JP4916851B2 - Pulverized coal blowing device - Google Patents

Pulverized coal blowing device Download PDF

Info

Publication number
JP4916851B2
JP4916851B2 JP2006319128A JP2006319128A JP4916851B2 JP 4916851 B2 JP4916851 B2 JP 4916851B2 JP 2006319128 A JP2006319128 A JP 2006319128A JP 2006319128 A JP2006319128 A JP 2006319128A JP 4916851 B2 JP4916851 B2 JP 4916851B2
Authority
JP
Japan
Prior art keywords
pulverized coal
gas
blowing
supply
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006319128A
Other languages
Japanese (ja)
Other versions
JP2008133493A (en
Inventor
利英 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006319128A priority Critical patent/JP4916851B2/en
Publication of JP2008133493A publication Critical patent/JP2008133493A/en
Application granted granted Critical
Publication of JP4916851B2 publication Critical patent/JP4916851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Transport Of Granular Materials (AREA)
  • Blast Furnaces (AREA)

Description

本発明は、高炉にその下部から微粉炭を吹き込む微粉炭吹き込み装置に関し、特に、微粉炭の供給量の変動を抑制することが可能な微粉炭吹き込み装置に関する。   The present invention relates to a pulverized coal injecting apparatus for injecting pulverized coal into a blast furnace from below, and more particularly to a pulverized coal injecting apparatus capable of suppressing fluctuations in the supply amount of pulverized coal.

近年、高炉において銑鉄を製造する際に、高価なコークスを節減し、銑鉄の製造コストを削減するために、石炭を微破砕した微粉炭を羽口から吹き込むことが行われている。この微粉炭の吹き込みを行う場合、微粉炭は燃焼性が高いため、例えば窒素ガスやアルゴンガスなどをキャリアガスとして用い、フィードタンク(微粉炭供給タンク)から搬送された微粉炭を、羽口内に配置したブローパイプから熱風とともに高炉内に吹き込む方法が採用されている。   In recent years, when producing pig iron in a blast furnace, in order to save expensive coke and reduce the production cost of pig iron, pulverized coal obtained by finely pulverizing coal has been blown from the tuyere. When this pulverized coal is blown in, pulverized coal is highly combustible. For example, nitrogen gas or argon gas is used as the carrier gas, and the pulverized coal conveyed from the feed tank (pulverized coal supply tank) is put into the tuyere. A method of blowing into the blast furnace with hot air from the arranged blow pipe is adopted.

かかる方法を実施する際、微粉炭を1台のフィードタンクから高炉内に吹き込む場合には、微粉炭の供給時と供給停止時との吹き込み量の差が大きく、高炉内に与える熱量が変動して高炉の操業が不安定化してしまうという問題がある。そこで、高炉の操業の安定化を図るため、複数基のフィードタンクを設置し、複数のフィードタンクから同時に高炉内に微粉炭を吹き込むことで、高炉内に連続的に微粉炭を吹き込む方法がある(例えば、特許文献1及び2を参照)。   When carrying out such a method, when pulverized coal is blown into a blast furnace from a single feed tank, the difference in the amount of pulverized coal blown between when the pulverized coal is supplied and when the supply is stopped is large, and the amount of heat applied to the blast furnace varies. As a result, the operation of the blast furnace becomes unstable. Therefore, in order to stabilize the operation of the blast furnace, there is a method in which a plurality of feed tanks are installed and pulverized coal is continuously blown into the blast furnace by simultaneously blowing pulverized coal from the plurality of feed tanks into the blast furnace. (See, for example, Patent Documents 1 and 2).

上記特許文献1及び2に記載された方法によれば、一のフィードタンクの切り替え時には他のフィードタンクから微粉炭を吹き込んでいるので、フィードタンクの切り替え時における微粉炭の吹き込み量の変動を小さくし、高炉操業の安定化を図ることができる。すなわち、高炉に供給する微粉炭の量を複数のフィードタンクに分割すれば、1つのフィードタンクから供給する微粉炭の量は少なくなるので、各々のフィードタンクから供給される微粉炭の量の変動は小さくなり、全フィードタンクから供給される合計の微粉炭の量の変動も小さくすることができる。   According to the methods described in Patent Documents 1 and 2, since the pulverized coal is blown from the other feed tank when the one feed tank is switched, the fluctuation of the amount of pulverized coal blown when the feed tank is switched is reduced. In addition, blast furnace operation can be stabilized. That is, if the amount of pulverized coal supplied to the blast furnace is divided into a plurality of feed tanks, the amount of pulverized coal supplied from one feed tank is reduced, so that the amount of pulverized coal supplied from each feed tank varies. And the variation in the total amount of pulverized coal supplied from all feed tanks can be reduced.

ここで、各フィードタンクから吹き込む微粉炭の吹き込み量の調節は、個別にフィードタンク内の圧力を制御することにより行っており、一のフィードタンクの切り替え時には、他のフィードタンク内の圧力を上げて微粉炭の吹き込み量を増加させることにより、高炉内に吹き込む合計の吹き込み量をほぼ一定に保つことができるというものである。   Here, the amount of pulverized coal blown from each feed tank is adjusted by individually controlling the pressure in the feed tank. When one feed tank is switched, the pressure in the other feed tank is increased. By increasing the amount of pulverized coal injected, the total amount injected into the blast furnace can be kept substantially constant.

特開2005−82852号公報JP-A-2005-82852 特開2004−43849号公報JP 2004-43849 A

しかしながら、実際には、上記フィードタンク内の圧力の制御による場合には、フィードタンクの切り替え時において圧力を調節して微粉炭の吹き込み量を調節する際に、圧力を調節してから所望の吹き込み量となるまでに大きなタイムラグが存在し、合計の吹き込み量を一定に保つことは困難である、という問題があった。合計の吹き込み量を一定に保つことができないと、高炉の熱バランスに影響を与え、高炉の安定操業に支障を与えてしまうこともあるため好ましくない。   However, in actuality, in the case of controlling the pressure in the feed tank, when adjusting the pressure at the time of switching the feed tank and adjusting the blowing amount of pulverized coal, the pressure is adjusted and then the desired blowing is performed. There was a problem that there was a large time lag until the amount reached, and it was difficult to keep the total blowing amount constant. If the total amount of blowing cannot be kept constant, the heat balance of the blast furnace will be affected, and the stable operation of the blast furnace may be hindered.

そこで、本発明は、このような問題に鑑みてなされたもので、高炉内に微粉炭を吹き込む微粉炭吹き込み装置において、微粉炭供給タンク内の圧力制御の際のタイムラグに関係なく、合計の微粉炭の吹き込み量を一定に保つことを目的とする。   Therefore, the present invention has been made in view of such problems, and in the pulverized coal injecting apparatus for injecting pulverized coal into the blast furnace, the total pulverized powder regardless of the time lag at the time of pressure control in the pulverized coal supply tank. The purpose is to keep the amount of charcoal blown constant.

本発明者らは,上記課題を解決するために鋭意研究を重ねた結果,複数の微粉炭供給タンクから吹き込まれた微粉炭の流れを合流させる際に、複数の流れをお互いに干渉させることにより、各微粉炭供給タンクからの微粉炭吹き込み量の変動を抑制し合い、合流後の微粉炭の合計の吹き込み量を一定に保つことができることを見出し,この知見に基づいて本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have made a plurality of flows interfere with each other when the flows of pulverized coal blown from a plurality of pulverized coal supply tanks are merged. The present inventors have found that it is possible to suppress fluctuations in the amount of pulverized coal injected from each pulverized coal supply tank and to keep the total amount of pulverized coal injected after merging constant, and to complete the present invention based on this knowledge. It came.

すなわち、本発明が要旨とするところは以下のとおりである。
(1)複数の微粉炭供給タンクから分配器を介して高炉に微粉炭を吹き込むための微粉炭吹き込み装置であって:前記複数の微粉炭供給タンクの各々に接続された微粉炭供給路と;前記微粉炭供給路の下流側に位置し、前記複数の微粉炭供給路が集合した集合部と;前記集合部に設けられ、前記微粉炭供給路の長手方向に沿って前記複数の微粉炭供給路を仕切る隔壁と;前記集合部の前記隔壁よりも下流側に連設され、前記複数の微粉炭供給路からの微粉炭の流れを合流させる直管部と;前記直管部の側面側で前記隔壁の下流側に設けられ、微粉炭が流れる前記直管部にガスを吹き込むガス吹き込み手段と;を備え、前記隔壁先端と前記ガス吹き込み手段との前記直管部の長手方向の距離は、前記直管部の直径の10倍以内であり、前記ガス吹き込み手段は、複数のガス吹き込みノズルを有し、前記複数のガス吹き込みノズルは、前記直管部の中心軸と直交する平面において、前記隔壁に対して対称に配置されることを特徴とする、微粉炭吹き込み装置。
)前記ガス吹き込み手段は、前記微粉炭の流れ方向下流側における前記直管部の外側面と前記ガス吹き込みノズルとのなす角θ が30°≦θ ≦100°となるように設けられることを特徴とする、(1)に記載の微粉炭吹き込み装置。
That is, the gist of the present invention is as follows.
(1) A pulverized coal blowing device for blowing pulverized coal from a plurality of pulverized coal supply tanks into a blast furnace via a distributor: a pulverized coal supply path connected to each of the plurality of pulverized coal supply tanks; An aggregate portion where the plurality of pulverized coal supply passages are located downstream of the pulverized coal supply passage; and a plurality of the pulverized coal supplies provided along the longitudinal direction of the pulverized coal supply passage. A partition partitioning the path; a straight pipe part connected downstream of the partition part of the collecting part and joining the flows of pulverized coal from the plurality of pulverized coal supply paths; and on a side surface side of the straight pipe part A gas blowing means provided on the downstream side of the partition wall for blowing gas into the straight pipe portion through which pulverized coal flows, and the distance in the longitudinal direction of the straight pipe portion between the tip of the partition wall and the gas blowing means is The diameter of the straight pipe portion is within 10 times, and the gas Can included means, blowing plurality of gas includes a nozzle, said plurality of gas blowing nozzles, in a plane perpendicular to the center axis of the straight tube portion, and wherein the Rukoto arranged symmetrically with respect to the partition wall , Pulverized coal blowing device.
( 2 ) The gas blowing means is provided so that an angle θ N formed between the outer surface of the straight pipe portion and the gas blowing nozzle on the downstream side in the flow direction of the pulverized coal satisfies 30 ° ≦ θ N ≦ 100 °. characterized in that it is, pulverized coal injection device according to (1).

本発明によれば、高炉内に微粉炭を吹き込む微粉炭吹き込み装置において、複数の微粉炭供給タンクから吹き込まれた微粉炭の流れの合流時にガスを吹きこむことにより、微粉炭供給タンク内の圧力制御の際のタイムラグに関係なく、合計の吹き込み量を一定に保つことが可能である。したがって、本発明によれば、高炉の熱バランスを保ち、高炉の安定操業の継続を可能にすることができる。   According to the present invention, in the pulverized coal blowing device for blowing pulverized coal into the blast furnace, the pressure in the pulverized coal supply tank is obtained by blowing gas at the time of merging of the flows of pulverized coal blown from a plurality of pulverized coal supply tanks. Regardless of the time lag at the time of control, it is possible to keep the total blowing amount constant. Therefore, according to the present invention, the thermal balance of the blast furnace can be maintained and stable operation of the blast furnace can be continued.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
(本発明の一実施形態に係る微粉炭吹き込み装置の全体構成)
Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
(Overall configuration of pulverized coal blowing device according to one embodiment of the present invention)

まず、図1に基づいて、本発明の一実施形態に係る微粉炭吹き込み装置の全体構成について説明する。なお、図1は、本発明の一実施形態に係る微粉炭吹き込み装置1の全体構成を示す説明図である。   First, based on FIG. 1, the whole structure of the pulverized coal blowing apparatus which concerns on one Embodiment of this invention is demonstrated. In addition, FIG. 1 is explanatory drawing which shows the whole structure of the pulverized coal blowing apparatus 1 which concerns on one Embodiment of this invention.

本実施形態に係る微粉炭吹き込み装置1は、高炉100にその下部から微粉炭を連続的に吹き込むための装置であり、図1に示すように、複数の微粉炭供給タンク10(10−1、10−2、10−3、10−4)と、複数のプレディスパーサ20−1、20−2と、ディスパーサ30と、ガス吹き込み手段40と、分配器50と、を主に備える。   The pulverized coal blowing device 1 according to the present embodiment is a device for continuously blowing pulverized coal into the blast furnace 100 from below, and as shown in FIG. 1, a plurality of pulverized coal supply tanks 10 (10-1, 10-2, 10-3, 10-4), a plurality of predispersers 20-1, 20-2, a disperser 30, a gas blowing means 40, and a distributor 50 are mainly provided.

微粉炭供給タンク10は、微粉炭を貯留及び供給可能なタンクであって、本実施形態に係る微粉炭吹き込み装置1においては、4基の微粉炭供給タンク10−1、10−2、10−3、10−4が設置されている。この各微粉炭供給タンク10−1〜10−4の上方には、石炭粉砕機により微粉砕された微粉炭を一旦貯蔵する貯蔵タンク(図示せず)が設置されている。この貯蔵タンクは、200mesh以下の粒径のものが60〜80質量%程度含まれた微粉炭を貯蔵している。なお、貯蔵タンクから各微粉炭供給タンク10−1〜10−4への微粉炭の供給(補充)は、例えば、貯蔵タンクと微粉炭供給タンク10−1〜10−4とを接続する配管(図示せず)に設けられた開閉バルブ(図示せず)の開閉動作により、微粉炭の重力を利用して行うことができる。   The pulverized coal supply tank 10 is a tank capable of storing and supplying pulverized coal, and in the pulverized coal blowing apparatus 1 according to the present embodiment, four pulverized coal supply tanks 10-1, 10-2, 10-. 3, 10-4 are installed. Above each of these pulverized coal supply tanks 10-1 to 10-4, a storage tank (not shown) for temporarily storing the pulverized coal finely pulverized by the coal pulverizer is installed. This storage tank stores pulverized coal containing about 60 to 80% by mass of a particle size of 200 mesh or less. In addition, supply (replenishment) of pulverized coal from the storage tank to each of the pulverized coal supply tanks 10-1 to 10-4 is, for example, piping connecting the storage tank and the pulverized coal supply tanks 10-1 to 10-4 ( It can be carried out using the gravity of pulverized coal by opening / closing operation of an open / close valve (not shown) provided in the not shown.

各微粉炭供給タンク10−1〜10−4は、下側が下方へ向かって縮径した形状となっており、その内部に窒素ガス等の不活性ガスを供給することで、内部を例えば0.7〜1.3MPa程度に加圧することができる。また、この各微粉炭供給タンク10−1〜10−4には、秤量器(図示せず)が設けられ、各微粉炭供給タンク10−1〜4内の微粉炭の残量を検出できる。また、この各微粉炭供給タンク10−1〜10−4の下端部には、微粉炭供給タンク10−1〜10−4内の微粉炭をプレディスパーサ20−1、20−2へ搬送するための第1供給管12−1、12−2、12−3、12−4が接続されている。また、各第1供給管12−1〜12−4には、開閉バルブ14−1、14−2、14−3、14−4が設けられ、この各開閉バルブ14−1〜14−4を開閉し、第1供給管を切り替えて、各微粉炭供給タンク10−1〜10−4内の微粉炭を搬送可能となっている。なお、各微粉炭供給タンク10−1〜10−4から微粉炭を供給する際には、微粉炭供給タンク10−1〜10−4の内部に窒素ガス等の不活性ガスを供給し、微粉炭供給タンク10−1〜10−4内部を高炉100よりも高圧にすると、微粉炭供給タンク10−1〜10−4と高炉100との差圧により、微粉炭を微粉炭供給タンク10−1〜10−4から高炉100へ流入させることができる。   Each of the pulverized coal supply tanks 10-1 to 10-4 has a shape in which the lower side is reduced in diameter toward the lower side, and by supplying an inert gas such as nitrogen gas to the inside thereof, the inside is, for example, 0.00. The pressure can be about 7 to 1.3 MPa. Each of the pulverized coal supply tanks 10-1 to 10-4 is provided with a weigher (not shown), and the remaining amount of pulverized coal in each of the pulverized coal supply tanks 10-1 to 10-4 can be detected. Moreover, the pulverized coal in the pulverized coal supply tanks 10-1 to 10-4 is conveyed to the lower ends of the pulverized coal supply tanks 10-1 to 10-4 to the predispersers 20-1 and 20-2. For this purpose, first supply pipes 12-1, 12-2, 12-3, and 12-4 are connected. Each of the first supply pipes 12-1 to 12-4 is provided with opening / closing valves 14-1, 14-2, 14-3, and 14-4. The pulverized coal in each of the pulverized coal supply tanks 10-1 to 10-4 can be conveyed by opening and closing and switching the first supply pipe. In addition, when supplying pulverized coal from each of the pulverized coal supply tanks 10-1 to 10-4, an inert gas such as nitrogen gas is supplied into the pulverized coal supply tanks 10-1 to 10-4. When the inside of the charcoal supply tanks 10-1 to 10-4 is set to a pressure higher than that of the blast furnace 100, the pulverized coal is converted into the pulverized coal supply tank 10-1 by the differential pressure between the pulverized coal supply tanks 10-1 to 10-4 and the blast furnace 100. 10 −4 to blast furnace 100.

また、第1供給管12−1、12−2の下流側端部はプレディスパーサ20−1の上部に、第1供給管12−3、12−4の下流側端部はプレディスパーサ20−2の上部に、それぞれ接続されている。このプレディスパーサ20−1(20−2)は、詳しくは後述するが、第1供給管12−1と12−2(12−3と12−4)の少なくともいずれか一方から微粉炭の供給を受けることにより、常に微粉炭の供給がある状態となり、ディスパーサ30の微粉炭供給路32−1と32−2に微粉炭を連続的に供給することができる。   The downstream ends of the first supply pipes 12-1 and 12-2 are located above the predisperser 20-1, and the downstream ends of the first supply pipes 12-3 and 12-4 are the predisperser 20. -2 is connected to the upper part. The predisperser 20-1 (20-2) supplies pulverized coal from at least one of the first supply pipes 12-1 and 12-2 (12-3 and 12-4), as will be described in detail later. By receiving, it will be in the state with supply of pulverized coal always, and pulverized coal can be continuously supplied to the pulverized coal supply paths 32-1 and 32-2 of the disperser 30.

プレディスパーサ20−1、20−2の下端部には、微粉炭供給タンク10−1〜10−4からプレディスパーサ20−1、20−2に供給された微粉炭をディスパーサ30へ搬送するための第2供給管22−1、22−2がそれぞれ接続されている。また、この第2供給管22−1、22−2の下流側端部は、ディスパーサ30の下部に設けられた微粉炭供給路32−1、32−2にそれぞれ接続されている。   The pulverized coal supplied to the predispersers 20-1 and 20-2 from the pulverized coal supply tanks 10-1 to 10-4 is conveyed to the lower ends of the predispersers 20-1 and 20-2 to the disperser 30. Second supply pipes 22-1 and 22-2 are connected to each other. Further, the downstream ends of the second supply pipes 22-1 and 22-2 are connected to pulverized coal supply paths 32-1 and 32-2 provided at the lower part of the disperser 30, respectively.

ディスパーサ30は、堅型であり、複数の微粉炭供給路32(本実施形態では2つの微粉炭供給路32−1、32−2)と、集合部34と、隔壁36と、直管部38と、を主に有する略Y字形状の管状部材であり、例えば、セラミックス等の材質により形成される。このディスパーサ30は、複数の微粉炭供給タンク10から供給された微粉炭の複数の流れ、例えば、本実施形態では、微粉炭供給タンク10−1〜10−4からプレディスパーサ20−1、20−2を介して供給された2つの微粉炭の流れ(以下、「微粉炭流」という場合がある。)を直管部38の下部で合流させて1つの微粉炭流とし、この1つの微粉炭流中の微粉炭を分配器50を介して高炉100に連続的に供給する。   The disperser 30 is a rigid type, and includes a plurality of pulverized coal supply paths 32 (two pulverized coal supply paths 32-1 and 32-2 in the present embodiment), a collecting section 34, a partition wall 36, and a straight pipe section 38. Is a substantially Y-shaped tubular member mainly made of a material such as ceramics. The disperser 30 is a plurality of flows of pulverized coal supplied from a plurality of pulverized coal supply tanks 10, for example, in the present embodiment, from the pulverized coal supply tanks 10-1 to 10-4 to the predispersers 20-1 and 20. -2 flows of two pulverized coals (hereinafter sometimes referred to as “pulverized coal flow”) are combined at the lower part of the straight pipe portion 38 to form one pulverized coal flow. The pulverized coal in the coal flow is continuously supplied to the blast furnace 100 through the distributor 50.

微粉炭供給路32(32−1,32−2)は、複数の微粉炭供給タンク10の各々に、直接または間接的に接続(本実施形態では、第1供給管12−1〜12−4、プレディスパーサ20−1、20−2、及び第2供給管22−1、22−2を介して接続)されている。集合部34は、微粉炭供給路32の下流側に位置し、ディスパーサ30のうち、複数の微粉炭供給路32−1、32−2が集合した部分である。隔壁36は、集合部34に設けられ、微粉炭供給路32の長手方向に沿って複数の微粉炭供給路32−1、32−2を仕切る部材である。直管部38は、集合部34の隔壁36よりも下流側に連設され、ディスパーサ30のうち、複数の微粉炭供給路32−1、32−2からの微粉炭の流れを合流させる部分である。なお、ディスパーサ30の構成の詳細については後述する。   The pulverized coal supply path 32 (32-1, 32-2) is directly or indirectly connected to each of the plurality of pulverized coal supply tanks 10 (in the present embodiment, the first supply pipes 12-1 to 12-4). , Connected via predispersers 20-1 and 20-2 and second supply pipes 22-1 and 22-2). The gathering part 34 is located on the downstream side of the pulverized coal supply path 32, and is a part where a plurality of the pulverized coal supply paths 32-1 and 32-2 are gathered in the disperser 30. The partition wall 36 is a member that is provided in the collecting portion 34 and partitions the plurality of pulverized coal supply paths 32-1 and 32-2 along the longitudinal direction of the pulverized coal supply path 32. The straight pipe portion 38 is connected to the downstream side of the partition wall 36 of the collecting portion 34 and is a portion of the disperser 30 that joins the flow of pulverized coal from the plurality of pulverized coal supply paths 32-1 and 32-2. is there. Details of the configuration of the disperser 30 will be described later.

ガス吹き込み手段40は、ディスパーサ30の直管部38の側面側で隔壁36の下流側近傍に設けられ、微粉炭が流れる直管部38にガスを吹き込む。本実施形態においては、ガス吹き込み手段40は、複数のガス吹き込みノズル42が直管部38の側面側に向けて放射状に配置されており、ガス吹き込みガス42の直管部38に対して外側の端部の各々を接続するように略円形状のガス供給路44が設けられている。なお、ガス吹き込み手段40の構成の詳細については後述する。   The gas blowing means 40 is provided near the downstream side of the partition wall 36 on the side surface side of the straight pipe portion 38 of the disperser 30 and blows gas into the straight pipe portion 38 through which pulverized coal flows. In the present embodiment, the gas blowing means 40 includes a plurality of gas blowing nozzles 42 arranged radially toward the side surface side of the straight pipe portion 38, and the gas blowing means 42 is disposed outside the straight pipe portion 38 of the gas blowing gas 42. A substantially circular gas supply path 44 is provided so as to connect each of the end portions. Details of the configuration of the gas blowing means 40 will be described later.

分配器50は、直管部38の下流側端部に接続された略円筒状の容器52と、この容器52の周囲に等角度に設けられた複数本(例えば、40本程度)の分配管54と、を備える。分配管54は、高炉100下部の周囲に設けられた羽口102と同数設けられており、分配管54の下流側端部は、この羽口102に設けられたブローパイプ(図示せず)に接続されている。この分配器50により、直管部38を通って分配器50へ送られた微粉炭は、各分配管54へ略同量ずつ送られ、高炉100の周囲の各羽口102を介して高炉100の炉内へ吹き込まれる。   The distributor 50 includes a substantially cylindrical container 52 connected to the downstream end of the straight pipe section 38 and a plurality of (for example, about 40) distribution pipes provided at equal angles around the container 52. 54. The distribution pipes 54 are provided in the same number as the tuyere 102 provided around the bottom of the blast furnace 100, and the downstream end of the distribution pipe 54 is connected to a blow pipe (not shown) provided in the tuyere 102. It is connected. By this distributor 50, the pulverized coal sent to the distributor 50 through the straight pipe portion 38 is sent to each distribution pipe 54 by approximately the same amount, and through each tuyere 102 around the blast furnace 100, the blast furnace 100. Into the furnace.

(本発明の一実施形態に係るディスパーサ及びガス吹き込み手段の構成)
次に、図2〜5に基づいて、本実施形態に係る微粉炭吹き込み装置を構成するディスパーサ30及びガス吹き込み手段40の構成について詳細に説明する。なお、図2は、本実施形態に係るディスパーサ30及びガス吹き込み手段40の構成を示す断面図(微粉炭の流れ方向に平行な平面で切断したもの)であり、図3は、図2のA−A断面図であり、図4は、図2のB−B断面図であり、図5は、図2のC部矢視図である。
(Configuration of Disperser and Gas Blowing Unit According to One Embodiment of the Present Invention)
Next, based on FIGS. 2-5, the structure of the disperser 30 and the gas blowing means 40 which comprise the pulverized coal blowing apparatus which concerns on this embodiment is demonstrated in detail. 2 is a cross-sectional view (cut by a plane parallel to the flow direction of the pulverized coal) showing the configuration of the disperser 30 and the gas blowing means 40 according to the present embodiment, and FIG. 4 is a cross-sectional view taken along line A, FIG. 4 is a cross-sectional view taken along line BB in FIG. 2, and FIG. 5 is a view taken in the direction of arrow C in FIG.

上述したように、ディスパーサ30は、略Y字形状の管状部材であり、複数の微粉炭供給路32(32−1、32−2)と、集合部34と、隔壁36と、直管部38と、を主に有する。ディスパーサ30は、例えば、管の最内面I側がAl等のセラミックスで形成され、最内面Iに隣接する中間部Mがモルタル等の材質で形成され、管の最外面Oが鋼等の材質で形成される。 As described above, the disperser 30 is a substantially Y-shaped tubular member, and includes a plurality of pulverized coal supply paths 32 (32-1, 32-2), a collecting portion 34, a partition wall 36, and a straight pipe portion 38. And mainly. In the disperser 30, for example, the innermost surface I side of the tube is formed of ceramics such as Al 2 O 3 , the intermediate portion M adjacent to the innermost surface I is formed of a material such as mortar, and the outermost surface O of the tube is made of steel or the like. Made of material.

微粉炭供給路32−1、32−2は、図2及び図3に示すように、ディスパーサ30のうち2股に分離した管部分であり、途中で折曲した形状を有している。この微粉炭供給路32−1、32−2は、折曲部分cより上流側においては、断面が略円形状をしており、折曲部分cより下流側(すなわち、集合部34)においては、隔壁36により仕切られて断面が略半円形状をしている。各微粉炭供給タンク10−1〜10−4から各プレディスパーサ20−1、20−2を介して供給された微粉炭は、隔壁36により仕切られたこの微粉炭供給路32−1,32−2を通過して、直管部38で合流する。また、微粉炭供給路32−1、32−2は、各微粉炭供給路32−1、32−2を流れる2つの微粉炭流(粉体流)を乱さないように滑らかに合流させるために、各微粉炭供給路32−1、32−2とディスパーサ30の中心軸を通る隔壁36とのなす角が鋭角となるように設けられている。また、各微粉炭供給路32−1、32−2から供給される微粉炭の量が略同一の量となるように、微粉炭供給路32−1と隔壁36とのなす角θと微粉炭供給路32−2と隔壁36とのなす角θとが同一となり、かつ、ディスパーサ30の中心軸に垂直な断面を見たときに、微粉炭供給路32−1と微粉炭供給路32−2とが隔壁36に対して互いに対象となるように配置される。 As shown in FIGS. 2 and 3, the pulverized coal supply paths 32-1 and 32-2 are pipe portions separated into two portions of the disperser 30, and have a shape bent in the middle. The pulverized coal supply paths 32-1 and 32-2 have a substantially circular cross section on the upstream side from the bent part c, and on the downstream side (that is, the gathering part 34) from the bent part c. The section is partitioned by the partition wall 36 and has a substantially semicircular cross section. The pulverized coal supplied from the pulverized coal supply tanks 10-1 to 10-4 via the predispersers 20-1 and 20-2 is divided into the pulverized coal supply paths 32-1 and 32-32 by the partition wall 36. -2 and merge at the straight pipe section 38. In addition, the pulverized coal supply paths 32-1 and 32-2 are for smoothly joining the two pulverized coal flow paths (powder flows) flowing through the respective pulverized coal supply paths 32-1 and 32-2. The pulverized coal supply paths 32-1 and 32-2 and the partition wall 36 passing through the central axis of the disperser 30 are provided with an acute angle. Further, as the amount of pulverized coal supplied from the pulverized coal supply path 32-1 and 32-2 is substantially the same amount, the angle theta 1 and fines and pulverized coal supply path 32-1 and the partition 36 When the cross section perpendicular to the central axis of the disperser 30 is the same as the angle θ 2 formed by the charcoal supply channel 32-2 and the partition wall 36, the pulverized coal supply channel 32-1 and the pulverized coal supply channel 32 are used. -2 are arranged so as to be objects with respect to the partition wall 36.

集合部34は、図2及び図3に示すように、微粉炭供給路32−1、32−2の下流側に位置し、ディスパーサ30のうち、隔壁36により仕切られた2つの微粉炭供給路32−1、32−2が集合した直管状の部分である。微粉炭供給路32−1と微粉炭供給炉32−2を通る微粉炭は、集合部34においては、それぞれ、微粉炭供給路32−1と隔壁36とにより囲まれた領域a1と、微粉炭供給路32−2と隔壁36とにより囲まれた領域a2とを通る。後述するように、領域a1と領域a2を通過した微粉炭流に対してガス吹き込み手段40からガスを吹き込むことにより、それぞれの微粉炭流を互いに干渉させるのであるが、固気比(本発明では、空気1kgに対する微粉炭量(kg)の割合:微粉炭量kg/空気1kg)が高いと干渉する力が強すぎるため、固気比を低くしてから2つの微粉炭流を合流させる必要がある。そこで、集合部34の上流のプレディスパーサ20−1、20−2にて気体を供給することで、微粉炭供給路32−1と微粉炭供給炉32−2のそれぞれを通過する2つの微粉炭流の固気比が低下し、ガス吹き込み手段40からガスを吹き込んだときに、適度な力で2つの微粉炭流が干渉し合うことができる。また、2つの微粉炭流が合流する直前に直管状の集合部34を設けることにより、合流前に2つの微粉炭流が整流され、直管部38において滑らかに合流することができる。   As shown in FIGS. 2 and 3, the gathering portion 34 is located on the downstream side of the pulverized coal supply paths 32-1 and 32-2, and the two pulverized coal supply paths partitioned by the partition wall 36 in the disperser 30. It is a straight tubular part where 32-1 and 32-2 are assembled. The pulverized coal passing through the pulverized coal supply path 32-1 and the pulverized coal supply furnace 32-2, in the gathering section 34, is a region a1 surrounded by the pulverized coal supply path 32-1 and the partition wall 36, respectively, and the pulverized coal. It passes through a region a2 surrounded by the supply path 32-2 and the partition wall 36. As will be described later, by blowing gas from the gas blowing means 40 to the pulverized coal flows that have passed through the regions a1 and a2, the respective pulverized coal flows interfere with each other. The ratio of the amount of pulverized coal to 1 kg of air (kg): If the amount of pulverized coal is 1 kg / air, the interference force is too strong, so it is necessary to combine the two pulverized coal flows after lowering the solid-gas ratio. is there. Therefore, two fine powders that pass through each of the pulverized coal supply path 32-1 and the pulverized coal supply furnace 32-2 by supplying gas at the predispersers 20-1 and 20-2 upstream of the collecting portion 34. When the solid-gas ratio of the coal flow decreases and the gas is blown from the gas blowing means 40, the two pulverized coal flows can interfere with each other with an appropriate force. Further, by providing the straight tubular gathering portion 34 immediately before the two pulverized coal flows merge, the two pulverized coal flows can be rectified before merging and smoothly merged in the straight pipe portion 38.

隔壁36は、図2、図3及び図5に示すように、集合部34の中心軸を通る平面上に設けられた板状の部材であり、微粉炭供給路32の長手方向に沿って2つの微粉炭供給路32−1、32−2を仕切る部材である。隔壁36が集合部34の中心軸を通る平面上に設けられた板状に形成されているのは、領域a1の体積と領域a2の体積を略同一にする、すなわち、2つの微粉炭供給路32−1、32−2を通る微粉炭の量を略同一にすることにより、高炉100に吹き込まれる微粉炭の吹き込み量の変動を小さくするためである。なお、隔壁36の形状は、本実施形態におけるような1枚の板状でなくてもよい。例えば、微粉炭供給路32が3つある場合には、隔壁36を略Y字形状に形成し、微粉炭供給路32が4つある場合には、隔壁36を略十字形状に形成することができる。   As shown in FIGS. 2, 3, and 5, the partition wall 36 is a plate-like member provided on a plane that passes through the central axis of the collecting portion 34, and is 2 along the longitudinal direction of the pulverized coal supply path 32. It is a member that partitions two pulverized coal supply paths 32-1 and 32-2. The partition wall 36 is formed in a plate-like shape provided on a plane passing through the central axis of the collecting portion 34 so that the volume of the area a1 and the volume of the area a2 are substantially the same, that is, two pulverized coal supply paths This is because by making the amounts of pulverized coal passing through 32-1 and 32-2 substantially the same, fluctuations in the amount of pulverized coal blown into the blast furnace 100 are reduced. The shape of the partition wall 36 may not be a single plate shape as in the present embodiment. For example, when there are three pulverized coal supply paths 32, the partition wall 36 may be formed in a substantially Y shape, and when there are four pulverized coal supply paths 32, the partition wall 36 may be formed in a substantially cross shape. it can.

直管部38は、図2、図4及び図5に示すように、集合部34の隔壁36よりも下流側に連設された直管状の部分であり、ディスパーサ30のうち、2つの微粉炭供給路32−1、32−2からの微粉炭流を合流させる部分である。微粉炭供給路32(集合部34)を通過した2つの微粉炭流は、上述したように、固気比が低下して干渉力が適度に弱まり、流れが整流されているので、粉体粒を乱さずに滑らかに合流することができる。したがって、微粉炭流は合流後も整流状態(微粉炭の浮遊状態)を維持することができる。   As shown in FIGS. 2, 4, and 5, the straight pipe portion 38 is a straight tubular portion continuously provided downstream of the partition wall 36 of the collecting portion 34, and two pulverized coals of the disperser 30. This is the part where the pulverized coal flows from the supply paths 32-1 and 32-2 are merged. As described above, the two pulverized coal flows that have passed through the pulverized coal supply path 32 (aggregation part 34) have a reduced solid-gas ratio, an interference force is moderately weakened, and the flow is rectified. Can be smoothly merged without disturbing. Accordingly, the pulverized coal flow can maintain the rectified state (floating state of the pulverized coal) even after joining.

ガス吹き込み手段40は、図2、図4及び図5に示すように、直管部38の側面側で隔壁36の下流側端部の近傍に設けられ、2つの微粉炭流が合流した直後の直管部38に、空気や窒素等のガスを吹き込む。このガス吹き込み手段40は、例えば、複数(本実施形態においては6本)のガス吹き込みノズル42が直管部38の側面側に向けて等間隔に放射状に配置されており、ガス吹き込みガス42の直管部38に対して外側の端部の各々を接続するようにガス供給路44が設けられている。このガス供給路44は、直管部38の側面から所定距離離隔され、直管部38の周囲を囲むような環状管として設けられている。また、ガス供給路44には、ガス吹き込みノズル42とは反対側の側面に、外部のガス供給手段(図示せず)から供給されたガスの入り口であるガス供給口46が設けられている。なお、ガス吹き込みノズル42の本数は、本実施形態におけるように6本に限定されるわけではなく、複数のガス吹き込みノズル42が等間隔に配置され、2つの微粉炭流に対し、均等にガスを吹き付けられるものであれば、その本数は問わない。   As shown in FIGS. 2, 4 and 5, the gas blowing means 40 is provided in the vicinity of the downstream end of the partition wall 36 on the side surface side of the straight pipe portion 38, and immediately after the two pulverized coal flows merge. A gas such as air or nitrogen is blown into the straight pipe portion 38. In this gas blowing means 40, for example, a plurality (six in this embodiment) of gas blowing nozzles 42 are arranged radially at equal intervals toward the side surface of the straight pipe portion 38. A gas supply path 44 is provided so as to connect each of the outer end portions to the straight pipe portion 38. The gas supply path 44 is provided as an annular pipe that is spaced a predetermined distance from the side surface of the straight pipe portion 38 and surrounds the periphery of the straight pipe portion 38. The gas supply path 44 is provided with a gas supply port 46 which is an inlet of gas supplied from an external gas supply means (not shown) on the side opposite to the gas blowing nozzle 42. The number of gas blowing nozzles 42 is not limited to six as in the present embodiment, and a plurality of gas blowing nozzles 42 are arranged at equal intervals, and gas is evenly distributed to two pulverized coal flows. Any number can be used as long as it can be sprayed.

ここで、微粉炭供給路32−1、32−2を通過した2つの微粉炭流を互いに干渉させるためには、この2つの流れが合流してから完全に混合して1つの流れ(層流)になるまでの間に、ガス供給手段40からガスを吹き付けることが必要である。したがって、ガス吹き込み手段40は、2つの流れが合流後の直管部38において、できる限り隔壁36(の下流側端部)に近い位置に設けられることが好ましい。具体的には、図2に示すように、隔壁36とガス供給手段40との直管部38の長手方向の距離Lが直管部36の直径(内径)Dの10倍以内となるような位置に、ガス供給手段40が設けられることが好ましい。   Here, in order to cause the two pulverized coal flows that have passed through the pulverized coal supply paths 32-1 and 32-2 to interfere with each other, the two flows are merged and then completely mixed to form one flow (laminar flow). It is necessary to blow the gas from the gas supply means 40 until it becomes. Therefore, it is preferable that the gas blowing means 40 is provided in a position as close as possible to the partition wall 36 (downstream end portion) in the straight pipe portion 38 after the two flows merge. Specifically, as shown in FIG. 2, the longitudinal distance L of the straight pipe portion 38 between the partition wall 36 and the gas supply means 40 is within 10 times the diameter (inner diameter) D of the straight pipe portion 36. The gas supply means 40 is preferably provided at the position.

また、図5に示すように、複数のガス吹き込みノズル42は、直管部38の中心軸と直行する平面において隔壁36に対して対称に、かつ、ガス供給路44の環状管の方向に対して略均等に配置されることが好ましい。このように複数のガス吹き込みノズル42が配置されることにより、2つの微粉炭供給路32−1、32−2を通過した2つの微粉炭流に対して均等にガスを吹き付けることができる。したがって、各微粉炭供給路32−1、32−2を通過した微粉炭の流量の変動を抑制できるとともに、2つの微粉炭流が互いに均等な力で干渉し合うことができるようになる。   In addition, as shown in FIG. 5, the plurality of gas blowing nozzles 42 are symmetrical with respect to the partition wall 36 in a plane perpendicular to the central axis of the straight pipe portion 38 and with respect to the direction of the annular pipe of the gas supply path 44. It is preferable that they are arranged substantially evenly. By arranging a plurality of gas blowing nozzles 42 in this way, gas can be evenly blown to the two pulverized coal flows that have passed through the two pulverized coal supply paths 32-1 and 32-2. Therefore, fluctuations in the flow rate of the pulverized coal that has passed through the pulverized coal supply paths 32-1 and 32-2 can be suppressed, and the two pulverized coal flows can interfere with each other with equal force.

なお、上述したように、ガス吹き込みノズル42の本数は、複数のガス吹き込みノズル42が等間隔に配置され、2つの微粉炭流に対し、均等にガスを吹き付けられるものであれば、その本数は問わないが、ガス吹き込みノズル42が2本である場合に、この2本のガス吹き込みノズル42と隔壁36とが一直線上に並ぶようにガス吹き込みノズル42が配置された場合には、微粉炭流にガスを吹き込むことによる干渉効果がほとんど得られないと考えられるため、好ましくない。   As described above, the number of gas blowing nozzles 42 is as long as a plurality of gas blowing nozzles 42 are arranged at equal intervals so that gas can be blown evenly against two pulverized coal flows. Regardless, when there are two gas blowing nozzles 42, if the gas blowing nozzles 42 are arranged so that the two gas blowing nozzles 42 and the partition wall 36 are aligned, the pulverized coal flow Since it is considered that an interference effect by blowing gas into the gas is hardly obtained, it is not preferable.

また、ガス吹き込み手段40(ガス吹き込みノズル42)は、直管部38を通過する微粉炭の流れ方向下流側で、かつ、流れに対して30〜100度の角度からガスを吹き込むことが好ましい。すなわち、図2に示すように、微粉炭の流れ方向下流側における直管部38の外側面とガス吹き込みノズル42とのなす角θが、30°≦θ≦100°となるように、ガス吹き込み手段40を設けることが好ましい。θが100度超では、直管部38を流れる微粉炭に対してガス吹き込み手段40から吹き込むガスが略正面方向から当たり、微粉炭がノズル42内に流入(逆流)する場合があるので好ましくない。一方、θが30度未満では、2つの微粉炭流が互いに干渉する力が弱すぎて、微粉炭の合計の吹き込み量の変動を抑制する効果が不十分となるため好ましくない。ただし、30°≦θ≦100°であっても、θ>90°である場合には微粉炭の逆流のおそれがあるため、微粉炭の逆流のおそれもなく、2つの微粉炭流が互いに干渉する力が十分となるように、θ≒90°であること、すなわち、ガス吹き込み手段40は、直管部38を通過する微粉炭の流れに対して略垂直方向からガスを吹き込むことが最も好ましい。 Moreover, it is preferable that the gas blowing means 40 (gas blowing nozzle 42) blows gas from an angle of 30 to 100 degrees with respect to the flow on the downstream side in the flow direction of the pulverized coal passing through the straight pipe portion 38. That is, as shown in FIG. 2, the angle θ N formed between the outer surface of the straight pipe portion 38 and the gas blowing nozzle 42 on the downstream side in the flow direction of the pulverized coal is 30 ° ≦ θ N ≦ 100 °. A gas blowing means 40 is preferably provided. The theta N is 100 degrees greater, per gas blown from the gas blowing means 40 substantially from the front direction with respect to the pulverized coal flowing through the straight pipe section 38, since the pulverized coal is sometimes flowing (backflow) into the nozzle 42 preferably Absent. On the other hand, theta in N is less than 30 degrees, two of pulverized coal flow interferes force is too weak to each other is not preferred because the effect of suppressing the variation of the total blowing of pulverized coal becomes insufficient. However, even if 30 ° ≦ θ N ≦ 100 °, if θ N > 90 °, there is a risk of backflow of pulverized coal, so there is no risk of backflow of pulverized coal, and there are two pulverized coal flows. That is, θ N ≈90 ° so that the forces that interfere with each other are sufficient, that is, the gas blowing means 40 blows gas from a substantially vertical direction with respect to the flow of pulverized coal passing through the straight pipe portion 38. Is most preferred.

(本発明の一実施形態に係る微粉炭の吹き込み方法)
次に、図6及び図7に基づいて、上述した微粉炭吹き込み装置1を使用した微粉炭の吹き込み方法について説明する。なお、図6は、本実施形態に係る微粉炭吹き込み方法を示す説明図であり、図7は、本実施形態に係るディスパーサ30における微粉炭の流れの状態を示す説明図である。また、図7においては、説明の便宜上、ディスパーサ30及びガス吹き込み手段40の構成を簡略化してある。
(Pulverized coal blowing method according to an embodiment of the present invention)
Next, based on FIG.6 and FIG.7, the blowing method of the pulverized coal using the pulverized coal blowing device 1 mentioned above is demonstrated. FIG. 6 is an explanatory diagram showing a pulverized coal blowing method according to the present embodiment, and FIG. 7 is an explanatory diagram showing a flow state of the pulverized coal in the disperser 30 according to the present embodiment. In FIG. 7, the configuration of the disperser 30 and the gas blowing means 40 is simplified for convenience of explanation.

まず、本実施形態に係る微粉炭の吹き込み方法の概要について説明する。図1を参照すると、微粉炭供給タンク10−1は、貯蔵タンクから微粉炭供給タンク10−1への微粉炭の充填(充填)、充填完了後に微粉炭供給タンク10−1内を窒素ガス等の不活性ガスにより加圧(加圧)、加圧状態での微粉炭の吹き込み待機(待機)、羽口102からの微粉炭の吹き込み(吹込)、及び微粉炭供給タンク10−1内の不活性ガスの排気(排圧)という1サイクルを繰り返し行う。なお、他の微粉炭供給タンク10−2〜10−4についても同様である。   First, the outline | summary of the blowing method of the pulverized coal which concerns on this embodiment is demonstrated. Referring to FIG. 1, the pulverized coal supply tank 10-1 is filled (filled) with pulverized coal from the storage tank to the pulverized coal supply tank 10-1, and the inside of the pulverized coal supply tank 10-1 is filled with nitrogen gas or the like after the completion of filling. Under pressure (pressurization), standby for pulverized coal injection in the pressurized state (standby), injection of pulverized coal from the tuyere 102 (injection), and failure in the pulverized coal supply tank 10-1 One cycle of exhausting active gas (exhaust pressure) is repeated. The same applies to the other pulverized coal supply tanks 10-2 to 10-4.

次に、各微粉炭供給タンク10−1〜10−4がそれぞれどのようなタイミングで上記充填→加圧→待機→吹込→排気というサイクルを繰り返すかを説明する。図6に示すように、微粉炭供給タンク10−1(No.1F/Tと示す)が微粉炭の吹き込みを開始する(吹込)。このとき、微粉炭供給タンク10−3(No.2F/Tと示す)が微粉炭供給タンク10−3内の加圧(加圧)、微粉炭供給タンク10−2(No.3F/Tと示す)が微粉炭供給タンク10−2内の排気(排圧)、微粉炭供給タンク10−4(No.4F/Tと示す)が微粉炭の吹き込み(吹込)をそれぞれ行っている。したがって、この状況では、4基の微粉炭供給タンク10−1〜10−4のうち、微粉炭供給タンク10−1、10−4から並行して高炉100内へ微粉炭の吹き込みが行われている。   Next, the timing at which each of the pulverized coal supply tanks 10-1 to 10-4 repeats the cycle of filling, pressurization, standby, blowing, and exhaust will be described. As shown in FIG. 6, the pulverized coal supply tank 10-1 (shown as No. 1F / T) starts blowing pulverized coal (blowing). At this time, the pulverized coal supply tank 10-3 (denoted as No. 2F / T) is pressurized (pressurized) in the pulverized coal supply tank 10-3, and the pulverized coal supply tank 10-2 (No. 3F / T). ) Shows the exhaust (exhaust pressure) in the pulverized coal supply tank 10-2, and the pulverized coal supply tank 10-4 (shown as No. 4F / T) blows (injects) the pulverized coal. Therefore, in this situation, pulverized coal is blown into the blast furnace 100 in parallel from the pulverized coal supply tanks 10-1 and 10-4 among the four pulverized coal supply tanks 10-1 to 10-4. Yes.

次いで、微粉炭供給タンク10−1が微粉炭の吹き込みを行っている間、排圧が終了した微粉炭供給タンク10−2は、微粉炭供給タンク10−2内に適当量の微粉炭が供給された後、加圧され、待機状態になる。このとき、微粉炭供給タンク10−4に設けられた秤量器により、微粉炭供給タンク10−4内の微粉炭量が下限であることを検出したら、この微粉炭供給タンク10−4からの微粉炭の吹き込み停止を行うとともに、微粉炭の吹込みを加圧が完了し待機状態になっている微粉炭供給タンク10−3へ切り替え、高炉100への微粉炭の吹き込みを連続的に継続して行っている。   Next, while the pulverized coal supply tank 10-1 is blowing in the pulverized coal, the pulverized coal supply tank 10-2 in which the exhaust pressure is finished supplies an appropriate amount of pulverized coal into the pulverized coal supply tank 10-2. After being pressed, the pressure is applied and a standby state is entered. At this time, if it is detected by the weighing device provided in the pulverized coal supply tank 10-4 that the pulverized coal amount in the pulverized coal supply tank 10-4 is the lower limit, the pulverized powder from the pulverized coal supply tank 10-4 While stopping the blowing of charcoal, the blowing of pulverized coal is switched to the pulverized coal supply tank 10-3 that has been pressurized and is in a standby state, and the blowing of pulverized coal into the blast furnace 100 is continuously continued. Is going.

このように、4基の微粉炭供給タンク10−1〜10−4のうちの1基の微粉炭供給タンクから高炉100の炉内への微粉炭の吹き込みを行いながら、残りの微粉炭供給タンクのうちの1基の微粉炭供給タンクから高炉100の炉内への微粉炭の吹き込み開始と、別の1基の微粉炭供給タンクから微粉炭の吹き込み停止を行う。ここで、微粉炭の高炉100への合計の吹き込み量は、通常、20〜50t/h程度である。   In this way, the remaining pulverized coal supply tanks are blown while blowing the pulverized coal from one of the four pulverized coal supply tanks 10-1 to 10-4 into the furnace of the blast furnace 100. Among them, the start of blowing pulverized coal from one pulverized coal supply tank into the furnace of the blast furnace 100 and the stop of blowing pulverized coal from another one pulverized coal supply tank are performed. Here, the total amount of pulverized coal blown into the blast furnace 100 is usually about 20 to 50 t / h.

次に、本実施形態に係る微粉炭吹き込み装置1を使用して、高炉100に吹き込む微粉炭の合計の吹き込み量を一定に保つ方法について説明する。本実施形態においては、上述したように、プレディスパーサ20−1が、微粉炭供給タンク10−1及び微粉炭供給タンク10−2と第1供給管12−1及び12−2を介して接続され、プレディスパーサ20−2が、微粉炭供給タンク10−3及び微粉炭供給タンク10−4と第1供給管12−3及び12−4を介して接続されている。かかる構成において、例えば、プレディスパーサ20−1は、微粉炭供給タンク10−1、10−2のいずれか一方が微粉炭の吹き込み停止を行う際には、他方の微粉炭供給タンクが必ず微粉炭の高炉100への吹き込みを行っている状態にするように制御することにより、プレディスパーサ20−1は、微粉炭供給タンク10−1、10−2の少なくともいずれか一方から常に微粉炭の供給を受けている状態となり、ディスパーサ30の微粉炭供給路32−1に微粉炭を連続的に継続して供給することができる。同様に、プレディスパーサ20−2は、微粉炭供給タンク10−3、10−4の少なくともいずれか一方から常に微粉炭の供給を受けている状態となり、ディスパーサ30の微粉炭供給路32−2に微粉炭を連続的に継続して供給することができる。   Next, a method for keeping the total amount of pulverized coal blown into the blast furnace 100 constant using the pulverized coal blower 1 according to the present embodiment will be described. In the present embodiment, as described above, the predisperser 20-1 is connected to the pulverized coal supply tank 10-1 and the pulverized coal supply tank 10-2 via the first supply pipes 12-1 and 12-2. The predisperser 20-2 is connected to the pulverized coal supply tank 10-3 and the pulverized coal supply tank 10-4 via the first supply pipes 12-3 and 12-4. In such a configuration, for example, when one of the pulverized coal supply tanks 10-1 and 10-2 stops the blowing of the pulverized coal, the other pulverized coal supply tank is always connected to the pulverized coal supply tank 10-1. By controlling so that charcoal is blown into the blast furnace 100, the predisperser 20-1 always has pulverized coal from at least one of the pulverized coal supply tanks 10-1 and 10-2. It will be in the state which is receiving supply and can supply pulverized coal to the pulverized coal supply path 32-1 of the disperser 30 continuously continuously. Similarly, the predisperser 20-2 is in a state where it is always supplied with pulverized coal from at least one of the pulverized coal supply tanks 10-3 and 10-4, and the pulverized coal supply path 32-2 of the disperser 30. It is possible to continuously supply pulverized coal continuously.

しかし、微粉炭供給タンク10−1、10−2(あるいは、微粉炭供給タンク10−3、10−4)のいずれか一方の微粉炭吹き込み停止を行い、微粉炭供給タンクの切り替えを行う際には、プレディスパーサ20−1(あるいは、プレディスパーサ20−2)からの微粉炭の供給量(吹き込み量)が減少してしまう。そのため、高炉100へ吹き込む微粉炭の合計の吹き込み量の変動が大きくなってしまうことになる。   However, when the pulverized coal supply tank 10-1, 10-2 (or the pulverized coal supply tank 10-3, 10-4) is stopped, the pulverized coal supply tank is stopped. The amount of pulverized coal supplied from the predisperser 20-1 (or the predisperser 20-2) (the amount of blowing) will decrease. Therefore, the fluctuation | variation of the total blowing amount of the pulverized coal blown into the blast furnace 100 will become large.

そこで、本実施形態においては、図7に示すように、各微粉炭供給路32−1、32−2をそれぞれ通過した微粉炭流PCI1、PCI2の合流直後の整流領域において、直管部38の側面側に配置された複数のガス吹き込みノズル42から、微粉炭流PCI1、PCI2に向けて均等に吹き込むことにより、微粉炭の流れPCI1,PCI2の流れを邪魔して、2つの粉体流PCI1、PCI2同士がお互いに干渉し合うようになり、一方(例えば、PCI1)の供給量が変動(例えば、微粉炭吹き込みタンク10−1または10−2の切り替えにより供給量が減少)した場合には、他方(例えば、PCI2)がその変動を補うように変化(供給量が増加)して、高炉100に吹き込まれる微粉炭の合計の吹き込み量を一定に保つことができる。   Therefore, in the present embodiment, as shown in FIG. 7, in the rectification region immediately after merging of the pulverized coal flows PCI1 and PCI2 that have passed through the pulverized coal supply paths 32-1 and 32-2, respectively, By blowing evenly toward the pulverized coal flow PCI1, PCI2 from the plurality of gas blowing nozzles 42 arranged on the side surface side, the flow of the pulverized coal flow PCI1, PCI2 is obstructed, and the two powder flow PCI1, When the PCI2s interfere with each other and the supply amount of one (for example, PCI1) fluctuates (for example, the supply amount decreases by switching the pulverized coal blowing tank 10-1 or 10-2), On the other hand (for example, PCI2) is changed so as to compensate for the fluctuation (the supply amount is increased), and the total amount of pulverized coal injected into the blast furnace 100 can be kept constant. That.

このように、本実施形態に係る微粉炭吹き込み装置1を用いて高炉100に微粉炭の吹き込みを行うと、複数の微粉炭流PCI1、PCI2が微粉炭の吹き込み量を自立的に補い合うため、微粉炭供給タンク10−1〜10−4内の圧力制御の際のタイムラグに関係なく、合計の吹き込み量を一定に保つことが可能である。したがって、本発明によれば、高炉100の熱バランスを保ち、得られる銑鉄の質を向上させることができる。   As described above, when pulverized coal is blown into the blast furnace 100 using the pulverized coal blowing apparatus 1 according to the present embodiment, the plurality of pulverized coal flows PCI1 and PCI2 autonomously compensate for the amount of pulverized coal blown. Regardless of the time lag at the time of pressure control in the charcoal supply tanks 10-1 to 10-4, the total blowing amount can be kept constant. Therefore, according to the present invention, the thermal balance of the blast furnace 100 can be maintained and the quality of the obtained pig iron can be improved.

ここで、ガス吹き込み手段40から吹き込むガスの流量は、直管部38における微粉炭の流量(すなわち、高炉100へ吹き込む微粉炭の合計の吹き込み量)20t/h〜50t/hに対して、50Nm/h〜400Nm/hであることが好ましい。ガスの吹き込み量が50Nm/h未満であると、ガスの吹き込みによる微粉炭流PCI1、PCI2が互いに干渉し合う際の干渉力が弱いため、複数の微粉炭流PCI1、PCI2が微粉炭の吹き込み量を自立的に補い合うという効果が十分に得られないおそれがある。一方、ガスの吹き込み量が400Nm/hを超えると、粉炭流PCI1、PCI2の合流直後の整流状態を保つことができないため好ましくない。 Here, the flow rate of the gas blown from the gas blowing means 40 is 50 Nm with respect to the flow rate of pulverized coal in the straight pipe portion 38 (that is, the total blown amount of pulverized coal blown into the blast furnace 100) 20 t / h to 50 t / h. is preferably 3 / h~400Nm 3 / h. When the gas blowing rate is less than 50 Nm 3 / h, since the interference force when the pulverized coal flows PCI1 and PCI2 due to gas blowing interfere with each other is weak, a plurality of pulverized coal flows PCI1 and PCI2 are blown with pulverized coal. There is a possibility that the effect of supplementing the amount autonomously cannot be obtained sufficiently. On the other hand, if the amount of gas blown exceeds 400 Nm 3 / h, it is not preferable because the rectified state immediately after the coalescence of the pulverized coal flows PCI1 and PCI2 cannot be maintained.

なお、本発明者らは、以下のような条件で微粉炭の合計の吹き込み量とガス吹き込み手段40から吹き込むガスの流量との関係を求める実験を行っているので、その結果について説明する。   In addition, since the present inventors are performing the experiment which calculates | requires the relationship between the total blowing amount of pulverized coal, and the flow volume of the gas injected from the gas blowing means 40 on the following conditions, the result is demonstrated.

(実験条件)
定常状態において、高炉への送風圧力を400kPaとし、微粉炭供給タンク内の圧力を400〜800kPaとし、微粉炭の吹き込み量を20〜50t/hとし、ガス吹き込み手段によるガス吹き込み部における微粉炭の流速を15m/sとし、固気比(微粉炭重量/搬送気体重量)を10kg/kgとし、搬送気体の流量を4000Nm/hとして実験を行った。その結果、図8に示すような線形関係が得られた。なお、図8は、高炉に吹き込まれる微粉炭吹き込み量(t/h)とガス供給手段から吹き込まれるガス吹き込み量(Nm/h)との関係を示すグラフである。
(Experimental conditions)
In a steady state, the blowing pressure to the blast furnace is set to 400 kPa, the pressure in the pulverized coal supply tank is set to 400 to 800 kPa, the blowing amount of the pulverized coal is set to 20 to 50 t / h, and the pulverized coal in the gas blowing portion by the gas blowing means is The experiment was conducted at a flow rate of 15 m / s, a solid-gas ratio (pulverized coal weight / carrier gas weight) of 10 kg / kg, and a carrier gas flow rate of 4000 Nm 3 / h. As a result, a linear relationship as shown in FIG. 8 was obtained. FIG. 8 is a graph showing the relationship between the amount of pulverized coal blown into the blast furnace (t / h) and the amount of gas blown in from the gas supply means (Nm 3 / h).

以下、実施例により本発明をより具体的に説明するが、本発明は、下記の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to the following Example.

<実施例1>
(本発明の一実施例に係る微粉炭吹き込み装置を用いたときの微粉炭吹き込み量の変動)
本発明者らは、4基の微粉炭供給タンク(フィードタンク)を有する本発明の一実施例に係る微粉炭吹き込み装置を用いて、下記の条件により、個々の微粉炭供給タンクからの微粉炭の供給量(吹き込み量)の変動と、高炉に吹き込まれる微粉炭の合計の吹き込み量の変動を調べる実験を行った。
<Example 1>
(Changes in the amount of pulverized coal injection when using the pulverized coal injection device according to one embodiment of the present invention)
The present inventors use a pulverized coal blowing apparatus according to an embodiment of the present invention having four pulverized coal supply tanks (feed tanks), and under the following conditions, pulverized coal from individual pulverized coal supply tanks. An experiment was conducted to examine the fluctuations in the supply amount (injection amount) and the fluctuations in the total injection amount of pulverized coal to be blown into the blast furnace.

本実験は、2つの微粉炭流の合流後の直管部の直径が125A Sch80(120.8mm)の配管を用いて、次の4つの場合の検討を行った。
(1)ガス供給手段からのガスを吹き込みを行わない場合
(2)ガス供給手段からのガスの吹き込みを、以下の条件で行った場合
・ガス吹き込みノズルの位置:隔壁先端から1300mm
・ガス供給手段からのガス吹き込み量:100Nm/h
・ガス吹き込みノズルの角度(ノズルと直管部の外側面とのなす角):θ=90度
・ガス吹き込みノズルの本数:直管部の周囲に互いに等間隔となるように4本
(3)ガス供給手段からのガスの吹き込みを、以下の条件で行った場合
・ガス吹き込みノズルの位置:隔壁先端から800mm
・ガス供給手段からのガス吹き込み量:100Nm/h
・ガス吹き込みノズルの角度(ノズルと直管部の外側面とのなす角):θ=45度
・ガス吹き込みノズルの本数:直管部の周囲に互いに等間隔となるように4本
(4)ガス供給手段からのガスの吹き込みを、以下の条件で行った場合
・ガス吹き込みノズルの位置:隔壁先端から800mm
・ガス供給手段からのガス吹き込み量:100Nm/h
・ガス吹き込みノズルの角度(ノズルと直管部の外側面とのなす角):θ=90度
・ガス吹き込みノズルの本数:直管部の周囲に互いに等間隔となるように4本
In this experiment, the following four cases were examined using a pipe having a diameter of 125A Sch80 (120.8 mm) of the straight pipe portion after the joining of two pulverized coal flows.
(1) When gas is not blown from the gas supply means (2) When gas is blown from the gas supply means under the following conditions: Position of the gas blowing nozzle: 1300 mm from the tip of the partition wall
-Amount of gas blown from the gas supply means: 100 Nm 3 / h
・ An angle of the gas blowing nozzle (angle formed between the nozzle and the outer surface of the straight pipe portion): θ N = 90 degrees ・ Number of gas blowing nozzles: Four (3) so as to be equally spaced around the straight pipe portion ) When blowing gas from the gas supply means under the following conditions:-Gas blowing nozzle position: 800 mm from the tip of the partition wall
-Amount of gas blown from the gas supply means: 100 Nm 3 / h
・ An angle of the gas blowing nozzle (angle formed between the nozzle and the outer surface of the straight pipe portion): θ N = 45 degrees ・ Number of gas blowing nozzles: Four (4) so as to be equidistant from each other around the straight pipe portion ) When blowing gas from the gas supply means under the following conditions:-Gas blowing nozzle position: 800 mm from the tip of the partition wall
-Amount of gas blown from the gas supply means: 100 Nm 3 / h
・ An angle of the gas blowing nozzle (angle formed between the nozzle and the outer surface of the straight pipe portion): θ N = 90 degrees ・ Number of gas blowing nozzles: Four so as to be equally spaced around the straight pipe portion

上記実験の結果を図9から図12に示した。なお、図9は、ガス供給手段からのガスの吹き込みを行わなかった場合(上記(1)の場合)の個々の微粉炭供給タンクからの微粉炭吹き込み量の経時変化と、高炉に吹き込まれる微粉炭の合計の吹き込み量の経時変化を示すグラフであり、図10は、ガス供給手段からのガスの吹き込みを行った場合(上記(2)の場合)の個々の微粉炭供給タンクからの微粉炭吹き込み量の経時変化と、高炉に吹き込まれる微粉炭の合計の吹き込み量の経時変化を示すグラフであり、図11は、ガス供給手段からのガスの吹き込みを行った場合(上記(3)の場合)の個々の微粉炭供給タンクからの微粉炭吹き込み量の経時変化と、高炉に吹き込まれる微粉炭の合計の吹き込み量の経時変化を示すグラフであり、図12は、ガス供給手段からのガスの吹き込みを行った場合(上記(4)の場合)の個々の微粉炭供給タンクからの微粉炭吹き込み量の経時変化と、高炉に吹き込まれる微粉炭の合計の吹き込み量の経時変化を示すグラフである。ここで、図9から図12において、例えば、3FT吹込量実績とあるのは、4基の微粉炭供給タンクのうち3番目のタンクから吹き込まれた微粉炭の量を示している。   The results of the above experiment are shown in FIGS. Note that FIG. 9 shows changes over time in the amount of pulverized coal blown from the individual pulverized coal supply tanks when no gas was blown from the gas supply means (case (1) above), and pulverized powder blown into the blast furnace. FIG. 10 is a graph showing the change over time of the total amount of coal blown. FIG. 10 shows pulverized coal from individual pulverized coal supply tanks when gas is blown from the gas supply means (case (2) above). FIG. 11 is a graph showing the change over time of the blowing amount and the change over time of the total blowing amount of the pulverized coal blown into the blast furnace, and FIG. 11 shows the case where gas is blown from the gas supply means (in the case of (3) above) FIG. 12 is a graph showing the change with time of the pulverized coal injection amount from the individual pulverized coal supply tanks) and the change with time of the total injection amount of the pulverized coal injected into the blast furnace. Blow 6 is a graph showing a change over time in the amount of pulverized coal blown from each pulverized coal supply tank in the case of performing the test (in the case of (4) above) and a change over time in the total amount of pulverized coal blown into the blast furnace. . Here, in FIG. 9 to FIG. 12, for example, the 3FT blowing amount record indicates the amount of pulverized coal blown from the third tank among the four pulverized coal supply tanks.

図9から図12に示されているように、個々の微粉炭供給タンクからの微粉炭吹き込み量の変動については、ガス供給手段からのガスの吹き込みを行わなかった場合(図9参照)よりも、ガスの吹き込みを行った場合(図10〜図12参照)の方が大きいが、高炉に吹き込まれる微粉炭の合計の吹き込み量については、ガス供給手段からのガスの吹き込みを行った場合の方が、ガスの吹き込みを行わなかった場合よりも変動が小さかった。このことから、ガス供給手段からのガスの吹き込みを行った場合には、ガスの吹き込みにより、個々の微粉炭供給タンクから吹き込まれた微粉炭の粉体流同士がお互いに干渉し合い、一方の供給量が変動した場合には、他方がその変動を補うように変化しており、それぞれの微粉炭の粉体流が微粉炭の吹き込み量を自立的に補い合っているため、個々の微粉炭供給タンクからの微粉炭吹き込み量の変動が大きいことが示唆された。また、このように、それぞれの微粉炭の粉体流が微粉炭の吹き込み量を自立的に補い合うことにより、高炉に吹き込まれる微粉炭の合計の吹き込み量を一定に保つことができるため、微粉炭の合計の吹き込み量の変動は小さいことが示唆された。特に、隔壁の先端とガス吹き込み手段のガス吹き込みノズルとの距離が直管部の直径の10倍以内であり、かつ、ガス吹き込みノズルの角度(θ)が90度の場合(例えば、上記条件(4)の場合)には、図12に示すように、高炉への合計の微粉炭の吹き込み量の変動が顕著に小さくなることが示唆された。 As shown in FIG. 9 to FIG. 12, the fluctuation of the amount of pulverized coal blown from the individual pulverized coal supply tanks is greater than the case where the gas is not blown from the gas supply means (see FIG. 9). When the gas is blown (see FIGS. 10 to 12), it is larger, but the total amount of pulverized coal blown into the blast furnace is the case when the gas is blown from the gas supply means. However, the fluctuation was smaller than when no gas was blown. From this, when the gas is supplied from the gas supply means, the powder flows of the pulverized coal blown from the individual pulverized coal supply tanks interfere with each other due to the gas injection, When the supply amount fluctuates, the other changes so as to compensate for the fluctuation, and each pulverized coal flow independently compensates for the amount of pulverized coal injection. It was suggested that the fluctuation of the pulverized coal injection amount from the tank was large. In addition, since the pulverized coal flow independently compensates for the amount of pulverized coal injected in this way, the total amount of pulverized coal injected into the blast furnace can be kept constant. It was suggested that the fluctuation of the total blowing amount was small. In particular, when the distance between the tip of the partition wall and the gas blowing nozzle of the gas blowing means is within 10 times the diameter of the straight pipe portion, and the angle (θ N ) of the gas blowing nozzle is 90 degrees (for example, the above condition) In the case of (4), as shown in FIG. 12, it was suggested that the fluctuation of the total amount of pulverized coal blown into the blast furnace was significantly reduced.

また、本実施例においては、微粉炭の合計の吹き込み量の実績の目標値(指示値)に対する偏差(以下、「吹き込み量変動率」という。)σを算出した。なお、σは、通常の標準偏差の算出において、平均値を目標値に置き換えることにより算出した。その結果、ガス吹き込み手段からのガスの吹込みを行わなかった場合ではσ=3.1であったのに対し、ガス吹き込み手段からのガスの吹込みを行った場合では、図10の場合でσ=3.0、図11の場合でσ=2.5、図12の場合でσ=1.3と、吹き込み量変動率σ、すなわち、微粉炭の合計の吹込み量の変動が小さくなっていることがわかった。この吹き込み変動率σの値を見ても、隔壁の先端とガス吹き込み手段のガス吹き込みノズルとの距離が直管部の直径の10倍以内であり、かつ、ガス吹き込みノズルの角度(θ)が90度の場合に、高炉への微粉炭吹き込み量の変動が顕著に小さくなることがわかる。 Further, in this example, a deviation (hereinafter referred to as “injection amount variation rate”) σ with respect to the target value (indicated value) of the actual amount of the pulverized coal was calculated. Note that σ was calculated by replacing the average value with the target value in the normal calculation of the standard deviation. As a result, when the gas was not blown from the gas blowing means, σ = 3.1, whereas when the gas was blown from the gas blowing means, the case of FIG. σ = 3.0, σ = 2.5 in the case of FIG. 11, and σ = 1.3 in the case of FIG. 12, the fluctuation rate σ of the blowing amount, that is, the fluctuation of the total blowing amount of pulverized coal becomes small. I found out. Even when looking at the value of the fluctuation rate σ of the blowing, the distance between the tip of the partition wall and the gas blowing nozzle of the gas blowing means is within 10 times the diameter of the straight pipe portion, and the angle of the gas blowing nozzle (θ N ) It can be seen that the fluctuation of the amount of pulverized coal blown into the blast furnace is remarkably reduced when is 90 degrees.

<実施例2>
(ガス吹き込み角度と微粉炭吹き込み量の変動との関係)
次に、本発明者らは、ガス供給手段からのガスの吹き込み角度(ガス吹き込みノズルと直管部の外側面とのなす角)と、高炉への微粉炭吹き込み量の変動との関係について検討する実験を行った。本実験においては、高炉への微粉炭吹込み量の変動を上述した吹き込み量変動率σにより評価し、以下の条件で行った。
・微粉炭供給タンクからの微粉炭量:50トン/h
・ガス吹き込みノズルの位置:隔壁先端から800mm
・ガス供給手段からのガス吹き込み量:100Nm/h
・2つの微粉炭流の合流後の直管部の直径:120mm
<Example 2>
(Relationship between gas injection angle and fluctuation of pulverized coal injection amount)
Next, the present inventors examined the relationship between the angle of gas blowing from the gas supply means (the angle formed by the gas blowing nozzle and the outer surface of the straight pipe portion) and the fluctuation of the amount of pulverized coal blown into the blast furnace. An experiment was conducted. In this experiment, the fluctuation of the pulverized coal injection amount into the blast furnace was evaluated by the above-described injection amount fluctuation rate σ, and was performed under the following conditions.
・ Pulverized coal quantity from pulverized coal supply tank: 50 tons / h
-Gas blowing nozzle position: 800mm from the tip of the partition
-Amount of gas blown from the gas supply means: 100 Nm 3 / h
-Diameter of straight pipe part after joining two pulverized coal flows: 120mm

上記実験の結果を図12に示した。なお、図12は、本発明の一実施例によるガス吹き込み手段のガス吹き込み角度と微粉炭吹き込み量の変動との関係を示すグラフである。   The results of the experiment are shown in FIG. FIG. 12 is a graph showing the relationship between the gas blowing angle of the gas blowing means and the fluctuation of the pulverized coal blowing amount according to one embodiment of the present invention.

その結果、図12に示すように、ガスの吹き込み角度(θ)が30度以上となると、吹き込み量変動率σ(高炉への微粉炭の吹き込み量の変動)が急激に低下し、ガスを吹き込まない場合(例えば、実施例1の場合だとσ=3.1)よりも顕著に低くなることがわかった。一方、合流後の微粉炭流へのガスの吹き込み角度(θ)が100度を超えると、微粉炭がガス吹き込みノズル内に流入(逆流)することが多く、ノズルの詰まりが発生した。このことから、合流後の微粉炭流へのガスの吹き込み角度(θ)は、30度以上100度以下であることが好ましいということが示唆された。 As a result, as shown in FIG. 12, when the gas blowing angle (θ N ) is 30 degrees or more, the blowing rate variation rate σ (variation in the amount of pulverized coal blowing into the blast furnace) rapidly decreases, It was found that it was significantly lower than the case of not blowing (for example, σ = 3.1 in the case of Example 1). On the other hand, when the gas blowing angle (θ N ) into the pulverized coal flow after merging exceeds 100 degrees, the pulverized coal often flows into the gas blowing nozzle (reverse flow), resulting in nozzle clogging. From this, it was suggested that the gas blowing angle (θ N ) into the pulverized coal flow after merging is preferably 30 degrees or more and 100 degrees or less.

<実施例3>
(ガス吹き込み位置と微粉炭吹き込み量の変動との関係)
次に、本発明者らは、ガス吹き込みノズルの位置(隔壁の先端からガス吹き込みノズルまでの距離)と、高炉への微粉炭吹き込み量の変動との関係について検討する実験を行った。本実験においては、上述した実施例2の場合と同様に高炉への微粉炭吹込み量の変動を上述した吹き込み量変動率σにより評価し、以下の条件で行った。
・微粉炭供給タンクからの微粉炭量:50トン/h
・ガス吹き込みノズルの角度:θ=90度
・ガス供給手段からのガス吹き込み量:100Nm/h
・2つの微粉炭流の合流後の直管部の直径:120mm
<Example 3>
(Relationship between gas injection position and fluctuation of pulverized coal injection amount)
Next, the present inventors conducted an experiment to examine the relationship between the position of the gas injection nozzle (distance from the tip of the partition wall to the gas injection nozzle) and the variation in the amount of pulverized coal injection into the blast furnace. In this experiment, similarly to the case of Example 2 described above, the fluctuation of the pulverized coal injection amount into the blast furnace was evaluated by the above-described injection amount fluctuation rate σ, and was performed under the following conditions.
・ Pulverized coal quantity from pulverized coal supply tank: 50 tons / h
・ Angle of gas blowing nozzle: θ N = 90 degrees ・ Gas blowing amount from gas supply means: 100 Nm 3 / h
-Diameter of straight pipe part after joining two pulverized coal flows: 120mm

上記実験の結果を図13に示した。なお、図13は、本発明の一実施例による隔壁の先端とガス吹き込みノズルとの距離(吹き込み距離)と微粉炭吹き込み量の変動との関係を示すグラフである。   The results of the above experiment are shown in FIG. FIG. 13 is a graph showing the relationship between the distance between the tip of the partition wall and the gas injection nozzle (injection distance) and the variation in the amount of pulverized coal injection according to one embodiment of the present invention.

その結果、図13に示すように、吹き込み距離が1200mm(すなわち、合流後の直管部の直径の10倍)以下では、吹き込み量変動率σ(高炉への微粉炭の吹き込み量の変動)が急激に低下し、ガスを吹き込まない場合(例えば、実施例1の場合だとσ=3.1)よりも顕著に低くなることがわかった。一方、吹き込み距離が1200mmを超えると、吹き込み量の変動率σは、ガスを吹き込まない場合のσの値よりやや低い値でほぼ一定となり、ガス吹き込みによる吹込み量の変動抑制の効果があまり向上しないということがわかった。このことから、隔壁の先端とガス吹き込みノズルとの距離(吹き込み距離)は、1200mm以下、すなわち、合流後の直管部の直径の10倍以下であることが好ましいということが示唆された。   As a result, as shown in FIG. 13, when the blowing distance is 1200 mm or less (that is, 10 times the diameter of the straight pipe portion after joining), the blowing amount variation rate σ (variation in the amount of pulverized coal blowing into the blast furnace) is It was found that the rate dropped rapidly and was significantly lower than when no gas was blown (for example, in the case of Example 1, σ = 3.1). On the other hand, when the blowing distance exceeds 1200 mm, the fluctuation rate σ of the blowing amount becomes substantially constant at a value slightly lower than the value of σ when no gas is blown, and the effect of suppressing the fluctuation of the blowing amount due to the gas blowing is much improved. I understood that I would not. From this, it was suggested that the distance between the tip of the partition wall and the gas blowing nozzle (blowing distance) is preferably 1200 mm or less, that is, 10 times or less the diameter of the straight pipe portion after joining.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

例えば、微粉炭供給タンク10、第1供給管12、開閉バルブ14、プレディスパーサ20、第2供給管22、微粉炭供給路32、ガス吹き込みノズル42及び分配管52の数は、上述した実施形態におけるものには限られない。   For example, the number of the pulverized coal supply tank 10, the first supply pipe 12, the opening / closing valve 14, the predisperser 20, the second supply pipe 22, the pulverized coal supply path 32, the gas blowing nozzle 42, and the distribution pipe 52 is the number described above. It is not limited to the form.

また、上述した実施形態においては、微粉炭供給タンク10と微粉炭供給路32とは、第1供給管12−1〜12−4、プレディスパーサ20−1、20−2、及び第2供給管22−1、22−2を介して接続されている例について説明したが、微粉炭供給タンク10と微粉炭供給路32とは必ずしも間接的に接続されている必要はなく、直接接続されていてもよい。   In the above-described embodiment, the pulverized coal supply tank 10 and the pulverized coal supply path 32 include the first supply pipes 12-1 to 12-4, the predispersers 20-1 and 20-2, and the second supply. Although the example connected via the pipes 22-1 and 22-2 has been described, the pulverized coal supply tank 10 and the pulverized coal supply path 32 do not necessarily need to be indirectly connected but are directly connected. May be.

本発明の一実施形態に係る微粉炭吹き込み装置の全体構成を示す説明図である。It is explanatory drawing which shows the whole structure of the pulverized coal blowing apparatus which concerns on one Embodiment of this invention. 同実施形態に係るディスパーサ及びガス吹き込み手段の構成を示す断面図である。It is sectional drawing which shows the structure of the disperser and gas blowing means which concern on the same embodiment. 図2のA−A断面図である。It is AA sectional drawing of FIG. 図2のB−B断面図である。It is BB sectional drawing of FIG. 図2のC部矢視図である。FIG. 3 is a view seen from an arrow C in FIG. 2. 同実施形態に係る微粉炭吹き込み方法を示す説明図である。It is explanatory drawing which shows the pulverized coal blowing method which concerns on the same embodiment. 同実施形態に係るディスパーサにおける微粉炭の流れの状態を示す説明図である。It is explanatory drawing which shows the state of the flow of pulverized coal in the disperser which concerns on the same embodiment. 高炉に吹き込まれる微粉炭吹き込み量(t/h)とガス供給手段から吹き込まれるガス吹き込み量(Nm/h)との関係を示すグラフである。It is a graph which shows the relationship between the amount of pulverized coal blown in to a blast furnace (t / h), and the amount of gas blown from a gas supply means (Nm < 3 > / h). 本発明の一実施例によるガス供給手段からのガスの吹き込みを行わなかった場合の個々の微粉炭供給タンクからの微粉炭吹き込み量の経時変化と、高炉に吹き込まれる微粉炭の合計の吹き込み量の経時変化を示すグラフである。The change over time of the pulverized coal injection amount from each pulverized coal supply tank when the gas supply means according to one embodiment of the present invention was not injected, and the total injection amount of the pulverized coal injected into the blast furnace It is a graph which shows a time-dependent change. 本発明の一実施例によるガス供給手段からのガスの吹き込みを行った場合の個々の微粉炭供給タンクからの微粉炭吹き込み量の経時変化と、高炉に吹き込まれる微粉炭の合計の吹き込み量の経時変化を示すグラフである。Changes over time of the amount of pulverized coal blown from individual pulverized coal supply tanks when gas is blown from the gas supply means according to one embodiment of the present invention, and the time of the total amount of pulverized coal blown into the blast furnace It is a graph which shows a change. 本発明の他の実施例によるガス供給手段からのガスの吹き込みを行った場合の個々の微粉炭供給タンクからの微粉炭吹き込み量の経時変化と、高炉に吹き込まれる微粉炭の合計の吹き込み量の経時変化を示すグラフである。The change over time of the pulverized coal injection amount from the individual pulverized coal supply tanks when the gas is supplied from the gas supply means according to another embodiment of the present invention, and the total injection amount of the pulverized coal injected into the blast furnace It is a graph which shows a time-dependent change. 本発明のさらに他の実施例によるガス供給手段からのガスの吹き込みを行った場合の個々の微粉炭供給タンクからの微粉炭吹き込み量の経時変化と、高炉に吹き込まれる微粉炭の合計の吹き込み量の経時変化を示すグラフである。Changes over time in the amount of pulverized coal blown from individual pulverized coal supply tanks when gas is blown from the gas supply means according to still another embodiment of the present invention, and the total amount of pulverized coal blown into the blast furnace It is a graph which shows a time-dependent change. 本発明の一実施例によるガス吹き込み手段のガス吹き込み角度と微粉炭吹き込み量の変動との関係を示すグラフである。It is a graph which shows the relationship between the gas blowing angle of the gas blowing means by one Example of this invention, and the fluctuation | variation of the amount of pulverized coal blowing. 本発明の一実施例によるガス吹き込み手段のガス吹き込み位置と微粉炭吹き込み量の変動との関係を示すグラフである It is a graph which shows the relationship between the gas blowing position of the gas blowing means by one Example of this invention, and the fluctuation | variation of the amount of pulverized coal blowing .

符号の説明Explanation of symbols

1 微粉炭吹き込み装置
10−1、10−2、10−3、10−4 微粉炭供給タンク
12−1、12−2、12−3、12−4 第1供給管
14−1、14−2、14−3、14−4 開閉バルブ
20−1、20−2 プレディスパーサ
22−1、22−2 第2供給管
30 ディスパーサ
32−1、32−2 微粉炭供給路
34 集合部
36 隔壁
38 直管部
40 ガス吹き込み手段
42 ガス吹き込みノズル
44 ガス供給路
46 ガス供給口
50 分配器
52 容器
54 分配管
100 高炉
102 羽口
1 pulverized coal blowing device 10-1, 10-2, 10-3, 10-4 pulverized coal supply tank 12-1, 12-2, 12-3, 12-4 1st supply pipe 14-1, 14-2 , 14-3, 14-4 On-off valve 20-1, 20-2 Predisperser 22-1, 22-2 Second supply pipe 30 Disperser 32-1, 32-2 Pulverized coal supply path 34 Collecting part 36 Bulkhead 38 Straight pipe portion 40 Gas blowing means 42 Gas blowing nozzle 44 Gas supply path 46 Gas supply port 50 Distributor 52 Container 54 Divided pipe 100 Blast furnace 102 Tuyere

Claims (2)

複数の微粉炭供給タンクから分配器を介して高炉に微粉炭を吹き込むための微粉炭吹き込み装置であって:
前記複数の微粉炭供給タンクの各々に接続された微粉炭供給路と;
前記微粉炭供給路の下流側に位置し、前記複数の微粉炭供給路が集合した集合部と;
前記集合部に設けられ、前記微粉炭供給路の長手方向に沿って前記複数の微粉炭供給路を仕切る隔壁と;
前記集合部の前記隔壁よりも下流側に連設され、前記複数の微粉炭供給路からの微粉炭の流れを合流させる直管部と;
前記直管部の側面側で前記隔壁の下流側に設けられ、微粉炭が流れる前記直管部にガスを吹き込むガス吹き込み手段と;
を備え
前記隔壁先端と前記ガス吹き込み手段との前記直管部の長手方向の距離は、前記直管部の直径の10倍以内であり、
前記ガス吹き込み手段は、複数のガス吹き込みノズルを有し、前記複数のガス吹き込みノズルは、前記直管部の中心軸と直交する平面において、前記隔壁に対して対称に配置されることを特徴とする、微粉炭吹き込み装置。
A pulverized coal injection device for injecting pulverized coal from a plurality of pulverized coal supply tanks into a blast furnace via a distributor:
A pulverized coal supply path connected to each of the plurality of pulverized coal supply tanks;
A collecting portion located on the downstream side of the pulverized coal supply path, wherein the plurality of pulverized coal supply paths are assembled;
A partition wall provided in the gathering portion and partitioning the plurality of pulverized coal supply paths along a longitudinal direction of the pulverized coal supply path;
A straight pipe portion connected downstream of the partition wall of the collecting portion and joining the flows of pulverized coal from the plurality of pulverized coal supply paths;
Gas blowing means provided on the side of the straight pipe portion on the downstream side of the partition wall and for blowing gas into the straight pipe portion through which pulverized coal flows;
Equipped with a,
The longitudinal distance of the straight pipe portion between the partition tip and the gas blowing means is within 10 times the diameter of the straight pipe portion,
It said gas blowing means comprises a plurality of gas blowing nozzles, the plurality of gas blowing nozzles, in a plane perpendicular to the center axis of the straight pipe portion, arranged symmetrically with respect to said partition wall and said Rukoto A pulverized coal blowing device.
前記ガス吹き込み手段は、前記微粉炭の流れ方向下流側における前記直管部の外側面と前記ガス吹き込みノズルとのなす角θ が30°≦θ ≦100°となるように設けられることを特徴とする、請求項に記載の微粉炭吹き込み装置。
The gas blowing means is provided such that an angle θ N formed between the outer surface of the straight pipe portion and the gas blowing nozzle on the downstream side in the flow direction of the pulverized coal satisfies 30 ° ≦ θ N ≦ 100 °. wherein, pulverized coal injection device according to claim 1.
JP2006319128A 2006-11-27 2006-11-27 Pulverized coal blowing device Active JP4916851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006319128A JP4916851B2 (en) 2006-11-27 2006-11-27 Pulverized coal blowing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006319128A JP4916851B2 (en) 2006-11-27 2006-11-27 Pulverized coal blowing device

Publications (2)

Publication Number Publication Date
JP2008133493A JP2008133493A (en) 2008-06-12
JP4916851B2 true JP4916851B2 (en) 2012-04-18

Family

ID=39558536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006319128A Active JP4916851B2 (en) 2006-11-27 2006-11-27 Pulverized coal blowing device

Country Status (1)

Country Link
JP (1) JP4916851B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113307271A (en) * 2021-06-15 2021-08-27 新疆硅基新材料创新中心有限公司 Tail gas emission structure and reduction furnace

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4109591B2 (en) * 2003-09-08 2008-07-02 新日本製鐵株式会社 Apparatus for transporting pulverized coal and method for transporting the same

Also Published As

Publication number Publication date
JP2008133493A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
AU2009221259B2 (en) Continuous fuel supply system for a coal gasification reactor
EP0081622B1 (en) Method and apparatus for distributing powdered particles
CN101356289B (en) Method for manufacturing molten irons and apparatus for manufacturing molten irons
US5129766A (en) Aeration tube discharge control device
CN101152932B (en) Feed device of carbonaceous solid powder with a plurality of discharge doors and feed method thereof
TWI394840B (en) Conveyor system, composite system and method for coupling metallurgical methods
KR100565177B1 (en) Method and device for cutting out and transporting powder and granular material
JPH0233030A (en) Discharge controller for ventilating pipe
CN102134005B (en) Double-type air-distribution plate and single pipe discharging sending tank
JP4916851B2 (en) Pulverized coal blowing device
CN105253631A (en) Powder pressurized conveying device
CA1048761A (en) Conduit
JP4070325B2 (en) Pulverized coal supply system for coal gasifier
JPS60292B2 (en) Quantitative extraction method and device for gas fluidized powder
JPS59115981A (en) Method and device for blowing in powdered and granular body into smelting furnace, etc.
CN206013895U (en) A kind of high densification phase multichannel Geldart-D particle material issuing tank of pressure sending type and its induction system
US6736876B1 (en) Fluidized bed breakage prevention system for fluidized bed reduction reactor and method
US4934876A (en) Aeration apparatus for discharge control of particulate matter
US4943190A (en) Aeration tube discharge control device with variable fluidic valve
KR20140024401A (en) Gas and particulate delivery system and method for metallurgical vessel
GB2106064A (en) Pneumatic conveyance of solids
JP4109591B2 (en) Apparatus for transporting pulverized coal and method for transporting the same
RU2001118469A (en) Fluid bed disruption prevention device for a fluidized bed reduction reactor
JPH10109754A (en) Hopper for powder and grain
JPH1053331A (en) Powder and grain conveying system in gaseous flow

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4916851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350