger circuit having a heat exchanger and a circulation pump is connected to a high-temperature water tank and a low-temperature water tank. It is characterized by being arranged between.

冷凍機システムの凝縮器側の冷却水系において、外気温の季節による変動に伴い、冷却塔能力が大きく変化し、冷却水温に大きな変動が生じる。冷凍機システムの冷凍機、冷却水ポンプ、冷却塔とも機器の容量は、夏の最も建屋負荷や外気負荷の多い時期の総冷房負荷により選定されている。よって、夏以外の季節での外気温が低下すると、外気を熱源とする冷却塔の能力が大きくなるにもかかわらず、建屋負荷や外気負荷が低下し、機器の容量が余ってくることとなる。よって、中間期や冬期は冷却塔の一部を停止し、かつ冷却水ポンプの総流量も少なくできることとなる。
冷凍機は、夏期以外の時期では、冷却塔の能力アップや外気温の低下による凝縮器へ導入される冷却水温の低下に対して、圧縮機の能力を絞れることにより効率が上昇し、つまり、成績係数(COP)=蒸発器で奪う熱量(kcal)/(圧縮機に要する電力量(KW)×860(kcal/KW))が向上し、消費電力の削減がはかれる。
よって、本発明においては、夏期のピーク負荷時期以外の冷凍機負荷に対して高効率で冷凍機を稼動させるべく、冷却水系を密閉系ではなく冷却水槽を設置して冷却水を一旦集め、その水槽の冷却水温を管理するように冷却塔のファン停止と冷却水ポンプ停止とを含めた運転台数制御を行い、総合的に冷熱源機器の効率的運転が行え、エネルギーセービングが行える。
In the cooling water system on the condenser side of the refrigeration system, the cooling tower capacity changes greatly with the seasonal fluctuation of the outside air temperature, and the cooling water temperature fluctuates greatly. The capacity of the refrigerator, cooling water pump, and cooling tower of the refrigerator system is selected according to the total cooling load during the summer when the building load and the outdoor air load are the highest. Therefore, if the outside air temperature decreases in seasons other than summer, the capacity of the cooling tower using outside air as a heat source will increase, but the building load and outside air load will decrease, resulting in excessive equipment capacity. . Therefore, part of the cooling tower is stopped during the intermediate period and winter period, and the total flow rate of the cooling water pump can be reduced.
Refrigerators increase in efficiency by reducing the capacity of the compressor against the decrease in cooling water temperature introduced into the condenser due to the increased capacity of the cooling tower and the decrease in the outside air temperature at times other than summer, The coefficient of performance (COP) = the amount of heat taken by the evaporator (kcal) / (the amount of power required for the compressor (KW) × 860 (kcal / KW)) is improved, and the power consumption can be reduced.
Therefore, in the present invention, in order to operate the refrigerator with high efficiency with respect to the refrigerator load other than the peak load time in summer, the cooling water system is not a closed system but a cooling water tank is installed to collect the cooling water once. Controlling the number of operating units, including stopping the cooling tower fan and cooling water pump so as to manage the cooling water temperature of the aquarium, enables efficient operation of the cold heat source equipment and energy saving.

また、冷熱源システムにおいて、通常は冷凍機〜冷却塔〜ポンプの独立した1ヶの閉回路を形成するので、その回路のどの機器に不調が生じてもその独立した系が断の状態に陥る。また、系の中の1機器をメンテナンスするケースにおいてもその系全体が停止となる。
これに対し、本発明は、冷凍機システムの凝縮器側の冷却水系において、冷凍機と冷却塔とを冷却水槽を介することで、機器毎に分割独立させることによって、複数の冷凍機の中の1台、複数の冷却塔の中の1台、もしくは複数の冷却水ポンプの1台何れかの機器に不調が生じても、その他の同種の正常機器と他の機器とを組み換えてバックアップすることにより大きな出力不足には陥らず、かつメンテナンスを自由に行える冷凍機システムおよび冷却水槽を提供することにある。このため、冷却水ポンプを含んだ冷凍機群、冷却水ポンプを含んだ冷却塔群として扱えるため、各々の群に予備機が1台あれば、最大負荷時においても定期メンテナンスを仮に行っても、トータルで最大負荷容量分の機器を動作させることできちんと対応でき、出力不足にはならない。
Moreover, in a cold heat source system, since normally one independent closed circuit of a refrigerator, a cooling tower, and a pump is formed, the independent system falls into a disconnected state regardless of which device in the circuit is malfunctioning. . In addition, in the case where one device in the system is maintained, the entire system is stopped.
On the other hand, in the cooling water system on the condenser side of the refrigeration system, the present invention divides the chiller and the cooling tower through the cooling water tank so as to be divided and independent for each device. Even if one of the cooling towers, one of the cooling towers, or one of the cooling water pumps malfunctions, the other normal devices of the same type and other devices should be backed up. It is an object of the present invention to provide a refrigerator system and a cooling water tank that do not fall into a large output shortage and can be maintained freely. For this reason, since it can be handled as a refrigerator group including a cooling water pump and a cooling tower group including a cooling water pump, if there is one spare machine in each group, the periodic maintenance can be performed even at the maximum load. It is possible to operate the equipment for the maximum load capacity in total, and it can respond properly, and there is no shortage of output.

本発明によれば、冬期や中間期における、外気調和機における外気への水加湿のための前段加熱負荷や、温水の利用などが発生したケースにおいては、冷凍機の凝縮器側の排熱を冷却水槽の高温水用水槽に一度集めるので、ここから別な循環路を負荷と冷却水槽低温水用水槽とを連絡しポンプで循環することで、これを加熱熱源として利用でき、ボイラーの稼働台数の削減と冷却塔稼動台数の削減が合わせて行え、エネルギー消費を抑えることができる。冷凍機の凝縮器側の排熱は37℃程度あるので、外気調和機における外気への水加湿を行い、半導体製造工場などで要求される11℃露点までの水加湿が可能な前段加熱が十分賄える。
本発明によれば、冷凍機と冷却塔とが配管で閉回路を形成して固定された対とならず、冷凍機群と冷却塔群とを別な配管系として形成できるので、型式・方式の異なる特性の違う冷却塔を組み合わせた冷却塔群を形成し、気象状況に応じて白煙防止や路面凍結防止対策を効率的に行うことができる。
According to the present invention, in the winter or intermediate period, in the case where the front heating load for humidifying the outside air in the outdoor air conditioner or the use of hot water occurs, the exhaust heat on the condenser side of the refrigerator is reduced. Since it is collected once in the high temperature water tank of the cooling water tank, it can be used as a heating heat source by connecting the load and the cooling water tank low temperature water tank through a separate circulation path and circulating with a pump. Can be combined with a reduction in the number of cooling towers in operation, reducing energy consumption. Since the exhaust heat on the condenser side of the refrigerator is about 37 ° C., sufficient pre-heating is possible to humidify the outside air in the outdoor air conditioner and to humidify the water up to the 11 ° C. dew point required by semiconductor manufacturing factories. I can cover it.
According to the present invention, the refrigerator and the cooling tower do not form a fixed pair by forming a closed circuit with the piping, and the refrigerator group and the cooling tower group can be formed as separate piping systems. A cooling tower group is formed by combining cooling towers having different characteristics, and white smoke prevention and road surface freezing prevention measures can be efficiently performed according to weather conditions.

本発明によれば、冷房を目的とする冷凍機の冷凍サイクル凝縮器で発生する副産物の排熱を加熱熱源として利用する時、利用仕切れずに残った排熱を冷却塔にて大気に放熱させる等の場合、水温の急激な変化を吸収するバッファとしての冷却水槽が介在することで、冷凍機、冷却塔、冷却コイル、加熱熱交換器、加熱コイル、配管類の熱容量やそれらを制御する自動制御系の特性から熱源システムに乱れが生じる危険を回避できる。また、同様に水温の急激な変化を吸収するバッファとしての冷却水槽が介在することで、負荷量や気象条件などの変動に対してシステムを高効率に維持させるための切り替えや、定期メンテナンスや機器トラブルによる稼働機器の切り替えなどによる冷凍機システムの冷却水系全体に対する乱れの発生を抑制できる。   According to the present invention, when the exhaust heat of the by-product generated in the refrigeration cycle condenser of the refrigerator intended for cooling is used as a heating heat source, the exhaust heat remaining without partitioning is dissipated to the atmosphere in the cooling tower. In the case of, etc., a cooling water tank as a buffer that absorbs sudden changes in water temperature is interposed, so that the heat capacity of refrigerators, cooling towers, cooling coils, heating heat exchangers, heating coils, pipes and automatic control of them The risk of disturbance in the heat source system can be avoided due to the characteristics of the control system. Similarly, a cooling water tank as a buffer that absorbs sudden changes in water temperature intervenes to enable switching to maintain the system with high efficiency against fluctuations in load and weather conditions, as well as periodic maintenance and equipment. It is possible to suppress the occurrence of turbulence in the entire cooling water system of the refrigerator system due to switching of operating equipment due to trouble.

以下、本発明を図面に示す実施形態に基づいて説明する。
図1〜図5は、本発明の一実施形態に係る冷凍機システム10および冷却水槽50を示す。
本実施形態に係る冷凍機システム10は、3つの冷凍機回路20a,20b,20cと、3つの冷却塔回路30a,30b,30cと、2つの熱交換器回路40a,40bと、低温水用水槽51、中温水用水槽52および高温水用水槽53に仕切った冷却水槽50とを備えている。
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
1 to 5 show a refrigerator system 10 and a cooling water tank 50 according to an embodiment of the present invention.
The refrigerator system 10 according to this embodiment includes three refrigerator circuits 20a, 20b, and 20c, three cooling tower circuits 30a, 30b, and 30c, two heat exchanger circuits 40a and 40b, and a low-temperature water tank. 51, a cooling water tank 50 partitioned into a medium temperature water tank 52 and a high temperature water tank 53.

3つの冷凍機回路20a,20b,20cは、それぞれ冷凍機21,23,25と冷却水ポンプ22,24,26と有し、中温水用水槽52と高温水用水槽53との間に配されている。冷却水ポンプ22,24,26は、その流量を調整するために回転数制御可能であるインバータによる周波数制御モータによって駆動されていても良い。
3つの冷却塔回路30a,30b,30cは、それぞれ冷却塔31,33,35と冷却塔ポンプ32,34,36とを有し、低温水用水槽51と高温水用水槽53との間に配されている。冷却塔ポンプ32,34,36はその流量を調整するために回転数制御可能であるインバータによる周波数制御モータによって駆動されていても良い。
The three refrigerator circuits 20a, 20b, and 20c have refrigerators 21, 23, and 25 and cooling water pumps 22, 24, and 26, respectively, and are arranged between the medium-temperature water tank 52 and the high-temperature water tank 53. ing. The cooling water pumps 22, 24, and 26 may be driven by a frequency control motor using an inverter that can control the rotational speed in order to adjust the flow rate.
The three cooling tower circuits 30 a, 30 b, 30 c have cooling towers 31, 33, 35 and cooling tower pumps 32, 34, 36, respectively, and are arranged between the low-temperature water tank 51 and the high-temperature water tank 53. Has been. The cooling tower pumps 32, 34, and 36 may be driven by a frequency control motor using an inverter that can control the number of revolutions in order to adjust the flow rate.

2つの熱交換器回路40a,40bは、熱交換器41,43と循環ポンプ42,44とを有し、高温水用水槽53と低温水用水槽51との間に配されている。ここで、熱交換器41,43は、一般に30℃位まで熱交換器2次側の熱媒(空気又は水など)を加熱する加熱熱源として高温水用水槽から汲み上げた高温冷却水を使用するために用いられる。高温冷却水は、通常の冷凍機の凝縮器側の定格の出口水温である、最大37℃位まで水温を上げられる。また、特殊な冷凍機においては、高温水用水槽へ供給する凝縮器出口水温を40℃以上に上げるものもあり、これを利用すれば高温冷却水も40℃ぐらいまで水温を上げられる。熱交換器41,43は、この高温冷却水を温熱源として、熱交換器2次側に純水を流せば、純水の加熱に使用でき、熱交換器2次側に取り入れ外気を流せば、冬期などにおける外気調和機での外気への水加湿を行って半導体製造工場などで要求される11℃露点まで外気を断熱加湿できるような外気の前段加熱の熱源としても使用できる。   The two heat exchanger circuits 40 a and 40 b have heat exchangers 41 and 43 and circulation pumps 42 and 44, and are arranged between the high temperature water tank 53 and the low temperature water tank 51. Here, the heat exchangers 41 and 43 generally use high-temperature cooling water pumped from a high-temperature water tank as a heating heat source for heating the heat medium (air or water) on the secondary side of the heat exchanger to about 30 ° C. Used for. The temperature of the high-temperature cooling water can be raised to a maximum of about 37 ° C., which is the rated outlet water temperature on the condenser side of a normal refrigerator. In some special refrigerators, the temperature at the outlet of the condenser supplied to the high-temperature water tank is raised to 40 ° C. or higher. By using this, the temperature of the high-temperature cooling water can be raised to about 40 ° C. The heat exchangers 41 and 43 can be used for heating pure water by using this high-temperature cooling water as a heat source and flowing pure water to the secondary side of the heat exchanger. If the intake air flows to the secondary side of the heat exchanger, It can also be used as a heat source for heating the outside air so that the outside air can be heat-insulated and humidified up to the 11 ° C. dew point required by a semiconductor manufacturing plant or the like by humidifying the outside air with an outside air conditioner in winter.

冷却水槽50は、図2〜図5に示すように、槽間隔壁54と槽間隔壁56とによって、低温水用水槽51と中温水用水槽52と高温水用水槽53とに仕切られている。低温水用水槽51と中温水用水槽52とを仕切る槽間隔壁54には、低温水用水槽51から冷却水を中温水用水槽52へ流出するための開口55が設けてある。中温水用水槽52と高温水用水槽53とを仕切る槽間隔壁56には、高温水用水槽53から冷却水を中温水用水槽52へ流出するための開口57が設けてある。さらに、槽間隔壁54と槽間隔壁56との間には、開口55の下端部と面一となるように棚58を設けるとともに、開口57の下端部と面一となるように棚59を設けている。2つの棚58,59は、中温水用水槽52の上部を横断するように設けられ、各開口55,57から流出する冷却水の助走路となる。2つの棚58,59は、それぞれの先端部に堰60,61が設けてある。堰60は、低温水用水槽51と中温水用水槽52との水位差を利用して低温水用水槽51から冷却水を中温水用水槽52へ落下する滝を形成する。堰61は、高温水用水槽53と中温水用水槽52との水位差を利用して高温水用水槽53から中温水用水槽52へ冷却水を落下する滝を形成する。ここで、堰60と堰61との滝口落差ΔH、堰60の下端と堰61の上端の差Δh、堰60と堰61との間隔ΔW、堰61の上端と中温水用水槽52の液面との高さΔHa、中温水用水槽52の冷却水の深さΔDは、滝状の落下流れによる合流混合や、落水水塊の位置エネルギによる溜められた水中への速度を伴う突入とそれによる対流発生や、滝状落下水による気泡発生により生じる攪拌混合を効率的に起こさせるために必要な条件を設ける。例えば、下記の条件を満足することが望ましい。堰60と堰61との滝口落差ΔHは0.5m程度、堰60の下端と堰61の上端の差Δhは0.1〜0.2m程度、堰60と堰61との間隔ΔWは0.1〜0.2m程度、堰61の上端と中温水用水槽52の液面との高さΔHaは0.5〜1.0m程度、中温水用水槽52の冷却水の深さΔDは1.0〜1.5m程度とする。なお、これらの値は、その系にて種々の条件により定める。   As shown in FIGS. 2 to 5, the cooling water tank 50 is divided into a low temperature water tank 51, a medium temperature water tank 52, and a high temperature water tank 53 by a tank interval wall 54 and a tank interval wall 56. . An opening 55 for allowing cooling water to flow out from the low temperature water tank 51 to the intermediate temperature water tank 52 is provided in the tank interval wall 54 that partitions the low temperature water tank 51 and the intermediate temperature water tank 52. An opening 57 for allowing cooling water to flow out from the high temperature water tank 53 to the intermediate temperature water tank 52 is provided in the tank interval wall 56 that partitions the intermediate temperature water tank 52 and the high temperature water tank 53. Further, a shelf 58 is provided between the tank spacing wall 54 and the tank spacing wall 56 so as to be flush with the lower end portion of the opening 55, and the shelf 59 is flush with the lower end portion of the opening 57. Provided. The two shelves 58 and 59 are provided so as to cross the upper part of the medium-temperature water tank 52, and serve as running paths for cooling water flowing out from the openings 55 and 57. The two shelves 58 and 59 are provided with weirs 60 and 61 at their tip portions. The weir 60 forms a waterfall that drops cooling water from the low-temperature water tank 51 to the intermediate-temperature water tank 52 using the difference in water level between the low-temperature water tank 51 and the intermediate-temperature water tank 52. The weir 61 forms a waterfall that drops cooling water from the high-temperature water tank 53 to the intermediate-temperature water tank 52 using the difference in water level between the high-temperature water tank 53 and the intermediate-temperature water tank 52. Here, the waterfall drop ΔH between the weir 60 and the weir 61, the difference Δh between the lower end of the weir 60 and the upper end of the weir 61, the interval ΔW between the weir 60 and the weir 61, the upper end of the weir 61 and the liquid level of the medium hot water tank 52 The height ΔHa and the depth ΔD of the cooling water in the intermediate temperature water tank 52 are combined and mixed by a waterfall-shaped falling flow, and the inrush with the velocity into the accumulated water due to the potential energy of the falling water mass Necessary conditions are provided to efficiently cause agitation and mixing caused by convection and bubbles generated by waterfall. For example, it is desirable to satisfy the following conditions. The waterfall drop ΔH between the weir 60 and the weir 61 is about 0.5 m, the difference Δh between the lower end of the weir 60 and the upper end of the weir 61 is about 0.1 to 0.2 m, and the distance ΔW between the weir 60 and the weir 61 is 0. The height ΔHa between the upper end of the weir 61 and the liquid surface of the intermediate temperature water tank 52 is about 0.5 to 1.0 m, and the depth ΔD of the cooling water in the intermediate temperature water tank 52 is about 1 to 0.2 m. It is set to about 0 to 1.5 m. These values are determined according to various conditions in the system.

冷却水槽50の低温水用水槽51と中温水用水槽52と高温水用水槽53とは、蓄熱を目的としたものではなく、外気条件の変動や負荷変動に伴う系の運転状況の変化に伴う各水槽内水温のばらつき抑えることを目的とするため、系の全長などにより多少変わるが、最大負荷時循環水量の数分(2〜3分)程度のものとする。
低温水用水槽51は、冷却塔31,33,35で冷やされた冷却水(夏期の最大負荷時には冷却塔ポンプ32,34,36は定格水量で流し、冷却塔入口温37℃であれば冷却塔出口温度32℃にまで冷やされた冷却水であり、冬期には冷却塔ポンプの合計流量を絞りかつ外気温が低下するため、例えば冷却塔入口温度を37℃であれば冷却塔出口温度を27℃にまで冷やした冷却水である。)を受け入れ、かつ低温水用水槽内の水が混合されるので低温冷却水として低い温度に平均化され、中温水用水槽52との間の槽間隔壁54に設けられた開口55より二槽間の水位差を利用した滝状の落水にして中温水用水槽52に冷やされた冷却水を送水する。夏期や中間期の一部においては、低温水用水槽51内の冷却水温は冷却塔31,33,35の運転状態にて管理される。また、冬期等においては、高温水用水槽53から熱交換器回路40a,40bを通過した加熱源として利用され冷却されて還ってくる冷却水の受け入れ水槽でもある。この場合は、この熱交換器回路40a,40bからの還り水の温度や流量の状態も、低温水用水槽51内の冷却水温の管理用信号として利用される。
The low-temperature water tank 51, the medium-temperature water tank 52, and the high-temperature water tank 53 of the cooling water tank 50 are not intended for heat storage, but are associated with changes in the operating conditions of the system due to fluctuations in outside air conditions and load fluctuations. In order to suppress the variation in the water temperature in each tank, it varies somewhat depending on the overall length of the system, but it is about several minutes (2 to 3 minutes) of the circulating water amount at maximum load.
The low-temperature water tank 51 is cooled by cooling towers 31, 33, 35 (cooling tower pumps 32, 34, 36 flow at the rated water amount at the maximum load in summer, and cool if the cooling tower inlet temperature is 37 ° C. The cooling water is cooled to a tower outlet temperature of 32 ° C. In winter, the total flow rate of the cooling tower pump is reduced and the outside air temperature is lowered. For example, if the cooling tower inlet temperature is 37 ° C, the cooling tower outlet temperature is reduced. Cooling water cooled to 27 ° C.) and water in the low-temperature water tank is mixed, so it is averaged to a low temperature as low-temperature cooling water, and between the tanks with the medium-temperature water tank 52 The cooling water cooled to the intermediate temperature water tank 52 is sent to the waterfall tank 52 using waterfall difference between the two tanks through the opening 55 provided in the partition wall 54. In part of the summer and intermediate periods, the cooling water temperature in the low temperature water tank 51 is managed in the operating state of the cooling towers 31, 33, and 35. Further, in the winter season or the like, it is also a cooling water receiving water tank that is used as a heating source that has passed through the heat exchanger circuits 40a and 40b from the high-temperature water water tank 53 to be cooled and returned. In this case, the temperature and flow rate of the return water from the heat exchanger circuits 40 a and 40 b are also used as a management signal for the cooling water temperature in the low temperature water tank 51.

中温水用水槽52は、通常は冷凍機21,23,25への低温水用水槽51で調整された冷却水の供給水槽であり、冬期、中間期においては低温水用水槽51から開口55を通って落下流入する滝状の低温冷却水と高温水用水槽53から堰61を通って落下流入する滝状の高温冷却水との攪拌混合、温度調整機能とを有する。
この冬期や中間期における開口55から棚58および堰60を介して落下する低温冷却水と、開口57から棚59および堰61を介して落下する高温冷却水とが発生するのは、冷凍機側の冷却水量は冷凍機の凝縮器の入口出口での温度差を5℃に保ったまま運転するのに対し、冷却塔31,33,35の入口出口の水温差は、外気温低下による冷却塔の能力アップおよび外気温低下による冷房負荷の低減から、定格の5℃差ではなく、例えば10℃差が取れることによる冷却塔ポンプ32,34,36の定格比半分以下の流量となることにより引き起こされる。冷凍機21,23,25の凝縮器を流れる冷却水は冷房負荷の減により定格よりは少なくても温度差が5℃であり、このときの冷凍機回路20a+20b+20cの合計流量を1とすると、冷却塔31,33,35の入口出口水温差が10℃で熱交換器回路40a,40bの流量がゼロならば、冷却塔回路30a+30b+30cの合計流量は0.5である。よって、冷凍機回路20a,20b,20cで中温水用水槽52から1の流量で汲みだして、高温水用水槽53へ移したところが、冷却塔回路30a,30b,30cで高温水用水槽53から0.5の流量で低温水用水槽51へ移すこととなり、残り0.5が高温水用水槽53に余剰となり、開口57から棚59および堰61を介して中温水用水槽52へ注ぎ落ちることとなる。中温水用水槽52には、低温水用水槽からも冷却塔回路30a,30b,30cを搬送された0.5の流量の冷却水が開口55から棚58および堰6051を介して注ぎ落ちて供給される。
高温水用水槽53は、冷凍機21,23,25の各凝縮器による冷凍サイクルの冷媒からの排熱を熱交換された高温冷却水を受け入れ、冷却塔回路30a,30b,30cの冷却塔ポンプ32,34,36により汲み上げられて冷却塔31,33,35に送水する高温冷却水の供給源となり、また、熱交換器回路40a,40bの循環ポンプ42,44により汲み上げられる冷凍機排熱を運ぶ高温冷却水を、温熱源として加熱負荷へ送水供給するための供給源となるものである。さらにまた、中間期や冬期に冷却塔31,33,35の能力が外気温低下と共に増加し、大きな冷却水温度差が生じ冷却塔31,33,35の運転台数が冷凍機運転台数に比して減じられた場合、中温水用水槽52との間の槽間隔壁56に設けられた開口57から二槽間の水位差を利用した滝状の落水にして中温水用水槽52に温かい冷却水を供給し、中温水用水槽52の水温調整と冷凍機21,23,25への送水量確保とを司る。
The medium-temperature water tank 52 is a cooling water supply tank that is usually adjusted by the low-temperature water tank 51 to the refrigerators 21, 23, 25. In the winter and intermediate periods, the low-temperature water tank 51 has an opening 55. It has a function of stirring and mixing waterfall-like low-temperature cooling water that falls and flows in and waterfall-like high-temperature cooling water that falls and flows from the high-temperature water tank 53 through the weir 61 and a temperature adjustment function.
The low-temperature cooling water that falls from the opening 55 via the shelf 58 and the weir 60 and the high-temperature cooling water that falls from the opening 57 via the shelf 59 and the weir 61 are generated on the refrigerator side. The cooling water amount is operated while maintaining the temperature difference at the inlet / outlet of the condenser of the refrigerator at 5 ° C., whereas the water temperature difference at the inlet / outlet of the cooling towers 31, 33, and 35 is the cooling tower due to a decrease in the outside air temperature. This is caused by a reduction in cooling load due to an increase in capacity and a decrease in outside air temperature, and a flow rate that is less than half the rated ratio of the cooling tower pumps 32, 34, and 36 due to, for example, a 10 ° C difference instead of a 5 ° C difference in rating. It is. The cooling water flowing through the condensers of the refrigerators 21, 23, 25 has a temperature difference of 5 ° C. even if it is smaller than the rating due to the reduction of the cooling load. If the total flow rate of the refrigerator circuits 20 a +20 b + 20 c at this time is 1, If the inlet / outlet water temperature difference of the towers 31, 33, 35 is 10 ° C. and the flow rates of the heat exchanger circuits 40a, 40b are zero, the total flow rate of the cooling tower circuits 30a + 30b + 30c is 0.5. Therefore, when the refrigerant circuit 20a, 20b, 20c is pumped from the intermediate temperature water tank 52 at a flow rate of 1 and transferred to the high temperature water tank 53, the cooling tower circuits 30a, 30b, 30c start from the high temperature water tank 53. It will be transferred to the low temperature water tank 51 at a flow rate of 0.5, and the remaining 0.5 will be surplus in the high temperature water tank 53 and poured down from the opening 57 to the medium temperature water tank 52 through the shelf 59 and the weir 61. It becomes. The medium-temperature water tank 52 is supplied with 0.5-minute flow of cooling water conveyed from the low-temperature water tank through the cooling tower circuits 30a, 30b, and 30c through the shelf 58 and the weir 6051. Is done.
The high-temperature water tank 53 receives the high-temperature cooling water in which the exhaust heat from the refrigerant in the refrigeration cycle by the condensers of the refrigerators 21, 23, 25 is heat-exchanged, and the cooling tower pumps of the cooling tower circuits 30 a, 30 b, 30 c Refrigerator exhaust heat pumped up by the circulation pumps 42 and 44 of the heat exchanger circuits 40a and 40b is used as a supply source of high-temperature cooling water pumped up by the pumps 32, 34 and 36 and sent to the cooling towers 31, 33 and 35. The high-temperature cooling water to be carried becomes a supply source for supplying water to the heating load as a heat source. Furthermore, the capacity of the cooling towers 31, 33, and 35 increases with a decrease in the outside air temperature in the intermediate period and winter, and a large cooling water temperature difference occurs, so that the number of operating cooling towers 31, 33, and 35 is larger than the number of operating refrigerators. When the water temperature is reduced, the water is dropped into a waterfall using the water level difference between the two tanks from the opening 57 provided in the tank interval wall 56 between the water tank 52 and the warm water tank 52. To control the water temperature of the medium temperature water tank 52 and to secure the amount of water supplied to the refrigerators 21, 23, 25.

そして、低温水用水槽51と中温水用水槽52とを仕切る槽間隔壁54に設けた開口55は、高温水用水槽53と中温水用水槽52とを仕切る槽間隔壁56に設けた開口57より高所に位置するように形成されている。これにより、低温水用水槽51と、中温水用水槽52および高温水用水槽53とは、水位を必ず低温水用水槽51が高くなるように保持でき、冷凍機群および冷却塔群の動作により、中温水用水槽52が高温水用水槽53より必ず水位が低くなるよう保持可能となる。そのため、低温水用水槽51から中温水用水槽52へ、高温水用水槽53から中温水用水槽52へ、と常に流れ方向を定めることができ、不用意に流れ方向が逆に変化することによる予期しない水温の混合を避けることができる。よって各槽の機能目的の明確化が図られている。   And the opening 55 provided in the tank space | interval wall 54 which divides the low temperature water tank 51 and the intermediate temperature water tank 52 is provided with the opening 57 provided in the tank space wall 56 which partitions the high temperature water tank 53 and the intermediate temperature water tank 52. It is formed to be located at a higher place. Thus, the low-temperature water tank 51, the medium-temperature water tank 52, and the high-temperature water tank 53 can always hold the water level so that the low-temperature water tank 51 becomes high, and the operation of the refrigerator group and the cooling tower group In addition, the intermediate temperature water tank 52 can be held such that the water level is always lower than that of the high temperature water tank 53. Therefore, the flow direction can always be determined from the low temperature water tank 51 to the medium temperature water tank 52 and from the high temperature water tank 53 to the medium temperature water tank 52, and the flow direction is changed inadvertently. Unexpected water temperature mixing can be avoided. Therefore, the functional purpose of each tank is clarified.

開口55,57および堰60,61と滝について説明する。開口55,57および堰60,61を設けることにより、低温水用水槽51と中温水用水槽52と高温水用水槽53とは各々所定の水位を保ち、滝状の落水を発生させ、落水による衝突攪拌と同時に発生する気泡の浮上による攪拌作用による二者(中温水用水槽52内の水と落水)または三者(低温落水と高温落水と中温水用水槽52内の水)を速やかに混合し、中温水用水槽52内部の温度差を少なくすることを可能としている。
なお、冷凍機21,23,25は、図9に示す従来装置と同様に、冷水を空気調和装置の冷水コイルに供給できるように、冷凍機の蒸発器の入口出口に各々接続され、往きヘッダと還りヘッダとを連絡する配管路を備えている。
The openings 55 and 57 and the weirs 60 and 61 and the waterfall will be described. By providing the openings 55 and 57 and the weirs 60 and 61, the low-temperature water tank 51, the medium-temperature water tank 52, and the high-temperature water tank 53 each maintain a predetermined water level to generate waterfall-like waterfall. Rapid mixing of the two parties (water and water in the medium-temperature water tank 52) or the three parties (low-temperature water, high-temperature water, and water in the medium-temperature water tank 52) by the stirring action caused by the rising of bubbles generated simultaneously with the collision stirring In addition, it is possible to reduce the temperature difference inside the intermediate temperature water tank 52.
The refrigerators 21, 23, and 25 are respectively connected to the inlet and outlet of the evaporator of the refrigerator so that cold water can be supplied to the cold water coil of the air conditioner as in the conventional device shown in FIG. And a pipe line connecting the return header.

次に、斯くして構成された本実施形態に係る冷凍機システム10の作用を説明する。
図6は、夏期の冷房ピーク負荷での通常運転を示す。
予備機のない図1および図6の冷凍機システムでは、3台の冷凍機21,23,25と3台の冷却塔31,33,35とが全てフルに稼働され、3つの冷凍機回路20a,20b,20cおよび3つの冷却塔回路30a,30b,30cとも、それぞれの冷却水ポンプ22,24,26と冷却塔ポンプ32,34,36は定格の流量で運転される。図6では、運転される回路は太線で示す。それによって、3つの冷凍機回路20a,20b,20cの冷却水ポンプ22,24,26により中温水用水槽52から汲み上げられた冷却水は、それぞれ冷凍機21,23,25の凝縮器を通って冷凍サイクルの冷媒と熱交換されて高温となり、高温水用水槽53に送り出される。この高温水用水槽53から3つの冷却塔回路30a,30b,30cの冷却塔ポンプ32,34,36により汲み上げられた冷却水は、それぞれ冷却塔31,33,35によって冷やされて低温水用水槽51に送り出される。ここで、夏のピーク負荷時には、外気の湿球温度が最高27℃程度まで上昇するため、冷凍機21,23,25の凝縮器にて熱交換されて出てきた37℃の高温冷却水を冷却塔に導入して冷却するのだが、冷却塔31,33,35では定格容量フルで外気と熱交換させても32℃までしか冷却できず、冷却塔31,33,35の入口出口温度差は5℃となる。この冷却塔31,33,35の出入口冷却水は、冷凍機21,23,25の凝縮器の入口出口冷却水温差5℃とその絶対値32℃および37℃とほぼ等しくなる。よって、中温水用水槽52から冷凍機回路20a,20b,20cが汲み上げる冷却水量と、高温水用水槽53から冷却塔回路20a,20b,20cが汲み上げる冷却水量とが等しくなる。よって、高温水用水槽53の開口57から中温水用水槽52に向かう水流は発生せず、低温水用水槽51の開口55から棚58および堰60を介して中温水用水槽52に向かって滝となって落下する。
冷凍機21,23,25は、負荷に追従して容量制御され、冷却塔31,33,35は低温水用水槽51を32℃に保つように台数またはファンが制御される。
Next, the operation of the refrigerator system 10 according to the present embodiment configured as described above will be described.
FIG. 6 shows a normal operation at a cooling peak load in summer.
In the refrigerator system of FIG. 1 and FIG. 6 without a spare machine, the three refrigerators 21, 23, 25 and the three cooling towers 31, 33, 35 are all fully operated, and the three refrigerator circuits 20a. , 20b, 20c and the three cooling tower circuits 30a, 30b, 30c, the cooling water pumps 22, 24, 26 and the cooling tower pumps 32, 34, 36 are operated at rated flow rates. In FIG. 6, the operated circuit is indicated by a bold line. Thereby, the cooling water pumped up from the intermediate temperature water tank 52 by the cooling water pumps 22, 24, and 26 of the three refrigerator circuits 20a, 20b, and 20c passes through the condensers of the refrigerators 21, 23, and 25, respectively. Heat exchange with the refrigerant in the refrigeration cycle results in a high temperature, which is sent to the high temperature water tank 53. The cooling water pumped up from the high-temperature water tank 53 by the cooling tower pumps 32, 34, and 36 of the three cooling tower circuits 30a, 30b, and 30c is cooled by the cooling towers 31, 33, and 35, respectively. 51 is sent out. Here, at the peak load in summer, the wet bulb temperature of the outside air rises to a maximum of about 27 ° C. Therefore, the high-temperature cooling water of 37 ° C. that has been exchanged by the condensers of the refrigerators 21, 23, 25 is removed. The cooling towers 31, 33, and 35 are cooled by introducing them into the cooling tower, but the cooling capacity of the cooling towers 31, 33, and 35 can be cooled only to 32 ° C. even if heat exchange with the outside air is performed. Is 5 ° C. The cooling water at the inlet / outlet of the cooling towers 31, 33, and 35 is approximately equal to the inlet / outlet cooling water temperature difference of 5 ° C. and the absolute values of 32 ° C. and 37 ° C. of the condensers of the refrigerators 21, 23, 25. Therefore, the amount of cooling water pumped by the refrigerator circuits 20a, 20b, and 20c from the medium-temperature water tank 52 is equal to the amount of cooling water pumped by the cooling tower circuits 20a, 20b, and 20c from the high-temperature water tank 53. Therefore, a water flow from the opening 57 of the high-temperature water tank 53 toward the intermediate-temperature water tank 52 does not occur, and the waterfall flows from the opening 55 of the low-temperature water tank 51 toward the intermediate-temperature water tank 52 via the shelf 58 and the weir 60. And fall.
The refrigerators 21, 23, and 25 are capacity-controlled following the load, and the cooling towers 31, 33, and 35 are controlled in number or fan so as to keep the low-temperature water tank 51 at 32 ° C.

図7は、冬期の通常運転を示す。
外気が低温となり、外気負荷や建屋負荷が減少し、冷却塔31,33,35で熱交換する相手の外気が低温となることから冷却塔31,33,35の能力が増大することで、例えば2台の冷凍機21,23と1台の冷却塔31とが稼働される。それによって、2つの冷凍機回路20a,20bの冷却水ポンプ22,24により中温水用水槽52の冷却水が汲み上げられ、それぞれ冷凍機21,23の凝縮器で冷凍サイクルの冷媒と熱交換されることによって加熱され37℃の高温冷却水となって高温水用水槽53に送り出される。この場合、冷凍機側の冷却水量は冷凍機21,23の凝縮器の入口出口での温度差を5℃に保ったまま運転される。これに対し、冷却塔31の入口出口の水温差は、外気温低下による冷却塔の能力アップにより、定格の5℃差ではなく、10℃差が取れるようになり、同じ冷却塔で倍の能力が発揮できるようになる。よって1つの冷却塔回路30aの冷却塔ポンプ32により高温水用水槽53の冷却水が汲み上げられ、冷却塔31によって冷やされて低温水用水槽51に送り出されることとなる。この低温水用水槽51に送られた冷却塔回路30aにより送られた冷却水は、図5に示すように、低温水用水槽51の開口55から棚58を助走水路として矢印方向に流れ、堰60から中温水用水槽52に向かって滝となって落下する。ここで、冷却塔31が夏のピーク負荷時の倍の冷却能力を発揮して、冷却塔ポンプ32の定格流量で温度差を5℃ではなく10℃で送れるようになるため、冷凍機回路20a,20bで中温水用水槽52から高温水用水槽に汲み上げた冷却水の内、冷却塔回路30aに汲み上げられなかった冷凍機回路1系統分の流量が、図5に示すように、高温水用水槽53の開口57から棚59を助走水路として矢印方向に流れ、堰61から中温水用水槽52に向かって滝となって落下する。そして、図5に示すように、堰60を介して中温水用水槽52に向かって滝となって落下する冷却水と、高温水用水槽53の開口57から中温水用水槽52に向かって滝となって落下する冷却水とは、相互に衝突し混合しながら空気を巻き込んで落下し、中温水用水槽53の水面と衝突してさらに混合し、中温水用水槽53の中で混入空気による泡発生と気泡浮上により攪拌される。そして、矢印で示すように中温水用水槽52を汲上側に向かって移動する。
FIG. 7 shows normal operation in winter.
Since the outside air becomes a low temperature, the outside air load and the building load decrease, and the outside air of the other party that exchanges heat with the cooling towers 31, 33, 35 becomes low temperature, the capacity of the cooling towers 31, 33, 35 increases. Two refrigerators 21 and 23 and one cooling tower 31 are operated. As a result, the cooling water in the water tank 52 for medium temperature water is pumped up by the cooling water pumps 22 and 24 of the two refrigerator circuits 20a and 20b, and heat is exchanged with the refrigerant of the refrigeration cycle in the condensers of the refrigerators 21 and 23, respectively. It is heated by this and becomes 37 degreeC high temperature cooling water, and is sent out to the water tank 53 for high temperature water. In this case, the amount of cooling water on the refrigerator side is operated while maintaining the temperature difference at the inlet and outlet of the condensers of the refrigerators 21 and 23 at 5 ° C. On the other hand, the water temperature difference at the inlet and outlet of the cooling tower 31 can be 10 ° C. instead of the rated 5 ° C. due to the increase in the cooling tower capacity due to the decrease in the outside air temperature. Can be demonstrated. Therefore, the cooling water in the high temperature water tank 53 is pumped up by the cooling tower pump 32 of one cooling tower circuit 30 a, cooled by the cooling tower 31, and sent to the low temperature water tank 51. The cooling water sent by the cooling tower circuit 30a sent to the low-temperature water tank 51 flows in the direction of the arrow from the opening 55 of the low-temperature water tank 51 using the shelf 58 as a running channel, as shown in FIG. It falls as a waterfall from 60 toward the medium temperature water tank 52. Here, since the cooling tower 31 exhibits a cooling capacity double that of the peak load in summer and the temperature difference of the cooling tower pump 32 can be sent at 10 ° C. instead of 5 ° C., the refrigerator circuit 20a , 20b, the flow rate of one line of the refrigerator circuit that is not pumped into the cooling tower circuit 30a in the cooling water pumped from the medium-temperature water tank 52 to the high-temperature water tank is as shown in FIG. It flows in the direction of the arrow from the opening 57 of the water tank 53 using the shelf 59 as a running water channel, and falls as a waterfall from the weir 61 toward the water tank 52 for medium temperature water. Then, as shown in FIG. 5, cooling water that falls as a waterfall toward the intermediate temperature water tank 52 through the weir 60 and a waterfall from the opening 57 of the high temperature water tank 53 toward the intermediate temperature water tank 52. The cooling water that falls and collides with each other and mixes and falls while falling while colliding with air, collides with the water surface of the intermediate temperature water tank 53 and further mixes, and mixes in the intermediate temperature water tank 53 due to the mixed air. Stir by bubble generation and bubble floating. Then, as shown by the arrow, the intermediate temperature water tank 52 is moved upward.

本実施形態では、冷凍機21,23の凝縮器で冷凍サイクルの冷媒と熱交換され冷却水に伝えられた排熱を、2つの熱交換器回路40a,40bによって高温水用水槽53内の高温冷却水を温熱源として循環ポンプ42,44で汲み上げ、熱交換器2次側に純水を流して純水の加熱に使用していたり、熱交換器2次側に取り入れ外気を流して、冬期などにおける外気調和機での外気への水加湿を行って半導体製造工場などで要求される11℃露点まで外気を断熱加湿できるような外気の前段加熱の熱源としても使用している。
本実施形態によれば、外気温の低下とともに冷却塔の冷却能力が増大するため、冷凍機21,23,25の凝縮器における排出熱量より冷却塔処理熱量が過大となるので、低温水用水槽51の計測温度による制御信号により、冷却塔31,33,35がそれぞれ備えるファンや、冷却塔ポンプ32,34,36の台数制御もしくは回転数制御が行われる(ファン、ポンプ動力セービングのため)。
In the present embodiment, the exhaust heat transferred to the cooling water by heat exchange with the refrigerant of the refrigeration cycle in the condensers of the refrigerators 21 and 23 is transferred to the high temperature water tank 53 by the two heat exchanger circuits 40a and 40b. Cooling water is pumped up by circulating pumps 42 and 44 as a heat source, pure water is used to heat the secondary side of the heat exchanger and used for heating pure water, or outside air is introduced to the secondary side of the heat exchanger and used in winter. It is also used as a heat source for pre-heating of the outside air that can humidify the outside air up to the 11 ° C. dew point required by a semiconductor manufacturing factory etc. by humidifying the outside air with an outside air conditioner.
According to the present embodiment, the cooling capacity of the cooling tower increases with a decrease in the outside air temperature, so that the cooling tower processing heat amount becomes larger than the exhaust heat amount in the condensers of the refrigerators 21, 23, 25. Control of the number of fans or cooling tower pumps 32, 34, and 36 or the number of revolutions of the cooling towers 31, 33, and 35 is performed by the control signal based on the measured temperature 51 (for fan and pump power saving).

低温水用水槽51の計測温度制御信号により、冷却塔ポンプ32,34,36の運転台数制御が行われる際は、2台の冷凍機21,23が稼働し、つまり冷凍機回路20a,20bともその冷却水ポンプが稼働し、1つの冷却塔回路30aが稼働するだけで冷凍機システムが成立する場合がある。このとき、2台の冷却水ポンプ22,24が動作し、1台の冷却塔ポンプ32が働くときには、もし冷却水ポンプ22,24と冷却塔ポンプ32,34,36の流量が同じ場合は、高温水用水槽53において冷却塔ポンプ1台分の冷却水量が余剰となるので、高温水用水槽53から中温水用水槽52へ開口57から棚59および堰61を介して水の落下流入が生じ、また、低温水用水槽51から開口55から棚58および堰60を介した低温冷却水の供給もあるので、中温水用水槽52において、すでに満たされている中温水用水槽52の水に低温水用水槽51と高温水用水槽53とからの流入が生じ、これら三者が速やかに混合均一化することが必要となる。混合均一化しないと冷凍機回路20a,20bに汲み上げる冷却水温度に変動が生じ、冷凍機21,23による適切な冷水の冷凍に支障をきたすこととなる。これらの混合や攪拌のしくみは、堰60,61からの落水として供給される冷却水と中温水用水槽52中の溜められた水との衝突による波立ちや、落水水塊の位置エネルギによる溜められた水中への速度を伴う突入とそれによる対流発生や、その落下水塊の流入時発生する渦や水面の乱れにより同伴される空気により中温水用水槽52中の溜められた水中で発生する気泡による水の対流との速度差による攪拌など利用するものであり、非常に均一に混合されるのである。   When the operation number control of the cooling tower pumps 32, 34, 36 is performed by the measured temperature control signal of the low temperature water tank 51, the two refrigerators 21, 23 are operated, that is, both the refrigerator circuits 20a, 20b are operated. In some cases, the cooling water pump is operated and only one cooling tower circuit 30a is operated, so that the refrigerator system is established. At this time, when two cooling water pumps 22 and 24 operate and one cooling tower pump 32 works, if the flow rates of the cooling water pumps 22 and 24 and the cooling tower pumps 32, 34 and 36 are the same, Since the amount of cooling water for one cooling tower pump is excessive in the high-temperature water tank 53, water falls and flows from the high-temperature water tank 53 to the intermediate-temperature water tank 52 through the shelf 59 and the weir 61 from the opening 57. In addition, since there is a supply of low-temperature cooling water from the low-temperature water tank 51 through the opening 55 through the shelf 58 and the weir 60, the water in the intermediate-temperature water tank 52 already filled in the intermediate-temperature water tank 52 is cooled to a low temperature. Inflow from the water tank 51 and the high temperature water tank 53 occurs, and it is necessary for these three members to quickly mix and homogenize. If the mixing is not uniform, the temperature of the cooling water pumped to the refrigerator circuits 20a and 20b will fluctuate, which will hinder proper cooling of the cold water by the refrigerators 21 and 23. These mixing and agitation mechanisms are accumulated by the ripples caused by the collision between the cooling water supplied as the falling water from the weirs 60 and 61 and the water stored in the intermediate temperature water tank 52 and the potential energy of the falling water mass. Air bubbles generated in the pooled water in the hot water tank 52 due to air entrainment caused by rushing into the water and convection caused by it, and vortexes generated when the falling water mass flows in and turbulence of the water surface It is used for agitation due to the speed difference from the convection of water due to the water, and is mixed very uniformly.

図8は、中間期の通常運転を示す。
外気が低温となり、外気負荷や建屋負荷が減少し、冷却塔で熱交換する相手の外気が低温となることから冷却塔の能力が増大することで、例えば3台の冷凍機21,23,25と2台の冷却塔31,33とが稼働される。それによって、3つの冷凍機回路20a,20b,20Cの冷却水ポンプ22,24,26により中温水用水槽52の冷却水が汲み上げられ、それぞれ冷凍機21,23,25の凝縮器で冷凍サイクルの冷媒と熱交換されることによって加熱され37℃の高温冷却水となって高温水用水槽53に送り出される。この場合、冷凍機側の冷却水量は冷凍機21,23,25の凝縮器の入口出口での温度差を5℃に保ったまま運転される。これに対し、冷却塔31,33の入口出口の水温差は、外気温低下による冷却塔の能力アップにより、定格の5℃差ではなく、大きな温度差が取れるようになり、同じ冷却塔31,33で夏のピーク負荷時より能力が発揮できるようになる。よって、2つの冷却塔回路30a,30bの冷却塔ポンプ32,34により高温水用水槽53の冷却水が汲み上げられ、冷却塔31,33によって冷やされて低温水用水槽51に送り出されることとなる。この低温水用水槽51に送られた冷却塔回路30a、30bにより送られた冷却水は、低温水用水槽51の開口55から棚58および堰60を介して中温水用水槽52に向かって滝となって落下する。ここで、冷却塔31が夏のピーク負荷時よりも大きい冷却能力を発揮して、冷却塔ポンプ32の定格流量で温度差を5℃ではなく大温度差で送れるようになるため、冷凍機回路20a,20b,20cで中温水用水槽52から高温水用水槽に汲み上げた冷却水の内、冷却水ポンプ22,24と冷却塔ポンプ32,34,36の流量が同じならば、冷却塔回路30a,30b,30cに汲み上げられなかった冷凍機回路1系統分の流量が、高温水用水槽53の開口57から棚59および堰61を介して中温水用水槽52に向かって滝となって落下する。
FIG. 8 shows the normal operation in the intermediate period.
Since the outside air becomes low temperature, the outside air load and the building load decrease, and the outside air of the partner to exchange heat in the cooling tower becomes low temperature, the capacity of the cooling tower increases. For example, three refrigerators 21, 23, 25 And two cooling towers 31 and 33 are operated. As a result, the cooling water in the medium-temperature water tank 52 is pumped up by the cooling water pumps 22, 24, and 26 of the three refrigerator circuits 20a, 20b, and 20C, and the refrigeration cycle of the refrigerators 21, 23, and 25 is respectively performed. It is heated by exchanging heat with the refrigerant and becomes high-temperature cooling water at 37 ° C., and is sent to the high-temperature water tank 53. In this case, the amount of cooling water on the refrigerator side is operated while maintaining the temperature difference at the inlet and outlet of the condensers of the refrigerators 21, 23, 25 at 5 ° C. On the other hand, the water temperature difference between the inlets and outlets of the cooling towers 31 and 33 is not the rated 5 ° C. difference due to the increased capacity of the cooling tower due to a decrease in the outside air temperature. 33 will be able to demonstrate its ability from the peak summer load. Therefore, the cooling water in the high temperature water tank 53 is pumped up by the cooling tower pumps 32 and 34 of the two cooling tower circuits 30 a and 30 b, cooled by the cooling towers 31 and 33, and sent to the low temperature water tank 51. . The cooling water sent by the cooling tower circuits 30 a and 30 b sent to the low-temperature water tank 51 falls from the opening 55 of the low-temperature water tank 51 toward the intermediate-temperature water tank 52 through the shelf 58 and the weir 60. And fall. Here, since the cooling tower 31 exhibits a larger cooling capacity than that at the peak load in summer and the temperature difference of the cooling tower pump 32 can be sent with a large temperature difference instead of 5 ° C., the refrigerator circuit If the cooling water pumps 22 and 24 and the cooling tower pumps 32, 34 and 36 have the same flow rate in the cooling water pumped from the intermediate-temperature water tank 52 to the high-temperature water tank 20a, 20b and 20c, the cooling tower circuit 30a , 30b, 30c, the flow rate for one system of the refrigerator circuit falls as a waterfall from the opening 57 of the hot water tank 53 to the intermediate hot water tank 52 through the shelf 59 and the weir 61. .

中間期は外気湿球温度が低いため、冷却塔の能力が夏のピーク負荷時より大きくなる。そのため、3台の冷凍機21,23,25の凝縮器により熱交換された排熱を冷却するのに2台の冷却塔31,33とでまかなうことができる。この場合、冷却塔31,33の冷却水出入口温度差は、7℃〜9℃のように5℃よりも大きくなる。
本実施形態によれば、外気温の低下とともに冷却塔の冷却能力が増大するため、冷凍機21,23,25の凝縮器における排出熱量より冷却塔処理熱量が過大となるので、低温水用水槽51の計測温度による制御信号により、冷却塔31,33,35がそれぞれ備えるファンや、冷却塔ポンプ32,34,36の台数制御もしくは回転数制御が行われる(ファン、ポンプ動力セービングのため)。
During the interim period, the outdoor wet bulb temperature is low, so the capacity of the cooling tower is greater than during summer peak loads. Therefore, the two cooling towers 31 and 33 can be used to cool the exhaust heat exchanged by the condensers of the three refrigerators 21, 23 and 25. In this case, the cooling water inlet / outlet temperature difference between the cooling towers 31 and 33 is larger than 5 ° C., such as 7 ° C. to 9 ° C.
According to the present embodiment, the cooling capacity of the cooling tower increases with a decrease in the outside air temperature, so that the cooling tower processing heat amount becomes larger than the exhaust heat amount in the condensers of the refrigerators 21, 23, 25. Control of the number of fans or cooling tower pumps 32, 34, and 36 or the number of revolutions of the cooling towers 31, 33, and 35 is performed by the control signal based on the measured temperature 51 (for fan and pump power saving).

低温水用水槽51の計測温度制御信号により、冷却塔ポンプ32,34,36の運転台数制御が行われる際は、3台の冷凍機21,23,25が稼働し、つまり冷凍機回路20a,20b,20cともその冷却水ポンプが稼働し、2つの冷却塔回路30aと30bとが稼働するだけで冷凍機システムが成立する上記のような場合がある。このとき、3台の冷却水ポンプ22,24,26が動作し、2台の冷却塔ポンプ32,34が働くときには、冷却水ポンプ22,24と冷却塔ポンプ32,34,36の流量が同じならば、高温水用水槽53において冷却塔ポンプ1台分の冷却水量が余剰となるので、高温水用水槽53から中温水用水槽52へ開口57から棚59および堰61を介して水の落下流入が生じ、また、低温水用水槽51から開口55から棚58および堰60を介した低温冷却水の供給もあるので、中温水用水槽52において、すでに満たされている中温水用水槽52の水に低温水用水槽51と高温水用水槽53とからの流入が生じ、これら三者が速やかに混合均一化することが必要となる。混合均一化しないと冷凍機回路20a,20b,20cに汲み上げる冷却水温度に変動が生じ、冷凍機21,23,25による適切な冷水の冷凍に支障をきたすこととなる。これらの混合や攪拌のしくみは、堰60,61からの落水として供給される冷却水と中温水用水槽52中の溜められた水との衝突による波立ちや、落水水塊の位置エネルギによる溜められた水中への速度を伴う突入とそれによる対流発生や、その落下水塊の流入時発生する渦や水面の乱れにより同伴される空気により中温水用水槽52中の溜められた水中で発生する気泡による水の対流との速度差による攪拌など利用するものであり、非常に均一に混合されるのである。   When the operation number control of the cooling tower pumps 32, 34, 36 is performed by the measured temperature control signal of the low temperature water tank 51, the three refrigerators 21, 23, 25 are operated, that is, the refrigerator circuit 20a, In some cases, the cooling water pump is operated for both 20b and 20c, and the refrigerator system is established only by operating the two cooling tower circuits 30a and 30b. At this time, when the three cooling water pumps 22, 24, 26 operate and the two cooling tower pumps 32, 34 work, the flow rates of the cooling water pumps 22, 24 and the cooling tower pumps 32, 34, 36 are the same. Then, since the amount of cooling water for one cooling tower pump is excessive in the high temperature water tank 53, the water drops from the high temperature water tank 53 to the medium temperature water tank 52 through the shelf 59 and the weir 61 from the opening 57. Inflow occurs, and there is also a supply of low-temperature cooling water from the low-temperature water tank 51 through the opening 55 through the shelf 58 and the weir 60. Therefore, in the intermediate-temperature water tank 52, the already filled medium-temperature water tank 52 Inflow of water from the low-temperature water tank 51 and the high-temperature water tank 53 occurs in the water, and it is necessary for these three to quickly mix and homogenize. If the mixing is not uniform, the temperature of the cooling water pumped into the refrigerator circuits 20a, 20b, and 20c will fluctuate, which will hinder proper cooling of the cold water by the refrigerators 21, 23, and 25. These mixing and agitation mechanisms are accumulated by the ripples caused by the collision between the cooling water supplied as the falling water from the weirs 60 and 61 and the water stored in the intermediate temperature water tank 52 and the potential energy of the falling water mass. Air bubbles generated in the pooled water in the hot water tank 52 due to air entrainment caused by rushing into the water and convection caused by it, and vortexes generated when the falling water mass flows in and turbulence of the water surface It is used for agitation due to the speed difference from the convection of water due to the water, and is mixed very uniformly.

次に、冷凍機21,23,25の凝縮器で熱交換された排熱を利用する場合(ただし、常に冷凍機排熱量>利用排熱量)について説明する。
夏期、中間期、冬期ともに冷凍機21,23,25の凝縮器で熱交換された排熱を利用する場合、冷却塔31,33,35における外気への熱排出の一部を排熱利用部、つまり熱交換器回路40a,40bで消化するため、その分の冷却塔が停止し、冷却塔回路30a,30b,30c系の水量減となり、排熱利用系、つまり熱交換器回路40a,40bの水量が増大することとなるが、排熱利用系の利用温度差が定格の冷却塔出入口冷却水温度差5℃より大幅に大きな時、排熱利用系を流れる水量は減少することから、高温水用水槽53において冷却水量が余剰となるので、高温水用水槽53から中温水用水槽52への開口57を通じた流れが生じる(熱量は別)。この時、中温水用水槽52へは低温水用水槽51と高温水用水槽53との両方からの滝状の流れができる。大きく異なる水温の流れを短時間、小スペースで混合させることが必要となる。このため、堰60から落水する冷却塔ポンプ32,34の2台分の流量による落水の放物線が、安定した中温水用水槽52の水位と交わる点と、堰61から落水する冷却水ポンプ22の1台分の流量による落水の放物線が、安定した中温水用水槽52の水位と交わる点とがほぼ一致するか、或いは空中で2つの放物線が交錯するように、槽間隔壁54と槽間隔壁56との距離を設定すれば、落下する異なる温度の落水水塊がうまく混合できて、混合や攪拌のしくみ、つまり堰60,61からの落水として供給される冷却水と中温水用水槽52中の溜められた水との衝突による波立ちや、落水水塊の位置エネルギによる溜められた水中への速度を伴う突入とそれによる対流発生や、その落下水塊の流入時発生する渦や水面の乱れにより同伴される空気により中温水用水槽52中の溜められた水中で発生する気泡による水の対流との速度差による攪拌効果が最大限発揮できる。
Next, the case where the exhaust heat exchanged by the condensers of the refrigerators 21, 23, 25 is used (however, the amount of exhaust heat of the refrigerator> the amount of exhaust heat used) will be described.
When using the exhaust heat exchanged by the condensers of the refrigerators 21, 23, 25 in the summer, the intermediate period, and the winter, a part of the heat exhaust to the outside air in the cooling towers 31, 33, 35 is used as the exhaust heat utilization unit That is, since the heat exchanger circuits 40a and 40b are digested, the corresponding cooling towers are stopped, the amount of water in the cooling tower circuits 30a, 30b and 30c is reduced, and the exhaust heat utilization system, that is, the heat exchanger circuits 40a and 40b. However, when the temperature difference of the exhaust heat utilization system is significantly larger than the rated cooling tower inlet / outlet cooling water temperature difference of 5 ° C, the amount of water flowing through the exhaust heat utilization system decreases. Since the amount of cooling water is excessive in the water tank 53, a flow through the opening 57 from the high-temperature water tank 53 to the medium-temperature water tank 52 occurs (the amount of heat is different). At this time, a waterfall-like flow from both the low temperature water tank 51 and the high temperature water tank 53 can be made to the intermediate temperature water tank 52. It is necessary to mix the flow of greatly different water temperatures for a short time in a small space. For this reason, the parabolic line of the falling water by the flow rate of the two cooling tower pumps 32 and 34 falling from the weir 60 intersects the stable water level of the medium temperature water tank 52 and the cooling water pump 22 falling from the weir 61. The tank interval wall 54 and the tank interval wall are arranged so that the parabola of the falling water due to the flow rate of one unit substantially coincides with the point where the water level of the stable medium temperature water tank 52 intersects, or two parabolas intersect in the air. If the distance to 56 is set, falling falling water masses of different temperatures can be mixed well, and mixing and stirring mechanism, that is, cooling water supplied as falling water from the weirs 60 and 61 and the medium temperature water tank 52 Waves caused by collision with accumulated water, rushing into the accumulated water due to potential energy of falling water mass and convection due to it, vortex and water surface turbulence generated when the falling water mass flows in Accompanied by Agitation effect due to the speed difference between the convection of water by bubbles generated in the water which accumulated a medium-temperature water tanks 52 medium by air can maximize.

以上のように、冷却塔にて大気に冷凍機の冷凍サイクル凝縮器で発生する排熱を放熱する際に、夏のピーク負荷時以外では、冷却水槽に設けた堰から落下する滝により異なった温度の冷却水をうまく混合することで、冷凍機の負荷に応じた運転を行いつつ、冷凍機の冷凍サイクル凝縮器で発生する排熱を加熱熱源として利用したり、排熱を冷却塔にて大気に放熱させたりして運転できる。また、冬期や中間期における、外気調和機における外気への水加湿のための前段加熱負荷などが発生する場合は、冷凍機の凝縮器側の排熱を冷却水槽の高温水用水槽に一度集めるので、ここから別な循環路を負荷と高温水用水槽とを連絡しポンプで循環することで、これを加熱熱源として利用でき、ボイラーの稼働台数の削減と冷却塔稼動台数の削減を行える。また、冷房を目的とする冷凍機の冷凍サイクル凝縮器で発生する副産物の排熱を加熱熱源として利用する時、利用仕切れずに残った排熱を冷却塔にて大気に放熱させる場合、水温の急激な変化を吸収するバッファとしての冷却水槽が介在することで、冷凍機、冷却塔、冷却コイル、加熱熱交換器、加熱コイル、配管類の熱容量やそれらを制御する自動制御系の特性から熱源システムに乱れが生じる危険を回避できる。また、同様に水温の急激な変化を吸収するバッファとしての冷却水槽が介在することで、負荷量や気象条件などの変動に対してシステムを高効率に維持させるための切り替えや、定期メンテナンスや機器トラブルによる稼働機器の切り替えなどによる冷凍機システムの冷却水系全体に対する乱れの発生を抑制できる。
さらに、本実施形態によれば、冷凍機21,23,25について、夏のピーク負荷時以外における高効率運転、つまり凝縮器へ導入される冷却水温の低下に対して、圧縮機の能力を絞れることにより効率が上昇し、つまり、成績係数(COP)=蒸発器で奪う熱量(kcal)/(圧縮機に要する電力量(KW)×860(kcal/KW))が向上し、消費電力の削減がはかれるように外気温度に応じて冷却水温を下げるべく冷却塔31,33,35の運転管理ができる。
夏のピーク負荷時以外において、外気湿球温度が低いとき冷却水温を低く設定でき、冷凍機21,23,25のCOPを高めての使用が可能となる。
As described above, when the exhaust heat generated by the refrigeration cycle condenser of the refrigerator is radiated to the atmosphere in the cooling tower, it differs depending on the waterfall falling from the weir provided in the cooling water tank except during summer peak load By mixing the cooling water of the temperature well, the exhaust heat generated in the refrigeration cycle condenser of the refrigerator can be used as a heating heat source while operating according to the load of the refrigerator, or the exhaust heat can be used in the cooling tower. It can be operated by releasing heat to the atmosphere. In addition, if there is a pre-heating heating load for humidifying the outside air in the outdoor air conditioner during the winter or intermediate period, the exhaust heat on the condenser side of the refrigerator is once collected in the high-temperature water tank of the cooling water tank. Therefore, by connecting a load and a high-temperature water tank through a separate circulation path from here and circulating with a pump, this can be used as a heating heat source, and the number of operating boilers and the number of cooling towers can be reduced. In addition, when using the exhaust heat of the by-product generated in the refrigeration cycle condenser of a refrigerator intended for cooling as a heating heat source, if the exhaust heat remaining without partitioning is dissipated to the atmosphere in the cooling tower, the water temperature By interposing a cooling water tank as a buffer that absorbs sudden changes, the heat source from the heat capacity of the refrigerator, cooling tower, cooling coil, heating heat exchanger, heating coil, piping, and the characteristics of the automatic control system that controls them The risk of system disruption can be avoided. Similarly, a cooling water tank as a buffer that absorbs sudden changes in water temperature intervenes to enable switching to maintain the system with high efficiency against fluctuations in load and weather conditions, as well as periodic maintenance and equipment. It is possible to suppress the occurrence of turbulence in the entire cooling water system of the refrigerator system due to switching of operating equipment due to trouble.
Furthermore, according to the present embodiment, the compressor capacity can be reduced with respect to the refrigerators 21, 23, 25 with respect to the high-efficiency operation except during summer peak load, that is, the cooling water temperature being lowered into the condenser. Efficiency, that is, coefficient of performance (COP) = amount of heat taken by the evaporator (kcal) / (electric power required for the compressor (KW) x 860 (kcal / KW)) is improved, and power consumption is reduced. Therefore, the operation of the cooling towers 31, 33, and 35 can be managed so as to lower the cooling water temperature according to the outside air temperature.
Except during summer peak load, when the outdoor wet bulb temperature is low, the cooling water temperature can be set low, and the COP of the refrigerators 21, 23, 25 can be increased.

中間期、冬期において、外気湿球温度が低い期間には冷却塔能力が増大するが、冷凍機と冷却塔とが配管で閉回路を形成して固定された対とならず、冷凍機群と冷却塔群とを別な配管系として形成できるので、低温水用水槽51の計測温度による制御信号により、冷却塔31,33,35がそれぞれ備えるファンや、冷却塔ポンプ32,34,36の台数制御もしくは回転数制御が行われ、台数制御であれば一部停止が可能となる。
冷凍機21,23,25、冷却塔31,33,35、ポンプ類、機器のトラブル発生時、各機器の組合せに融通性が大きくなる。また、メンテナンス時にも同様に融通性が出る。
In the intermediate and winter seasons, the cooling tower capacity increases during periods when the outdoor wet bulb temperature is low, but the refrigerator and cooling tower form a closed circuit with a pipe and are not a fixed pair. Since the cooling tower group can be formed as a separate piping system, the number of fans and cooling tower pumps 32, 34, and 36 provided in the cooling towers 31, 33, and 35, respectively, by a control signal based on the measured temperature of the low-temperature water tank 51. Control or rotational speed control is performed, and if it is unit control, a partial stop is possible.
When troubles occur in the refrigerators 21, 23, 25, the cooling towers 31, 33, 35, pumps, and devices, the flexibility of combinations of the devices increases. In addition, flexibility can be obtained during maintenance.

冷凍機排熱(冷凍機出口冷却水)を、温熱源として利用でき、併せて冷却塔の動力削減が行える。
冷凍機入口冷却水温の変動が小さくでき、冷凍機安定運転ができる。
また、冷凍機と冷却塔とが配管で閉回路を形成して固定された対とならず、冷凍機群と冷却塔群とを別な配管系として形成できるので、各機器の(冷凍機、冷却塔)方式、形式、特性などの色々のものの組合せが可能で、負荷状況、外気条件、環境対応(白煙防止)などにより適切な方法がとりやすい。
Refrigerator exhaust heat (refrigerator outlet cooling water) can be used as a heat source, and the power of the cooling tower can be reduced.
The fluctuation of the cooling water temperature at the refrigerator inlet can be reduced, and the refrigerator can be operated stably.
In addition, since the refrigerator and the cooling tower form a closed circuit with a pipe and do not form a fixed pair, the refrigerator group and the cooling tower group can be formed as separate piping systems. Various combinations of cooling tower) method, type, characteristics, etc. are possible, and it is easy to take an appropriate method depending on load conditions, outside air conditions, environmental response (white smoke prevention), etc.

なお、上記実施形態では、3つの冷凍機回路20a,20b,20cと、3つの冷却塔回路30a,30b,30cと、2つの熱交換器回路40a,40bとを備えた場合について説明したが、本発明はこれに限らず、使用目的に応じて各機器の(冷凍機、冷却塔)方式、形式、特性、台数、能力などを任意に変更することが可能である。例えば、冷凍機については、圧縮式冷凍機を例に述べてきたが、吸収式冷凍機の吸収器および凝縮器に対して熱の授受を行う冷却水についても、当然「冷凍機システムの凝縮器側の冷却水系」であることはいうまでもない。   In the above embodiment, the case where the three refrigerator circuits 20a, 20b, and 20c, the three cooling tower circuits 30a, 30b, and 30c, and the two heat exchanger circuits 40a and 40b are described. The present invention is not limited to this, and it is possible to arbitrarily change the (refrigerator, cooling tower) system, type, characteristics, number, capacity, etc. of each device according to the purpose of use. For example, for a refrigerator, a compression type refrigerator has been described as an example, but naturally, a cooling system that transfers heat to an absorber and a condenser of an absorption refrigerator is also referred to as a “condenser of a refrigerator system”. Needless to say, this is the “cooling water system on the side”.

本発明の一実施形態に係る冷凍機システムを示す説明図である。It is explanatory drawing which shows the refrigerator system which concerns on one Embodiment of this invention. 図1の冷凍機システムに用いる冷却水槽を示す斜視図である。It is a perspective view which shows the cooling water tank used for the refrigerator system of FIG. 図1の冷凍機システムに用いる冷却水槽を示す平面図である。It is a top view which shows the cooling water tank used for the refrigerator system of FIG. 図1の冷凍機システムに用いる冷却水槽を示す断面図である。It is sectional drawing which shows the cooling water tank used for the refrigerator system of FIG. 図1の冷凍機システムに用いる冷却水槽の作用を示す説明図である。It is explanatory drawing which shows the effect | action of the cooling water tank used for the refrigerator system of FIG. 図1の冷凍機システムの夏期の運転状態を示す説明図である。It is explanatory drawing which shows the driving | running state of the summer of the refrigerator system of FIG. 図1の冷凍機システムの冬期の運転状態を示す説明図である。It is explanatory drawing which shows the driving | running state in the winter of the refrigerator system of FIG. 図1の冷凍機システムの中間期の運転状態を示す説明図である。It is explanatory drawing which shows the operation state of the intermediate | middle period of the refrigerator system of FIG. 従来の冷凍機システムを示す説明図である。It is explanatory drawing which shows the conventional refrigerator system.

符号の説明Explanation of symbols

10 冷凍機システム
20a,20b,20c 冷凍機回路
21,23,25 冷凍機
22,24,26 冷却水ポンプ
30a,30b,30c 冷却塔回路
31,33,35 冷却塔
31,33,35 冷却塔ポンプ
40a,40b 熱交換器回路
41,43 熱交換器
42,44 循環ポンプ
50 冷却水槽
51 低温水用水槽
52 中温水用水槽
53 高温水用水槽
54,56 槽間隔壁
55,57 開口
58,59 棚
60,61 堰
DESCRIPTION OF SYMBOLS 10 Refrigerator system 20a, 20b, 20c Refrigerator circuit 21,23,25 Refrigerator 22,24,26 Cooling water pump 30a, 30b, 30c Cooling tower circuit 31,33,35 Cooling tower 31,33,35 Cooling tower pump 40a, 40b Heat exchanger circuit 41, 43 Heat exchanger 42, 44 Circulating pump 50 Cooling water tank 51 Low temperature water tank 52 Medium temperature water tank 53 High temperature water tank 54, 56 Spacing wall 55, 57 Opening 58, 59 Shelf 60, 61 weir

Claims (4)

冷凍機システムの凝縮器側の冷却水系において、
冷凍機と冷却水ポンプとを有する冷凍機回路と、
冷却塔と冷却塔ポンプとを有する冷却塔回路と、
低温水用水槽、中温水用水槽および高温水用水槽に仕切った冷却水槽とを備え、
前記冷凍機回路は、前記中温水用水槽と前記高温水用水槽との間に配され、
前記冷却塔回路は、前記低温水用水槽と前記高温水用水槽との間に配され、
前記低温水用水槽と前記中温水用水槽とを仕切る槽間隔壁は、前記低温水用水槽から前記中温水用水槽へ冷却水を落下する開口を設け、
前記低温水用水槽と前記中温水用水槽とを仕切る槽間隔壁と前記中温水用水槽と前記高温水用水槽とを仕切る槽間隔壁との間に、前記低温水用水槽の開口から流出する冷却水を導く棚を設けるとともに、前記低温水用水槽と前記中温水用水槽との水位差を利用して前記低温水用水槽から前記中温水用水槽へ冷却水を落下する滝を形成する堰を前記棚の先端部に設け、
前記中温水用水槽と前記高温水用水槽とを仕切る槽間隔壁は、前記高温水用水槽から前記中温水用水槽へ冷却水を落下する開口を設け、
前記低温水用水槽と前記中温水用水槽とを仕切る槽間隔壁と前記中温水用水槽と前記高温水用水槽とを仕切る槽間隔壁との間に、前記高温水用水槽の開口から流出する冷却水を導く棚を設けるとともに、前記高温水用水槽と前記中温水用水槽との水位差を利用して前記高温水用水槽から前記中温水用水槽へ冷却水を落下する滝を形成する堰を前記棚の先端部に設けている
ことを特徴とする冷凍機システム。
In the cooling water system on the condenser side of the refrigerator system,
A refrigerator circuit having a refrigerator and a cooling water pump;
A cooling tower circuit having a cooling tower and a cooling tower pump;
A cooling water tank partitioned into a low temperature water tank, a medium temperature water tank and a high temperature water tank,
The refrigerator circuit is arranged between the medium temperature water tank and the high temperature water tank,
The cooling tower circuit is arranged between the low temperature water tank and the high temperature water tank,
The tank interval wall that partitions the low-temperature water tank and the intermediate-temperature water tank has an opening for dropping cooling water from the low-temperature water tank to the intermediate-temperature water tank,
It flows out from the opening of the low temperature water tank between the tank interval wall that partitions the low temperature water tank and the medium temperature water tank and the tank interval wall that partitions the medium temperature water tank and the high temperature water tank. A weir that provides a shelf for guiding cooling water and forms a waterfall that drops cooling water from the low-temperature water tank to the intermediate-temperature water tank using a difference in water level between the low-temperature water tank and the intermediate-temperature water tank At the tip of the shelf,
The tank interval wall that partitions the intermediate temperature water tank and the high temperature water tank is provided with an opening for dropping cooling water from the high temperature water tank to the intermediate temperature water tank.
It flows out from the opening of the high temperature water tank between the tank interval wall that partitions the low temperature water tank and the intermediate temperature water tank, and the tank interval wall that partitions the intermediate temperature water tank and the high temperature water tank. A weir that provides a shelf for guiding cooling water and forms a waterfall that drops cooling water from the high-temperature water tank to the intermediate-temperature water tank using a difference in water level between the high-temperature water tank and the intermediate-temperature water tank Is provided at the front end of the shelf.
請求項1記載の冷凍機システムにおいて、
前記低温水用水槽と前記中温水用水槽とを仕切る槽間隔壁に設けた開口は、前記高温水用水槽と前記中温水用水槽とを仕切る槽間隔壁に設けた開口より高所に位置する
ことを特徴とする冷凍機システム。
The refrigerator system according to claim 1, wherein
The opening provided in the tank interval wall that partitions the low temperature water tank and the intermediate temperature water tank is positioned higher than the opening provided in the tank interval wall that partitions the high temperature water tank and the intermediate temperature water tank. A refrigerator system characterized by that.
請求項1または請求項2記載の冷凍機システムにおいて、
前記低温水用水槽と前記中温水用水槽とを仕切る槽間隔壁と、前記中温水用水槽と前記高温水用水槽とを仕切る槽間隔壁との間に設けた2つの棚は、それぞれ前記開口の下端部と面一となるように設けられている
ことを特徴とする冷凍機システム。
The refrigerator system according to claim 1 or 2,
Two shelves provided between a tank interval wall that partitions the low temperature water tank and the intermediate temperature water tank, and a tank interval wall that partitions the intermediate temperature water tank and the high temperature water tank, It is provided so that it may become flush with the lower end part of the refrigerator system.
請求項1ないし請求項3の何れか記載の冷凍機システムにおいて、
熱交換器と循環ポンプとを有する熱交換器回路を、前記高温水用水槽と前記低温水用水槽との間に配してなる
ことを特徴とする冷凍機システム。
The refrigerator system according to any one of claims 1 to 3,
A refrigerator system, wherein a heat exchanger circuit having a heat exchanger and a circulation pump is disposed between the high-temperature water tank and the low-temperature water tank.
JP2007093614A 2006-03-31 2007-03-30 Refrigerator system Active JP4917467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007093614A JP4917467B2 (en) 2006-03-31 2007-03-30 Refrigerator system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006098558 2006-03-31
JP2006098558 2006-03-31
JP2007093614A JP4917467B2 (en) 2006-03-31 2007-03-30 Refrigerator system

Publications (2)

Publication Number Publication Date
JP2007292448A JP2007292448A (en) 2007-11-08
JP4917467B2 true JP4917467B2 (en) 2012-04-18

Family

ID=38763216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007093614A Active JP4917467B2 (en) 2006-03-31 2007-03-30 Refrigerator system

Country Status (1)

Country Link
JP (1) JP4917467B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614756B2 (en) * 2010-05-19 2014-10-29 オリオン機械株式会社 Multi-system cooling system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5581784A (en) * 1978-12-15 1980-06-20 Matsushita Electric Works Ltd Sterilizer for polluted water
JPS578489A (en) * 1980-06-19 1982-01-16 Tokyo Shibaura Electric Co Device for detecting obstacle of control rod drive mechanism exchanger
JPS61105041A (en) * 1984-10-26 1986-05-23 Taikisha Ltd Air conditioner with heat accumulating reservoir and operation thereof
JP2892202B2 (en) * 1991-11-21 1999-05-17 株式会社東芝 Ice storage device
JPH06137618A (en) * 1992-10-21 1994-05-20 Shimizu Corp Cooling/heating system for connecting heat storage tanks and central heat source device
JP3534048B2 (en) * 2000-07-27 2004-06-07 日立プラント建設株式会社 Air conditioning system

Also Published As

Publication number Publication date
JP2007292448A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
US8701429B2 (en) Air conditioning system
JP5501179B2 (en) Medium temperature source system with free cooling
CN104251529A (en) Combined type refrigeration and multi-connected air conditioning system
CN104266314A (en) Control method for combined refrigerating multi-split air conditioner system
US4559788A (en) Air conditioning system and method
US4367634A (en) Modulating heat pump system
JP4706836B2 (en) Cooling system
KR100978800B1 (en) An auxiliary Heat Source Equipment and the Control of Heat Pump System
CN111795481B (en) Air conditioning system and control method therefor
CN102833988A (en) Data center heat dissipation scheme
CN210832593U (en) Refrigerating system
JP4917468B2 (en) Refrigerator system
JP2010085009A (en) Air conditioning method, air conditioning system and method of controlling air conditioning system
CN205690576U (en) A kind of photovoltaic drives combined type computer-room air conditioning system
CN102506473B (en) Direct-evaporating type ice cold accumulation refrigerating system and refrigerating method thereof
JP4917467B2 (en) Refrigerator system
JP4859500B2 (en) Heat source system and control method thereof
KR102513802B1 (en) Refrigeration system
CN202303727U (en) Direct evaporating ice-storage refrigerating system
CN204063423U (en) A kind of combined type refrigerant multi-gang air conditioner
KR100258235B1 (en) Surging-proof device of turbo refrigerator
JP4568119B2 (en) Heat supply system having a plurality of heat source units and pump groups
CN114390851A (en) Machine room heat dissipation and cooling system and machine room
CN112050305A (en) Multi-zone air conditioning system and operation method thereof
WO2015001976A1 (en) Heat source system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4917467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250