JP4913252B1 - Medical guide wire and manufacturing method thereof - Google Patents

Medical guide wire and manufacturing method thereof Download PDF

Info

Publication number
JP4913252B1
JP4913252B1 JP2011120225A JP2011120225A JP4913252B1 JP 4913252 B1 JP4913252 B1 JP 4913252B1 JP 2011120225 A JP2011120225 A JP 2011120225A JP 2011120225 A JP2011120225 A JP 2011120225A JP 4913252 B1 JP4913252 B1 JP 4913252B1
Authority
JP
Japan
Prior art keywords
wire
radiopaque
strength
reduced diameter
tensile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011120225A
Other languages
Japanese (ja)
Other versions
JP2012245213A (en
Inventor
富久 加藤
Original Assignee
株式会社パテントストラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社パテントストラ filed Critical 株式会社パテントストラ
Priority to JP2011120225A priority Critical patent/JP4913252B1/en
Application granted granted Critical
Publication of JP4913252B1 publication Critical patent/JP4913252B1/en
Publication of JP2012245213A publication Critical patent/JP2012245213A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】放射線不透過線材と放射線透過線材の単一の線材から成るコイルスプリング体の溶着接合部内の接合形態と、線材の機械的強度特性との相関関係を明確にして、高強度の引張破断強度を有するコイルスプリング体から成る医療用ガイドワイヤに関する技術を開示するものである。
【解決手段】単一の線材の縮径伸線加工前後の放射線不透過線材と放射線透過線材に一定範囲の引張破断強度に差を設け、さらに縮径伸線加工の途中で引張破断強度が逆転する遷移領域を設けることにより、高強度の引張破断強度と高強度の接合部を備えたコイルスプリング体を得て、耐繰り返し回転操作特性を向上させた医療用ガイドワイヤを提供するものである。
【選択図】 図1
A high-strength tensile fracture is clarified by clarifying the correlation between the welding form in a welded joint of a coil spring body made of a single wire made of a radiopaque wire and a radiation-transmissive wire, and the mechanical strength characteristics of the wire. The technology regarding the medical guide wire which consists of a coil spring body which has intensity | strength is disclosed.
SOLUTION: A certain range of tensile rupture strength is provided between a radiation opaque wire and a radiation transmissive wire before and after the diameter reduction drawing of a single wire, and the tensile rupture strength is reversed during the diameter reduction drawing. By providing the transition region, a coil spring body having a high strength tensile fracture strength and a high strength joint portion is obtained, and a medical guide wire with improved resistance to repeated rotation operation is provided.
[Selection] Figure 1

Description

この発明は、細線である放射線不透過線材と放射線透過線材の線材端を溶着接合したコイルスプリング体の接合部における機械的強度特性と、コイルスプリング体を形成する放射線不透過線材と放射線透過線材との機械的強度特性を改善した医療用ガイドワイヤに関する。   The present invention relates to a mechanical strength characteristic in a joint portion of a coil spring body obtained by welding and joining a radiopaque wire which is a thin wire and a wire end of the radiation transmissive wire, and a radiopaque wire and a radiation transmissive wire which form the coil spring body. The present invention relates to a medical guide wire having improved mechanical strength characteristics.

血管内へ挿入する医療用ガイドワイヤ先端部の、コイルスプリング体のコイル線との接合部は、細線でありながら機械的強度特性を考慮して人体への安全確保を満たさなければならず、この為種々の提案がなされている。   The joint of the distal end of the medical guide wire inserted into the blood vessel with the coil wire of the coil spring body must satisfy the safety requirements for the human body in consideration of the mechanical strength characteristics despite being a thin wire. For this reason, various proposals have been made.

特許文献1には、芯線の先端部に放射線不透過材と放射線透過材のコイルスプリング体がねじ込まれ、このねじ込まれている部分が芯線と共に、ろう付け固着されている。
この構成により異種材料であるコイルスプリング体との接合を可能と成して、放射線透視下での視認性の向上を図ること等を目的としている。しかし、線材端部がろう付け接合の為、コイルスプリング体の屈曲変形時に均一な曲率半径を得ることはできない。
In Patent Document 1, a radiopaque material and a coil spring body made of a radiation transmissive material are screwed into a distal end portion of a core wire, and the screwed portion is brazed and fixed together with the core wire.
With this configuration, it is possible to join a coil spring body which is a different material, and to improve visibility under radioscopy. However, since the end portion of the wire rod is brazed, a uniform radius of curvature cannot be obtained when the coil spring body is bent and deformed.

特許文献2には、放射線不透過線材と放射線透過線材の接合部に拡大拡散層を形成し、コイルスプリング体の屈曲変形時に均一な曲率半径を得る技術手段が開示されている。
しかし、放射線不透過線材と放射線透過線材の接合部内の噛み込み形態と各線材の機械的強度との相関関係、さらに高強度の引張破断強度を有し、かつ接合部の接合強度をより向上させる技術手段とその製造方法については、何ら記載されていない。
Patent Document 2 discloses a technical means for obtaining an even radius of curvature when a coil spring body is bent and deformed by forming an enlarged diffusion layer at the joint between the radiopaque wire and the radiolucent wire.
However, there is a correlation between the biting form in the joint between the radiation opaque wire and the radiation transmissive wire and the mechanical strength of each wire, and the tensile strength at the strength is high, and the joint strength of the joint is further improved. There is no description of technical means and manufacturing methods.

特公平4−25024号公報Japanese Patent Publication No. 4-25024 特開平9−38210号公報JP-A-9-38210

従来の医療用ガイドワイヤにおいて、放射線不透過線材と放射線透過線材を溶着接合して成るコイルスプリング体の接合部内の噛み込み形態と、その噛み込み形態を出現させる放射線不透過線材と放射線透過線材との機械的強度との相関関係、さらに、放射線不透過線材と放射線透過線材の線材端を溶着接合して単一の線材とし、強加工の縮径伸線加工における単一の線材の断線防止を図りながら、かつ、高強度の引張破断強度を有する単一の線材から成るコイルスプリング体の技術思想は存在していない。
そしてさらに、強加工の縮径伸線加工の途中において、放射線不透過線材と放射線透過線材の引張破断強度を逆転させる遷移領域を設けて、接合部内の前記噛み込み形態の接合強度をより向上させる技術思想に関しては、何ら存在していない。
In a conventional medical guide wire, a biting form in a joint portion of a coil spring body formed by welding and bonding a radiopaque wire and a radiolucent wire, and a radiopaque wire and a radiolucent wire that cause the biting form to appear Correlation with the mechanical strength of the wire, and furthermore, the wire ends of the radiopaque wire and the radiolucent wire are welded and joined to form a single wire to prevent disconnection of the single wire in the high-strength reduced diameter drawing. There is no technical idea of a coil spring body made of a single wire having a high tensile strength at break while being planned.
In addition, a transition region that reverses the tensile strength of the radiopaque wire and the radiolucent wire is provided in the middle of the strong diameter reduction drawing, thereby further improving the joint strength of the biting form in the joint. There is no technical idea.

この発明の目的は、放射線不透過線材と放射線透過線材の単一の線材から成るコイルスプリング体の、縮径溶着接合部の接合形態と、放射線不透過線材と放射線透過線材の強加工の縮径伸線加工前後の機械的強度特性との相関関係を明確にして、強加工縮径伸線加工における断線防止を図りつつ、高強度の引張破断強度を有する単一の線材から成るコイルスプリング体を得ることができ、さらに強加工縮径伸線加工の途中において、放射線不透過線材と放射線透過線材の引張破断強度が逆転する遷移領域を設けることにより、高強度の縮径溶着接合部と高強度の引張破断強度を備えたコイルスプリング体を得て、耐繰り返し回転操作特性と耐繰り返し曲げ疲労特性が高く、術者が安全に操作できる医療用ガイドワイヤを提供することにある。   The object of the present invention is to provide a coil spring body composed of a single wire of a radiopaque wire and a radiopaque wire, a joint form of a reduced diameter welded joint, and a reduced diameter of a strong process of the radiopaque wire and the radiolucent wire. A coil spring body made of a single wire having a high strength tensile rupture strength while clarifying the correlation with the mechanical strength characteristics before and after wire drawing and preventing breakage in heavy wire diameter reduction wire drawing. By providing a transition region where the tensile rupture strength of the radiopaque wire and the radiolucent wire is reversed in the middle of the high-strength reduced-diameter wire drawing process, a high-strength reduced-diameter weld joint and a high-strength wire can be obtained. It is an object of the present invention to provide a medical guide wire that has a high resistance to repeated rotational operation and high resistance to repeated bending fatigue and can be operated safely by an operator.

請求項1記載の発明は、可とう性細長体から成る芯線と、この芯線の先端部に芯線を貫挿して単一の線材を単数、又は複数巻回成形したコイルスプリング体を装着した医療用ガイドワイヤにおいて、単一の線材は、縮径伸線加工による引張破断強度の増加率が異なる放射線不透過線材と放射線透過線材の線材端を溶着して溶着接合部を形成し、放射線不透過線材は、白金が89.5重量%以上95.5重量%以下で残部がニッケルの白金とニッケルの合金で、引張破断強度が75kgf/mm 以上115kgf/mm 以下とし、かつ、溶着接合部を形成する前記放射線透過線材は、オーステナイト系ステンレス鋼線で、引張破断強度が65kgf/mm 以上95kgf/mm 以下とし、その後、総減面率が90%以上97.6%以下の縮径伸線加工を行って縮径溶着接合部を形成し、縮径溶着接合部を挟んで、放射線不透過線材と放射線透過線材との引張破断強度の差を、いずれか一方の高い値の引張破断強度を分母とし、前記一方の高い値の引張破断強度から他方の低い値の引張破断強度との差を分子とする比率を百分率で表すと、前記百分率が20%以上45%以下とし、縮径溶着接合部の縦断面を、放射線不透過線材と放射線透過線材のいずれか一方の先細り形状の先端位置が、線材の外方へ偏向して他方へ食い込んだ噛み込み形態としたことを特徴とする。 The invention according to claim 1 is a medical device equipped with a core wire made of a flexible elongated body, and a coil spring body formed by inserting a core wire into a tip portion of the core wire and forming a single wire or a plurality of windings. In a guide wire, a single wire consists of a radiopaque wire with a different rate of increase in tensile fracture strength due to reduced diameter drawing and a wire end of the radiolucent wire to form a welded joint. Is an alloy of platinum and nickel with platinum being 89.5 wt% or more and 95.5 wt% or less and the balance being nickel, the tensile breaking strength is 75 kgf / mm 2 or more and 115 kgf / mm 2 or less, and the welded joint portion is The radiation transmitting wire to be formed is an austenitic stainless steel wire having a tensile breaking strength of 65 kgf / mm 2 or more and 95 kgf / mm 2 or less, and thereafter a total area reduction of 90% or more and 97.6% or less. Lower diameter drawing process is performed to form a reduced diameter welded joint, and sandwiching the reduced diameter welded joint, the difference in tensile rupture strength between the radiopaque wire and the radiation transmissive wire is either higher. When the ratio of the difference between the high tensile rupture strength of one value and the tensile rupture strength of the other low value as a numerator is expressed as a percentage, the percentage is 20% or more and 45% or less. The longitudinal cross-section of the reduced diameter welded joint has a biting configuration in which the tapered tip position of either the radiopaque wire or the radiolucent wire is deflected outwardly and bites into the other. It is characterized by.

この構成により、強加工の縮径伸線加工により単一の線材の引張破断強度を向上させ、かつ、強加工後の放射線不透過線材と放射線透過線材との引張破断強度との差を一定範囲とすることにより、強加工縮径伸線加工時の縮径溶着接合部での断線を防止して、双方の引張破断強度を共に向上させ、かつ、縮径溶着接合部での縦断面において、いずれか一方の線材の先細り形状の先端位置が線材の外方へ偏向させることにより、放射線不透過線材と放射線透過線材との接触面積を増大させて噛み込み係着力を向上させ、縮径溶着接合部の引張破断強度を向上させながら、かつ高強度の引張破断強度を有するコイルスプリング体を得ることができ、術者が安全に操作できる医療用ガイドワイヤの提供ができる。
又、この構成により、放射線不透過線材と放射線透過線材の材質、及び引張破断強度を限定することにより、強加工の縮径伸線加工時の縮径溶着接合部の断線を防止しながら、又双方の線材の引張破断強度を共に向上させ、かつ、縮径溶着接合部の縦断面において、いずれか一方の線材の先細り形状の先端位置を、線材の外方へ偏向させることにより、双方の線材の接触面積を増大させて噛み込み係着力を向上させることができる。
そして又、前記線材の引張破断強度を選択することにより縮径伸線加工の途中において、双方の線材の引張破断強度が逆転する遷移領域を設けることにより、いずれか一方の線材の先細り形状の先端位置を線材の外方へより偏向し易くさせ、縮径溶着接合部の引張破断強度をより向上させながら、かつ、高強度の引張破断強度を有し、耐繰り返し回転操作性等に優れたコイルスプリング体から成る医療用ガイドワイヤを得ることができる。
With this configuration, the tensile breaking strength of a single wire is improved by the reduced diameter drawing of the strong processing, and the difference between the tensile breaking strength of the radiopaque wire and the radiation transmitting wire after the strong processing is within a certain range. By preventing the disconnection at the reduced diameter welded joint at the time of strong working reduced diameter drawing, improving both the tensile rupture strength, and in the longitudinal section at the reduced diameter welded joint, By reducing the tip of the tapered shape of either wire to the outside of the wire, the contact area between the radiation opaque wire and the radiation transmissive wire is increased to improve the biting force and reduce diameter welding. A coil spring body having a high tensile rupture strength can be obtained while improving the tensile rupture strength of the part, and a medical guide wire that can be safely operated by an operator can be provided.
In addition, with this configuration, by limiting the material of the radiopaque wire and the radiolucent wire, and the tensile breaking strength, it is possible to prevent disconnection of the reduced diameter welded joint at the time of the strong diameter reduction wire drawing process, or By improving both the tensile breaking strength of both wires, and by deflecting the tapered tip position of either wire to the outside of the wire in the longitudinal section of the reduced diameter welded joint, both wires It is possible to increase the biting engagement force by increasing the contact area.
In addition, by selecting a tensile breaking strength of the wire rod, a tapered region tip of one of the wire rods is provided by providing a transition region in which the tensile breaking strength of both the wire rods is reversed in the course of diameter reduction drawing. A coil that has a high strength tensile rupture strength and excellent resistance to repeated rotation operability while making it easier to deflect the position outward from the wire, further improving the tensile rupture strength of the reduced diameter welded joint. A medical guide wire comprising a spring body can be obtained.

請求項記載の発明は、請求項1記載の医療用ガイドワイヤにおいて、単一の線材を総減面率が97.6%の縮径伸線加工するまでの間に、放射線不透過線材と放射線透過線材の引張破断強度が逆転する遷移領域を形成して成ることを特徴とする。
この構成により、縮径伸線加工の途中において縮径溶着接合部を形成する放射線不透過線材と放射線透過線材の引張破断強度を逆転させる遷移領域を設けることにより、縮径溶着接合部の縦断面のいずれか一方の線材の先細り形状の先端位置を、線材の外方へより偏向し易くさせ、かつ、その状態のまま固めて固着させ、噛み込み係着力をより向上させることができ、耐繰り返し回転操作性に優れたコイルスプリング体から成る医療用ガイドワイヤを得ることができる。
According to a second aspect of the invention, the medical guide wire according to claim 1 Symbol placement, until a single wire a whole cross sectional reduction ratio is processed shrinkage径伸line of 97.6%, radiopaque wire And a transition region in which the tensile breaking strength of the radiation transmitting wire is reversed.
With this configuration, the longitudinal cross section of the reduced diameter welded joint is provided by providing a transition region that reverses the tensile rupture strength of the radiopaque wire and the radiopaque wire forming the reduced diameter welded joint in the middle of the reduced diameter drawing process. The tip of the tapered shape of one of the wire rods can be more easily deflected to the outside of the wire rod, and can be firmly fixed and fixed in this state to further improve the biting engagement force, and is resistant to repetition. A medical guide wire made of a coil spring body excellent in rotational operability can be obtained.

請求項の発明は、請求項記載の医療用ガイドワイヤにおいて、放射線不透過線材と放射線透過線材の引張破断強度が逆転する遷移領域が、縮径伸線加工の総減面率が5%以上50%以下であることを特徴とする。
この構成により、縮径溶着接合部の縦断面のいずれか一方の線材の先細り形状の先端位置を、線材の外方へより偏向し易くさせ、かつ、その状態のまま固めて固着させ、噛み込み係着力をより向上させることができ、下限値を下回れば強加工伸線後の各線材の引張破断強度差が拡大して、この拡大した引張破断強度差がコイルスプリング体の回転操作により縮径溶着接合部にて応力集中を受けて変形し易くなり、又上限値を上回れば先細り形状の先端位置の偏向による噛み込み係着力のより向上効果が期待できなくなるからである。
According to a third aspect of the present invention, in the medical guidewire according to the second aspect, the transition area where the tensile strength at break of the radiopaque wire and the radiolucent wire is reversed has a total area reduction of 5% for the reduced diameter drawing. It is characterized by being 50% or less.
With this configuration, the tapered tip position of one of the longitudinal cross-sections of the reduced diameter welded joint can be more easily deflected to the outside of the wire, and can be firmly fixed and held in that state. The engaging force can be further improved, and if the lower limit value is not reached, the tensile break strength difference of each wire after the strong work drawing increases, and this expanded tensile break strength difference is reduced in diameter by rotating the coil spring body. This is because the welded joint is easily deformed due to stress concentration, and if the value exceeds the upper limit value, the effect of improving the engagement force due to the deflection of the tapered tip position cannot be expected.

請求項の発明は、請求項1〜記載のいずれか一つに記載の医療用ガイドワイヤにおいて、縮径溶着接合部の縦断面の噛み込み形態が、放射線不透過線材、又は放射線透過線材のいずれか一方の先細り形状が波状、又はスパイラル状で他方へ食い込んだ噛み込み形態であることを特徴とする。
この構成により、縮径溶着接合部の縦断面における噛み込み形態において、放射線不透過線材と放射線透過線材との接触面積をより増大させて噛み込み係着力をさらに向上させることができ、耐繰り返し回転操作性のより優れたコイルスプリング体から成る医療用ガイドワイヤを得ることができる。
The invention according to claim 4 is the medical guidewire according to any one of claims 1 to 3 , wherein the biting form of the longitudinal cross-section of the reduced diameter welded joint is a radiopaque wire or a radiolucent wire The tapered shape of any one of these is a wave shape or a spiral shape, and is a biting form that bites into the other.
With this configuration, in the engagement form in the longitudinal cross section of the reduced diameter welded joint, the contact area between the radiation opaque wire and the radiation transmission wire can be further increased, and the engagement engagement force can be further improved, and repeated rotation resistant A medical guide wire made of a coil spring body with better operability can be obtained.

請求項記載の発明は、コイルスプリング体の放射線不透過線材と放射線透過線材の材質、及び機械的強度特性を限定し、かつ、放射線不透過線材と放射線透過線材の引張破断強度が縮径伸線加工の途中において逆転する遷移領域を設けた縮径伸線加工工程とし、放射線不透過線材と放射線透過線材から成るコイルスプリング体を備えた医療用ガイドワイヤの製造方法である。
この構成により、放射線不透過線材と放射線透過線材の材質、及び引張破断強度を限定することにより、強加工の縮径伸線加工時の縮径溶着接合部での断線を防止しながら、双方の線材の引張破断強度を共に向上させ、かつ、縮径伸線加工の途中において、双方の線材の引張破断強度が逆転する遷移領域を設けることにより、縮径溶着接合部での縦断面において、いずれか一方の線材の先細り形状の先端位置を、線材の外方へより偏向し易くさせて縮径溶着接合部の引張破断強度をより向上させながら、かつ、高強度の引張破断強度を有し、耐繰り返し回転操作性等に優れたコイルスプリング体から成る医療用ガイドワイヤを製造することができる。
The invention of claim 5 limits the material of the radiopaque wire and the radiolucent wire of the coil spring body and the mechanical strength characteristics, and the tensile breaking strength of the radiopaque wire and the radiolucent wire is reduced. This is a method for manufacturing a medical guide wire, which is a reduced diameter wire drawing step provided with a transition region that reverses in the middle of wire processing and includes a coil spring body made of a radiopaque wire and a radiolucent wire.
With this configuration, by limiting the material of the radiopaque wire and the radiolucent wire, and the tensile breaking strength, while preventing the disconnection at the reduced diameter welded joint at the time of the strong diameter reduction wire drawing, In the longitudinal cross-section at the reduced diameter welded joint, it is possible to improve both the tensile breaking strength of the wire and provide a transition region in which the tensile breaking strength of both wires is reversed during the diameter reduction drawing process. The tip position of the tapered shape of one of the wires has a high strength tensile rupture strength while further improving the tensile rupture strength of the reduced diameter welded joint by making it easier to deflect outward of the wire. A medical guide wire made of a coil spring body excellent in repeated rotation operability and the like can be manufactured.

医療用ガイドワイヤのコイルスプリング体組付図、及び芯線の正面図と要部拡大図。(実施例1)The coil spring body assembly | attachment figure of a medical guide wire, and the front view and principal part enlarged view of a core wire. Example 1 コイルスプリング体に用いる線材の加工方法。A method of processing a wire used for a coil spring body. 線材の総減面率と引張破断強度の特性図。The characteristic diagram of the total area reduction rate and tensile breaking strength of a wire. 線材の縮径溶着接合部内の偏向噛み込み形態。Deflection biting form in the reduced diameter welded joint of the wire. 線材の縮径溶着接合部内の他の噛み込み形態。The other biting form in the reduced diameter welding joint part of a wire. 医療用ガイドワイヤの先端部組付図。(実施例2)The assembly | attachment figure of the front-end | tip part of a medical guide wire. (Example 2)

この発明の実施形態を図に示すとともに説明する。   An embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の実施例1の医療用ガイドワイヤ(以下ガイドワイヤという)1Aを示し、芯線2の芯線先端部21には、同軸的に外嵌めされたコイルスプリング体(以下コイル体)3Aを有し、コイル体3Aは線直径が0.045mmから0.093mmで先端側は金、又は金を含む合金、白金、又は白金を含む合金、タングステン又はドープタングステン等の放射線不透過線材31の放射線不透過部と、後端側はオーステナイト系ステンレス鋼線の放射線透過線材32の放射線透過部から成り、前記放射線不透過線材31と前記放射線透過線材32の線材端を溶着接合し、後述する縮径溶着接合部81から成る。
そして芯線2の先端部には、先丸円柱状の先導栓5がろう材等の接合部材により、芯線先端部21の先端と放射線不透過線材31のコイル体3Aと部分的に接合されている。又、芯線先端部21の後端部には、接合部材により芯線2と放射線透過線材32のコイル体3Aと後端接合部4にて部分的に接合されている。
FIG. 1 shows a medical guide wire (hereinafter referred to as a guide wire) 1A according to a first embodiment of the present invention, and a coil spring body (hereinafter referred to as a coil body) that is coaxially fitted around the core wire tip 21 of the core wire 2. 3A, the coil body 3A has a wire diameter of 0.045 mm to 0.093 mm, and the tip side is gold, an alloy containing gold, platinum, an alloy containing platinum, tungsten or a doped opaque wire 31 such as doped tungsten. The radiopaque portion and the rear end side are composed of a radiolucent portion of the radiolucent wire 32 of an austenitic stainless steel wire, and the radiopaque wire 31 and the wire rod end of the radiolucent wire 32 are welded and joined, which will be described later. It consists of a reduced diameter welded joint 81.
A leading round cylindrical lead plug 5 is partially joined to the tip of the core wire 2 and the coil body 3A of the radiopaque wire 31 by a joining member such as a brazing material. . Further, the core wire 2 is partially joined to the rear end portion of the core wire tip portion 21 by a joining member at the rear end joint portion 4 and the coil body 3 </ b> A of the radiation transmitting wire 32.

そしてコイル体3Aの外径D1が概ね0.254mmから0.457mmで、長手方向の長さは30mmから300mmから成っている。又、芯線2の芯線先端部21の先端から長手方向の約300mmは、概ね0.060mmから0.200mmの細径の線で、残りの芯線手元部22は、長手方向に約1200mmから約2700mmで、外径D2が0.254mmから0.457mmから成る太径の線から成っている。芯線先端部21の細径部分は、先端側へ徐変縮径し、その断面形状は円形断面、又は矩形断面(図示(ハ))いずれの形状であってもよい。又、芯線2及びコイル体3Aの外周部にふっ素樹脂、又はウレタン樹脂等の樹脂被膜6が形成され、その外周部には、湿潤時に潤滑特性を示すポリビニルピロリドン等の親水性被膜7が形成され、コイル体3Aは外周を直接接触する前記樹脂被膜6と、前記親水性被膜7との二層構造により密閉状に包被されている。   The outer diameter D1 of the coil body 3A is approximately 0.254 mm to 0.457 mm, and the length in the longitudinal direction is 30 mm to 300 mm. Further, about 300 mm in the longitudinal direction from the distal end of the core wire tip 21 of the core wire 2 is a thin wire having a diameter of about 0.060 mm to 0.200 mm, and the remaining core wire proximal portion 22 is about 1200 mm to about 2700 mm in the longitudinal direction. Thus, the outer diameter D2 is composed of a large diameter line composed of 0.254 mm to 0.457 mm. The small-diameter portion of the core wire tip 21 gradually changes and contracts toward the tip, and the cross-sectional shape thereof may be either a circular cross-section or a rectangular cross-section (illustrated (C)). Further, a resin coating 6 such as a fluororesin or a urethane resin is formed on the outer peripheral portion of the core wire 2 and the coil body 3A, and a hydrophilic coating 7 such as polyvinyl pyrrolidone showing lubrication characteristics when wet is formed on the outer peripheral portion. The coil body 3A is hermetically covered by a two-layer structure of the resin coating 6 and the hydrophilic coating 7 that directly contact the outer periphery.

そして本発明のコイル体3Aは、放射線不透過線材31と放射線透過線材32から成る単一の線材を単数、又は複数(後述する実施例2のコイル体3B)巻回成形して成り、前記単一の線材は、縮径伸線加工による引張破断強度の増加率が異なる放射線不透過線材31と放射線透過線材32を用いて線材端を突き合わせ溶着して溶着接合部8を形成し、その後、総減面率が90%以上97.6%以下の縮径伸線加工を行い、縮径溶着接合部81を形成して成る。
そして縮径伸線加工による引張破断強度の増加率が異なるとしたのは、後述する縮径溶着接合部81の縦断面において、放射線不透過線材31、又は放射線透過線材32のいずれか一方の線材の先細り形状の先端位置が、線材の外方へ偏向し易くする為であり、そして又、放射線不透過線材31と放射線透過線材32の引張破断強度が逆転する遷移領域を設ける為である。又総減面率が90%以上97.6%以下の縮径伸線加工としたのは、強加工縮径伸線加工時の縮径溶着接合部81での断線防止を図りながら、放射線不透過線材31と放射線透過線材32の引張破断強度を共に向上させる為である。
尚、ここいう総減面率とは、線材と最終仕上がり線径との間の断面積差を減少率で表したものをいう。又、引張破断強度とは、線材に引張力を加えて破断した時の値を線材の断面積で除した値のことをいう。
The coil body 3A of the present invention is formed by winding a single wire or a plurality of (a coil body 3B of Example 2 to be described later) a single wire made of a radiopaque wire 31 and a radiation transmissive wire 32. One wire is formed by welding the ends of the wire using a radiopaque wire 31 and a radiation transmissive wire 32 having different rates of increase in tensile breaking strength due to reduced diameter drawing to form a weld joint 8. A reduced diameter drawing process is performed in which the area reduction rate is 90% or more and 97.6% or less, and a reduced diameter welded joint 81 is formed.
The reason why the rate of increase in tensile fracture strength due to the reduced diameter wire drawing is different is that either the radiopaque wire 31 or the radiation transmissive wire 32 in the longitudinal section of the reduced diameter welded joint 81 described later. This is because the tip end position of the taper shape is easily deflected to the outside of the wire, and a transition region where the tensile breaking strength of the radiopaque wire 31 and the radiolucent wire 32 is reversed is provided. Also, the reduced diameter drawing with a total area reduction rate of 90% or more and 97.6% or less is intended to prevent disconnection at the reduced diameter welded joint 81 during strong reduced diameter drawing while preventing breakage. This is for improving both the tensile breaking strength of the transmission wire 31 and the radiation transmission wire 32.
Here, the total area reduction rate refers to the difference in cross-sectional area between the wire and the final finished wire diameter expressed as a reduction rate. Further, the tensile breaking strength means a value obtained by dividing a value obtained by applying a tensile force to the wire and breaking it by the cross-sectional area of the wire.

そして具体的には、本発明の実施例の溶着接合部8を形成する放射線不透過線材31は、白金が89.5重量%以上95.5重量%以下で残部がニッケルの白金とニッケルの合金(本実施例は白金が92.5重量%で残部がニッケル)で、引張破断強度が75kgf/mm2 以上115kgf/mm2 以下(本実施例は92kgf/mm2 )を用いている。
そして好ましくは、白金が90.5重量%以上94.5重量%以下で残部がニッケルの白金とニッケルの合金、さらに好ましくは、白金が91.0重量%以上94.0重量%以下で残部がニッケルの白金とニッケルの合金である。この理由は、白金が前記下限値を下回れば、放射線透視下における視認性が低下し、かつ、ニッケル成分の増加により引張破断強度が高くなって縮径溶着接合部81を挟んで放射線不透過線材31と放射線透過線材32の引張破断強度との差が拡大して、縮径伸線加工時に断線が発生し易くなり、強加工の縮径伸線加工は困難となる。又、白金が前記上限値を上回れば、白金成分が多くなることにより縮径伸線加工による放射線不透過線材31の引張破断強度向上効果は期待できなくなるからである。
Specifically, the radiopaque wire 31 forming the welded joint portion 8 according to the embodiment of the present invention is a platinum-nickel alloy in which platinum is 89.5 wt% or more and 95.5 wt% or less and the balance is nickel. (this example platinum is the balance 92.5 wt% nickel), the tensile strength at break 75 kgf / mm 2 or more 115kgf / mm 2 or less (this embodiment 92kgf / mm 2) is used.
Preferably, platinum is 90.5 wt% or more and 94.5 wt% or less and the balance is nickel and an alloy of nickel, more preferably, platinum is 91.0 wt% or more and 94.0 wt% or less and the balance is nickel. Nickel platinum and nickel alloy. The reason for this is that if platinum is below the lower limit, the visibility under radioscopy is reduced, and the tensile fracture strength is increased due to an increase in the nickel component, and the reduced diameter welded joint 81 is sandwiched between the radiopaque wires. The difference between the tensile rupture strength of 31 and the radiation transmitting wire 32 is enlarged, and breakage is likely to occur during the diameter reduction drawing process, which makes it difficult to reduce the diameter of the wire. Moreover, if platinum exceeds the said upper limit, since the platinum component will increase, the effect of improving the tensile fracture strength of the radiopaque wire 31 by the reduced diameter drawing process cannot be expected.

そして又、放射線透過線材32はオーステナイト系ステンレス鋼線で、引張破断強度が65kgf/mm2 以上95kgf/mm2 以下(本実施例では70kgf/mm2 )を用いる。
オーステナイト系ステンレス鋼線を用いる理由は、加工性のよいオーステナイト組織を得る為であり、オーステナイト系ステンレス鋼線は変態点を利用した熱処理による結晶粒の微細化ができず、冷間加工によってのみ結晶粒の微細化が可能で、伸線加工により顕著な加工硬化性を示して引張破断強度を向上させることができるからである。
The radiation transmitting wire 32 is an austenitic stainless steel wire and has a tensile breaking strength of 65 kgf / mm 2 or more and 95 kgf / mm 2 or less (70 kgf / mm 2 in this embodiment).
The reason for using austenitic stainless steel wire is to obtain an austenitic structure with good workability. Austenitic stainless steel wire cannot be refined by heat treatment using transformation points, and can only be crystallized by cold working. This is because the grains can be made finer and the tensile break strength can be improved by exhibiting remarkable work-hardening properties by wire drawing.

そして図2は、本発明のコイル体3Aに用いる放射線不透過線材31と放射線透過線材32から成る線材の加工方法を示す。
線直径が0.295mmで引張破断強度が92kgf/mm2 で白金が92.5重量%で残部がニッケルの放射線不透過線材31と、線直径が0.295mmで引張破断強度が70kgf/mm2 でオーステナイト系ステンレス鋼線の放射線透過線材32の、線材端をバット溶接、又はフラッシュバット溶接により溶着接合部8を形成して、線直径が0.295mmの単一の線材とする。
そして総減面率が97.6%の強加工の縮径伸線加工を行って縮径溶着接合部81を形成し、線直径が0.045mmの線材とし、前記線直径が0.045mmの線材を巻回成形し、本発明のコイル体3Aとする。
そして又、縮径溶着接合部81の縦断面において、前記放射線不透過線材31と前記放射線透過線材32のいずれか一方の線材の先細り形状の先端位置P1が線材の外方へ偏向(中心軸L0よりL1寸法)して、他方(図2では放射線透過線材32)へ食い込んだ噛み込み形態である。
FIG. 2 shows a method of processing a wire composed of a radiopaque wire 31 and a radiation transmissive wire 32 used in the coil body 3A of the present invention.
A radiopaque wire 31 having a wire diameter of 0.295 mm, a tensile breaking strength of 92 kgf / mm 2 , platinum of 92.5% by weight and the balance nickel, and a wire diameter of 0.295 mm and a tensile breaking strength of 70 kgf / mm 2 Then, the welding joint 8 is formed by butt welding or flash butt welding at the end of the radiation transmitting wire 32 of the austenitic stainless steel wire to form a single wire having a wire diameter of 0.295 mm.
Then, the reduced-diameter wire-drawing process is performed with a strong process having a total area reduction ratio of 97.6% to form the reduced-diameter welded joint portion 81 to obtain a wire having a wire diameter of 0.045 mm, and the wire diameter of 0.045 mm. A wire is wound and formed into a coil body 3A of the present invention.
Further, in the longitudinal section of the reduced diameter welded joint 81, the tapered tip position P1 of one of the radiation opaque wire 31 and the radiation transmissive wire 32 is deflected outward (center axis L0). (L1 dimension), and the other bite (radiation transmitting wire 32 in FIG. 2) is a biting form.

次に図3は、白金が92.5重量%で残部がニッケルの放射線不透過線材31(符号イ)と、オーステナイト系ステンレス鋼線の放射線透過線材32(符号ロ)の線直径が0.295mmの各線材を用いて、総減面率が97.6%までの縮径伸線加工を行って、線直径が0.045mmとして各線材の総減面率と引張破断強度との相関関係を示した図である。   Next, FIG. 3 shows that the wire diameter of the radiopaque wire 31 (symbol A) of 92.5% by weight of platinum and the balance of nickel and the radiolucent wire 32 (symbol B) of austenitic stainless steel wire is 0.295 mm. Using each wire rod, the wire was drawn to a total area reduction ratio of 97.6%, and the wire diameter was 0.045 mm, and the correlation between the total area reduction rate of each wire rod and the tensile breaking strength was obtained. FIG.

図3によれば、放射線不透過線材31(符号イ)と放射線透過線材32(符号ロ)とは、縮径伸線加工による引張破断強度の増加率が異なり、本実施例では放射線透過線材32(符号ロ)の方が引張破断強度の増加率が高い。
そして縮径伸線加工前の線直径が0.295mmの放射線不透過線材31(符号イ)と放射線透過線材32(符号ロ)の引張破断強度に差(符号A、本実施例では22kgf/mm2 )を設け、かつ、前記引張破断強度の増加率が高い線材(本実施例では放射線透過線材32、符号ロ)の引張破断強度を低く設定(本実施例では70kgf/mm2 )することにより、放射線不透過線材31と放射線透過線材32の引張破断強度が逆転する遷移点Qが遷移領域R内に現れる。
According to FIG. 3, the radiopaque wire 31 (symbol A) and the radiation transmissive wire 32 (symbol B) have different rates of increase in tensile breaking strength due to diameter reduction drawing, and in this embodiment, the radiation transmissive wire 32. (Code B) has a higher rate of increase in tensile rupture strength.
Then, the difference in tensile strength between the radiopaque wire 31 (symbol A) and the radiation transmissive wire 32 (symbol B) having a wire diameter of 0.295 mm before diameter reduction drawing (symbol A, 22 kgf / mm in this embodiment). 2 ), and the tensile breaking strength of the wire (in this embodiment, the radiation transmitting wire 32, symbol B) having a high rate of increase in tensile breaking strength is set low (70 kgf / mm 2 in this embodiment). A transition point Q where the tensile strength at break of the radiopaque wire 31 and the radiolucent wire 32 is reversed appears in the transition region R.

本実施例では、遷移点Qは総減面率が概ね23%近傍で現れ、又引張破断強度が逆転する遷移領域Rは縮径伸線加工の総減面率が5%以上50%以下である。この理由は、前記下限値を下回れば最終仕上がりの強加工伸線後の各線材の引張破断強度の差が拡大して(図示符号B)、この拡大した引張破断強度差がコイル体3Aを回転操作したとき、縮径溶着接合部に応力集中を受けて変形し易くなり、又前記上限値を上回れば後述する縮径溶着接合部の内部における噛み込み係着力のより向上効果は期待できなくなるからである。   In this embodiment, the transition point Q appears at a total area reduction rate of approximately 23%, and the transition region R where the tensile breaking strength is reversed is a total area reduction ratio of 5% to 50% in the reduced diameter drawing. is there. The reason for this is that if the value falls below the lower limit value, the difference in the tensile breaking strength of each wire after the final finished strong wire drawing increases (indicated by reference symbol B), and this enlarged tensile breaking strength difference rotates the coil body 3A. When operated, it becomes easy to deform due to stress concentration at the reduced diameter welded joint, and if it exceeds the upper limit value, it will not be possible to expect a further improvement effect of the biting force inside the reduced diameter welded joint described later. It is.

そして縮径伸線加工前の線直径が0.295mmの溶着接合部8を形成する放射線不透過線材31と放射線透過線材32の引張破断強度に差を設けることにより、そして又縮径伸線加工の途中において、放射線不透過線材31と放射線透過線材32の引張破断強度が逆転する遷移領域Rを設けることにより、縮径溶着接合部81の縦断面において、放射線不透過線材31と放射線透過線材32とのいずれか一方の線材の先細り形状の先端位置(本実施例では図2の放射線不透過線材31の符号P1)を線材の外方へ偏向させることができる。これにより、縮径溶着接合部81における放射線不透過線材31と放射線透過線材32との溶着接合力を向上させることができる。
この理由は、図4は、縮径溶着接合部81の縦断面の放射線不透過線材31と放射線透過線材32との噛み込み形態を示し、放射線不透過線材31の先細り形状の先端位置P1が外方へ偏向した三角形d1、P1、d2の斜辺の長さの合計(b+c)が、先細り形状の先端位置P0が中心軸L0を通る三角形d1、P0、d2の斜辺の長さの合計(a1+a2)よりも長く、この為縮径溶着接合部81における放射線不透過線材31と放射線透過線材32との接触面積を増大させることができるからである。このことにより、放射線不透過線材31と放射線透過線材32の噛み込み係着力を向上させることができる。
そして又、縮径伸線加工においては、線径の縦断面において、外周部の硬度は中心部よりも高く、これは外周部が中心部よりも引き延ばされて縮径して加工硬化が進んだ結果と考えられ、この外周部が強く引き伸ばされることにより、外周部に偏向した先細り形状の先端位置P1は、中心軸L0を通る先細り形状の先端位置P0よりも長手方向に長く伸びる傾向となる。又、溶着接合部8の形成時、線材端の面圧を不均一、又は偏心させることによっても、また、先細り形状の先端位置P1は線材の外方へ偏向し易くなる。
尚補足すれば、接合部の線材端に高い面直角が要求されるバット溶接よりも、フラッシュバット溶接のほうが火花発生を繰り返す為、接合部の線材端に高い面直角は要求されず、その結果、フラッシュバット溶接が前記縮径伸線加工により先細り形状の先端位置P1を線材の外方へ偏向し易くする為の好ましい接合法である。
Then, by providing a difference in tensile breaking strength between the radiopaque wire 31 and the radiation transmissive wire 32 forming the weld joint 8 having a wire diameter of 0.295 mm before the diameter reduction drawing process, and again, the diameter reduction drawing process. In the middle of the process, by providing a transition region R in which the tensile breaking strengths of the radiopaque wire 31 and the radiolucent wire 32 are reversed, the radiopaque wire 31 and the radiation transmissive wire 32 are formed in the longitudinal section of the reduced diameter welded joint 81. The tip position of the tapered shape of any one of the wire rods (in this embodiment, reference numeral P1 of the radiopaque wire rod 31 in FIG. 2) can be deflected outward of the wire rod. Thereby, the welding joining force of the radiation opaque wire 31 and the radiation transmissive wire 32 in the reduced diameter welded joint portion 81 can be improved.
The reason for this is that FIG. 4 shows the biting form of the radiopaque wire 31 and the radiopaque wire 32 in the longitudinal section of the reduced diameter welded joint 81, and the tapered tip position P1 of the radiopaque wire 31 is outside. The total length (b + c) of the hypotenuses of the triangles d1, P1, and d2 deflected in the direction is the sum of the hypotenuse lengths (a1 + a2) of the triangles d1, P0, and d2 with the tapered tip position P0 passing through the central axis L0. This is because the contact area between the radiopaque wire 31 and the radiolucent wire 32 in the reduced diameter weld joint 81 can be increased. Thereby, the biting engagement force of the radiopaque wire 31 and the radiolucent wire 32 can be improved.
In the diameter reduction drawing process, in the longitudinal section of the wire diameter, the hardness of the outer peripheral portion is higher than that of the central portion. This is considered to be a result of advancement, and when the outer peripheral portion is strongly stretched, the tapered tip position P1 deflected to the outer peripheral portion tends to extend longer in the longitudinal direction than the tapered tip position P0 passing through the central axis L0. Become. Further, when forming the weld joint 8, the tip end position P <b> 1 of the tapered shape can be easily deflected outwardly by making the surface pressure of the end of the wire non-uniform or eccentric.
In addition, since the flash butt welding repeats the generation of sparks more than the butt welding that requires a high surface right angle at the wire end of the joint, a high surface right angle is not required at the wire end of the joint. Flash butt welding is a preferred joining method for facilitating deflection of the tapered tip position P1 to the outside of the wire by the above-described diameter reduction drawing.

そして総減面率が90%以上97.6%以下の強加工の縮径伸線加工において、縮径溶着接合部81の断線防止を図りながら、放射線不透過線材31と放射線透過線材32の引張破断強度を共に向上させる為には、最大の強加工縮径伸線加工時(本実施例では総減面率が97.6%)に放射線不透過線材31と放射線透過線材32の引張破断強度との差を一定範囲内にしておく必要がある。
つまり、縮径溶着接合部81を挟んで、放射線不透過線材31と放射線透過線材32の引張破断強度の差を、いずれか一方の高い値の引張破断強度を分母とし、前記一方の高い値の引張破断強度から他方の低い値の引張破断強度との差を分子とする比率を百分率で表すと、前記百分率は20%以上45%以下である。
Then, in the strong diameter reduction drawing with a total area reduction of 90% or more and 97.6% or less, the tension of the radiopaque wire 31 and the radiation transmission wire 32 is reduced while preventing disconnection of the reduced diameter welded joint 81. In order to improve both the breaking strength, the tensile breaking strength of the radiopaque wire 31 and the radiolucent wire 32 at the time of the maximum strong working reduced diameter drawing (in this embodiment, the total area reduction is 97.6%). It is necessary to keep the difference between and within a certain range.
That is, across the reduced diameter welded joint 81, the difference in tensile rupture strength between the radiopaque wire 31 and the radiation transmissive wire 32 is set to one of the higher values of the tensile rupture strength of either one. When the ratio of the difference between the tensile rupture strength and the other low tensile rupture strength as a molecule is expressed as a percentage, the percentage is 20% or more and 45% or less.

本実施例では、総減面率が97.6%のときオーステナイト系ステンレス鋼線の引張破断強度は230kgf/mm2 であり、又白金が92.5重量%で残部がニッケルの白金とニッケルの合金の引張破断強度は158kgf/mm2 であることから、引張破断強度の差(図示符号B)の百分率は約31.3%である。
そしてこの引張破断強度の差の好ましい百分率は20%から40%であり、さらに好ましくは20%から37%である。この理由は、前記下限値を下回れば、共に引張破断強度を向上させた線材を得ることは期待できず、前記上限値を上回れば強加工の縮径伸線加工の途中で縮径溶着接合部81で断線が発生し易くなり、そして又、縮径溶着接合部81を挟んで引張破断強度の差が拡大しているコイル体3Aは、コイル体3Aを回転操作したとき、縮径溶着接合部81に応力が集中して変形し易くなり、この変形を防いで耐繰り返し回転操作性を向上させる必要があるからである。
In this example, when the total area reduction is 97.6%, the tensile breaking strength of the austenitic stainless steel wire is 230 kgf / mm 2 , platinum is 92.5% by weight, and the balance is nickel and the balance is nickel. Since the tensile rupture strength of the alloy is 158 kgf / mm 2 , the percentage of the difference in tensile rupture strength (indicated by reference symbol B) is about 31.3%.
A preferred percentage of the difference in tensile strength at break is 20% to 40%, more preferably 20% to 37%. The reason for this is that if the value is below the lower limit value, it cannot be expected to obtain a wire with improved tensile fracture strength.If the value exceeds the upper limit value, the diameter-reduced welded joint is in the middle of the strong-stretching wire drawing process. The coil body 3A in which the disconnection is likely to occur at 81 and the difference in tensile fracture strength between the diameter-reduced welded joints 81 is increased, and when the coil body 3A is rotated, the reduced-diameter welded joints This is because the stress concentrates on 81 and is easily deformed, and it is necessary to prevent this deformation and improve the resistance to repeated rotation.

そして又、強加工の縮径溶着接合部81の縦断面において、先細り先端位置P1を線材の外方へ偏向し易くさせ、又前記強加工の縮径伸線加工の途中において引張破断強度が逆転する遷移領域Rを設けて、前記噛み込み係着力を向上させる為には、溶着接合する各線材の引張破断強度に差を設けることが望ましい。
つまり、溶着接合部8を形成する放射線不透過線材31と放射線透過線材32との引張破断強度の差を、いずれか一方の高い値の引張破断強度を分母とし、前記一方の高い値の引張破断強度から他方の低い値の引張破断強度との差を分子とする比率を百分率で表すと、前記百分率は5%以上45%以下である。
本実施例では、縮径伸線加工前の白金が92.5重量%で残部がニッケルの白金とニッケルの合金の引張破断強度は92kgf/mm2 であり、固溶化熱処理(例えば1050℃の熱処理により引張破断強度を65kgf/mm2 から95kgf/mm2 とすること)したオーステナイト系ステンレス鋼線の引張破断強度は70kgf/mm2 であることから、引張破断強度の差(図3符号A)の百分率は約23.9%である。
そしてこの引張破断強度の差の好ましい百分率は5%から35%であり、さらに好ましくは5%から30%である。この理由は、前記下限値を下回れば、前記噛み込み係着力の向上効果は期待できず、又前記上限値を上回れば縮径伸線加工後の各線材の引張破断強度の差が拡大して、この拡大した引張破断強度の差がコイル体3Aの回転操作により縮径溶着接合部81に応力集中を受けて変形し易くなり、この変形を防いで耐繰り返し回転操作性を向上させる必要があるからである。
In addition, in the longitudinal cross section of the strongly deformed reduced diameter welded joint 81, the tapered tip position P1 is easily deflected outward of the wire, and the tensile breaking strength is reversed in the middle of the strongly deformed reduced diameter wire drawing. In order to improve the biting force by providing the transition region R, it is desirable to provide a difference in the tensile breaking strength of each wire to be welded.
That is, the difference between the tensile rupture strengths of the radiopaque wire 31 and the radiation transmissive wire 32 forming the welded joint portion 8 is set with one of the higher values of the tensile rupture strength as the denominator, and the one of the higher values of the tensile rupture. When the ratio of the difference between the strength and the other low tensile rupture strength as a molecule is expressed as a percentage, the percentage is 5% or more and 45% or less.
In this example, the tensile breaking strength of the platinum-nickel alloy with 92.5% by weight of platinum before nickel diameter drawing and the balance being nickel is 92 kgf / mm 2 , and is a solution heat treatment (for example, a heat treatment at 1050 ° C. tensile strength from the tensile strength at break of it) the austenitic stainless steel wire to the 65 kgf / mm 2 and 95kgf / mm 2 is 70 kgf / mm 2, the difference between the tensile strength (Fig. 3 reference numeral a) The percentage is about 23.9%.
A preferred percentage of this difference in tensile strength at break is 5% to 35%, more preferably 5% to 30%. The reason for this is that if the lower limit value is not reached, the effect of improving the biting engagement force cannot be expected, and if the upper limit value is exceeded, the difference in tensile fracture strength between the wire rods after the diameter reduction drawing process increases. The expanded tensile rupture strength difference is easily deformed due to the stress concentration on the reduced diameter welded joint 81 due to the rotation operation of the coil body 3A, and it is necessary to prevent this deformation and improve the resistance to repeated rotation operation. Because.

次に図5は、縮径溶着接合部81の縦断面の放射線不透過線材31と放射線透過線材32との噛み込み形態を示す。
図示(イ)は、放射線不透過線材31の先細り形状がウェイブ状で放射線透過線材32へ食い込んだ噛み込み形態を示し、図示(ロ)は、放射線不透過線材31の先細り形状がスパイラル状で放射線透過線材32へ食い込んだ噛み込み形態を示す。そして又これらを組み合わせた噛み込み形態である。(図示せず)そして図示(ハ)と(ニ)は、先細りスパイラル状のA−A断面とB−B断面を示す。
そしてこの噛み込み形態により放射線不透過線材31と放射線透過線材32との接触面積を増大させて噛み込み係着力を向上させ、縮径溶着接合部81の溶着接合力を向上させることができる。
Next, FIG. 5 shows a biting form of the radiopaque wire 31 and the radiolucent wire 32 in the longitudinal section of the reduced diameter welded joint 81.
The illustration (A) shows a biting form in which the tapered shape of the radiopaque wire 31 is wave-shaped and bites into the radiolucent wire 32, and (B) shows the radiation in which the tapered shape of the radiopaque wire 31 is spiral. The biting form biting into the transmission wire 32 is shown. And it is the biting form which combined these. (Not shown) and (c) and (d) show a tapered spiral AA section and a BB section.
And by this biting form, the contact area of the radiopaque wire 31 and the radiolucent wire 32 can be increased, the biting engagement force can be improved, and the weld joint force of the reduced diameter weld joint 81 can be improved.

そして前記ウェイブ状の噛み込み形態、又はスパイラル状の噛み込み形態は、縮径伸線加工前の放射線不透過線材31と放射線透過線材32の引張破断強度の差、及び縮径伸線加工の途中において引張破断強度が逆転する遷移領域Rを設けることにより発生する。
特に、引張破断強度が逆転する遷移点Qが縮径伸線加工の加工度が低い、つまり総減面率が低い場合(前記遷移領域Rの総減面率が5%側)に現われるときには、前記ウェイブ状、又はスパイラル状の噛み込み形態が発生し易くなり、又総減面率が高い場合(前記遷移領域Rの総減面率が50%側)に現われるときには、斜辺が直線状で三角形の偏向した噛み込み形態となる傾向がある。(図4)
そして補足すれば、縮径伸線加工においては、穴径を徐々に小さく(一般に断面減少率で10%から30%)した複数のダイス(通常5個から10個)を用いて連続してダイス内を通過させる為、ダイス内通過時の縮径伸線抵抗により、又は縮径伸線抵抗を不安定にさせる放射線不透過線材31と放射線透過線材32の引張破断強度の差等の存在により、前記噛み込み形態が発生する、と考えられる。
The wave-like biting form or the spiral-like biting form includes the difference in tensile breaking strength between the radiopaque wire 31 and the radiation transmissive wire 32 before the diameter reduction drawing process, and the middle of the diameter reduction drawing process. Is generated by providing a transition region R in which the tensile strength at break is reversed.
In particular, when the transition point Q where the tensile strength at break is reversed, the degree of reduction in diameter drawing is low, that is, when the total area reduction is low (the total area reduction of the transition region R is 5%), When the wave-like or spiral bite shape is likely to occur and the total area reduction is high (the total area reduction of the transition region R is 50%), the hypotenuse is a straight line and a triangle There is a tendency to become a biased biting form. (Fig. 4)
In addition, in addition, in diameter reduction drawing, a plurality of dies (usually 5 to 10) whose diameter is gradually reduced (generally 10% to 30% in cross-section reduction rate) are used to continuously dies. In order to pass through the inside, due to the reduced diameter drawing resistance when passing through the die, or due to the presence of a difference in tensile breaking strength between the radiation opaque wire 31 and the radiation transmission wire 32 that makes the reduced diameter drawing resistance unstable, It is considered that the biting form occurs.

そしてコイル体3Aに用いる放射線透過線材32のオーステナイト系ステンレス鋼線は、線直径が0.045mm(総減面率が97.6%)から0.093mm(総減面率が90%)で、その化学成分は、重量%でC:0.15%以下、Si:1%以下、Mn:2%以下、Ni:6%〜16%、Cr:16%〜20%、P:0.045%以下、S:0.030%以下、Mo:3%以下、残部が鉄及び不可避的不純物から成る。尚、Cは引張破断強度向上の為には、0.005%以上が望ましく、粒界腐食抑制の観点から0.15%以下が望ましい。特に線直径が0.045mmから0.075mmで、総減面率が94%以上の縮径伸線加工を可能として安定生産する為には、再溶解材を用いたSUS302材、SUS304材、又はSUS316材が望ましい。
この理由は、ステンレス鋼線の伸線時の断線原因は、表面疵もさることながら酸化物系介在物であることが最も多く、細線・極細線化するほどこの傾向が著しい。
そしてその化学成分は、介在物生成元素であるAl,Ti,Ca,Oの成分は低く、又硫化物の作用で伸線低下を引き起こすSも低く抑える。具体的なオーステナイト系ステンレス鋼線の化学成分は、重量%で、C:0.08%以下、Si:0.10%以下、Mn:2%以下、P:0.045%以下、S:0.010%以下、Ni:8%〜12%、Cr:16%〜20%、Mo:3%以下、Al:0.0020%以下、Ti:0.10%以下、Ca:0.005%以下、O:0.0020%以下、で残部がFeと不可避的不純物から成る。
そして再溶解材の製造方法としては、ステンレス鋼の溶製後のインゴットにフラックスを用いたエレクトロスラグ再溶解の製造方法等である。トリプル溶解材を用いても前記同様の効果が得られる。
And the austenitic stainless steel wire of the radiation transmission wire 32 used for the coil body 3A has a wire diameter of 0.045 mm (total area reduction rate of 97.6%) to 0.093 mm (total area reduction rate of 90%), The chemical composition is C: 0.15% or less, Si: 1% or less, Mn: 2% or less, Ni: 6% to 16%, Cr: 16% to 20%, P: 0.045% by weight. Hereinafter, S: 0.030% or less, Mo: 3% or less, and the balance consists of iron and inevitable impurities. C is preferably 0.005% or more for improving the tensile strength at break, and is preferably 0.15% or less from the viewpoint of suppressing intergranular corrosion. In particular, in order to stably produce a wire having a diameter of 0.045 mm to 0.075 mm and a reduced diameter drawing with a total area reduction rate of 94% or more, SUS302 material, SUS304 material using a remelted material, or SUS316 material is desirable.
The reason for this is that the cause of disconnection when drawing a stainless steel wire is most often oxide inclusions as well as surface flaws, and this tendency becomes more prominent as the wire becomes finer and finer.
And the chemical component is low in the components of Al, Ti, Ca, O, which are inclusion generation elements, and also suppresses S that causes a reduction in wire drawing due to the action of sulfide. The specific chemical components of the austenitic stainless steel wire are, by weight, C: 0.08% or less, Si: 0.10% or less, Mn: 2% or less, P: 0.045% or less, S: 0 0.010% or less, Ni: 8% to 12%, Cr: 16% to 20%, Mo: 3% or less, Al: 0.0020% or less, Ti: 0.10% or less, Ca: 0.005% or less , O: 0.0020% or less, with the balance being Fe and inevitable impurities.
And as a manufacturing method of a remelting material, it is the manufacturing method etc. of the electroslag remelting which used the flux for the ingot after melting of stainless steel. Even when a triple melting material is used, the same effect as described above can be obtained.

次に図6は、本発明の実施例2のガイドワイヤ1Bの先端部のコイル体3Bを示し、後端部は前記実施例1と同様であり、樹脂被膜6、及び親水性被膜7は省略してある。尚樹脂被膜6、及び親水性被膜7は形成してもしなくてもいずれでもよい。
そして前記実施例1と異なるところは、放射線不透過線材31と放射線透過線材32から成る単一の線材を2本から6本(実施例2では3本)用いて巻回成形、又は撚り線機等を用いて撚合構成した多条線から成るコイル体3Bを形成することである。尚、前記単一の線材は前記実施例1と同様の線材を用いる。
この構成により、コイル体3Bを回転操作したとき、回転操作により狭窄病変部内での進退操作を容易にし、かつ、先端側への回転伝達性能を向上させることができる。この理由は、前記実施例1のような単一の線材の単線を巻回成形したコイル体3Aよりも、単一の線材を多数本用いて巻回成形、又は撚合構成した多条線から成るコイル体3Bのほうが、芯線2の長手方向に対する傾斜角θが小さく、その結果1回転させたときのコイル体3Bの進退距離L2は前記実施例1よりも長くなり、かつ、傾斜角θを小さくすることにより隣接線相互による回転力を高めて、先端側への回転伝達性能を向上させることができるからである。
Next, FIG. 6 shows the coil body 3B at the tip of the guide wire 1B according to the second embodiment of the present invention, the rear end is the same as that in the first embodiment, and the resin coating 6 and the hydrophilic coating 7 are omitted. It is. The resin coating 6 and the hydrophilic coating 7 may or may not be formed.
The difference from the first embodiment is that a single wire made of a radiopaque wire 31 and a radiation transmissive wire 32 is used in two to six (three in the second embodiment), or is wound or twisted. Is to form a coil body 3B composed of a multi-strand wire that is twisted and configured using the like. The single wire is the same wire as in Example 1.
With this configuration, when the coil body 3B is rotated, the advancement / retraction operation in the stenotic lesion can be facilitated by the rotation operation, and the rotation transmission performance to the distal end side can be improved. The reason for this is that the coil body 3A is formed by winding a single wire of a single wire as in the first embodiment. In the coil body 3B, the inclination angle θ with respect to the longitudinal direction of the core wire 2 is smaller. As a result, the advancing / retreating distance L2 of the coil body 3B when rotated once is longer than that in the first embodiment, and the inclination angle θ is This is because by reducing the rotational force, the rotational force due to the adjacent lines can be increased, and the rotation transmission performance to the distal end side can be improved.

次に、本発明のガイドワイヤの製造方法について説明する。
可とう性細長体から成る芯線と、この芯線の先端部に芯線を貫挿して単一の線材を単数、又は複数巻回成形したコイルスプリング体を装着した医療用ガイドワイヤの製造方法において、
単一の線材は、放射線不透過線材と放射線透過線材の線材端を溶着して溶着接合部を形成し、放射線不透過線材は、白金が89.5重量%以上95.5重量%以下で残部がニッケルの白金とニッケルの合金で、引張破断強度が75kgf/mm2 以上115kgf/mm2 以下とし、放射線透過線材は、オーステナイト系ステンレス鋼線で、引張破断強度が65kgf/mm2 以上95kgf/mm2 以下とし、放射線不透過線材と放射線透過線材とが溶着接合部を挟んで交互に連続配置した単一の線材とする工程と、
その後単一の線材に総減面率が90%以上97.6%以下の縮径伸線加工を行い、縮径伸線加工の途中の総減面率が5%から50%において、放射線不透過線材を放射線透過線材の引張破断強度が逆転する遷移領域を設けた縮径伸線加工工程とし、縮径伸線加工工程において、縮径溶着接合部を挟んで放射線不透過線材と放射線透過線材の引張破断強度の差を、放射線透過線材の引張破断強度を分母とし、放射線透過線材の引張破断強度から放射線不透過線材の引張破断強度との差を分子とする比率を百分率で表すと、百分率が20%以上45%以下とし、縮径伸線加工した単一の線材を、単数又は複数巻回成形して長尺状のコイル体とする工程と、
長尺状のコイル体を所定長切断して縮径溶着接合部を挟んで放射線不透過線材と放射線透過線材から成るコイルスプリング体とする工程から成ることを特徴とする。
尚、縮径伸線加工した単一の線材を巻回成形して長尺状のコイル体とする工程には、芯金の外周に巻回成形した後に芯金を抜き出して長尺状のコイル体とする工程も含まれる。
Next, the manufacturing method of the guide wire of this invention is demonstrated.
In a manufacturing method of a medical guide wire equipped with a core wire composed of a flexible elongated body, and a coil spring body formed by inserting a core wire into a tip portion of the core wire and forming a single wire or a plurality of windings,
The single wire is formed by welding the radiopaque wire and the wire end of the radiolucent wire to form a welded joint, and the radiopaque wire has a balance of platinum of 89.5 wt% or more and 95.5 wt% or less. Is an alloy of platinum and nickel with a tensile breaking strength of 75 kgf / mm 2 or more and 115 kgf / mm 2 or less, the radiation transmitting wire is an austenitic stainless steel wire, and the tensile breaking strength is 65 kgf / mm 2 or more and 95 kgf / mm. 2 or less, a process of making a radiopaque wire and a radiolucent wire a single wire alternately arranged continuously with a welded joint interposed therebetween,
After that, a single wire is subjected to diameter reduction drawing with a total area reduction of 90% to 97.6%. When the total area reduction ratio during the diameter reduction drawing process is 5% to 50%, no radiation loss occurs. The transmission wire is a reduced diameter drawing process provided with a transition region in which the tensile breaking strength of the radiation transmission wire is reversed. In the reduced diameter drawing process, the radiation opaque wire and the radiation transmission wire are sandwiched between the reduced diameter welded joints. The difference between the tensile rupture strengths of the radiation transmissive wire and the ratio of the rupture strength of the radiation transmissive wire to the tensile rupture strength of the radiation opaque wire as a numerator is expressed as a percentage. 20% or more and 45% or less, and a step of forming a long coil body by single- or multiple-winding a single wire that has undergone reduced diameter drawing,
It is characterized by comprising a step of cutting a long coil body by a predetermined length and forming a coil spring body made of a radiopaque wire and a radiolucent wire with a reduced diameter welded joint interposed therebetween.
In addition, in the process of forming a long coil body by winding and forming a single wire having a reduced diameter and drawing, a long coil is obtained by winding the core metal around the outer periphery and then extracting the core metal. The process of making a body is also included.

この構成により、放射線不透過線材と放射線透過線材の材質、及び引張破断強度を限定することにより、強加工の縮径伸線加工時の縮径溶着接合部での断線を防止しながら、双方の線材の引張破断強度を共に向上させ、かつ、縮径伸線加工の途中において、双方の線材の引張破断強度が逆転する遷移領域を設けることにより、縮径溶着接合部での縦断面において、いずれか一方の線材の先細り形状の先端位置を、線材の外方へより偏向し易くさせて縮径溶着接合部の引張破断強度をより向上させながら、かつ、高強度の引張破断強度を有し、耐繰り返し回転操作性等に優れたコイルスプリング体から成る医療用ガイドワイヤを製造することができる。   With this configuration, by limiting the material of the radiopaque wire and the radiolucent wire, and the tensile breaking strength, while preventing the disconnection at the reduced diameter welded joint at the time of the strong diameter reduction wire drawing, In the longitudinal cross-section at the reduced diameter welded joint, it is possible to improve both the tensile breaking strength of the wire and provide a transition region in which the tensile breaking strength of both wires is reversed during the diameter reduction drawing process. The tip position of the tapered shape of one of the wires has a high strength tensile rupture strength while further improving the tensile rupture strength of the reduced diameter welded joint by making it easier to deflect outward of the wire. A medical guide wire made of a coil spring body excellent in repeated rotation operability and the like can be manufactured.

そして補足すれば、本発明のコイル体3A、3Bには、先端側が径小の等径部と後端側が径大の等径部から成る径小等径径大等径コイル体の構造、及び手元側から先端側にかけてテーパ形状の徐変縮径するコイル体の構造(図示せず)も含まれる。   In addition, in the coil bodies 3A and 3B of the present invention, the structure of a small-diameter, large-diameter, equal-diameter coil body composed of a constant-diameter portion having a small diameter on the front end side and an equal-diameter portion having a large diameter on the rear end side, Also included is a coiled structure (not shown) having a taper-shaped gradually changing diameter from the proximal side to the distal end side.

(発明の効果)
以上説明のとおり、本発明の医療用ガイドワイヤは、放射線不透過線材と放射線透過線材を溶着接合した単一の線材から成るコイルスプリング体の縮径溶着接合部内の接合形態と、放射線不透過線材と放射線透過線材の縮径伸線加工前後の機械的強度特性との相関関係を明確にして、強加工の縮径伸線加工における断線防止を図りつつ、高強度の引張破断強度を有する単一の線材から成るコイルスプリング体を得て、さらに強加工の縮径伸線加工の途中において放射線不透過線材と放射線透過線材の引張破断強度が逆転する遷移領域を設けることにより、高強度の縮径溶着接合部と高強度の引張破断強度を備えたコイルスプリング体を得て、耐繰り返し回転操作特性と耐繰り返し曲げ疲労特性が高く、術者が安全に操作できる医療用ガイドワイヤを提供するものである。以上の諸効果がある。
(The invention's effect)
As described above, the medical guide wire according to the present invention includes a joint form in a reduced diameter welded joint of a coil spring body composed of a single wire obtained by welding a radiopaque wire and a radiopaque wire, and a radiopaque wire. Clarification of the mechanical strength characteristics before and after the diameter reduction drawing of the radiation transmitting wire, and the prevention of the disconnection in the diameter reduction drawing of the strong processing, and a single having a high strength tensile breaking strength A high-strength reduced diameter is obtained by obtaining a transition region in which the tensile rupture strength of the radiation-opaque wire and the radiation-transmitted wire is reversed in the middle of the strong-stretching wire drawing process. A coil spring body with welded joints and high tensile breaking strength is obtained, and a medical guide that can be operated safely by the surgeon with high resistance to repeated rotational operation and resistance to repeated bending fatigue. It is intended to provide a ya. There are the above various effects.

1 ガイドワイヤ(医療用ガイドワイヤ)
2 芯線
3A、3B コイルスプリング体(コイル体)
31 放射線不透過線材
32 放射線透過線材
8 溶着接合部
81 縮径溶着接合部
1 Guide wire (medical guide wire)
2 Core wires 3A, 3B Coil spring body (coil body)
31 radiation opaque wire 32 radiation transparent wire 8 welded joint 81 reduced diameter welded joint

Claims (5)

可とう性細長体から成る芯線と、前記芯線の先端部に前記芯線を貫挿して単一の線材を単数、又は複数巻回成形したコイルスプリング体を装着した医療用ガイドワイヤにおいて、
前記単一の線材は、縮径伸線加工による引張破断強度の増加率が異なる放射線不透過線材と放射線透過線材の線材端を溶着して溶着接合部を形成し、
前記放射線不透過線材は、白金が89.5重量%以上95.5重量%以下で残部がニッケルの白金とニッケルの合金で、引張破断強度が75kgf/mm 以上115kgf/mm 以下とし、かつ、
前記溶着接合部を形成する前記放射線透過線材は、オーステナイト系ステンレス鋼線で、引張破断強度が65kgf/mm 以上95kgf/mm 以下とし、
その後、総減面率が90%以上97.6%以下の縮径伸線加工を行って縮径溶着接合部を形成し、
前記縮径溶着接合部を挟んで、前記放射線不透過線材と前記放射線透過線材との引張破断強度の差を、いずれか一方の高い値の引張破断強度を分母とし、前記一方の高い値の引張破断強度から他方の低い値の引張破断強度との差を分子とする比率を百分率で表すと、前記百分率が20%以上45%以下とし、
前記縮径溶着接合部の縦断面を、前記放射線不透過線材と前記放射線透過線材のいずれか一方の先細り形状の先端位置が、線材の外方へ偏向して他方へ食い込んだ噛み込み形態としたことを特徴とする医療用ガイドワイヤ。
In a medical guide wire fitted with a coil spring body formed of a flexible elongated body, and a single wire or a plurality of windings formed by inserting the core wire into a distal end portion of the core wire, or a single wire,
The single wire is formed by welding the radiopaque wire and the wire end of the radiation transmissive wire with different rates of increase in tensile breaking strength due to reduced diameter drawing to form a weld joint,
The radiopaque wire is an alloy of platinum and nickel in which platinum is 89.5 wt% or more and 95.5 wt% or less and the balance is nickel, and the tensile breaking strength is 75 kgf / mm 2 or more and 115 kgf / mm 2 or less, and ,
The radiation transmissive wire material forming the welded joint is an austenitic stainless steel wire having a tensile breaking strength of 65 kgf / mm 2 or more and 95 kgf / mm 2 or less,
Thereafter, a reduced diameter wire-drawing process with a total area reduction rate of 90% to 97.6% is performed to form a reduced diameter welded joint,
The difference in tensile breaking strength between the radiopaque wire and the radiolucent wire with the reduced diameter welded joint interposed therebetween, and the higher tensile tensile strength of either one as the denominator. When the ratio of the difference between the tensile strength at break of the other low value from the rupture strength is expressed as a percentage, the percentage is 20% or more and 45% or less,
The longitudinal cross-section of the reduced diameter welded joint has a biting form in which the tapered tip position of either the radiopaque wire or the radiolucent wire is deflected outwardly and bites into the other. A medical guide wire characterized by the above.
請求項1記載の医療用ガイドワイヤにおいて、
前記単一の線材を総減面率が97.6%の縮径伸線加工するまでの間に、前記放射線不透過線材と前記放射線透過線材の引張破断強度が逆転する遷移領域を形成して成ることを特徴とする医療用ガイドワイヤ。
The medical guide wire according to claim 1 Symbol placement,
A transition region in which the tensile rupture strength of the radiopaque wire and the radiolucent wire is reversed is formed before the single wire is drawn with a reduced diameter of 97.6%. A medical guide wire characterized by comprising:
請求項記載の医療用ガイドワイヤにおいて、
前記放射線不透過線材と前記放射線透過線材の引張破断強度が逆転する遷移領域が、縮径伸線加工の総減面率が5%以上50%以下であることを特徴とする医療用ガイドワイヤ。
The medical guidewire according to claim 2 ,
A medical guide wire characterized in that the transition area where the tensile rupture strength of the radiopaque wire and the radiopaque wire is reversed has a total area reduction ratio of 5% to 50% in the reduced diameter drawing process.
請求項1〜記載のいずれか一つに記載の医療用ガイドワイヤにおいて、
前記縮径溶着接合部の縦断面の噛み込み形態が、前記放射線不透過線材、又は前記放射線透過線材のいずれか一方の先細り形状が波状、又はスパイラル状で他方へ食い込んだ噛み込み形態としたことを特徴とする医療用ガイドワイヤ。
In the medical guidewire as described in any one of Claims 1-3 ,
The biting form of the longitudinal cross-section of the reduced diameter welded joint is a biting form in which either one of the radiopaque wire or the radiolucent wire is tapered in a wavy or spiral shape and bites into the other. A medical guide wire characterized by
可とう性細長体から成る芯線と、前記芯線の先端部に前記芯線を貫挿して単一の線材を単数、又は複数巻回成形したコイルスプリング体を装着した医療用ガイドワイヤの製造方法において、
前記単一の線材は、放射線不透過線材と放射線透過線材の線材端を溶着して溶着接合部を形成し、
前記放射線不透過線材は、白金が89.5重量%以上95.5重量%以下で残部がニッケルの白金とニッケルの合金で、引張破断強度が75kgf/mm以上115kgf/mm以下とし、
前記放射線透過線材は、オーステナイト系ステンレス鋼線で、引張破断強度が65kgf/mm以上95kgf/mm以下とし、
前記放射線不透過線材と前記放射線透過線材とが前記溶着接合部を挟んで交互に連続配置した単一の線材とする工程と、
その後前記単一の線材に総減面率が90%以上97.6%以下の縮径伸線加工を行い、縮径伸線加工の途中の総減面率が5%から50%において、前記放射線不透過線材の引張破断強度を前記放射線透過線材の引張破断強度が上回って逆転する遷移領域を設けた縮径伸線加工工程とし、
前記縮径伸線加工工程において、前記縮径溶着接合部を挟んで前記放射線不透過線材と前記放射線透過線材の引張破断強度の差を、前記放射線透過線材の引張破断強度を分母とし、前記放射線透過線材の引張破断強度から前記放射線不透過線材の引張破断強度との差を分子とする比率を百分率で表すと、前記百分率が20%以上45%以下とし、
前記縮径伸線加工した単一の線材を、単数又は複数巻回成形して長尺状のコイル体とする工程と、
前記長尺状のコイル体を所定長切断して前記縮径溶着接合部を挟んで前記放射線不透過線材と前記放射線透過線材から成る前記コイルスプリング体とする工程から成ることを特徴とする医療用ガイドワイヤの製造方法。
In a method of manufacturing a medical guide wire equipped with a core wire composed of a flexible elongated body, and a coil spring body in which the core wire is inserted into the distal end portion of the core wire to form a single wire or a plurality of windings,
The single wire is formed by welding the wire end of the radiopaque wire and the radiation transmissive wire to form a weld joint,
The radiopaque wire is an alloy of platinum and nickel in which platinum is 89.5 wt% or more and 95.5 wt% or less and the balance is nickel, and the tensile breaking strength is 75 kgf / mm 2 or more and 115 kgf / mm 2 or less,
The radiation transmitting wire is an austenitic stainless steel wire having a tensile breaking strength of 65 kgf / mm 2 or more and 95 kgf / mm 2 or less,
The step of making the radiopaque wire and the radiolucent wire a single wire alternately arranged alternately with the welding joint interposed therebetween,
Thereafter, the single wire is subjected to diameter reduction drawing with a total area reduction of 90% or more and 97.6% or less. When the total area reduction ratio during the diameter reduction drawing is 5% to 50%, With a reduced diameter drawing process provided with a transition region that reverses the tensile breaking strength of the radiopaque wire above the tensile breaking strength of the radiopaque wire,
In the reduced diameter wire drawing step, the difference in tensile breaking strength between the radiation opaque wire and the radiation transmissive wire across the reduced diameter welded joint is used as the denominator of the tensile breaking strength of the radiation transmissive wire, and the radiation Expressing the percentage of the difference between the tensile breaking strength of the transmission wire and the tensile breaking strength of the radiopaque wire as a molecule, the percentage is 20% or more and 45% or less,
A step of forming a single coil or a plurality of windings into a long coil body, the single wire subjected to the reduced diameter drawing; and
The method comprises the step of cutting the long coil body to a predetermined length and forming the coil spring body composed of the radiopaque wire and the radiolucent wire with the reduced diameter welded joint interposed therebetween. Guide wire manufacturing method.
JP2011120225A 2011-05-30 2011-05-30 Medical guide wire and manufacturing method thereof Active JP4913252B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011120225A JP4913252B1 (en) 2011-05-30 2011-05-30 Medical guide wire and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011120225A JP4913252B1 (en) 2011-05-30 2011-05-30 Medical guide wire and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP4913252B1 true JP4913252B1 (en) 2012-04-11
JP2012245213A JP2012245213A (en) 2012-12-13

Family

ID=46170963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011120225A Active JP4913252B1 (en) 2011-05-30 2011-05-30 Medical guide wire and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4913252B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654912A (en) * 1992-08-07 1994-03-01 Asahi Intetsuku Kk Medical guide wire and manufacture of its coil
JPH0938210A (en) * 1995-08-01 1997-02-10 Asahi Intec Kk Medical guide wire
JP2001514544A (en) * 1997-03-06 2001-09-11 パークサージ,インコーポレイテッド Hollow medical wire and method of constructing the same
JP2007000664A (en) * 2006-10-10 2007-01-11 Asahi Intecc Co Ltd Baking mold and manufacturing method of guide wire using the baking mold
JP2008012276A (en) * 2006-10-20 2008-01-24 Asahi Intecc Co Ltd Medical guide wire, assembly of medical guide wire and micro-catheter, and assembly of medical guide wire, balloon catheter and guiding catheter
JP2008161491A (en) * 2006-12-28 2008-07-17 Asahi Intecc Co Ltd Medical guide wire
JP2009000337A (en) * 2007-06-22 2009-01-08 Asahi Intecc Co Ltd Medical guide wire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654912A (en) * 1992-08-07 1994-03-01 Asahi Intetsuku Kk Medical guide wire and manufacture of its coil
JPH0938210A (en) * 1995-08-01 1997-02-10 Asahi Intec Kk Medical guide wire
JP2001514544A (en) * 1997-03-06 2001-09-11 パークサージ,インコーポレイテッド Hollow medical wire and method of constructing the same
JP2007000664A (en) * 2006-10-10 2007-01-11 Asahi Intecc Co Ltd Baking mold and manufacturing method of guide wire using the baking mold
JP2008012276A (en) * 2006-10-20 2008-01-24 Asahi Intecc Co Ltd Medical guide wire, assembly of medical guide wire and micro-catheter, and assembly of medical guide wire, balloon catheter and guiding catheter
JP2008161491A (en) * 2006-12-28 2008-07-17 Asahi Intecc Co Ltd Medical guide wire
JP2009000337A (en) * 2007-06-22 2009-01-08 Asahi Intecc Co Ltd Medical guide wire

Also Published As

Publication number Publication date
JP2012245213A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
JP4913198B2 (en) Medical guide wire, method for manufacturing medical guide wire, assembly of medical guide wire, microcatheter and guiding catheter, and assembly of medical guide wire, balloon catheter and guiding catheter
US9056189B2 (en) Guide wire
JP4913180B2 (en) Medical guide wire, method for manufacturing the same, and assembly of medical guide wire, balloon catheter, and guiding catheter
JP4889062B2 (en) Guide wire
EP1651301B1 (en) Guide wire for a catheter
US8845551B2 (en) Medical guide wire, an assembly of microcatheter and guiding catheter combined with the medical guide wire, and an assembly of ballooncatheter and guiding catheter combined with the medical guide wire
JP5436266B2 (en) Medical coil structure, manufacturing method thereof, medical endoscope formed with medical coil structure, medical treatment instrument, ultrasonic diagnostic medical catheter, and optical interference diagnostic medical catheter
JP5392792B2 (en) Guide wire
EP3097940B1 (en) Medical guide wire
EP3061486B1 (en) Medical guide wire
JP2011110384A (en) Medical guide wire, method of manufacturing the same, and assembly of medical guide wire and microcatheter or balloon catheter and guiding catheter
JP4913252B1 (en) Medical guide wire and manufacturing method thereof
JP5481359B2 (en) Medical guidewire
JP2013208351A (en) Guide wire
JP5437772B2 (en) Medical treatment tool
JP4913249B2 (en) Medical guide wire and manufacturing method thereof
JP5497604B2 (en) Manufacturing method of medical guide wire
JP5367518B2 (en) Medical endoscope, method for manufacturing medical endoscope, assembly of medical endoscope and treatment instrument for medical endoscope, and medical endoscope and medical endoscope image processing system
JP2022078561A (en) Guide wire
JP2016221245A (en) Medical guide wire
IES84007Y1 (en) A guide wire for use with a catheter
IE20040535U1 (en) A guide wire for use with a catheter

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120118

R150 Certificate of patent or registration of utility model

Ref document number: 4913252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250