JP4916053B2 - Fuel cell and manufacturing method thereof - Google Patents

Fuel cell and manufacturing method thereof Download PDF

Info

Publication number
JP4916053B2
JP4916053B2 JP2001135045A JP2001135045A JP4916053B2 JP 4916053 B2 JP4916053 B2 JP 4916053B2 JP 2001135045 A JP2001135045 A JP 2001135045A JP 2001135045 A JP2001135045 A JP 2001135045A JP 4916053 B2 JP4916053 B2 JP 4916053B2
Authority
JP
Japan
Prior art keywords
diffusion electrode
fuel cell
cylindrical casing
electrolyte
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001135045A
Other languages
Japanese (ja)
Other versions
JP2001319664A (en
Inventor
祐二 斎藤
潤 笹原
斉昭 栗山
忠弘 久保田
敏文 鈴木
祐二 磯谷
サング−ジューン・ジョン・リー
フリッツ・ビー・プリンツ
スク・ウォン・チャ
ヤオチェング・リウ
ライアン・オヘイヤ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of JP2001319664A publication Critical patent/JP2001319664A/en
Application granted granted Critical
Publication of JP4916053B2 publication Critical patent/JP4916053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、筒状ケーシングと、この筒状ケーシング内に配置された電解質と、電解質を挟んで対をなす拡散電極とを少なくとも1つ以上有し、一方の拡散電極側に燃料通路が画定され、他方の拡散電極側に酸化剤通路が画定された燃料電池及びその製造方法に関するものである。
【0002】
【従来の技術】
燃料電池としては、拡散電極及び電解質からなる電解質層の両側に一対の電極を取り付け、一方の電極に水素やアルコール等の燃料ガス、他方の電極に酸素や空気などの酸化剤ガスを供給し、触媒による電気化学反応を起こさせて電気を発生させるものがあり、電解質層に使用する電解質によってリン酸型、固体高分子型、溶融炭酸塩型等のものがある。
【0003】
このうち、電解質にイオン交換膜を使用する固体高分子電解質型燃料電池(SPFC)は、小型化が可能であり、SOFCに比較して作動温度が低く(100℃以下)、発電効率が高いことから注目されている。
【0004】
燃料電池の形状としては、燃料ガス通路及び酸化剤ガス通路を画定するための溝を有する対をなすプレート状の配流板間に、同じく板状の電解質層を挟む形状の平板型のものや、筒状ケーシング内を、隔壁で細い通路に(セル単位に)区画し、または電解質層で燃料ガス通路と酸化剤ガス通路とを区画した筒型のもの等がある。
【0005】
上記のうち、筒型燃料電池にあっては、例えば特開平10−189017号公報や特開平10−40934号公報に開示されているように、筒状ケーシングを押し出し成形している。ここで、電解質として固体電解質を用いることで、電解質も、筒状ケーシングと同時に押し出し成形により形成される。そして、触媒を含むガス拡散電極を構成する材料を混ぜたスラリーを各ガス通路に流す、またはスラリーを充填した槽に筒状ケーシングを漬けるなどして固体電解質表面に付着させ、乾燥・固化させることによりガス拡散電極を得ている。
【0006】
【発明が解決しようとする課題】
近年の燃料電池の用途拡大に伴い筒型燃料電池にあっても極めて小型のものが望まれているが、上記押し出し成形による方法ではこのような小型の筒型燃料電池を製造するのは困難であった。また細い通路内にスラリーを流すなどしてこれらを固体電解質壁に均一に付着させるのは困難であり、場合によっては厚みにむらができて発電効率を低下させることが懸念される。
【0007】
ところで、燃料電池では燃料ガスはその下流では消費されて流量が少なくなるるため、上流から下流まで通路の断面積が同じであると、流速が減り、効率的な発電が行われなくなる。従って、例えば上流から下流に向けて徐々に通路の断面積を小さくする構造が考えられるが、筒状ケーシングを押し出し成形により形成する場合、ガス通路の断面積を変えることは困難である。
【0008】
加えて、燃料電池の設置場所等の都合により筒型燃料電池の外観をL字状またはU字状としたり、ケーシング内でガス通路を折り曲げることができると良いが、筒状ケーシングを押し出し成形により形成する場合、ガス通路の延在方向を途中で変更するような構造とすることは困難である。
【0009】
本発明は、上記したような従来技術の問題点を解決するべく案出されたものであり、小型の筒型燃料電池であっても製造が容易であると共に高い発電効率を確保でき、更にガス通路の形状を自由に設定でき、汎用性も高い燃料電池及びその製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記した目的を達成するべく、本発明では、筒状ケーシング1と、この筒状ケーシング1内に配置された電解質2と、電解質2を挟んで対をなす拡散電極3とを有し、一方の拡散電極3側に燃料通路4、6が画定され、他方の拡散電極側に酸化剤通路5、7が画定された燃料電池セルを複数有する燃料電池を製造する際、拡散電極3を構成する材料を例えば筒状ケーシング1の軸線方向に複数回積層し、また、前記対をなす拡散電極3間に電解質2を充填するようにした。これにより、微細なパターンを形成することで小型の筒型燃料電池も容易に製造できる。また、各層毎に拡散電極3を形成するため、成膜時の管理が容易になり、全ての層に亘り膜厚を均一にすることが可能となる。また、各通路4〜7の形状(断面積、延在方向)も通路の中間部で自由に変更することができる。
【0011】
【発明の実施の形態】
以下に、本発明の好適な実施形態について添付の図面を参照して詳細に説明する。
【0012】
図1は、本発明が適用された第1の実施形態に於ける筒型燃料電池セルの構造を模式的に示す斜視図、図2はその断面図、図3は平面図である。この筒型燃料電池セルは、筒状ケーシング1と、この筒状ケーシング1内に、4つのガス通路4〜7を画定するように、端面方向から見て十字をなすように配置された電解質2と、この電解質2を挟んで対をなすガス拡散電極3とを有している。対角位置にあるガス通路4、6には燃料ガス及び酸化剤ガスの一方が供給され、ガス通路5、7には燃料ガス及び酸化剤ガスの他方が供給されるようになっている。また、筒状ケーシング1の一端または両端には、図3にのみ模式的に図示するように、ガス通路4、6側のガス拡散電極3同士を電気的に接続すると共に外部回路に接続するための電極8と、ガス通路5、7側のガス拡散電極3同士を電気的に接続すると共に外部回路に接続するための電極9とが設けられている。
【0013】
ここで、実際にはガス拡散電極3は、各ガス通路4〜7の周囲全周に亘り方形筒状に形成されている。また、筒状ケーシング1は電解質2と同じ材料により形成されている。この理由は、後記製造手順を説明する中で説明する。
【0014】
このような燃料電池セルを複数併設して直列または並列に接続し、例えばガス通路4、6にアルコール等を改質したガス、または直接水素ガスを燃料ガスとして供給し、更にガス通路5、7に空気等を酸化剤ガスとして供給することにより燃料電池が構成される。
【0015】
次に、上記燃料電池セルの製造手順について図4(a)〜図4(l)及び図5を参照して説明する。
【0016】
まず、図4(a)に示すように、基板11の周囲を熱硬化性樹脂などからなる外枠12で囲み、基板11の表面にフォトレジスト13を塗布する。そして、ガス拡散電極3の形状(本例では4つの方形)にマスクMをもってフォトレジスト13を覆った状態で感光させ(図4(b))、ガス拡散電極3の形状にフォトレジスト13を除去して、凹部14を形成する(図4(c))。そして、溶媒によりAg、Ni、SUS等のガス拡散電極3の材料の粉末をゲル状としたものを凹部14に充填し(図4(d))、熱処理することにより固化させる。そして、残りのフォトレジスト13を除去する(図4(e))。
【0017】
次に、ガス通路4〜7となる部分に水溶性ワックス等からなる暫定層15を充填し(図4(f))、ガス拡散電極3となる部分16の外周側面にPtからなる触媒17をスパッタリング法などにより成膜する(図4(g))。その後、ガス拡散電極3間及びその外周に再度水溶性ワックス等からなる暫定層18を充填し(図4(h))、表面を平坦化する。
【0018】
次に、外枠12上に次段の外枠12を重ね、再度フォトレジスト19を塗布する(図4(i))。そして、図4(b)〜図4(h)の手順と同様な手順で次段のガス拡散電極3となる部分を形成する。その後、この図4(b)〜図4(i)を1サイクルとしてこれを複数サイクル繰り返して、触媒層及びガス拡散電極3となる部分を複数回積層し、最後にガス通路4〜7となる部分に充填された暫定層(犠牲層)15の水溶性ワックスを除去することにより、図5に示すような4つの筒状ガス拡散電極3を得る。
【0019】
そして、図6に示すように、ガス通路4〜7となる部分を除く外枠12の内部に高分子固体電解質材料のゲル20を充填し、熱処理して脱溶媒処理を行うことにより、電解質2と筒状ケーシング1とを同時に得る。ゲル20は、例えば高分子固体電解質材料として、例えば米国特許第5525436号に開示されているようなポリベンズイミダゾール(Polybenzimidazole:PBI)を20%、溶媒としてジメチルアセトアミド(DMAC)を80%含むもので良い。ここで、熱処理して脱溶媒処理を行うとゲル20に比較して電解質2及び筒状ケーシング1の体積が約1/5に減るため、予め高い外枠12及びガス拡散電極3と同じ断面形状の型を用意してその分嵩を高くしておき(図6の想像線)、ゲル20を充填し、上方から押圧しつつ熱処理すると良い。また、ゲル20の充填し、熱処理工程を数回繰り返して電解質2及び筒状ケーシング1を得るようにしても良い。その後、基板11及び外枠12を取り外し、電極8及び電極9を取り付けて燃料電池セルが完成する。
【0020】
尚、ゲル20は実際には厳密な化学的用語としてのゲルに限らず、溶液や注型性を有するもの一般を含むものとする。また、ガス拡散電極3の材料の粉末をゲル状としたものとは、注型性を有する状態としたものとの意味である。
【0021】
上記PBIは一般には構造材料として用いられる樹脂材料であり、本例では筒状ケーシング1の材料としても使用している。即ち、外枠12とガス拡散電極3とを型として電解質2と筒状ケーシング1とを同時に形成することができ、使用する材料の種類が減り、構造が簡単になると共に工数が削減されている。尚、外枠12はそのまま保護部材として残しておいても良い。また、図4(f)または図4(g)に示す工程の後に、外枠12とガス拡散電極3となる部分16との間、即ち筒状ケーシング1を構成する部分に別の材料を充填して筒状ケーシング1も積層することにより形成しても良い。
【0022】
このようにして形成した燃料電池セルは、積層時のマスクのずれなどにより、図2の一部を拡大した図7に示すように、その各ガス通路4〜7に段Aを生じるが、この段Aがあることで、通路内壁面が平坦になっている場合に比較してガスとの接触面積を大きくでき、またガスを通す際に乱流を生じさせ、反応を促進することができる。従って、積層時に積極的に段Aを形成すれば、一層その反応促進効果は顕著になる。
【0023】
図8(a)は、本発明が適用された第2の実施形態に於ける筒型燃料電池セルの構造を模式的に示す図2と同様な断面図であり、図8(b)は図3と同様な平面図である。この例では、ガス通路24〜27が、その上流側から下流側に向けて徐々に狭くなっている。それ以外の構造は第1の実施形態と同様である。
【0024】
燃料電池では、反応により燃料ガス及び酸化剤ガスが徐々に減少するため、上流から下流にかけてガス通路が一定の断面積であると、ガスの密度(圧力)が低下してガス拡散電極3との接触頻度が減り、所望の電気化学反応が得られなくなることがある。そこで、上記したようにガス通路24〜27を、その上流側から下流側に向けて徐々に狭くなる構造とすることで、ガスの分子と、ガス拡散電極3との接触頻度が増え、効率良く反応して発電することが可能となる。
【0025】
本例の筒型燃料電池セルも第1の実施形態に於ける筒型燃料電池セルと同様に筒状ケーシング1の軸線方向に触媒層及びガス拡散電極3となる部分を複数回積層することにより得られるが、使用するマスクMを1サイクルまたは複数サイクル毎に変えることにより、ガス通路24〜27の断面積がその上流側から下流側に向けて徐々に狭くなるように各層を形成することができる。
【0026】
図9(a)は、本発明が適用された第3の実施形態に於ける筒型燃料電池セルの構造を模式的に示す図2と同様な断面図、図9(b)は図9(a)に示す筒型燃料電池セルのIXb−IXb線について見た図、図9(c)は図9(a)に示す筒型燃料電池セルのIXc−IXc線について見た図である。この例では、ケーシング31の一端面が閉じられ、またガス通路34とガス通路35とがその閉じられた側の端面部近傍で互いに連通して燃料ガス通路をなし、ガス通路36とガス通路37とがその上端近傍で連通して酸化剤ガス通路をなしている。即ち、燃料ガス通路及び酸化剤ガス通路が、その中間部で折り返してU字状通路となっている。従って、燃料ガス及び酸化剤ガスの供給、回収のための構造をケーシング31の開放側に集中して設けることができる。それ以外の構造は第1の実施形態と同様である。
【0027】
本例の筒型燃料電池セルも第1の実施形態に於ける筒型燃料電池セルと同様に触媒層及びガス拡散電極3となる部分を複数回積層することにより得られるが、使用するマスクMをガス通路34とガス通路35、ガス通路36とガス通路37とがその連通する部分から変えることにより、燃料ガス通路及び酸化剤ガス通路が、その中間部で折り返してU字状通路をなすように各層を形成することができる。
【0028】
尚、上記各例では、溶媒によりガス拡散電極3の材料の粉末をゲル化したものを凹部14に塗布等により充填し、熱処理することにより固化させたが、ガス拡散電極3の材料を塗布して焼結させたり、物理蒸着法、化学蒸着法、めっき、鋳造及び溶射により積層させても良い。
【0029】
また、本構成に於ける燃料電池に用いる燃料は水素やアルコール等のガスとしたが、液体燃料でも良い。また、酸化剤も液体であっても良い。その場合、ガス拡散電極は、単に拡散電極とする。
【0030】
【発明の効果】
上記した説明により明らかなように、本発明による燃料電池によれば、筒状ケーシングと、この筒状ケーシング内に配置された電解質と、電解質を挟んで対をなす拡散電極とを1つ以上有し、一方の拡散電極側に燃料通路が画定され、他方の拡散電極側に酸化剤通路が画定された燃料電池を製造する際、拡散電極を構成する材料を、例えば筒状ケーシングの軸線方向に複数回積層することで、各層毎にパターンを形成するため、微細なパターンを形成すれば、小型の筒型燃料電池も容易に製造できる。また、各層毎に拡散電極を形成するため、成膜時の管理が容易になり、全ての層に亘り膜厚を均一にすることが可能となる。また、各通路の形状(断面積、延在方向)も通路の中間部で自由に変更することができる。また、筒状ケーシングも同様に積層構造とすることで、筒状ケーシングを別途用意する必要がなく、また拡散電極との位置整合性も向上する。また、筒状ケーシングを電解質と同じ材料で例えば同時に形成すれば同様に筒状ケーシングを別途用意する必要がなく、工程が簡便になる。
【図面の簡単な説明】
【図1】本発明が適用された第1の実施形態に於ける燃料電池セルの構造を示す斜視図。
【図2】図1のII−II線について見た断面図。
【図3】図1の燃料電池セルを端面方向から見た平面図。
【図4】(a)〜(i)は、本発明が適用された筒型燃料電池セルの製造手順を説明する図2と同様な断面について見た図。
【図5】図4と共に本発明が適用された筒型燃料電池セルの製造手順を説明する斜視図。
【図6】図4、図5と共に本発明が適用された筒型燃料電池セルの製造手順を説明する斜視図。
【図7】図2の要部拡大図。
【図8】(a)は本発明が適用された第2の実施形態に於ける燃料電池セルの構造を示す図2と同様な断面図、(b)は図3と同様な平面図。
【図9】(a)は本発明が適用された第3の実施形態に於ける燃料電池セルの構造を示す図2と同様な断面図、(b)は図9(a)のIXb−IXb線について見た断面図、(c)は図9(a)のIXc−IXc線について見た断面図。
【符号の説明】
1 筒状ケーシング
2 電解質
3 ガス拡散電極
4〜7 ガス通路
8、9 電極
11 基板
12 外枠
13 フォトレジスト
14 凹部
15 暫定層
16 ガス拡散電極3となる部分
17 触媒層
18 暫定層
19 フォトレジスト
20 高分子固体電解質材料ゲル
24〜27 ガス通路
31 ケーシング
34〜37 ガス通路
A 段
M マスク
[0001]
BACKGROUND OF THE INVENTION
The present invention has at least one cylindrical casing, an electrolyte disposed in the cylindrical casing, and at least one diffusion electrode paired with the electrolyte interposed therebetween, and a fuel passage is defined on one diffusion electrode side. The present invention relates to a fuel cell in which an oxidant passage is defined on the other diffusion electrode side and a method for manufacturing the same.
[0002]
[Prior art]
As a fuel cell, a pair of electrodes are attached to both sides of an electrolyte layer composed of a diffusion electrode and an electrolyte, a fuel gas such as hydrogen or alcohol is supplied to one electrode, and an oxidant gas such as oxygen or air is supplied to the other electrode, There are those that generate electricity by causing an electrochemical reaction by a catalyst, and there are phosphoric acid type, solid polymer type, molten carbonate type, etc., depending on the electrolyte used in the electrolyte layer.
[0003]
Among them, the solid polymer electrolyte fuel cell (SPFC) using an ion exchange membrane as an electrolyte can be downsized, and has a lower operating temperature (less than 100 ° C.) and higher power generation efficiency than SOFC. Has been attracting attention.
[0004]
As the shape of the fuel cell, a flat plate type in which a plate-like electrolyte layer is sandwiched between a pair of plate-like flow distribution plates having grooves for defining a fuel gas passage and an oxidant gas passage, There is a cylindrical type in which the inside of a cylindrical casing is partitioned into narrow passages (in units of cells) by partition walls, or a fuel gas passage and an oxidant gas passage are partitioned by an electrolyte layer.
[0005]
Among the above, in the case of a cylindrical fuel cell, for example, as disclosed in Japanese Patent Laid-Open Nos. 10-189017 and 10-40934, a cylindrical casing is extruded. Here, by using a solid electrolyte as the electrolyte, the electrolyte is also formed by extrusion molding simultaneously with the cylindrical casing. Then, the slurry mixed with the material constituting the gas diffusion electrode containing the catalyst is allowed to flow through each gas passage, or the cylindrical casing is immersed in a tank filled with the slurry to adhere to the surface of the solid electrolyte, and then dried and solidified. Thus, a gas diffusion electrode is obtained.
[0006]
[Problems to be solved by the invention]
With the expansion of fuel cell applications in recent years, even a tubular fuel cell is desired to be extremely small. However, it is difficult to produce such a small tubular fuel cell by the above-described extrusion method. there were. In addition, it is difficult to evenly adhere these to the solid electrolyte wall by flowing slurry in a narrow passage, and in some cases, there is a concern that the thickness may be uneven and the power generation efficiency is lowered.
[0007]
By the way, in the fuel cell, since the fuel gas is consumed downstream and the flow rate is reduced, if the cross-sectional area of the passage is the same from upstream to downstream, the flow velocity is reduced and efficient power generation is not performed. Therefore, for example, a structure in which the cross-sectional area of the passage is gradually reduced from upstream to downstream is conceivable. However, when the cylindrical casing is formed by extrusion molding, it is difficult to change the cross-sectional area of the gas passage.
[0008]
In addition, it is preferable that the appearance of the cylindrical fuel cell can be L-shaped or U-shaped, or the gas passage can be bent in the casing, depending on the location of the fuel cell, etc. When forming, it is difficult to make a structure that changes the extending direction of the gas passageway.
[0009]
The present invention has been devised to solve the above-mentioned problems of the prior art, and even a small cylindrical fuel cell can be easily manufactured and can secure high power generation efficiency. It is an object of the present invention to provide a fuel cell in which the shape of the passage can be freely set and high versatility and a method for manufacturing the same.
[0010]
[Means for Solving the Problems]
To achieve the above object, the present invention includes a cylindrical casing 1, possess this tubular casing electrolyte 2 disposed in 1, and the diffusion electrode 3 forming a pair sandwiching the electrolyte 2, of one The material constituting the diffusion electrode 3 when manufacturing a fuel cell having a plurality of fuel cells in which the fuel passages 4 and 6 are defined on the diffusion electrode 3 side and the oxidant passages 5 and 7 are defined on the other diffusion electrode side For example, the electrolyte 2 is stacked a plurality of times in the axial direction of the cylindrical casing 1, and the electrolyte 2 is filled between the pair of diffusion electrodes 3. Thereby, a small cylindrical fuel cell can be easily manufactured by forming a fine pattern. Further, since the diffusion electrode 3 is formed for each layer, management during film formation becomes easy, and the film thickness can be made uniform over all layers. Moreover, the shape (cross-sectional area, extending direction) of each channel | path 4-7 can also be freely changed in the intermediate part of a channel | path.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0012]
FIG. 1 is a perspective view schematically showing the structure of a cylindrical fuel cell in a first embodiment to which the present invention is applied, FIG. 2 is a sectional view thereof, and FIG. 3 is a plan view. The tubular fuel cell includes a tubular casing 1 and an electrolyte 2 disposed in the tubular casing 1 so as to form a cross when viewed from the end surface direction so as to define four gas passages 4 to 7. And a gas diffusion electrode 3 paired with the electrolyte 2 interposed therebetween. One of the fuel gas and the oxidant gas is supplied to the gas passages 4 and 6 at the diagonal positions, and the other of the fuel gas and the oxidant gas is supplied to the gas passages 5 and 7. Further, at one end or both ends of the cylindrical casing 1, as schematically illustrated only in FIG. 3, the gas diffusion electrodes 3 on the gas passages 4 and 6 side are electrically connected to each other and connected to an external circuit. The electrode 8 and an electrode 9 for electrically connecting the gas diffusion electrodes 3 on the gas passages 5 and 7 side and for connecting to an external circuit are provided.
[0013]
Here, in practice, the gas diffusion electrode 3 is formed in a rectangular cylindrical shape over the entire circumference of each gas passage 4 to 7. The cylindrical casing 1 is made of the same material as the electrolyte 2. The reason for this will be described in the description of the manufacturing procedure described later.
[0014]
A plurality of such fuel cells are provided side by side and connected in series or in parallel. For example, a gas obtained by reforming alcohol or the like in the gas passages 4 and 6 or a direct hydrogen gas is supplied as a fuel gas. A fuel cell is configured by supplying air or the like as an oxidant gas.
[0015]
Next, the manufacturing procedure of the fuel cell will be described with reference to FIGS. 4 (a) to 4 (l) and FIG.
[0016]
First, as shown in FIG. 4A, the periphery of the substrate 11 is surrounded by an outer frame 12 made of a thermosetting resin or the like, and a photoresist 13 is applied to the surface of the substrate 11. Then, the shape of the gas diffusion electrode 3 (four squares in this example) is exposed with the mask 13 covered with the photoresist 13 (FIG. 4B), and the photoresist 13 is removed in the shape of the gas diffusion electrode 3. Then, the recess 14 is formed (FIG. 4C). Then, a gel powder of the material of the gas diffusion electrode 3 such as Ag, Ni, SUS or the like is filled in the concave portion 14 with a solvent (FIG. 4D) and solidified by heat treatment. Then, the remaining photoresist 13 is removed (FIG. 4E).
[0017]
Next, the provisional layer 15 made of water-soluble wax or the like is filled in the portions that become the gas passages 4 to 7 (FIG. 4 (f)), and the catalyst 17 made of Pt is placed on the outer peripheral side surface of the portion 16 that becomes the gas diffusion electrode 3. A film is formed by sputtering or the like (FIG. 4G). Thereafter, the provisional layer 18 made of water-soluble wax or the like is filled again between the gas diffusion electrodes 3 and the outer periphery thereof (FIG. 4 (h)), and the surface is flattened.
[0018]
Next, the outer frame 12 of the next stage is overlaid on the outer frame 12, and a photoresist 19 is applied again (FIG. 4 (i)). And the part used as the gas diffusion electrode 3 of the next stage is formed in the procedure similar to the procedure of FIG.4 (b)-FIG.4 (h). Then, this FIG.4 (b)-FIG.4 (i) are made into 1 cycle, this is repeated several cycles, the part which becomes a catalyst layer and the gas diffusion electrode 3 is laminated | stacked several times, and it becomes the gas passages 4-7 finally. By removing the water-soluble wax in the temporary layer (sacrificial layer) 15 filled in the portion, four cylindrical gas diffusion electrodes 3 as shown in FIG. 5 are obtained.
[0019]
And as shown in FIG. 6, the inside of the outer frame 12 except the part used as the gas passages 4-7 is filled with the gel 20 of a polymer solid electrolyte material, and it heat-processes and performs a desolvation process, thereby electrolyte 2 And the cylindrical casing 1 are obtained simultaneously. The gel 20 contains, for example, 20% polybenzimidazole (PBI) as disclosed in US Pat. No. 5,525,436 as a polymer solid electrolyte material and 80% dimethylacetamide (DMAC) as a solvent. good. Here, when the solvent is removed by heat treatment, the volume of the electrolyte 2 and the cylindrical casing 1 is reduced to about 1/5 compared to the gel 20, so that the same cross-sectional shape as that of the high outer frame 12 and the gas diffusion electrode 3 is previously provided. It is good to heat-process, filling up the gel 20 and pressing it from the upper part, and making the bulk high by that amount (imaginary line in FIG. 6). Further, the electrolyte 20 and the cylindrical casing 1 may be obtained by filling the gel 20 and repeating the heat treatment step several times. Then, the board | substrate 11 and the outer frame 12 are removed, the electrode 8 and the electrode 9 are attached, and a fuel cell is completed.
[0020]
In addition, the gel 20 is not limited to a gel as a strict chemical term actually, but includes a solution and a general one having castability. Moreover, what made the powder of the material of the gas diffusion electrode 3 gelatinous means the thing made into the state which has castability.
[0021]
The PBI is a resin material that is generally used as a structural material, and is also used as a material for the cylindrical casing 1 in this example. That is, the electrolyte 2 and the cylindrical casing 1 can be formed at the same time using the outer frame 12 and the gas diffusion electrode 3 as a mold, the types of materials used are reduced, the structure is simplified, and the number of man-hours is reduced. . The outer frame 12 may be left as it is as a protective member. Further, after the step shown in FIG. 4 (f) or FIG. 4 (g), another material is filled between the outer frame 12 and the portion 16 that becomes the gas diffusion electrode 3, that is, the portion constituting the cylindrical casing 1. The cylindrical casing 1 may also be formed by laminating.
[0022]
The fuel cell formed in this way has a stage A in each of the gas passages 4 to 7 as shown in FIG. 7 in which a part of FIG. Due to the presence of the step A, the contact area with the gas can be increased as compared with the case where the inner wall surface of the passage is flat, and a turbulent flow can be generated when the gas is passed to promote the reaction. Therefore, if the stage A is positively formed at the time of lamination, the reaction promoting effect becomes more remarkable.
[0023]
FIG. 8A is a cross-sectional view similar to FIG. 2 schematically showing the structure of the cylindrical fuel cell in the second embodiment to which the present invention is applied, and FIG. 3 is a plan view similar to FIG. In this example, the gas passages 24 to 27 are gradually narrowed from the upstream side toward the downstream side. Other structures are the same as those in the first embodiment.
[0024]
In the fuel cell, the fuel gas and the oxidant gas gradually decrease due to the reaction. Therefore, if the gas passage has a constant cross-sectional area from upstream to downstream, the gas density (pressure) decreases and the gas diffusion electrode 3 The contact frequency may be reduced and the desired electrochemical reaction may not be obtained. Therefore, as described above, the gas passages 24 to 27 are gradually narrowed from the upstream side toward the downstream side, so that the contact frequency between the gas molecules and the gas diffusion electrode 3 is increased and the efficiency is improved. It becomes possible to generate electricity by reacting.
[0025]
Similarly to the cylindrical fuel cell in the first embodiment, the cylindrical fuel cell of this example is also formed by laminating a portion that becomes the catalyst layer and the gas diffusion electrode 3 in the axial direction of the cylindrical casing 1 a plurality of times. Although it is obtained, each layer can be formed so that the cross-sectional area of the gas passages 24 to 27 gradually narrows from the upstream side to the downstream side by changing the mask M to be used every cycle or every plurality of cycles. it can.
[0026]
FIG. 9A is a cross-sectional view similar to FIG. 2 schematically showing the structure of the cylindrical fuel cell in the third embodiment to which the present invention is applied, and FIG. 9B is FIG. FIG. 9C is a view of the tubular fuel cell shown in FIG. 9A taken along the line IXb-IXb, and FIG. 9C is a view of the tubular fuel cell shown in FIG. 9A taken along the line IXc-IXc. In this example, one end face of the casing 31 is closed, and the gas passage 34 and the gas passage 35 communicate with each other in the vicinity of the end face portion on the closed side to form a fuel gas passage, and the gas passage 36 and the gas passage 37. And communicate with each other in the vicinity of the upper end thereof to form an oxidant gas passage. That is, the fuel gas passage and the oxidant gas passage are folded back at the intermediate portion to form a U-shaped passage. Accordingly, the structure for supplying and collecting the fuel gas and the oxidant gas can be concentrated on the open side of the casing 31. Other structures are the same as those in the first embodiment.
[0027]
The cylindrical fuel cell of this example is also obtained by laminating a portion that becomes the catalyst layer and the gas diffusion electrode 3 a plurality of times as in the cylindrical fuel cell in the first embodiment. Is changed from the portion where the gas passage 34 and the gas passage 35 and the gas passage 36 and the gas passage 37 communicate with each other, so that the fuel gas passage and the oxidant gas passage are folded back at the intermediate portion to form a U-shaped passage. Each layer can be formed.
[0028]
In each of the above examples, the powder of the material of the gas diffusion electrode 3 that has been gelled with a solvent is filled in the concave portion 14 by application or the like and solidified by heat treatment. However, the material of the gas diffusion electrode 3 is applied. It may be sintered by physical vapor deposition, chemical vapor deposition, plating, casting or thermal spraying.
[0029]
The fuel used in the fuel cell in this configuration is a gas such as hydrogen or alcohol, but it may be a liquid fuel. The oxidant may also be a liquid. In that case, the gas diffusion electrode is simply a diffusion electrode.
[0030]
【Effect of the invention】
As is apparent from the above description, the fuel cell according to the present invention has one or more cylindrical casings, an electrolyte disposed in the cylindrical casing, and one or more diffusion electrodes that sandwich the electrolyte. When manufacturing a fuel cell in which a fuel passage is defined on one diffusion electrode side and an oxidant passage is defined on the other diffusion electrode side, the material constituting the diffusion electrode is, for example, in the axial direction of the cylindrical casing. Since a pattern is formed for each layer by laminating a plurality of times, a small tubular fuel cell can be easily manufactured if a fine pattern is formed. In addition, since the diffusion electrode is formed for each layer, management at the time of film formation becomes easy, and the film thickness can be made uniform over all layers. Moreover, the shape (cross-sectional area, extending direction) of each passage can be freely changed in the middle portion of the passage. In addition, the cylindrical casing has a laminated structure in the same manner, so that it is not necessary to prepare the cylindrical casing separately, and the positional alignment with the diffusion electrode is improved. Further, if the cylindrical casing is formed of the same material as the electrolyte, for example, at the same time, it is not necessary to separately prepare the cylindrical casing, and the process becomes simple.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a structure of a fuel cell in a first embodiment to which the present invention is applied.
FIG. 2 is a cross-sectional view taken along line II-II in FIG.
3 is a plan view of the fuel battery cell of FIG. 1 as viewed from the end surface direction.
4A to 4I are views showing a cross section similar to FIG. 2 for explaining a manufacturing procedure of a cylindrical fuel cell to which the present invention is applied.
5 is a perspective view for explaining a manufacturing procedure of a cylindrical fuel cell to which the present invention is applied together with FIG. 4; FIG.
6 is a perspective view for explaining a manufacturing procedure of a cylindrical fuel cell to which the present invention is applied together with FIGS. 4 and 5. FIG.
7 is an enlarged view of a main part of FIG.
8A is a cross-sectional view similar to FIG. 2 showing the structure of a fuel cell in a second embodiment to which the present invention is applied, and FIG. 8B is a plan view similar to FIG.
9A is a cross-sectional view similar to FIG. 2 showing the structure of a fuel cell in a third embodiment to which the present invention is applied, and FIG. 9B is a cross-sectional view taken along line IXb-IXb in FIG. 9A. Sectional drawing seen about a line, (c) is sectional drawing seen about the IXc-IXc line | wire of Fig.9 (a).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cylindrical casing 2 Electrolyte 3 Gas diffusion electrodes 4-7 Gas passages 8 and 9 Electrode 11 Substrate 12 Outer frame 13 Photoresist 14 Recess 15 Temporary layer 16 Portion 17 which becomes gas diffusion electrode 3 Catalyst layer 18 Temporary layer 19 Photoresist 20 Polymer solid electrolyte material gel 24-27 Gas passage 31 Casing 34-37 Gas passage A Stage M Mask

Claims (10)

筒状ケーシングと、該筒状ケーシング内に配置された電解質と、該電解質を挟んで対をなす拡散電極とを有し、一方の前記拡散電極側に燃料通路が画定され、他方の前記拡散電極側に酸化剤通路が画定された燃料電池セルを複数有する燃料電池であって、
前記拡散電極が、これを構成する材料を複数回積層することにより形成されていることを特徴とする燃料電池。
A cylindrical casing, the cylindrical casing in placed electrolyte, have a diffusion electrode pairs across the electrolyte, the fuel passage is defined in one of the diffusion electrode side, the other of the diffusion electrode A fuel cell having a plurality of fuel cells each having an oxidant passage defined on a side thereof,
The diffusion electrode is formed by laminating a material constituting the diffusion electrode a plurality of times.
前記拡散電極が、これを構成する材料を前記筒状ケーシングの軸線方向に複数回積層することにより形成されていることを特徴とする請求項1に記載の燃料電池。    The fuel cell according to claim 1, wherein the diffusion electrode is formed by laminating a material constituting the diffusion electrode a plurality of times in an axial direction of the cylindrical casing. 前記筒状ケーシングも、これを構成する材料を前記筒状ケーシングの軸線方向に複数回積層することにより形成されていることを特徴とする請求項2に記載の燃料電池。    The fuel cell according to claim 2, wherein the cylindrical casing is also formed by laminating a material constituting the cylindrical casing a plurality of times in an axial direction of the cylindrical casing. 前記筒状ケーシングが、前記電解質を構成する材料と同じ材料により形成されていることを特徴とする請求項1に記載の燃料電池。    2. The fuel cell according to claim 1, wherein the cylindrical casing is made of the same material as that constituting the electrolyte. 前記筒状ケーシングを前記電解質及び前記各拡散電極によって区画することにより前記各通路が画定されていることを特徴とする請求項1に記載の燃料電池。    2. The fuel cell according to claim 1, wherein each of the passages is defined by partitioning the cylindrical casing with the electrolyte and the diffusion electrodes. 筒状ケーシングと、該筒状ケーシング内に配置された電解質と、該電解質を挟んで対をなす拡散電極とを有し、一方の前記拡散電極側に燃料通路が画定され、他方の前記拡散電極側に酸化剤通路が画定された燃料電池セルを複数有する燃料電池の製造方法であって、
前記拡散電極を構成する材料を複数回に亘り積層して前記拡散電極を形成する過程と、前記筒状ケーシングを形成する過程と、前記対をなす拡散電極間に電解質を構成する材料を充填する過程とを有することを特徴とする燃料電池の製造方法。
A cylindrical casing, the cylindrical casing in placed electrolyte, have a diffusion electrode pairs across the electrolyte, the fuel passage is defined in one of the diffusion electrode side, the other of the diffusion electrode A method of manufacturing a fuel cell having a plurality of fuel cells each having an oxidant passage defined on the side,
A process of forming the diffusion electrode by laminating a material constituting the diffusion electrode a plurality of times, a process of forming the cylindrical casing, and a material constituting the electrolyte between the pair of diffusion electrodes And a process for producing a fuel cell.
前記拡散電極を形成する過程が、前記拡散電極を構成する材料を複数回に亘り前記筒状ケーシングの軸線方向に積層する過程からなることを特徴とする請求項6に記載の燃料電池の製造方法。    7. The method of manufacturing a fuel cell according to claim 6, wherein the step of forming the diffusion electrode includes a step of laminating the material constituting the diffusion electrode in the axial direction of the cylindrical casing a plurality of times. . 前記筒状ケーシングを形成する過程も、これを構成する材料を前記拡散電極を構成すると共に前記筒状ケーシングの軸線方向に複数回積層することにより形成する過程からなることを特徴とする請求項7に記載の燃料電池の製造方法。    8. The process of forming the cylindrical casing also comprises a process of forming a material constituting the cylindrical electrode by forming the diffusion electrode and laminating a plurality of times in the axial direction of the cylindrical casing. The manufacturing method of the fuel cell as described in any one of. 前記筒状ケーシングを形成する過程が、前記拡散電極を形成後、該拡散電極を囲繞する型枠内に、前記電解質を構成する材料と同じ材料を充填し、固化させることにより形成する過程からなることを特徴とする請求項6に記載の燃料電池の製造方法。    The process of forming the cylindrical casing includes the process of forming the diffusion electrode, filling the mold surrounding the diffusion electrode with the same material as that constituting the electrolyte, and solidifying the mold. The method for producing a fuel cell according to claim 6. 前記拡散電極を構成する材料を積層する過程が、塗布及び乾燥または固化または焼結による方法、物理蒸着法、化学蒸着法、めっき、鋳造及び溶射のいずれかの方法により行われることを特徴とする請求項6に記載の燃料電池の製造方法。    The process of laminating the material constituting the diffusion electrode is performed by any one of a method by coating and drying or solidifying or sintering, a physical vapor deposition method, a chemical vapor deposition method, plating, casting, and thermal spraying. The method for producing a fuel cell according to claim 6.
JP2001135045A 2000-05-08 2001-05-02 Fuel cell and manufacturing method thereof Expired - Fee Related JP4916053B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US20282700P 2000-05-08 2000-05-08
US60/202827 2000-10-23

Publications (2)

Publication Number Publication Date
JP2001319664A JP2001319664A (en) 2001-11-16
JP4916053B2 true JP4916053B2 (en) 2012-04-11

Family

ID=22751418

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2001135048A Expired - Fee Related JP4630484B2 (en) 2000-05-08 2001-05-02 Fuel cell
JP2001135045A Expired - Fee Related JP4916053B2 (en) 2000-05-08 2001-05-02 Fuel cell and manufacturing method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2001135048A Expired - Fee Related JP4630484B2 (en) 2000-05-08 2001-05-02 Fuel cell

Country Status (1)

Country Link
JP (2) JP4630484B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2408538C (en) * 2000-05-08 2008-05-20 Honda Giken Kogyo Kabushiki Kaisha Fuel cell assembly with heater wire provided on a grid frame of an electrolyte layer
JP4026411B2 (en) * 2002-05-27 2007-12-26 日産自動車株式会社 Solid oxide fuel cell and method for producing the same
US7575821B2 (en) * 2002-06-11 2009-08-18 General Electric Company Interconnect supported fuel cell assembly and preform
US20040197638A1 (en) * 2002-10-31 2004-10-07 Mcelrath Kenneth O Fuel cell electrode comprising carbon nanotubes
US7531261B2 (en) * 2003-06-30 2009-05-12 Corning Incorporated Textured electrolyte sheet for solid oxide fuel cell
FR2857163B1 (en) * 2003-07-01 2008-12-26 Commissariat Energie Atomique FUEL CELL IN WHICH A FLUID CIRCULARLY CIRCUMSTANCES PARALLEL TO THE ELECTROLYTIC MEMBRANE AND METHOD OF MANUFACTURING SUCH A FUEL CELL
JP2005293910A (en) * 2004-03-31 2005-10-20 Yamanashi Tlo:Kk Fuel cell and its aggregate
US7632587B2 (en) 2004-05-04 2009-12-15 Angstrom Power Incorporated Electrochemical cells having current-carrying structures underlying electrochemical reaction layers
JP2007323938A (en) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd Fuel cell and fuel cell module
US8278013B2 (en) * 2007-05-10 2012-10-02 Alan Devoe Fuel cell device and system
JP4140652B2 (en) * 2007-07-18 2008-08-27 独立行政法人産業技術総合研究所 ELECTROLYTE FOR SOLID ELECTROLYTE FUEL CELL, SOLID ELECTROLYTE FUEL CELL AND METHOD FOR PRODUCING THEM
CN101849312B (en) 2007-09-25 2014-05-07 法商Bic公司 Fuel cell systems including space-saving fluid plenum and related methods
CN101919094B (en) 2008-01-17 2013-07-24 法商Bic公司 Covers for electrochemical cells and related methods
JP5763533B2 (en) * 2008-06-23 2015-08-12 ヌヴェラ・フュエル・セルズ・インコーポレーテッド Polymer electrolyte membrane fuel cell stack and bipolar plate assembly
JP5713343B2 (en) * 2011-01-28 2015-05-07 学校法人東京理科大学 Fuel cell and manufacturing method thereof
JP5791029B2 (en) * 2011-09-28 2015-10-07 国立研究開発法人物質・材料研究機構 Thin positive electrode structure, manufacturing method thereof, and thin lithium-air battery

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499663A (en) * 1983-10-12 1985-02-19 The United States Of America As Represented By The United States Department Of Energy Method of fabricating a monolithic core for a solid oxide fuel cell
JPS6113573A (en) * 1984-06-27 1986-01-21 Fuji Electric Corp Res & Dev Ltd Laminated construction of fuel cell
US4666798A (en) * 1985-05-20 1987-05-19 The United States Of America As Represented By The United States Department Of Energy Serially connected solid oxide fuel cells having monolithic cores
JPS63166159A (en) * 1986-12-26 1988-07-09 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell
JPS63170867A (en) * 1987-01-09 1988-07-14 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell
JP2793275B2 (en) * 1989-07-28 1998-09-03 日本碍子株式会社 Fuel cell generator
JP2790666B2 (en) * 1989-07-28 1998-08-27 日本碍子株式会社 Fuel cell generator
DE4136448A1 (en) * 1991-03-13 1992-09-17 Abb Patent Gmbh FUEL CELL MODULE AND METHOD FOR THE PRODUCTION THEREOF
JPH08130025A (en) * 1994-10-28 1996-05-21 Toyota Motor Corp Fuel cell
US5800706A (en) * 1996-03-06 1998-09-01 Hyperion Catalysis International, Inc. Nanofiber packed beds having enhanced fluid flow characteristics
JP3215650B2 (en) * 1996-05-23 2001-10-09 日本碍子株式会社 Electrochemical cell, method for producing the same, and electrochemical device
JPH1074527A (en) * 1996-06-25 1998-03-17 Du Pont Kk Solid polymer electrolyte fuel cell
JP3660754B2 (en) * 1996-06-25 2005-06-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Solid polymer electrolyte fuel cell
JP3516325B2 (en) * 1996-12-20 2004-04-05 東邦瓦斯株式会社 Honeycomb structure solid oxide fuel cell
WO1999049530A1 (en) * 1998-03-20 1999-09-30 Osaka Gas Company Limited Separator for fuel cell and method for producing the same
JP4236298B2 (en) * 1998-04-14 2009-03-11 東邦瓦斯株式会社 Solid oxide fuel cell with honeycomb integrated structure
WO2000006488A1 (en) * 1998-07-30 2000-02-10 Osaka Gas Company Limited Process for producing functional carbonaceous material
JP2000299118A (en) * 1999-02-10 2000-10-24 Toyota Motor Corp Solid polymer fuel cell and manufacture thereof
JP2001015123A (en) * 1999-06-30 2001-01-19 Sanyo Electric Co Ltd Electrode substrate and electrode for fuel cell and fuel cell using the same
JP2001035504A (en) * 1999-07-26 2001-02-09 Fuji Electric Co Ltd Solid high polymer type fuel cell and manufacture of separator for the same
CA2408538C (en) * 2000-05-08 2008-05-20 Honda Giken Kogyo Kabushiki Kaisha Fuel cell assembly with heater wire provided on a grid frame of an electrolyte layer

Also Published As

Publication number Publication date
JP2001319664A (en) 2001-11-16
JP2002141084A (en) 2002-05-17
JP4630484B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP4916053B2 (en) Fuel cell and manufacturing method thereof
RU2419921C2 (en) Plates for distribution of fluid medium flows in fuel cells
US6835488B2 (en) Fuel cell with patterned electrolyte/electrode interface
US7067213B2 (en) Flow field plate geometries
USRE41577E1 (en) High power density fuel cell stack using micro structured components
EP1516383B1 (en) Flow field plate geometries
JP2001319665A (en) Manufacturing method of fuel cell and its electrolyte
CN105027343B (en) Fuel cell, the flow distribution apparatus of fuel cell and the vehicle for possessing fuel cell
JP4527402B2 (en) Alveolar structure and method for producing the same
JP2008523548A (en) Fuel cell device assembly and frame
MXPA04004279A (en) Fuel cell fluid flow field plates.
JP2008066264A (en) Laminating property improving structure of metal separator for fuel cell stack
US7273671B2 (en) Fuel cell and method for making the same
WO2009069536A1 (en) Fuel cell and fuel cell gas separator
JP2021511631A (en) Electrochemical cell with improved fluid flow design
JP7449228B2 (en) PEM fuel cell with improved fluid flow design
JP2000133282A (en) Separator for solid polymer electrolyte fuel cell
JPH11185778A (en) Fuel cell
JP2009187764A (en) Solid oxide fuel cell sub-module, and solid oxide fuel cell composite module
JP2006216407A (en) Cell module assembly and fuel cell
TW201140927A (en) Composite membrane, fuel cell and method of making of composite membrane
JP2021511630A (en) Fuel cell plate and flow structure design
JP2000251902A (en) Gas separator for fuel cell, its manufacture and fuel cell
JP2023504606A (en) Battery unit and battery stack
JP2001143725A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees