JP4915931B2 - Electrostatic atomizer - Google Patents

Electrostatic atomizer Download PDF

Info

Publication number
JP4915931B2
JP4915931B2 JP2007082968A JP2007082968A JP4915931B2 JP 4915931 B2 JP4915931 B2 JP 4915931B2 JP 2007082968 A JP2007082968 A JP 2007082968A JP 2007082968 A JP2007082968 A JP 2007082968A JP 4915931 B2 JP4915931 B2 JP 4915931B2
Authority
JP
Japan
Prior art keywords
discharge
electrode
discharge electrode
water
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007082968A
Other languages
Japanese (ja)
Other versions
JP2008238065A (en
Inventor
哲也 前川
幸広 桝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2007082968A priority Critical patent/JP4915931B2/en
Publication of JP2008238065A publication Critical patent/JP2008238065A/en
Application granted granted Critical
Publication of JP4915931B2 publication Critical patent/JP4915931B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ラジカル(活性種)を含んだ帯電微粒子水、殊にナノメータサイズの帯電微粒子水を発生させるための静電霧化装置に関するものである。   The present invention relates to an electrostatic atomizer for generating charged fine particle water containing radicals (active species), in particular, nanometer-sized charged fine particle water.

水が供給される放電電極に高電圧を印加して放電させることで、放電電極が保持している水にレイリー***を生じさせて霧化させることでナノメータサイズの帯電微粒子水(ナノサイズミスト)を生成する静電霧化装置がある。   Nanometer-sized charged fine particle water (nano-size mist) by applying a high voltage to the discharge electrode to which water is supplied and causing discharge to cause atomization by causing Rayleigh splitting in the water retained by the discharge electrode There are electrostatic atomizers that produce

上記帯電微粒子水はラジカルを含んでいるとともに長寿命であって、空間内への拡散を大量に行うことができ、室内の壁面や衣服やカーテンなどに付着した悪臭成分などに効果的に作用して無臭化したり、ダニや花粉等のアレルゲン物質を不活性化したりすることができるほか、人の肌や髪に潤いを与えることができる。   The above charged fine particle water contains radicals and has a long life, can be diffused in a large amount of space, and acts effectively on malodorous substances adhering to indoor walls, clothes, curtains, etc. In addition to being non-brominated, it can inactivate allergens such as mites and pollen, and can also moisturize human skin and hair.

このために上記静電霧化装置を各種機器に搭載することがなされているが、この場合、そのエネルギー効率を高めてエネルギー消費を抑えることが要望されている。
特許第3260150号公報
For this reason, the electrostatic atomizer is mounted on various devices. In this case, it is desired to increase energy efficiency and suppress energy consumption.
Japanese Patent No. 3260150

本発明は上記の従来の問題点に鑑みて発明したものであって、ラジカルを含んだ耐電微粒子水の生成を高効率で行うことができる静電霧化装置を提供することを課題とするものである。   This invention is invented in view of said conventional problem, Comprising: It aims at providing the electrostatic atomizer which can perform the production | generation of the electric-resistant fine particle water containing a radical with high efficiency. It is.

上記課題を解決するために本発明に係る静電霧化装置は、高電圧が印加される放電電極と、この放電電極に水を供給する水供給手段とを備えて、放電電極上の水を放電によって霧化させるものにおいて、ミリ秒単位で繰り返される放電と放電停止の放電サイクル中の放電電流を監視する監視手段と、この監視手段による監視結果に基づいて放電電極への高電圧供給のオンオフを行ってオン直後のピーク電流値が高い放電開始初期状態の放電サイクルを繰り返し生じさせる制御回路とを備えていることに特徴を有している。高電圧印加のオンオフによって突入電流のためにピーク電流値が高い放電開始初期状態の放電サイクルを常時得られるようにしたものである。   In order to solve the above problems, an electrostatic atomization apparatus according to the present invention includes a discharge electrode to which a high voltage is applied, and water supply means for supplying water to the discharge electrode, and supplies water on the discharge electrode. In the case of atomization by discharge, monitoring means for monitoring the discharge current during the discharge cycle of discharge and discharge stop repeated in milliseconds, and on / off of high voltage supply to the discharge electrode based on the monitoring result by this monitoring means And a control circuit for repeatedly generating a discharge cycle in a discharge start initial state having a high peak current value immediately after being turned on. The discharge cycle in the initial stage of the discharge start with a high peak current value due to the inrush current can be always obtained by turning on and off the high voltage application.

この時、上記制御回路は、放電サイクル中の放電電流値の安定化を機に放電電極への高電圧供給をオフし、直後にオンとするものであることが放電サイクルの維持が容易で好ましい結果を得ることができる。   At this time, the control circuit preferably turns off the high-voltage supply to the discharge electrode immediately after the stabilization of the discharge current value during the discharge cycle, and is turned on immediately thereafter, so that it is easy to maintain the discharge cycle. The result can be obtained.

本発明は、ピーク電流値が高くてラジカル発生量が多い放電開始初期状態の放電サイクルを常時得ることができるものであり、このために高効率で省エネルギーのものを得ることができる。   According to the present invention, it is possible to always obtain a discharge cycle in a discharge start initial state with a high peak current value and a large amount of radical generation. For this reason, a highly efficient and energy-saving product can be obtained.

以下、本発明を添付図面に示す実施形態に基いて説明すると、図3は本発明に係る静電霧化装置の構造の一例を示すもので、放電電極1とこの放電電極1の一端に所要の距離をおいて対向するとともに内周縁が実質的な電極として機能する対向電極2、これら両電極2,3間に放電用の高電圧を印加する高圧電源部3、上記放電電極1の他端が吸熱側に接続されて放電電極1を露点以下の温度に冷却することで放電電極1に水を供給するペルチェモジュール4、そして制御回路5で構成されたもので、上記対向電極2は接地されており、放電時には放電電極1側に負の高電圧が印加される。   Hereinafter, the present invention will be described with reference to an embodiment shown in the accompanying drawings. FIG. 3 shows an example of the structure of an electrostatic atomizer according to the present invention, and a discharge electrode 1 and one end of the discharge electrode 1 are required. The counter electrode 2 which is opposed to each other at a distance of 2 mm, the inner peripheral edge functions as a substantial electrode, the high voltage power supply unit 3 for applying a high voltage for discharge between the electrodes 2 and 3, and the other end of the discharge electrode 1 Is connected to the heat absorption side, and is composed of a Peltier module 4 for supplying water to the discharge electrode 1 by cooling the discharge electrode 1 to a temperature below the dew point, and a control circuit 5. The counter electrode 2 is grounded. In discharging, a negative high voltage is applied to the discharge electrode 1 side.

上記制御回路5は、放電電流を監視することで放電電極1上に所要の量の結露水が生成されているかどうかを見て、その量に応じてペルチェモジュール4による放電電極1の冷却度合いを制御するとともに、放電電極1への高電圧印加を制御する。   The control circuit 5 monitors whether or not a required amount of condensed water is generated on the discharge electrode 1 by monitoring the discharge current, and determines the degree of cooling of the discharge electrode 1 by the Peltier module 4 according to the amount. While controlling, the high voltage application to the discharge electrode 1 is controlled.

そしてペルチェモジュール4によって放電電極1を冷却することで空気中の水分を放電電極1上に結露させた状態で高電圧を放電電極1に印加する時、放電電極1上の水は対向電極2側に引っ張られてテーラーコーンと称される形状のものとなるとともに、そのテーラーコーンの先端においてレイリー***が生じて霧化されることでナノメータサイズの帯電微粒子水が生成される。   When the discharge electrode 1 is cooled by the Peltier module 4 and moisture in the air is condensed on the discharge electrode 1, when a high voltage is applied to the discharge electrode 1, the water on the discharge electrode 1 is on the counter electrode 2 side. To form a shape called a tailor cone, and at the tip of the tailor cone, Rayleigh splitting is generated and atomized to generate nanometer-sized charged fine particle water.

上記テーラーコーンは、放電電極1と対向電極2との間に働くクーロン力によって放電電極1先端に保持された水の液面が局所的に錘状に盛り上がって形成されるものであり、テーラーコーン先端への電荷の集中でこの部分の電界強度が大きくなると、上記先端に生じるクーロン力が大きくなるために更にテーラーコーンが成長してその先端が尖ったものとなり、テーラーコーン先端での電荷が高密度となってそのエネルギー(電荷の反発力)が水の表面張力を越えたならば、はじけるようにしてテーラーコーン先端の水が***・飛散(レイリー***)して帯電したナノメータサイズの微粒子水が大量に生成され、テーラーコーンはその先端が鈍ったものとなる。   The tailor cone is formed by locally increasing the level of water held at the tip of the discharge electrode 1 by the Coulomb force acting between the discharge electrode 1 and the counter electrode 2. When the electric field strength at this part increases due to the concentration of charge at the tip, the Coulomb force generated at the tip increases, and the tailor cone grows further and the tip becomes sharper. If the density (energy repulsive force) exceeds the surface tension of water, the water at the tip of the tailor cone will split and scatter (Rayleigh split) so that the charged nanometer-size water It is produced in large quantities and the tailor cone has a blunt tip.

放電電極1に直流高電圧を印加して上記静電霧化を行わせた時のミリ秒単位の放電電流変化を図4に、同じくミリ秒単位でのテーラーコーンの形状変化を図5に示す。図4中にPで示す時点が図5においてテーラーコーンの先端が最も尖った状態(テーラーコーンの錐状の角度は70〜95°程度)の時に一致しており、テーラーコーンの先端が尖った時点で放電が始まり、先端が鈍ってもしばらくは放電が続くが、その後、放電が停止する。そして放電停止状態においてテーラーコーンの先端が徐々に尖りだし、最も尖った時点で再度放電が開始される。つまり、連続して放電がなされているものの、微細的には放電区間イと放電停止区間ロとからなる図中αの放電サイクルが繰り返されていることになる。   FIG. 4 shows a change in discharge current in milliseconds when a high DC voltage is applied to the discharge electrode 1 to perform the above-described electrostatic atomization, and FIG. 5 shows a change in the shape of the tailor cone in milliseconds. . The time indicated by P in FIG. 4 coincides with the state in which the tip of the tailor cone is most sharp in FIG. 5 (the cone angle of the tailor cone is about 70 to 95 °), and the tip of the tailor cone is sharp. Discharge starts at the time, and discharge continues for a while even if the tip is dull, but then the discharge stops. And in the discharge stop state, the tip of the tailor cone gradually begins to sharpen, and discharge is started again at the point when it is sharpest. In other words, although the discharge is continuously performed, the discharge cycle α in the figure consisting of the discharge section A and the discharge stop section B is repeated minutely.

また、電源を投入することで放電電極1の冷却が開始され、直流高電圧が印加される放電電極1上に水が生成されて放電が始まる時点に着目すると、図4に示すように、放電が始まった時点での放電電流はそのピーク値がかなり高い放電サイクルαとなり、その後はほぼ一定のピーク電流が発生する安定した放電サイクルαが繰り返されていることがわかる。   In addition, when the cooling of the discharge electrode 1 is started by turning on the power and water is generated on the discharge electrode 1 to which the DC high voltage is applied, the discharge starts as shown in FIG. It can be seen that the discharge current at the time of starting the discharge cycle α has a fairly high peak value, and thereafter, a stable discharge cycle α in which a substantially constant peak current is generated is repeated.

ここにおいて、ラジカルを含んだ帯電微粒子水の発生量は放電電流量が多いほど多くなることから、上記ピーク値が高い放電サイクルαの時の方が、ピーク値がほぼ一定の低い値を保つ安定期の放電サイクルαの時よりも帯電微粒子水の発生量が多くなる。   Here, the amount of charged fine particle water containing radicals increases as the amount of discharge current increases, so that the peak value is more stable in the discharge cycle α when the peak value is higher. The amount of charged fine particle water generated is larger than that in the discharge cycle α in the period.

本発明はこの点に着目し、放電電圧印加のオンオフを繰り返すことでピーク値が高い放電サイクルαが繰り返し得られるようにしたもので、上記オンオフの繰り返しを行うために、ここでは前記制御回路5において放電電流を監視するとともにピーク電流をトリガとして上記放電サイクルα中の平均電流を求め、この平均電流が低くなればピーク電流も小さくなって放電が安定期に入ったと判断して高電圧印加をいったんオフ(t2)し、直後に高電圧印加を再開(t1)してピーク値が高い放電電流が得られるようにしている。   The present invention pays attention to this point, and the discharge cycle α having a high peak value can be repeatedly obtained by repeatedly turning on and off the discharge voltage application. In order to repeat the on / off, the control circuit 5 is used here. The discharge current is monitored and the peak current is used as a trigger to determine the average current during the discharge cycle α. If this average current decreases, the peak current also decreases and the discharge has entered a stable period. It is turned off (t2) once, and immediately after that, high voltage application is resumed (t1) to obtain a discharge current having a high peak value.

具体的には放電電流検出手段として時間分解能が1マイクロセカンド程度のものを用いて、上述のようにピーク電流をトリガとして各放電サイクルαを認識するとともに、各放電サイクルα中の平均電流値を算出する。そして過去数回の放電サイクルαの各平均電流値を最新の放電サイクルαの平均電流値と比較し、平均電流値の変化の割合が指定範囲内(たとえば15%内)となれば、放電電圧の印加をいったん停止(t2)し、その後、放電電圧の印加を再開(t1)するのである。図1に示す例では、放電を開始してから4回目の放電サイクルαの平均電流値を、1〜3回目の放電サイクルαの平均電流値と比較すると、3回目の放電サイクルαの平均電流値と4回目の放電サイクルαの平均電流値との変化割合が15%以内となることから、放電電圧の印加をオフとしている。   Specifically, the discharge current detection means having a time resolution of about 1 microsecond is used to recognize each discharge cycle α using the peak current as a trigger as described above, and to calculate the average current value in each discharge cycle α. calculate. Then, each average current value of the past several discharge cycles α is compared with the average current value of the latest discharge cycle α, and if the change rate of the average current value is within a specified range (for example, within 15%), the discharge voltage Is temporarily stopped (t2), and then the application of the discharge voltage is resumed (t1). In the example shown in FIG. 1, when the average current value of the fourth discharge cycle α after the start of discharge is compared with the average current value of the first to third discharge cycles α, the average current of the third discharge cycle α. Since the change ratio between the value and the average current value of the fourth discharge cycle α is within 15%, the application of the discharge voltage is turned off.

平均電流値の変化の割合で判断するのではなく、平均電流値の絶対値で判断するようにしてもよい。たとえば所定電流値(たとえば10±2μA)内にたとえば2放電サイクルαの平均電流値が連続して収まれば、放電電圧の印加をいったん停止するのである。   The determination may be made based on the absolute value of the average current value instead of the determination based on the change rate of the average current value. For example, when the average current value of, for example, two discharge cycles α continuously falls within a predetermined current value (for example, 10 ± 2 μA), the application of the discharge voltage is temporarily stopped.

ここで、ピーク電流値を見るのではなく、平均電流値を見るとともに、平均電流値が安定したことを確認してから高電圧印加をオフとしているのは、このようにすることで次に放電を再開した時の放電開始がスムーズになされるためである。   Here, instead of looking at the peak current value, the average current value is seen, and after confirming that the average current value is stable, the high voltage application is turned off. This is because the discharge starts smoothly when the process is resumed.

放電電流の監視は、放電によって生成されるとともに放電電流の大小によって生成量が変化するオゾンやマイナスイオンの量を計測することで行ってもよい。発生するオゾンの量やマイナスイオンの量をミリ秒単位で監視し、これらが上記安定期の電流値に相当する量になれば、高電圧印加をオフとし、直後に印加をオンとする。   The discharge current may be monitored by measuring the amount of ozone or negative ions that are generated by the discharge and whose generation amount varies depending on the magnitude of the discharge current. The amount of generated ozone and the amount of negative ions are monitored in milliseconds, and when these become amounts corresponding to the current value in the stable period, the high voltage application is turned off and the application is turned on immediately thereafter.

いずれにしても、直流高電圧の印加の場合(投入電力100%)S0と、上記放電電流監視による高電圧印加のオンオフが10マイクロ秒のオンと2マイクロ秒のオフの繰り返しになる場合(投入電力80%)S1と、10マイクロ秒のオンと0.1マイクロ秒のオフの繰り返しになる場合(投入電力99%)S2とでラジカル発生量を比較(ちなみに印加電圧はいずれも−5.15kVで安定状態での平均電流値はいずれも6μA)すると、夫々120,120,150(単位はμmol/l)となり、ラジカル発生に要するエネルギーが少なくて済むことがわかる。また、オゾンの発生量を70リッターチャンバーで20分間計測すると、図6に示すように、投入電力が80%の時S1に投入電力100%の時S0と同じオゾン発生量となり、投入電力が99%の時、投入電力100%の時S0の約1.25倍のオゾン発生量となった。   In any case, in the case of applying a DC high voltage (applied power 100%), S0, and when the on / off of the high voltage applied by the discharge current monitoring is repeatedly turned on for 10 microseconds and turned off for 2 microseconds (input) Comparison of radical generation amount between S1 and S1 when ON for 10 microseconds and OFF for 0.1 microsecond are repeated (input power 99%) (By the way, the applied voltages are all -5.15 kV) When the average current value in the stable state is 6 μA, the energy becomes 120, 120, and 150 (unit is μmol / l), respectively, which indicates that less energy is required for radical generation. Further, when the amount of ozone generated is measured in a 70 liter chamber for 20 minutes, as shown in FIG. 6, the amount of ozone generated is the same as S0 when the input power is 80% and S0 when the input power is 100%. %, The amount of ozone generated was about 1.25 times that of S0 when the input power was 100%.

放電をいったん停止させることについては、放電電圧の印加をオフとするのではなく、放電電圧を低下させることで行ってもよい。要は次に放電を開始させた時、高いピーク値の放電電流が流れることになればよいものである。   Stopping the discharge once may be performed by lowering the discharge voltage instead of turning off the application of the discharge voltage. In short, the discharge current with a high peak value should flow when the discharge is started next.

また、上記実施例では、放電電極1をペルチェモジュール4で冷却して結露水を放電電極1上に生成していたが、放電電極1に対する水の供給は例えば毛細管現象などを利用した放電電極1への水供給によって行うものであってもよい。また、図示例は対向電極2を備えているが、この対向電極2は必須のものではなく、放電電極1上の水で放電を行わせることができるものであればよい。   Moreover, in the said Example, although the discharge electrode 1 was cooled with the Peltier module 4 and the dew condensation water was produced | generated on the discharge electrode 1, the supply of the water with respect to the discharge electrode 1 is the discharge electrode 1 using the capillary phenomenon etc., for example It may be performed by supplying water. Moreover, although the example of illustration is provided with the counter electrode 2, this counter electrode 2 is not essential, and what can discharge with water on the discharge electrode 1 should just be used.

本発明の実施の形態の一例における放電電流のタイムチャートである。It is a time chart of the discharge current in an example of an embodiment of the invention. 同上の電圧のタイムチャートである。It is a time chart of a voltage same as the above. 同上の構成の一例の概略図である。It is the schematic of an example of a structure same as the above. 従来例における放電電流のタイムチャートである。It is a time chart of the discharge current in a prior art example. テーラーコーンの形状変化についての説明図である。It is explanatory drawing about the shape change of a tailor cone. オゾン発生量の説明図である。It is explanatory drawing of the amount of ozone generation.

符号の説明Explanation of symbols

1 放電電極
2 対向電極
3 高電圧電源部
4 ペルチェモジュール
5 制御回路
α 放電サイクル
DESCRIPTION OF SYMBOLS 1 Discharge electrode 2 Counter electrode 3 High voltage power supply part 4 Peltier module 5 Control circuit (alpha) Discharge cycle

Claims (2)

高電圧が印加される放電電極と、この放電電極に水を供給する水供給手段とを備えて、放電電極上の水を放電によって霧化させる静電霧化装置において、ミリ秒単位で繰り返される放電と放電停止の放電サイクル中の放電電流を監視する監視手段と、この監視手段による監視結果に基づいて放電電極への高電圧供給のオンオフを行ってオン直後のピーク電流値が高い放電開始初期状態の放電サイクルを繰り返し生じさせる制御回路とを備えていることを特徴とする静電霧化装置。   In an electrostatic atomizer that includes a discharge electrode to which a high voltage is applied and a water supply means for supplying water to the discharge electrode and atomizes the water on the discharge electrode by discharge, it is repeated in units of milliseconds. The monitoring means for monitoring the discharge current during the discharge cycle of discharge and discharge stop, and the discharge start initial stage in which the peak current value immediately after turning on is high by turning on / off the high voltage supply to the discharge electrode based on the monitoring result by the monitoring means And a control circuit for repeatedly generating a discharge cycle in a state. 制御回路は、放電サイクル中の放電電流値の安定化を機に放電電極への高電圧供給をオフし、直後にオンとするものであることを特徴とする請求項1記載の静電霧化装置。   2. The electrostatic atomization according to claim 1, wherein the control circuit turns off the high voltage supply to the discharge electrode immediately after stabilization of the discharge current value during the discharge cycle and turns it on immediately after. apparatus.
JP2007082968A 2007-03-27 2007-03-27 Electrostatic atomizer Expired - Fee Related JP4915931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007082968A JP4915931B2 (en) 2007-03-27 2007-03-27 Electrostatic atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007082968A JP4915931B2 (en) 2007-03-27 2007-03-27 Electrostatic atomizer

Publications (2)

Publication Number Publication Date
JP2008238065A JP2008238065A (en) 2008-10-09
JP4915931B2 true JP4915931B2 (en) 2012-04-11

Family

ID=39910037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007082968A Expired - Fee Related JP4915931B2 (en) 2007-03-27 2007-03-27 Electrostatic atomizer

Country Status (1)

Country Link
JP (1) JP4915931B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7108942B2 (en) * 2019-09-19 2022-07-29 パナソニックIpマネジメント株式会社 discharge device
JP7249564B2 (en) * 2019-09-19 2023-03-31 パナソニックIpマネジメント株式会社 discharge device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4329672B2 (en) * 2004-10-28 2009-09-09 パナソニック電工株式会社 Electrostatic atomizer
JP2006183882A (en) * 2004-12-24 2006-07-13 Ricoh Co Ltd Peltier element driving device and image forming device

Also Published As

Publication number Publication date
JP2008238065A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
TWI780188B (en) Voltage application device, and discharge device
WO2007142022A1 (en) Electrostatic atomizing apparatus
JP2006204968A (en) Atomizer
JP4655691B2 (en) Electrostatic atomizer
JP5149095B2 (en) Electrostatic atomizer and air conditioner using the same
WO2020054100A1 (en) Fine water discharge device
WO2005060617A2 (en) Method of and apparatus for electrostatic fluid acceleration control of a fluid flow
JP4329709B2 (en) Electrostatic atomizer
JP4915931B2 (en) Electrostatic atomizer
JP4765772B2 (en) Electrostatic atomizer
JP4492386B2 (en) Ion generator
JP2013116444A (en) Electrostatic atomizing device
TWI760350B (en) Voltage application device and discharge device
JP4475192B2 (en) Electrostatic atomizer
JP4821437B2 (en) Electrostatic atomizer
JP4581990B2 (en) Electrostatic atomizer
WO2014042173A1 (en) Moisturizing device and electric apparatus loaded with same, and moisturizing method
JP5149934B2 (en) Electrostatic atomizer and electrostatic atomizing method
WO2016006199A1 (en) Electrostatic atomizing device and electrostatic atomizing method
JP4645528B2 (en) Electrostatic atomizer
CN214077316U (en) Aerosol atomizing device
WO2011118413A1 (en) Electrostatic atomizer
JP2013111558A (en) Radical generator and nitrogen oxide generator
JP2011245382A (en) Electrostatic atomizer and cosmetic device equipped with the same
JP2006247477A (en) Electrostatic atomization apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091124

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees