JP4913333B2 - Heat sink and uniform cooling method - Google Patents

Heat sink and uniform cooling method Download PDF

Info

Publication number
JP4913333B2
JP4913333B2 JP2004172115A JP2004172115A JP4913333B2 JP 4913333 B2 JP4913333 B2 JP 4913333B2 JP 2004172115 A JP2004172115 A JP 2004172115A JP 2004172115 A JP2004172115 A JP 2004172115A JP 4913333 B2 JP4913333 B2 JP 4913333B2
Authority
JP
Japan
Prior art keywords
space
heat sink
cooled
space portion
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004172115A
Other languages
Japanese (ja)
Other versions
JP2005026219A (en
Inventor
直樹 木村
晃 秀野
茂 五味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2004172115A priority Critical patent/JP4913333B2/en
Publication of JP2005026219A publication Critical patent/JP2005026219A/en
Application granted granted Critical
Publication of JP4913333B2 publication Critical patent/JP4913333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0029Heat sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0043Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Secondary Cells (AREA)

Description

本発明は、発熱体が均一に冷却されるヒートシンクおよび均一な冷却方法に関する。   The present invention relates to a heat sink in which a heating element is uniformly cooled and a uniform cooling method.

電子機器内に配される電子モジュールなどの発熱体は、図6に示すように、冷却空気通路に冷却空気を流して冷却するヒートシンクの外面に取付けて冷却されていた。図6で6はフィンである。
しかし、前記冷却方法では、冷却空気はヒートシンク内を移動するうちに温度が上昇するため、ヒートシンクの外面は冷却空気の入側部分から出側部分に向けて温度が上昇し、そのため複数の電子モジュール(発熱体)を前記ヒートシンクの外面に取付けて冷却する電子機器では安定した特性が得られないという問題があった。
このようなことから、冷却水を用いたヒートシンクの隣接する各水路に向きを相違させて冷却水を流して温度分布を均一にしたヒートシンクが提案された(特許文献1)。
特開平8−139478号公報
As shown in FIG. 6, a heating element such as an electronic module disposed in the electronic device is attached to the outer surface of a heat sink that is cooled by flowing cooling air through a cooling air passage and is cooled. In FIG. 6, 6 is a fin.
However, in the cooling method, since the temperature of the cooling air rises while moving in the heat sink, the temperature of the outer surface of the heat sink rises from the inlet side portion to the outlet side portion of the cooling air. There is a problem that stable characteristics cannot be obtained in an electronic device that cools by attaching (heating element) to the outer surface of the heat sink.
For this reason, there has been proposed a heat sink in which the temperature distribution is made uniform by flowing cooling water in different directions in adjacent water channels of the heat sink using cooling water (Patent Document 1).
JP-A-8-139478

そこで、本発明者等は、冷却空気を用いたヒートシンクについて前記提案と同様のことを行ってみたが、発熱体は必ずしも均一に冷却されず、冷却の均一性は発熱体の取付け位置に大きく左右されることを知見し、この知見を基にさらに検討を重ねて、本発明を完成させるに至った。
本発明は、発熱体である電池が均一に冷却される冷却空気を用いたヒートシンクを提供することを目的とする。
Therefore, the present inventors tried the same thing as the above proposal for the heat sink using cooling air, but the heating element is not necessarily cooled uniformly, and the uniformity of cooling largely depends on the mounting position of the heating element. As a result, the present invention has been completed through further studies based on this knowledge.
An object of the present invention is to provide a heat sink using cooling air in which a battery as a heating element is uniformly cooled.

この発明のヒートシンクの第1の態様は、被冷却部品が所定間隔で配置された複数個の組型の電池からなっており、前記被冷却部品が熱的に接続する部分が熱伝導性部材によって形成されており、この熱伝導性部材の厚み方向に並んで配置され、相互に熱移動が可能な境界部を介して独立した第1空間部および第2空間部を備え、冷却用流体が前記第1空間部を往路として通過した後、反転して前記第2空間部を複路として順次通過することによって、被冷却部品を均一に冷却するヒートシンクであって、所定間隔で配置された複数個の組型の電池からなる被冷却部品が、前記第2空間部の側の熱伝導性部材にのみ配置されることを特徴とするヒートシンクである。 According to a first aspect of the heat sink of the present invention, the parts to be cooled are composed of a plurality of assembled batteries in which the parts to be cooled are arranged at predetermined intervals, and the part to which the parts to be cooled are thermally connected is formed by a thermally conductive member. The first and second space portions are arranged through a boundary portion that is formed and arranged side by side in the thickness direction of the thermally conductive member and capable of transferring heat to each other, and the cooling fluid is A heat sink that uniformly cools a component to be cooled by passing through the first space portion as an outward path , and then reversing and sequentially passing through the second space portion as a multiple path, and a plurality of heat sinks arranged at predetermined intervals The heat sink is characterized in that a part to be cooled comprising a battery of this type is disposed only on the heat conductive member on the second space portion side .

この発明のヒートシンクの第2の態様は、前記第1空間部および前記第2空間部が垂直方向に上下に配置されて、前記ヒートシンクの全体が熱伝導性部材によって一体的に形成され、前記冷却用流体が前記第1空間部を通過後、反転して前記第2空間部を順次通過する、ヒートシンクである。   According to a second aspect of the heat sink of the present invention, the first space portion and the second space portion are vertically arranged in a vertical direction, and the entire heat sink is integrally formed by a heat conductive member, and the cooling The heat sink is a heat sink that inverts and sequentially passes through the second space after passing through the first space.

この発明のヒートシンクの第3の態様は、前記第1空間部および前記第2空間部が水平方向に並列して配置されて、前記ヒートシンクの全体が熱伝導性部材によって一体的に形成され、前記冷却用流体が前記第1空間部を通過後、反転して前記第2空間部を順次通過する、ヒートシンクである。   According to a third aspect of the heat sink of the present invention, the first space portion and the second space portion are arranged in parallel in the horizontal direction, and the entire heat sink is integrally formed by a heat conductive member, The heat sink is a heat sink in which the cooling fluid passes through the first space and then reverses and sequentially passes through the second space.

この発明のヒートシンクの第4の態様は、前記第1空間部および前記第2空間部が垂直方向に上下に、または、水平方向に並列して配置され、複数の被冷却部品が熱的に接続する前記第1空間部または前記第2空間部に介在する境界部が仕切り板で形成され、前記冷却用流体が前記第1空間部を通過後、反転して前記第2空間部を順次通過する、ヒートシンクである。 According to a fourth aspect of the heat sink of the present invention, the first space portion and the second space portion are arranged vertically in the vertical direction or in parallel in the horizontal direction, and a plurality of components to be cooled are thermally connected. A boundary portion interposed in the first space portion or the second space portion is formed by a partition plate , and the cooling fluid passes through the first space portion and then reverses and sequentially passes through the second space portion. The heat sink.

この発明のヒートシンクの第の態様は、前記電池が前記第2空間部を形成する下部材に熱的に接続されている、ヒートシンクである。 A fifth aspect of the heat sink according to the present invention is a heat sink in which the battery is thermally connected to a lower member that forms the second space.

この発明のヒートシンクの第の態様は、前記電池が前記第2空間部を形成する側部材に熱的に接続されている、ヒートシンクである。 A sixth aspect of the heat sink according to the present invention is a heat sink in which the battery is thermally connected to a side member that forms the second space.

この発明のヒートシンクの第の態様は、前記電池が底部および壁面部からなるL字型の熱伝導性部材を介して前記第2空間部を形成する下部材または側部材に熱的に接続される、ヒートシンクである。 A seventh aspect of the heat sink of the invention, the battery via a heat conductive member of L-shaped comprising a bottom portion and wall portion, thermally connected to the lower member or side members to form the second space portion It is a heat sink.

この発明の均一な冷却方法の第1の態様は、被冷却部品が熱的に接続する部分が熱伝導性部材によって形成されており、この熱伝導性部材の厚み方向に並んで配置され、相互に熱移動が可能な境界部を介して独立した第1空間部および第2空間部を備え、冷却用流体が前記第1空間部または前記第2空間部のいずれか一方を通過後、反転して他方の空間部を順次通過することによって、被冷却部品を均一に冷却するヒートシンクを用いた均一な冷却方法であって、所定の間隔で配置された複数の被冷却部品を、前記第2空間部の側を形成する前記熱伝導性部材にのみ配置し、他方の空間部を前記一方の空間部と前記境界部を介して垂直方向に配置し、冷却用流体を前記第1空間部を往路として通過させた後、反転して第2空間部を複路として順次通過させて、前記所定間隔で配置された被冷却部品を均一に冷却する、均一な冷却方法である。 According to a first aspect of the uniform cooling method of the present invention, the part to which the parts to be cooled are thermally connected is formed by the heat conductive member, and is arranged side by side in the thickness direction of the heat conductive member. The first space portion and the second space portion which are independent via a boundary portion capable of heat transfer are provided, and the cooling fluid is reversed after passing through either the first space portion or the second space portion. A uniform cooling method using a heat sink that uniformly cools the component to be cooled by sequentially passing through the other space portion, and a plurality of components to be cooled arranged at predetermined intervals are arranged in the second space. It arrange | positions only to the said heat conductive member which forms the side of a part, arrange | positions the other space part perpendicularly | vertically via the said one space part and the said boundary part, and makes the fluid for cooling , said 1st space part. after passing the forward path, a second space and multi path inverted By sequentially passing, uniformly cool the cooled components disposed at the predetermined intervals, a uniform cooling methods.

この発明の均一な冷却方法の第2の態様は、被冷却部品が熱的に接続する部分が熱伝導性部材によって形成されており、この熱伝導性部材の厚み方向に並んで配置され、相互に熱移動が可能な境界部を介して独立した第1空間部および第2空間部を備え、冷却用流体が前記第1空間部または前記第2空間部のいずれか一方を通過後、反転して他方の空間部を順次通過することによって、被冷却部品を均一に冷却するヒートシンクを用いた均一な冷却方法であって、前記境界部を介して相互に熱移動が可能な独立した前記第1空間部および前記第2空間部を垂直方向に上下に準備し、前記第2空間部を形成する下部材にのみ、所定の間隔で配置された複数被冷却部品を配置し、冷却用流体を前記第1空間部を往路として通過させた後、反転して前記第2空間部を複路として順次通過させて、前記被冷却部品を均一に冷却する、均一な冷却方法である。 According to a second aspect of the uniform cooling method of the present invention, the part to which the components to be cooled are thermally connected is formed by the heat conductive member, and the heat conductive member is arranged side by side in the thickness direction of the heat conductive member. The first space portion and the second space portion which are independent via a boundary portion capable of heat transfer are provided, and the cooling fluid is reversed after passing through either the first space portion or the second space portion. A uniform cooling method using a heat sink that uniformly cools the component to be cooled by sequentially passing through the other space portion, and the independent first first is capable of heat transfer through the boundary portion. A space part and the second space part are prepared vertically, and a plurality of parts to be cooled arranged at predetermined intervals are disposed only on a lower member that forms the second space part, and a cooling fluid is provided. , after passing through the first space portion as the forward path, inverting It said second space portion by sequentially passed as double path Te, uniformly cool the cooled components above, a uniform cooling methods.

以上に説明したように、本発明のヒートシンクは、発熱体を、冷却空気通路を往路と復路に分けて設けたヒートシンクの前記復路から最も離れた往路外面または/および往路から最も離れた復路外面に取付けたものである。往路と復路に同じ流量の冷却用流体が流れることを特徴としている。そのため発熱体となる電池は均一に冷却され、良好な電源供給特性が長期間に渡って安定して得られる。内部がフィンで仕切られた複数のヒートシンクを、冷却空気通路を往路と復路に分けたダクトを介して連結したものは、ダクト内で冷却空気が混合して冷却空気の温度が均一化するため、発熱体はより均一に冷却される。依って、工業上顕著な効果を奏する。   As described above, in the heat sink of the present invention, the heating element is disposed on the outer surface of the forward path farthest from the return path of the heat sink provided with the cooling air passage divided into the forward path and the return path and / or the outer surface of the return path farthest from the forward path. It is attached. A cooling fluid having the same flow rate flows in the forward path and the return path. Therefore, the battery serving as a heating element is uniformly cooled, and good power supply characteristics can be stably obtained over a long period of time. When connecting multiple heat sinks, the interior of which is partitioned by fins, through a duct that divides the cooling air passage into the forward path and the return path, the cooling air mixes in the duct and the temperature of the cooling air becomes uniform. The heating element is cooled more uniformly. Therefore, there is an industrially significant effect.

以下に、本発明の実施形態を、図面を参照しながら詳細に説明する。
なお、本発明を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
Embodiments of the present invention will be described below in detail with reference to the drawings.
In all the drawings for explaining the present invention, those having the same function are denoted by the same reference numerals, and repeated explanation thereof is omitted.

この発明のヒートシンクの1つの態様は、被冷却部品が所定間隔で配置された複数個の組型の電池からなっており、前記被冷却部品が熱的に接続する部分が熱伝導性部材によって形成された、境界部を通じて相互に熱移動が可能な独立した矩形の第1空間部および第2空間部を備え、その中を冷却用流体が一方の空間部を通過後、反転して他方の空間部を順次通過することによって、被冷却部品を均一に冷却するように配置された、ヒートシンクである。   One aspect of the heat sink of the present invention comprises a plurality of assembled batteries in which cooled parts are arranged at predetermined intervals, and a portion where the cooled parts are thermally connected is formed by a thermally conductive member. The first and second rectangular spaces that are independent of each other and capable of transferring heat through the boundary portion are provided, and after the cooling fluid passes through one space portion, the other space is reversed. The heat sink is arranged so as to uniformly cool the component to be cooled by sequentially passing through the sections.

図1は、この発明のヒートシンクを示す概略斜視図である。図1に示す態様においては、ヒートシンク1の全体が熱伝導性部材によって形成されている。即ち、境界部12を通じて相互に熱移動が可能な独立した矩形の第1空間部10および第2空間部11を備えている。第1空間部10および第2空間部11は垂直方向に上下に配置されている。ヒートシンクは、例えば押し出し成形によって一体的に形成されている。第1空間部を形成する上部材13には、L字形の熱伝導性部材15を介して組型の電池が取り付けられている。図1には、ヒートシンクの両端部に位置する電池とL字形の熱伝導性部材との組み合わせが2個のみが示されているが、その間には所定間隔(等間隔)で電池とL字形の熱伝導性部材との組み合わせが複数配置される。   FIG. 1 is a schematic perspective view showing a heat sink of the present invention. In the embodiment shown in FIG. 1, the entire heat sink 1 is formed of a heat conductive member. That is, an independent rectangular first space portion 10 and second space portion 11 that are capable of heat transfer with each other through the boundary portion 12 are provided. The first space part 10 and the second space part 11 are arranged vertically in the vertical direction. The heat sink is integrally formed by, for example, extrusion molding. An assembled battery is attached to the upper member 13 forming the first space portion via an L-shaped heat conductive member 15. FIG. 1 shows only two combinations of the battery and the L-shaped thermal conductive member located at both ends of the heat sink, but the battery and the L-shaped are spaced at a predetermined interval (equal interval) between them. A plurality of combinations with the thermally conductive member are arranged.

このように一方の面に電池が搭載されたヒートシンクに、矢印で示すように冷却用空気を通過させる。例えば、冷却用空気を矢印16の方向に第2空間部を通過させ、ヒートシンクの他端部で、例えばダクト等を使用して反転させて、矢印17の方向に電池が搭載されている第1空間部を通過させる。即ち、最も冷たい空気が第2空間部を近端部から他端部に向かって流れ、反転して第1空間部を近端部に向かって流れる。第1空間部では電池の熱によって温度が上昇し、近端部において温度が最も上昇するが、第1空間部および第2空間部は境界部12を通して相互に熱移動が行われる。従って、最も温度が上昇する近端部は、一方で最も冷たい空気が流れ、均一な冷却が可能になる。なお、L字型の熱伝導性部材を用いることによって、高い位置にある電池の部分の熱を、ヒートシンクに接している部分に移動して、効率的な冷却を行うことができる。   In this way, the cooling air is passed through the heat sink with the battery mounted on one side, as indicated by the arrows. For example, the cooling air is passed through the second space in the direction of the arrow 16 and is reversed at the other end of the heat sink using, for example, a duct or the like, and the battery is mounted in the direction of the arrow 17. Pass through the space. That is, the coldest air flows through the second space portion from the near end portion toward the other end portion, and reverses to flow through the first space portion toward the near end portion. In the first space portion, the temperature rises due to the heat of the battery, and the temperature rises most at the near end portion. However, the first space portion and the second space portion are moved to each other through the boundary portion 12. Accordingly, the near-end portion where the temperature rises the most, on the other hand, the coldest air flows and uniform cooling becomes possible. In addition, by using the L-shaped heat conductive member, the heat of the part of the battery at a high position can be moved to the part in contact with the heat sink, and efficient cooling can be performed.

図2は、ヒートシンクにおける空気の温度上昇を説明する図である。図2(a)は、図6に示す従来のヒートシンクにおける空気の温度上昇を説明する図である。図2(b)は、この発明のヒートシンクにおける空気の温度上昇を説明する図である。
図2において、縦軸は温度上昇を、横軸は距離をそれぞれ示す。
FIG. 2 is a diagram for explaining the temperature rise of air in the heat sink. FIG. 2A is a diagram for explaining an increase in air temperature in the conventional heat sink shown in FIG. FIG.2 (b) is a figure explaining the temperature rise of the air in the heat sink of this invention.
In FIG. 2, the vertical axis indicates the temperature rise, and the horizontal axis indicates the distance.

図2(a)に示す従来のヒートシンクにおいては、冷却空気は矢印で示すように一方の端部から他方の端部に向かって同一方向に流れる。従って、図2(a)に示すように、同一熱抵抗の電池を所定間隔で配置したとき、距離が短い所に位置する電池(図中左側)は冷たい空気によって冷却されるので、温度上昇が小さい。一方、距離が長い所に位置する電池(図中右側)は温度が上昇した空気によって冷却されるので、冷却効率が悪く温度上昇が大きい。従って、図に示すように、2つの電池の間に大きな温度差が生じてしまう。従って、電池の劣化をもたらす。   In the conventional heat sink shown in FIG. 2A, the cooling air flows in the same direction from one end portion to the other end portion as indicated by an arrow. Therefore, as shown in FIG. 2 (a), when batteries having the same thermal resistance are arranged at a predetermined interval, the battery (left side in the figure) located at a short distance is cooled by cold air, so that the temperature rises. small. On the other hand, since the battery (right side in the figure) located at a long distance is cooled by the air whose temperature has increased, the cooling efficiency is poor and the temperature rise is large. Therefore, as shown in the figure, a large temperature difference occurs between the two batteries. Therefore, the battery is deteriorated.

これに対して、この発明のヒートシンクにおいては、図1を参照して説明したように、下方に位置する第2空間部の近端部から他端部に向かって最も冷たい空気が通過し、他端部で反転して上方に位置する第1空間部を通過するので、第1空間部の他端部から近端部に向かって移動するに連れて電池の熱によって温度上昇する。しかし、2つの電池の熱によって最も温度が上昇する第1空間部の近端部では、その下方の第2空間部を最も冷たい空気が流れるので温度上昇が抑制される。その結果、図に示すように、平均温度が一定となり、2つの電池の間に温度差が生じない。従って、均一な冷却が可能になる。   On the other hand, in the heat sink of the present invention, as described with reference to FIG. 1, the coldest air passes from the proximal end portion of the second space portion located below to the other end portion, and the others. Since it is inverted at the end and passes through the first space located above, the temperature rises due to the heat of the battery as it moves from the other end of the first space toward the near end. However, at the near end of the first space where the temperature rises most by the heat of the two batteries, the coldest air flows through the second space below the first space, so that the temperature rise is suppressed. As a result, as shown in the figure, the average temperature is constant and no temperature difference occurs between the two batteries. Therefore, uniform cooling is possible.

図1を参照して説明したこの発明のヒートシンクにおいては、第1空間部および第2空間部が垂直方向に上下に配置されて、熱伝導性部材によって一体的に形成されているが、第1空間部および第2空間部が水平方向に並列して配置されて、熱伝導性部材によって一体的に形成されていてもよい。   In the heat sink of the present invention described with reference to FIG. 1, the first space portion and the second space portion are vertically arranged in the vertical direction and are integrally formed by the heat conductive member. The space portion and the second space portion may be arranged in parallel in the horizontal direction and may be integrally formed by the heat conductive member.

更に、図1を参照して説明したこの発明のヒートシンクにおいては、所定間隔で配置された複数の組型の電池が第1空間部を形成する上部材に熱的に接続されているが、第2空間部を形成する下部材に熱的に接続されていてもよい。冷却用空気の流れる方向は、第1空間部から第2空間部でも、第2空間部から第1空間部でもよい。図1に示したように、組型の電池が第1空間部を形成する上部材に熱的に接続され、そして、冷却用空気が第2空間部から第1空間部を通過する態様が、好ましい。   Furthermore, in the heat sink of the present invention described with reference to FIG. 1, a plurality of assembled batteries arranged at predetermined intervals are thermally connected to the upper member forming the first space portion. 2 may be thermally connected to the lower member forming the space. The direction in which the cooling air flows may be from the first space to the second space, or from the second space to the first space. As shown in FIG. 1, the assembled battery is thermally connected to the upper member forming the first space, and the cooling air passes from the second space to the first space. preferable.

次に、この発明の均一な冷却方法について説明する。この発明の均一な冷却方法は、所定の間隔で配置された複数被冷却部品を一方の空間部を形成する熱伝導性部材に配置し、他方の空間部を一方の空間部と境界部を介して垂直方向に配置し、冷却用流体を一方の空間部を通過後、反転して他方の空間部を順次通過させて、所定間隔で配置された被冷却部品を均一に冷却する、均一な冷却方法である。即ち、上述したように、平均温度を一定にして、被冷却部品の間で温度差を生じさせることなく、均一に冷却する方法である。   Next, the uniform cooling method of the present invention will be described. In the uniform cooling method of the present invention, a plurality of parts to be cooled arranged at a predetermined interval are arranged on a heat conductive member forming one space portion, and the other space portion is interposed between one space portion and a boundary portion. Uniform cooling that arranges in a vertical direction and passes the cooling fluid through one space and then inverts and sequentially passes through the other space to uniformly cool the parts to be cooled arranged at predetermined intervals. Is the method. That is, as described above, the method is a method in which the average temperature is made constant and cooling is performed uniformly without causing a temperature difference between the parts to be cooled.

更に、この発明の均一な冷却方法は、境界部を通じて相互に熱移動が可能な独立した矩形の第1空間部および第2空間部を垂直方向に上下に準備し、前記第2空間部を形成する下部材に、所定の間隔で配置された複数被冷却部品を配置し、冷却用流体を前記第1空間部を通過後、反転して前記第2空間部を順次通過させて、前記被冷却部品を均一に冷却する、均一な冷却方法である。   Furthermore, the uniform cooling method according to the present invention prepares the first space portion and the second space portion, which are independent rectangles capable of mutual heat transfer through the boundary portion, vertically and forms the second space portion. A plurality of parts to be cooled arranged at predetermined intervals on the lower member, and after passing through the first space portion, the cooling fluid is reversed and sequentially passed through the second space portion to This is a uniform cooling method for cooling parts uniformly.

図3は本発明のヒートシンクの他の1つの態様を示す部分展開図である。
ヒートシンク1の冷却空気通路2が仕切板(即ち、境界部)3を介して往路(即ち、第1空間部)4と復路(即ち、第2空間部)5に分けて設けられている。冷却空気通路2内にはフィン6が設けられている。
冷却空気はヒートシンク1の往路入口4aを通って供給され、往路4内を移動後、往路出口4b側に設置したダクト(図示せず)を介して復路入口5aに流入し、復路5内を移動後、復路出口5bを通って外方へ放出される。
冷却空気は通路2内を移動するうちに次第に温度上昇するため、冷却空気は往路入口4aで最も低温であり、復路出口5bで最も高温となり、一方、往路出口4bと復路入口5aでは冷却空気の温度は前記低温と高温の中間の温度になる。
FIG. 3 is a partially developed view showing another embodiment of the heat sink of the present invention.
A cooling air passage 2 of the heat sink 1 is divided into a forward path (ie, a first space portion) 4 and a return path (ie, a second space portion) 5 via a partition plate (ie, boundary portion) 3. Fins 6 are provided in the cooling air passage 2.
The cooling air is supplied through the forward path inlet 4 a of the heat sink 1, moves in the forward path 4, then flows into the backward path inlet 5 a through a duct (not shown) installed on the forward path outlet 4 b side, and moves in the backward path 5. Thereafter, it is discharged outward through the return exit 5b.
As the cooling air gradually increases in temperature as it moves through the passage 2, the cooling air is the lowest temperature at the forward path inlet 4a and the highest temperature at the return path outlet 5b, while the cooling air is at the forward path outlet 4b and the return path inlet 5a. The temperature is intermediate between the low temperature and the high temperature.

このため、冷却空気が一方向にのみ流れる従来のヒートシンク(図6)に較べてヒートシンク外面の温度が均一になり、前記ヒートシンク外面に取り付けられる発熱体は取り付け箇所によらず、ほぼ均一に冷却される。
さらに、本発明者は、冷却空気通路が往路と復路に分けて設けられたヒートシンクでは、図3に示す復路から最も離れた往路外面、または図4に示す往路から最も離れた復路外面において温度分布がより均一になることを見いだした。
For this reason, the temperature of the heat sink outer surface becomes uniform as compared with the conventional heat sink (FIG. 6) in which the cooling air flows only in one direction, and the heating element attached to the heat sink outer surface is cooled almost uniformly regardless of the attachment location. The
Further, the present inventor has found that the heat distribution in which the cooling air passage is provided separately for the forward path and the return path has a temperature distribution on the outer surface of the outward path farthest from the return path shown in FIG. Was found to be more uniform.

図3に示した本発明のヒートシンクは、復路5から最も離れた往路上面4cに3個の発熱体7が冷却空気移動方向に対して等間隔に取付けられたものである。   The heat sink of the present invention shown in FIG. 3 has three heating elements 7 attached to the upper surface 4c farthest from the return path 5 at equal intervals in the cooling air movement direction.

図4に示した本発明のヒートシンクは、往路5から最も離れた復路下面5cに3個の発熱体7が冷却空気移動方向に対して等間隔に取付けられたものである。   The heat sink of the present invention shown in FIG. 4 is one in which three heating elements 7 are attached at equal intervals in the cooling air movement direction on the return path lower surface 5c farthest from the forward path 5.

図5は本発明のヒートシンクの他の態様を示す部分展開図である。
冷却空気通路の復路下面5cに発熱体7を1個づつ取付けたヒートシンク1がダクト8を介して3個連結されており、ダクト8内にはヒートシンク1の仕切板3と同じレベルに仕切板9が設けられていてダクト8内は往路8aと復路8bに分けられている。この実装構造では、ヒートシンク1内はフィン6で仕切られており、フィン6で仕切られたヒートシンク1内を移動してきた冷却空気はダクト8内で混合するため、冷却空気の温度はより均一化し、冷却効率が向上する。
FIG. 5 is a partial development view showing another embodiment of the heat sink of the present invention.
Three heat sinks 1 each having one heating element 7 attached to the lower surface 5c of the return air path of the cooling air passage are connected via a duct 8, and the partition plate 9 is at the same level as the partition plate 3 of the heat sink 1 in the duct 8. The duct 8 is divided into an outward path 8a and a return path 8b. In this mounting structure, the heat sink 1 is partitioned by the fins 6, and the cooling air that has moved in the heat sink 1 partitioned by the fins 6 is mixed in the duct 8, so the temperature of the cooling air is made more uniform, Cooling efficiency is improved.

図8は、本発明の電池セル用ヒートシンク1つの態様を示す概略斜視図である。
図8に示す態様においては、ヒートシンク1の全体が熱伝導性部材によって形成されている。即ち、境界部12を通じて相互に熱移動が可能な独立した矩形の第1空間部10および第2空間部11を備えている。第1空間部10および第2空間部11が垂直方向に縦長に上下に配置されている。ヒートシンク1は、例えば押し出し成形によって一体的に形成されている。第1空間部及び第2空間部を形成する側部材18の全面に、ヒートシンク1と略同等の大きさである組型の電池14が取り付けられている。図8には、ヒートシンク1と組型の電池14との組み合わせが3組からなる電池セル用ヒートシンクが示されている。
FIG. 8 is a schematic perspective view showing one embodiment of the heat sink for battery cells of the present invention.
In the embodiment shown in FIG. 8, the entire heat sink 1 is formed of a heat conductive member. That is, an independent rectangular first space portion 10 and second space portion 11 that are capable of heat transfer with each other through the boundary portion 12 are provided. The first space portion 10 and the second space portion 11 are vertically arranged vertically in the vertical direction. The heat sink 1 is integrally formed by, for example, extrusion molding. The assembled battery 14 having a size substantially the same as that of the heat sink 1 is attached to the entire surface of the side member 18 forming the first space portion and the second space portion. FIG. 8 shows a heat sink for battery cells in which the combination of the heat sink 1 and the assembled battery 14 includes three sets.

図8には、3組からなる電池セル用ヒートシンクが示されているが、ヒートシンク1と組型の電池14の組み合わせは1組以上あればよい。   FIG. 8 shows three sets of heat sinks for battery cells, but it is sufficient that the heat sink 1 and the assembled battery 14 have one or more combinations.

ヒートシンク1の下方に位置する第2空間部11に矢印16の方向で冷却空気が流入する。そして、ヒートシンク1の他端部でダクト等を使用して冷却空気は反転し、上方に位置する第1空間部10から矢印17の方向で冷却空気が流出する。   Cooling air flows into the second space 11 located below the heat sink 1 in the direction of the arrow 16. Then, the cooling air is reversed using a duct or the like at the other end portion of the heat sink 1, and the cooling air flows out from the first space portion 10 located above in the direction of the arrow 17.

冷却空気の温度は近端部である第2空間部11に流入する時が最も冷たく、他端部に近づくにつれて、温度は上昇する。そして、冷却空気はダクト等で反転した後、近端部である第1空間部10を流出する時が最も高い温度となっている。しかし、図2(b)で示すように、冷却空気の温度は平均化され、均一な温度となる。 The temperature of the cooling air is the coldest when it flows into the second space 11 that is the near end, and the temperature rises as it approaches the other end. Then, after the cooling air is inverted by a duct or the like, the cooling air is at the highest temperature when it flows out of the first space 10 which is the near end. However, as shown in FIG. 2B, the temperature of the cooling air is averaged to a uniform temperature.

発熱体である組型の電池14は、熱伝導性部材である側部材18を通じてヒートシンク1に熱を伝える。そして、冷却空気によって冷却されたヒートシンク1は側部材を通じて伝えられた熱を冷却する。 The assembled battery 14 that is a heating element transfers heat to the heat sink 1 through the side member 18 that is a heat conductive member. The heat sink 1 cooled by the cooling air cools the heat transmitted through the side member.

ヒートシンク1の他端部で冷却空気を反転させる方法は、例えばダクト等を用いて反転させる方法がある。   As a method for reversing the cooling air at the other end of the heat sink 1, for example, there is a method for reversing using a duct or the like.

図8では、冷却空気が下方に位置する矩形の第2空間部11から流入し、例えばダクト等で反転し、上方に位置する矩形の第1空間部10から流出するが、上方に位置する矩形の第1空間部10から流入し、ダクト等で反転し、下方に位置する矩形の第2空間部11から流出してもよい。 In FIG. 8, the cooling air flows in from the rectangular second space portion 11 positioned below, is reversed by, for example, a duct, and flows out from the rectangular first space portion 10 positioned above, but is positioned in the upper position. May flow in from the first space 10, be reversed by a duct or the like, and flow out from the rectangular second space 11 located below.

また、図8に示す電池セル用ヒートシンクの第1空間部10および第2空間部11は水平方向に並列に配置してもよく、その場合、組型の電池は上部材13または下部材19に設置してもよい。   Further, the first space portion 10 and the second space portion 11 of the heat sink for battery cells shown in FIG. 8 may be arranged in parallel in the horizontal direction. In this case, the assembled battery is attached to the upper member 13 or the lower member 19. May be installed.

さらに、図8に示す電池セル用ヒートシンクに備えられた第1空間部10および第2空間部11は、図5で示すように、ダクト等を介して連結してもよい。この場合、ダクト等の仕切板はヒートシンク1の仕切板と同じ高さに設定する必要がある。   Furthermore, the first space 10 and the second space 11 provided in the battery cell heat sink shown in FIG. 8 may be connected via a duct or the like as shown in FIG. In this case, the partition plate such as a duct needs to be set at the same height as the partition plate of the heat sink 1.

図9は、上述した本発明の電池セル用ヒートシンクの他の態様を示す概略斜視図である。
図9は、図8と同様に、ヒートシンク1の全体が熱伝導性部材によって形成されている。即ち、境界部12を通じて相互に熱移動が可能な独立した矩形の第1空間部10および第2空間部11を備えている。第1空間部10および第2空間部11が水平方向に横長に並列して配置されている。第1空間部及び第2空間部を形成する上部材13または下部材19の全面に、ヒートシンク1と略同等の大きさである組型の電池14が取り付けられている。図8には、ヒートシンク1と組型の電池14との組み合わせが3組からなる電池セル用ヒートシンクが示されている。
FIG. 9 is a schematic perspective view showing another embodiment of the heat sink for battery cells of the present invention described above.
In FIG. 9, as in FIG. 8, the entire heat sink 1 is formed of a heat conductive member. That is, an independent rectangular first space portion 10 and second space portion 11 that are capable of heat transfer with each other through the boundary portion 12 are provided. The 1st space part 10 and the 2nd space part 11 are arrange | positioned in parallel in horizontal direction in the horizontal direction. A battery assembly 14 having a size substantially equal to that of the heat sink 1 is attached to the entire surface of the upper member 13 or the lower member 19 forming the first space portion and the second space portion. FIG. 8 shows a heat sink for battery cells in which the combination of the heat sink 1 and the assembled battery 14 includes three sets.

図9には、3組からなる電池セル用ヒートシンクが示されているが、ヒートシンク1と組型の電池14の組み合わせは1組以上あればよい。   FIG. 9 shows three sets of battery cell heat sinks, but it is sufficient that the heat sink 1 and the assembled battery 14 have one or more combinations.

ヒートシンク1の左方に位置する第2空間部11に矢印16の方向で冷却空気が流入する。そして、ヒートシンク1の他端部でダクト等を使用して冷却空気は反転し、右方に位置する第1空間部10から矢印17の方向で冷却空気が流出する。   Cooling air flows in the direction of the arrow 16 into the second space 11 located on the left side of the heat sink 1. Then, the cooling air is reversed using a duct or the like at the other end portion of the heat sink 1, and the cooling air flows out from the first space portion 10 located on the right side in the direction of the arrow 17.

冷却空気の温度は近端部である第2空間部11に流入する時が最も冷たく、他端部に近づくにつれて、冷却空気の温度は上昇する。そして、ダクト等で冷却空気が反転した後、近端部である第1空間部10を流出する時が最も高い温度となっている。しかし、図2(b)で示すように、冷却空気の温度は平均化され、均一な温度となる。 The temperature of the cooling air is the coldest when it flows into the second space 11 that is the near end, and the temperature of the cooling air rises as it approaches the other end. And after cooling air reverse | inverts with a duct etc., it is the highest temperature when it flows out the 1st space part 10 which is a near end part. However, as shown in FIG. 2B, the temperature of the cooling air is averaged to a uniform temperature.

ヒートシンク1の他端部で冷却空気を反転させる方法は、例えばダクト等を用いて反転させる方法がある。   As a method for reversing the cooling air at the other end of the heat sink 1, for example, there is a method for reversing using a duct or the like.

発熱体である組型の電池14は、熱伝導性部材である上部材13または下部材19を通じてヒートシンク1に熱を伝える。そして、冷却空気によって冷却されたヒートシンク1は上部材13または下部材19を通じて伝えられた熱を冷却する。   The assembled battery 14 that is a heating element transfers heat to the heat sink 1 through the upper member 13 or the lower member 19 that is a heat conductive member. The heat sink 1 cooled by the cooling air cools the heat transferred through the upper member 13 or the lower member 19.

図9では、冷却空気は左方に位置する矩形の第2空間部11から流入し、例えばダクト等で反転し、右方に位置する矩形の第1空間部10から流出する。しかし、冷却空気は右方に位置する矩形の第1空間部10から流入し、ダクト等で反転し、左方に位置する矩形の第2空間部11から流出してもよい。 In FIG. 9, the cooling air flows in from the rectangular second space portion 11 located on the left side, is reversed by, for example, a duct, and flows out from the rectangular first space portion 10 located on the right side. However, the cooling air may flow in from the rectangular first space portion 10 located on the right side, be reversed by a duct or the like, and flow out from the rectangular second space portion 11 located on the left side.

さらに、図9に示す電池セル用ヒートシンクに備えられた第1空間部10および第2空間部11は、図5で示すように、ダクト等を介して連結してもよい。この場合、ダクト等の仕切板はヒートシンク1の仕切板と同じ高さに設定する必要がある。 Furthermore, the first space 10 and the second space 11 provided in the battery cell heat sink shown in FIG. 9 may be connected via a duct or the like as shown in FIG. In this case, the partition plate such as a duct needs to be set at the same height as the partition plate of the heat sink 1.

図8、図9に示すヒートシンク1の矩形の第1空間部10および第2空間部11にはフィンが示されていないが、フィンは設置してもよい。フィンを設置した場合には、フィンを設置しない場合より効果的な放熱ができる。   Fins are not shown in the rectangular first space 10 and second space 11 of the heat sink 1 shown in FIGS. 8 and 9, but fins may be installed. When fins are installed, heat can be radiated more effectively than when fins are not installed.

図3〜図5、図8、図9では、冷却空気はダクトを介して往復させたが、例えば図3において、別の冷却空気を4a→4b、5a→5bのように移動させても同様の冷却効果が得られる。この場合、ヒートシンク1には往路と復路に同じ流量の冷却空気を流す必要がある。   In FIGS. 3 to 5, 8, and 9, the cooling air is reciprocated through the duct. However, for example, in FIG. 3, it is the same even if another cooling air is moved as 4 a → 4 b and 5 a → 5 b. The cooling effect can be obtained. In this case, it is necessary to flow cooling air having the same flow rate in the forward path and the backward path through the heat sink 1.

本発明において、冷却用流体は冷却空気を使用しているが、エアコンのように相変化を伴う冷却用流体の場合も同様の冷却効果が得られる。   In the present invention, cooling air is used as the cooling fluid, but the same cooling effect can be obtained also in the case of a cooling fluid with a phase change such as an air conditioner.

本発明において、発熱体をヒートシンクに取付けるには、熱圧着、半田付け、ボルト締めなどの任意の方法が適用できる。
ボルト締めの場合、ボルトを介しての熱伝導が期待できる。さらに発熱体とヒートシンク(筐体)間に伝熱シートを介在させると、発熱体とヒートシンク外面間の熱伝導がより良好になされる。伝熱シートは片面粘着シートが取り扱い易く望ましい。
In the present invention, any method such as thermocompression bonding, soldering, and bolting can be applied to attach the heating element to the heat sink.
In the case of bolt tightening, heat conduction through the bolt can be expected. Further, if a heat transfer sheet is interposed between the heat generating element and the heat sink (housing), the heat conduction between the heat generating element and the heat sink outer surface is improved. The heat transfer sheet is preferably a single-sided pressure-sensitive adhesive sheet because it is easy to handle.

本発明において、ヒートシンクの発熱体を取付けない外面部分に微細凹凸を形成して表面積を大きくしておくと放熱性および防振性が向上する。前記微細凹凸はプレス加工により容易に形成できる。   In the present invention, if the surface area is increased by forming fine irregularities on the outer surface portion of the heat sink where the heating element is not attached, the heat dissipation and vibration isolation properties are improved. The fine irregularities can be easily formed by pressing.

本発明において、押し出し成形によりヒートシンクの型材を作り、加工して作ることが工業的に生産性の面から見て望ましい。   In the present invention, it is desirable from the viewpoint of industrial productivity that a heat sink mold material is made by extrusion and processed.

本発明において、冷却空気をファンにより流す場合のファン中心部が低風速となる偏流は、前記ヒートシンク内フィン或いはダクト内面に切起こしなどを設けることにより改善することができる。   In the present invention, the drift that causes a low wind speed at the center of the fan when cooling air is caused to flow by the fan can be improved by providing cuts or the like on the fins in the heat sink or the inner surface of the duct.

本発明において、ファンによる冷却空気の流れをヒートシンク内に効率良く送り込むためにヒートシンクの冷却空気取込み側の外壁部分に変形自在な軟質材(ビニールなど)をフリル状に取付けて空隙を埋めるようにするとファンによる冷却効果が向上する。   In the present invention, in order to efficiently send the flow of cooling air from the fan into the heat sink, a soft material (such as vinyl) that can be deformed is attached to the outer wall portion on the cooling air intake side of the heat sink so as to fill the gap. The cooling effect by the fan is improved.

本発明において、ヒートシンクの表面にオゾンを酸素に分解する酵素を配しておくと大気中のオゾンが減少し、光化学スモッグなどが抑制される。   In the present invention, if an enzyme that decomposes ozone into oxygen is disposed on the surface of the heat sink, ozone in the atmosphere is reduced, and photochemical smog and the like are suppressed.

図3〜図5に示したこの発明のヒートシンクによる発熱体の冷却の均一性を調べた。
即ち、3個の電池(発熱体)を、冷却空気の移動方向に対して等間隔に、ヒートシンク外面に伝熱シートを介在させてボルト締めにより取付け、その後、前記各電池に通電し、そのときの発熱を、ヒートシンクの冷却空気通路(往路→復路)に外気(冷却空気)を流して冷却した。
The uniformity of cooling of the heating element by the heat sink of the present invention shown in FIGS.
That is, three batteries (heating elements) are mounted at equal intervals with respect to the moving direction of the cooling air by bolting with a heat transfer sheet interposed on the outer surface of the heat sink, and then each battery is energized, The generated heat was cooled by flowing outside air (cooling air) through the cooling air passage (outward path → return path) of the heat sink.

各電池の最大発熱部の温度を、通電開始20分後に測定し、以後10分経過毎に4回、合計5回測定し、各測定回ごとに3個の発熱体の温度差を求め、その最大温度差により冷却の均一性を判定した。   The temperature of the maximum heat generating part of each battery was measured 20 minutes after the start of energization, and then measured 4 times every 10 minutes, a total of 5 times, and the temperature difference between the three heating elements was determined for each measurement time. Cooling uniformity was determined by the maximum temperature difference.

(比較例1)
図3に示したヒートシンクの往路側面に3個の電池を取付けた他は、実施例1と同じ方法により温度測定を行い冷却の均一性を判定した。
(Comparative Example 1)
The temperature was measured by the same method as in Example 1 except that three batteries were attached to the side of the forward path of the heat sink shown in FIG.

(比較例2)
図6に示した従来のヒートシンクの側面に3個の電池を取付けた他は、実施例1と同じ方法により温度測定を行い冷却の均一性を判定した。
冷却の均一性の判定結果を図7の表1に示す。
(Comparative Example 2)
The temperature was measured by the same method as in Example 1 except that three batteries were attached to the side surface of the conventional heat sink shown in FIG.
Table 1 in FIG. 7 shows the determination result of the uniformity of cooling.

表1から明らかなように、実施例1のNo.1〜3(本発明例)では、電池はいずれも均一に冷却され、また冷却温度も規定値を下回り、3個の電池はすべて同等の特性が良好に発現された。
これに対し、比較例1、2(No.4、5)では3個の電池はいずれも温度差が大きくなり、その結果、個々に性能が変動し電子機器全体の機能に支障を来した。
As is apparent from Table 1, No. 1 in Example 1 was obtained. In 1 to 3 (examples of the present invention), the batteries were all cooled uniformly, the cooling temperature was below the specified value, and all the three batteries exhibited the same characteristics well.
On the other hand, in Comparative Examples 1 and 2 (Nos. 4 and 5), the three batteries all had a large temperature difference, and as a result, the performance varied individually and hindered the function of the entire electronic device.

前記実施例では、発熱体を冷却空気通路の復路から最も離れた往路外面または往路から最も離れた復路外面に取付けた場合について説明したが、発熱体を前記往路外面と復路外面の両面に取付けた場合にも同様の冷却効果が得られる。   In the above-described embodiment, the case where the heating element is attached to the outer surface of the outward path farthest from the return path of the cooling air passage or the outer surface of the return path farthest from the outward path is described, but the heating element is attached to both the outer surface of the outward path and the outer surface of the return path In this case, the same cooling effect can be obtained.

さらに、前記実施例では、複数の発熱体を冷却空気の移動方向に対して等間隔に並べて取付けたが、本発明では等間隔でなくても良く、また冷却空気の移動方向に対して直角な方向に並べて取付けても良い。   Furthermore, in the above-described embodiment, the plurality of heating elements are arranged at regular intervals with respect to the moving direction of the cooling air. However, in the present invention, the heating elements may not be equally spaced and are perpendicular to the moving direction of the cooling air. It may be mounted side by side in the direction.

また、前記実施例では、電池を冷却する場合について説明したが、本発明のヒートシンクは、鉛蓄電池、Liイオンバッテリー、Ni−Hバッテリーなどのセル型電池の冷却に利用しても同様の冷却効果が得られる。   In the above embodiment, the case of cooling the battery has been described. However, the heat sink of the present invention can be used for cooling a cell-type battery such as a lead storage battery, a Li-ion battery, or a Ni-H battery. Is obtained.

本発明のヒートシンクは、発熱体を、冷却空気通路を往路と復路に分けて設けたヒートシンクの前記復路から最も離れた往路外面または/および往路から最も離れた復路外面に取付けたものである。往路と復路に同じ流量の冷却用流体が流れることを特徴としている。そのため発熱体となる電池は均一に冷却され、良好な電源供給特性が長期間に渡って安定して得られる。内部がフィンで仕切られた複数のヒートシンクを、冷却空気通路を往路と復路に分けたダクトを介して連結したものは、ダクト内で冷却空気が混合して冷却空気の温度が均一化するため、発熱体はより均一に冷却される。依って、産業上の利用可能性が高い。   In the heat sink of the present invention, the heating element is attached to the outer surface of the outward path farthest from the return path of the heat sink provided with the cooling air passage divided into the forward path and the return path and / or the outer surface of the return path farthest from the forward path. A cooling fluid having the same flow rate flows in the forward path and the return path. Therefore, the battery serving as a heating element is uniformly cooled, and good power supply characteristics can be stably obtained over a long period of time. When connecting multiple heat sinks, the interior of which is partitioned by fins, through a duct that divides the cooling air passage into the forward path and the return path, the cooling air mixes in the duct and the temperature of the cooling air becomes uniform. The heating element is cooled more uniformly. Therefore, industrial applicability is high.

図1は、この発明のヒートシンクを示す概略斜視図である。FIG. 1 is a schematic perspective view showing a heat sink of the present invention. 図2は、ヒートシンクにおける空気の温度上昇を説明する図である。図2(a)は、図6に示す従来のヒートシンクにおける空気の温度上昇を説明する図である。図2(b)は、この発明のヒートシンクにおける空気の温度上昇を説明する図である。FIG. 2 is a diagram for explaining the temperature rise of air in the heat sink. FIG. 2A is a diagram for explaining an increase in air temperature in the conventional heat sink shown in FIG. FIG.2 (b) is a figure explaining the temperature rise of the air in the heat sink of this invention. 図3は、この発明のヒートシンクの1つの態様を示す部分展開図である。FIG. 3 is a partial development view showing one embodiment of the heat sink of the present invention. 図4は、この発明のヒートシンクの他の態様を示す部分展開図である。FIG. 4 is a partial development view showing another embodiment of the heat sink of the present invention. 図5は、この発明のヒートシンクの他の態様を示す部分展開図である。FIG. 5 is a partial development view showing another embodiment of the heat sink of the present invention. 図6は、従来の実装構造の部分展開図である。FIG. 6 is a partial development view of a conventional mounting structure. 表1である。It is Table 1. 図8は、この発明の電池セル用ヒートシンクを示す概略斜視図である。FIG. 8 is a schematic perspective view showing a heat sink for battery cells according to the present invention. 図9は、この発明の電池セル用ヒートシンクの他の態様を示す概略斜視図である。FIG. 9 is a schematic perspective view showing another embodiment of the heat sink for battery cells of the present invention.

符号の説明Explanation of symbols

1 ヒートシンク
2 ヒートシンクの冷却空気通路
3 ヒートシンクの仕切板
4 ヒートシンクの冷却空気往路
4aヒートシンクの冷却空気往路の入口
4bヒートシンクの冷却空気往路の出口
4cヒートシンクの冷却空気往路上面
5 ヒートシンクの冷却空気復路
5aヒートシンクの冷却空気復路の入口
5bヒートシンクの冷却空気復路の出口
5cヒートシンクの冷却空気復路下面
6 ヒートシンクに設けられたフィン
7 発熱体
8 ダクト
8aダクトの冷却空気往路
8bダクトの冷却空気復路
9 ダクトの仕切板
10 第1空間部
11 第2空間部
12 境界部
13 第1空間部の上部材
14 組型の電池
15 L字型熱伝導性部材
16 冷却用空気の流れ(流入)
17 冷却用空気の流れ(流出)
18 側部材
19 下部材
20 電池セル用ヒートシンク
DESCRIPTION OF SYMBOLS 1 Heat sink 2 Cooling air passage of heat sink 3 Heat sink partition plate 4 Heat sink cooling air outbound route 4a Heat sink cooling air outbound route 4b Heat sink cooling air outbound route 4c Heat sink cooling air outbound top surface 5 Heat sink cooling air return route 5a Heat sink 5b Cooling air return path outlet of the heat sink 5c Cooling air return path bottom surface of the heat sink 6 Fins provided on the heat sink 7 Heating element 8 Duct 8a Cooling air outbound path of the duct 8b Cooling air return path of the duct 9 Duct partition plate DESCRIPTION OF SYMBOLS 10 1st space part 11 2nd space part 12 Boundary part 13 Upper member 14 of 1st space part Assembly type battery 15 L-shaped heat conductive member 16 Flow (inflow) of cooling air
17 Flow of cooling air (outflow)
18 Side member 19 Lower member 20 Heat sink for battery cell

Claims (9)

被冷却部品が所定間隔で配置された複数個の組型の電池からなっており、
前記被冷却部品が熱的に接続する部分が熱伝導性部材によって形成されており、
この熱伝導性部材の厚み方向に並んで配置され、相互に熱移動が可能な境界部を介して独立した第1空間部および第2空間部を備え、
冷却用流体が前記第1空間部を往路として通過した後、反転して前記第2空間部を複路として順次通過することによって、被冷却部品を均一に冷却するヒートシンクであって、
所定間隔で配置された複数個の組型の電池からなる被冷却部品が、前記第2空間部の側の熱伝導性部材にのみ配置されることを特徴とするヒートシンク
It consists of a plurality of assembled batteries in which the parts to be cooled are arranged at predetermined intervals.
The part to which the cooled parts are thermally connected is formed of a heat conductive member,
It is arranged side by side in the thickness direction of the thermally conductive member, and includes a first space portion and a second space portion that are independent via a boundary portion capable of heat transfer with each other,
The cooling fluid passes through the first space portion as an outward path , and then reverses and sequentially passes through the second space portion as a double path, thereby uniformly cooling the component to be cooled ,
A heat sink, wherein a component to be cooled including a plurality of assembled batteries arranged at a predetermined interval is arranged only on a heat conductive member on the second space portion side .
前記第1空間部および前記第2空間部が垂直方向に上下に配置されて、前記ヒートシンクの全体が熱伝導性部材によって一体的に形成され、前記冷却用流体が前記第1空間部を通過後、反転して前記第2空間部を順次通過する、請求項1に記載のヒートシンク。   The first space part and the second space part are vertically arranged in a vertical direction, the entire heat sink is integrally formed by a heat conductive member, and the cooling fluid passes through the first space part. The heat sink according to claim 1, wherein the heat sink is reversed and sequentially passes through the second space. 前記第1空間部および前記第2空間部が水平方向に並列して配置されて、前記ヒートシンクの全体が熱伝導性部材によって一体的に形成され、前記冷却用流体が前記第1空間部を通過後、反転して前記第2空間部を順次通過する、請求項1に記載のヒートシンク。   The first space portion and the second space portion are arranged in parallel in the horizontal direction, the entire heat sink is integrally formed by a heat conductive member, and the cooling fluid passes through the first space portion. The heat sink according to claim 1, wherein the heat sink is reversed and sequentially passes through the second space. 前記第1空間部および前記第2空間部が垂直方向に上下に、または、水平方向に並列して配置され、
複数の被冷却部品が熱的に接続する前記第1空間部または前記第2空間部に介在する境界部が仕切り板で形成され、
前記冷却用流体が前記第1空間部を通過後、反転して前記第2空間部を順次通過する、請求項1に記載のヒートシンク。
The first space portion and the second space portion are arranged vertically in the vertical direction or in parallel in the horizontal direction,
A boundary portion interposed between the first space portion or the second space portion to which a plurality of components to be cooled are thermally connected is formed by a partition plate ,
2. The heat sink according to claim 1, wherein the cooling fluid is inverted after passing through the first space portion and sequentially passes through the second space portion.
前記電池が前記第2空間部を形成する下部材に熱的に接続されている、請求項2または4に記載のヒートシンク。   The heat sink according to claim 2 or 4, wherein the battery is thermally connected to a lower member that forms the second space. 前記電池が前記第2空間部を形成する側部材に熱的に接続されている、請求項3または4に記載のヒートシンク。   The heat sink according to claim 3 or 4, wherein the battery is thermally connected to a side member that forms the second space. 前記電池が底部および壁面部からなるL字型の熱伝導性部材を介して、前記第2空間部を形成する下部材または側部材に熱的に接続される、請求項5又は6に記載のヒートシンク。 Said battery via a heat conductive member of L-shaped comprising a bottom portion and wall portion, the thermally connected to the lower member or side member to form a second space, according to claim 5 or 6 heatsink. 被冷却部品が熱的に接続する部分が熱伝導性部材によって形成されており、この熱伝導性部材の厚み方向に並んで配置され、相互に熱移動が可能な境界部を介して独立した第1空間部および第2空間部を備え、冷却用流体が前記第1空間部または前記第2空間部のいずれか一方を通過後、反転して他方の空間部を順次通過することによって、被冷却部品を均一に冷却するヒートシンクを用いた均一な冷却方法であって、
所定の間隔で配置された複数の被冷却部品を前記第2空間部の側を形成する前記熱伝導性部材にのみ配置し、
他方の空間部を前記一方の空間部と前記境界部を介して垂直方向に配置し、冷却用流体を前記第1空間部を往路として通過させた後、反転して第2空間部を複路として順次通過させて、前記所定間隔で配置された被冷却部品を均一に冷却する、均一な冷却方法。
A portion where the parts to be cooled are thermally connected is formed by a heat conductive member, arranged side by side in the thickness direction of the heat conductive member, and separated from each other through a boundary portion capable of heat transfer with each other. 1 space part and 2nd space part are provided, and after cooling fluid passes through either one of said 1st space part or said 2nd space part, it reverses and passes through the other space part sequentially, and is to be cooled A uniform cooling method using a heat sink for uniformly cooling a component,
A plurality of the cooling components arranged at a predetermined interval, and arranged only in the thermally conductive member forming a side of said second space,
The other space portion via the boundary portion between the one space arranged in the vertical direction, double the cooling fluid, after the first space and passed through a forward path, a second space portion is inverted A uniform cooling method in which the parts to be cooled are sequentially passed as a path to uniformly cool the components to be cooled.
被冷却部品が熱的に接続する部分が熱伝導性部材によって形成されており、この熱伝導性部材の厚み方向に並んで配置され、相互に熱移動が可能な境界部を介して独立した第1空間部および第2空間部を備え、冷却用流体が前記第1空間部または前記第2空間部のいずれか一方を通過後、反転して他方の空間部を順次通過することによって、被冷却部品を均一に冷却するヒートシンクを用いた均一な冷却方法であって、
前記境界部を介して相互に熱移動が可能な独立した前記第1空間部および前記第2空間部を垂直方向に上下に準備し、
前記第2空間部を形成する下部材にのみ、所定の間隔で配置された複数被冷却部品を配置し、冷却用流体を前記第1空間部を往路として通過させた後、反転して前記第2空間部を複路として順次通過させて、前記被冷却部品を均一に冷却する、均一な冷却方法。
A portion where the parts to be cooled are thermally connected is formed by a heat conductive member, arranged side by side in the thickness direction of the heat conductive member, and separated from each other through a boundary portion capable of heat transfer with each other. 1 space part and 2nd space part are provided, and after cooling fluid passes through either one of said 1st space part or said 2nd space part, it reverses and passes through the other space part sequentially, and is to be cooled A uniform cooling method using a heat sink for uniformly cooling a component,
Preparing the first space part and the second space part independently capable of heat transfer through the boundary part vertically in the vertical direction;
Only the bottom member to form the second space, by arranging a plurality of the cooling components arranged at predetermined intervals, a cooling fluid, after the first space and passed through a forward path inverts A uniform cooling method in which the part to be cooled is uniformly cooled by sequentially passing the second space portion as a double path .
JP2004172115A 2003-06-13 2004-06-10 Heat sink and uniform cooling method Expired - Fee Related JP4913333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004172115A JP4913333B2 (en) 2003-06-13 2004-06-10 Heat sink and uniform cooling method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003168938 2003-06-13
JP2003168938 2003-06-13
JP2004172115A JP4913333B2 (en) 2003-06-13 2004-06-10 Heat sink and uniform cooling method

Publications (2)

Publication Number Publication Date
JP2005026219A JP2005026219A (en) 2005-01-27
JP4913333B2 true JP4913333B2 (en) 2012-04-11

Family

ID=34197052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004172115A Expired - Fee Related JP4913333B2 (en) 2003-06-13 2004-06-10 Heat sink and uniform cooling method

Country Status (1)

Country Link
JP (1) JP4913333B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100648698B1 (en) 2005-03-25 2006-11-23 삼성에스디아이 주식회사 Secondary battery module
DE112007000991B4 (en) 2006-04-27 2010-10-21 Komatsu Ltd. capacitor module
JP4839955B2 (en) * 2006-05-11 2011-12-21 トヨタ自動車株式会社 Battery pack and vehicle
KR100874055B1 (en) 2007-01-25 2008-12-12 삼성에스디아이 주식회사 Inter-Connecter between Unit Cell and Serial Cell equipped it
FR2915320B1 (en) * 2007-04-19 2010-10-22 Socite De Vehicules Electr ELECTRIC BATTERY COMPRISING THERMAL CONDITIONING MODULES COATED BY A STRUCTURAL MATRIX
JP5161533B2 (en) * 2007-10-18 2013-03-13 株式会社東芝 Battery module and battery pack
KR100998845B1 (en) 2007-11-09 2010-12-08 주식회사 엘지화학 Battery Module of Heat Dissipation Property, Heat Exchange Member, and Large or Middle-sized Battery Pack Employed with the Same
KR100949335B1 (en) 2007-11-12 2010-03-26 삼성에스디아이 주식회사 Battery Module
KR100949334B1 (en) * 2007-11-12 2010-03-26 삼성에스디아이 주식회사 Battery module
KR100949333B1 (en) 2007-11-12 2010-03-26 삼성에스디아이 주식회사 Battery module
KR100989119B1 (en) 2008-10-08 2010-10-20 삼성에스디아이 주식회사 Rechargealbe battery and battery module
US9184425B2 (en) 2009-01-13 2015-11-10 Samsung Sdi Co., Ltd. Battery pack
US20110244294A1 (en) * 2010-04-05 2011-10-06 Gm Global Technology Operations, Inc. Secondary battery thermal management device and system
DE202012102349U1 (en) * 2011-07-14 2012-07-18 Visteon Global Technologies, Inc. battery cooler
JP5982232B2 (en) * 2012-09-07 2016-08-31 住友精密工業株式会社 Cooling system
KR101642326B1 (en) 2013-10-18 2016-07-26 주식회사 엘지화학 Heat sink having 2 or more separated cooling way with vertical placemented common gateway
JP6697332B2 (en) * 2016-06-28 2020-05-20 三洋電機株式会社 Battery system and electric vehicle including battery system
KR102208720B1 (en) 2017-01-05 2021-01-28 주식회사 엘지화학 Battery Heat Sink for Cooling by Phase Change Materials and Method thereof
CN112026588B (en) * 2019-11-28 2022-05-06 长城汽车股份有限公司 Battery pack control method and system and vehicle
CN110992596A (en) * 2019-12-09 2020-04-10 徐州坤元电子科技有限公司 A cabinet that charges for sharing precious lease that charges

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635202B2 (en) * 1984-11-28 1994-05-11 富士通株式会社 Ribbon end detection mechanism
JP2536063B2 (en) * 1988-05-25 1996-09-18 株式会社日立製作所 Cold plate cooling structure
JPH07183676A (en) * 1993-12-24 1995-07-21 Mitsubishi Electric Corp Heat sink for electronic module
JP3451142B2 (en) * 1994-11-18 2003-09-29 本田技研工業株式会社 Battery assembly with temperature control mechanism
JPH09199186A (en) * 1996-01-22 1997-07-31 Toyota Autom Loom Works Ltd Storage battery cooling structure, storage battery module using storage battery cooling structure and storage battery cooling method
JP2004158722A (en) * 2002-11-07 2004-06-03 Furukawa Electric Co Ltd:The Mounting structure for heat sink

Also Published As

Publication number Publication date
JP2005026219A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP4913333B2 (en) Heat sink and uniform cooling method
JP6164304B2 (en) Manufacturing method of semiconductor module cooler, semiconductor module cooler, semiconductor module, and electrically driven vehicle
JP4948625B2 (en) Cooling device having a plurality of fin pitches
US7896063B2 (en) Heat exchanger structure for battery module
US8472193B2 (en) Semiconductor device
US20080144279A1 (en) Heat sink
US7957143B2 (en) Motor controller
EP2065283B1 (en) Cooling device for mobile body
US20130175021A1 (en) Servo amplifier with heat sink having two sets of heat-releasing plates perpendicular to each other
JP2007208116A (en) Air-cooled cooler
CN103369932B (en) Layout method for radiating fins of power device radiator and radiator
JP5335839B2 (en) Power conversion module heat dissipation device
JP6735664B2 (en) Radiator for liquid cooling type cooling device and manufacturing method thereof
JP2009099740A (en) Cooling device for housing
JP2006303306A (en) Power module
JP2019114682A (en) Liquid-cooled cooler
JP2018137418A (en) Heat dissipator using modular cooler
JP2010118497A (en) Heat exchanger equipped with fin with louvers
CN113543575A (en) Radiator and communication equipment
JP2010093034A (en) Cooling device for electronic component
JP5839386B2 (en) heatsink
CN112739156A (en) Heat dissipation module, radiator and power equipment
JP4485835B2 (en) Radiator
JP2004158722A (en) Mounting structure for heat sink
CN216976989U (en) Radiator and air condensing units

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070201

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100625

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100818

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110815

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120119

R151 Written notification of patent or utility model registration

Ref document number: 4913333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees