JP4912382B2 - Refrigeration air conditioner - Google Patents

Refrigeration air conditioner Download PDF

Info

Publication number
JP4912382B2
JP4912382B2 JP2008281547A JP2008281547A JP4912382B2 JP 4912382 B2 JP4912382 B2 JP 4912382B2 JP 2008281547 A JP2008281547 A JP 2008281547A JP 2008281547 A JP2008281547 A JP 2008281547A JP 4912382 B2 JP4912382 B2 JP 4912382B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
temperature
air
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008281547A
Other languages
Japanese (ja)
Other versions
JP2010107152A (en
Inventor
航祐 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008281547A priority Critical patent/JP4912382B2/en
Publication of JP2010107152A publication Critical patent/JP2010107152A/en
Application granted granted Critical
Publication of JP4912382B2 publication Critical patent/JP4912382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、冷凍空調装置に関するものであり、特にデシカントによる空気中の水分の吸脱着を利用して空調の顕熱負荷と潜熱負荷を分離して処理する装置に関するものである。   The present invention relates to a refrigeration air conditioner, and more particularly to an apparatus that separates and treats a sensible heat load and a latent heat load of an air conditioner by utilizing adsorption and desorption of moisture in the air by a desiccant.

従来のデシカントを用いた冷凍空調装置として、特許文献1の例がある。   There exists an example of patent document 1 as a refrigeration air conditioner using the conventional desiccant.

特開2001−263732号公報JP 2001-263732 A

特許文献1では、圧縮機の吐出側と凝縮器との間に加熱熱交換器を設け、排気風路のデシカントロータ上流側に加熱熱交換器を配置し、圧縮機吐出の冷媒顕熱にて排気を昇温し、脱着温度を高くすることでデシカントロータにおける水分の脱着を十分に行えるようにしている。   In Patent Document 1, a heating heat exchanger is provided between the discharge side of the compressor and the condenser, a heating heat exchanger is disposed on the upstream side of the desiccant rotor in the exhaust air passage, and refrigerant sensible heat discharged from the compressor is used. By raising the temperature of the exhaust gas and increasing the desorption temperature, it is possible to sufficiently desorb moisture in the desiccant rotor.

しかしながら、従来の装置では、加熱熱交換器の下流側に配置される凝縮器で凝縮される冷媒を減圧し、デシカントで吸着された吸気の冷却源に用いているため、以下のような問題があった。
一般的には吐出顕熱での冷媒エンタルピー差よりも凝縮時の潜熱に相当する冷媒エンタルピー差が大きく、凝縮時の熱交換量は吐出顕熱で得られる熱交換量の3倍程に大きくなる。冷凍サイクルの熱バランスより、高圧側での熱交換量は概ね低圧側での熱交換量と等しくなるので、従来の装置は加熱熱交換器での熱交換量よりも大きい凝縮器での熱交換量と同程度の熱量が吸気の冷却として用いられている。加熱熱交換器では20〜30℃程度の排気の昇温がなされる一方で、吸排気の風量は通常一致することから、加熱熱交換器と同程度の熱交換量であっても吸気の冷却時は、20〜30℃程度の温度低下が生じることになるが、従来の装置ではそれよりも大きい凝縮器での熱交換量に相当する分だけ温度差が大きく冷却されることになり、吸気の温度低下が極端に大きくなる。吸気の温度低下に応じて装置の冷凍サイクルの低圧(蒸発温度)を下げる運転を行わなければならず、装置の運転効率が低下するという課題があった。
またこの課題を回避するために、凝縮器での熱交換量を減少させることもできるが、この場合は凝縮器で冷媒ガスの凝縮が不十分となるため、圧縮機で搬送する冷媒流量と冷媒潜熱の積として通常の冷凍サイクルで得られる冷却能力が得られないことになり、この場合も装置の運転効率が低下するという課題があった。
However, in the conventional apparatus, the refrigerant condensed in the condenser arranged downstream of the heating heat exchanger is decompressed and used as a cooling source for the intake air adsorbed by the desiccant. there were.
In general, the refrigerant enthalpy difference corresponding to the latent heat at the time of condensation is larger than the refrigerant enthalpy difference at the discharge sensible heat, and the heat exchange amount at the time of condensation is about three times the heat exchange amount obtained by the discharge sensible heat. . Because of the heat balance of the refrigeration cycle, the amount of heat exchange on the high-pressure side is approximately equal to the amount of heat exchange on the low-pressure side, so conventional devices exchange heat in the condenser that is larger than the heat exchange amount in the heating heat exchanger. The same amount of heat is used for cooling the intake air. While the heating heat exchanger raises the temperature of the exhaust at about 20 to 30 ° C., the air volume of the intake and exhaust air normally matches, so that the cooling of the intake air is possible even if the heat exchange amount is about the same as the heating heat exchanger. At that time, a temperature drop of about 20 to 30 ° C. occurs. However, in the conventional apparatus, the temperature difference is cooled by an amount corresponding to the heat exchange amount in the condenser larger than that, and the intake air The temperature drop becomes extremely large. There has been a problem that the operation efficiency of the apparatus is lowered because an operation for lowering the low pressure (evaporation temperature) of the refrigeration cycle of the apparatus in accordance with the temperature drop of the intake air has to be performed.
In order to avoid this problem, it is possible to reduce the amount of heat exchange in the condenser. In this case, however, the refrigerant gas is insufficiently condensed in the condenser. As a product of latent heat, the cooling capacity obtained in the normal refrigeration cycle cannot be obtained. In this case, there is a problem that the operation efficiency of the apparatus is lowered.

本発明は、上述のような課題を解決するためになされたものであり、冷媒の吐出顕熱を用いてデシカントの脱着を行う場合においても、高効率の運転を実現することを目的とする。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to realize high-efficiency operation even when desiccant is desorbed using sensible heat of refrigerant discharge.

本発明に係る冷凍空調装置は、
圧縮機、加熱熱交換器、冷媒分配機、凝縮器として作用する室外熱交換器、減圧装置、蒸発器として作用する室内熱交換器を含み、これらの機器を環状に接続して冷凍サイクルを構成する冷媒回路と、
室内と室外の間で換気を行うための吸気風路、排気風路と、
吸気風路にて室外からの吸気より水分を吸着し、排気風路にて室内からの排気へ水分を脱着するデシカントロータと、
吸気風路にデシカントロータより下流側に配置された冷却熱交換器とを備え、
前記冷媒回路は、前記冷媒分配器より分岐され、前記圧縮機の吸入側に接続されるバイパス回路を備えるとともに、前記バイパス回路に、第2減圧装置および前記冷却熱交換器を備え
前記加熱熱交換器は、前記排気風路に前記デシカントロータより上流側に配置され、前記圧縮機から吐出された高温高圧のガス冷媒により前記排気風路の排気を加熱するとともに、前記室外熱交換器は前記加熱熱交換器を流出後の冷媒が室外空気に放熱し凝縮液化することとするものである。
The refrigerating and air-conditioning apparatus according to the present invention is
Compressor, heating heat exchanger, a refrigerant distributor, the outdoor heat exchanger acts as a condenser, pressure reducing device, viewed including the indoor heat exchanger acting as the evaporator, the refrigeration cycle of these devices is connected in a ring A refrigerant circuit comprising;
Intake and exhaust air passages for ventilation between indoors and outdoors,
A desiccant rotor that adsorbs moisture from the intake air from the outside in the intake air passage, and desorbs moisture to the exhaust from the room in the exhaust air passage;
A cooling heat exchanger disposed downstream of the desiccant rotor in the intake air passage;
The refrigerant circuit includes a bypass circuit branched from the refrigerant distributor and connected to the suction side of the compressor, and the bypass circuit includes a second decompression device and the cooling heat exchanger ,
The heating heat exchanger is disposed upstream of the desiccant rotor in the exhaust air passage, and heats the exhaust air in the exhaust air passage with a high-temperature and high-pressure gas refrigerant discharged from the compressor, and the outdoor heat exchange In this case, the refrigerant after flowing out of the heating heat exchanger dissipates heat to the outdoor air and is condensed and liquefied .

本発明の冷凍空調装置は、上記のように構成することにより、凝縮器出口の冷媒を室内熱交換器に搬送し、室内空気の冷却に用いるとともに、デシカントロータにより空調負荷の潜熱を処理し、室内熱交換器による冷却では空調負荷の顕熱を処理する運転を行うことで、冷凍サイクルの蒸発温度を高くでき、高効率の運転を実現できる。また、デシカントロータの脱着熱を冷媒の吐出顕熱から供給するため、冷凍サイクルの凝縮温度も低く運転でき、高効率の運転を実現できる。   The refrigeration air conditioner of the present invention is configured as described above, conveys the refrigerant at the outlet of the condenser to the indoor heat exchanger, and uses it for cooling the indoor air, and processes the latent heat of the air conditioning load by the desiccant rotor, In the cooling by the indoor heat exchanger, the operation of processing the sensible heat of the air conditioning load can be performed, so that the evaporation temperature of the refrigeration cycle can be increased and a highly efficient operation can be realized. Moreover, since the desorption heat of the desiccant rotor is supplied from the sensible heat of the refrigerant, the condensation temperature of the refrigeration cycle can be lowered and a highly efficient operation can be realized.

実施の形態1.
本発明の実施の形態1に係る冷凍空調装置の構成を図1に基づいて説明する。図1は、実施の形態1に係る冷凍空調装置の冷媒回路と換気時の風路構成を示したものであり、本実施の形態の冷凍空調装置は、図1に示すように、室外ユニット1と、室内ユニット2と、換気ユニット3とを備える。
室外ユニット1内には、圧縮機4、室外熱交換器7、および冷凍空調装置の計測、制御を実施する計測制御装置17が搭載される。
圧縮機4はインバータにより回転数が制御され容量制御されるタイプである。室外熱交換器7はファンなどで送風される外気と冷媒との間で熱交換を行う。
Embodiment 1 FIG.
A configuration of the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention will be described with reference to FIG. FIG. 1 shows the refrigerant circuit of the refrigerating and air-conditioning apparatus according to Embodiment 1 and the air path configuration during ventilation. The refrigerating and air-conditioning apparatus of this embodiment includes an outdoor unit 1 as shown in FIG. And an indoor unit 2 and a ventilation unit 3.
In the outdoor unit 1, a measurement controller 17 that performs measurement and control of the compressor 4, the outdoor heat exchanger 7, and the refrigeration air conditioner is mounted.
The compressor 4 is a type in which the rotation speed is controlled by an inverter and the capacity is controlled. The outdoor heat exchanger 7 exchanges heat between the outside air blown by a fan or the like and the refrigerant.

室内ユニット2内には、室内熱交換器9と室内減圧装置である室内膨張弁8が搭載される。室内熱交換器9はファンなどで送風される室内側空気と冷媒との間で熱交換を行う。室内膨張弁8は、開度が可変である電子膨張弁である。   In the indoor unit 2, an indoor heat exchanger 9 and an indoor expansion valve 8 which is an indoor pressure reducing device are mounted. The indoor heat exchanger 9 performs heat exchange between indoor air blown by a fan or the like and the refrigerant. The indoor expansion valve 8 is an electronic expansion valve whose opening degree is variable.

換気ユニット3は、図1の一点鎖線で囲まれた室内領域Aと室外との換気を行うものである。図1の点線の上半分で囲まれた風路が吸気風路21であり、室外空気(OA)を室内に吸気(SA)する。図1の点線の下半分で囲まれた風路が排気風路22であり、室内空気(RA)を室外に排気(EA)する。換気ユニット3の排気風路22内には加熱熱交換器5が設けられ、吸気風路21内には冷却熱交換器12が設けられ、また加熱熱交換器5と冷却熱交換器12との間には、冷媒分配器である気液分離器6と、換気ユニット3に設けられる第2減圧装置である第2膨張弁11とが設けられている。さらに、両風路21、22にまたがってデシカントロータ16が回転可能もしくは反転可能に設けられている。吸気、排気の送風はそれぞれの風路に設けられたファンで行われる。デシカントロータ16は回転もしくは反転しながら、吸気風路21と排気風路22を交互に通過するように配置される。デシカントロータ16は、ハニカム部材や多孔性部材等の表面にゼオライトやシリカゲルなどの吸着剤が添着されたものであり、吸排気の空気との間で水分の移動を行うものである。加熱熱交換器5は排気風路22に設けられ、デシカントロータ16の上流側に配置され、デシカントロータ16流入前の排気と熱交換を行い、冷却熱交換器12は吸気風路21に設けられ、デシカントロータ16の下流側に配置され、デシカントロータ16を通過した後の吸気と熱交換を行う。気液分離器6は重力により冷媒を気液二相に分離し、分離された冷媒ガスは気液分離器6の上部(図1の上部)から流出し、冷媒液は気液分離器6の下部(図1の下部)から流出する。第2膨張弁11は、開度が可変である電子膨張弁である。   The ventilation unit 3 performs ventilation between the indoor region A surrounded by the one-dot chain line in FIG. The air passage surrounded by the upper half of the dotted line in FIG. 1 is the intake air passage 21, and sucks outdoor air (OA) into the room (SA). The air passage surrounded by the lower half of the dotted line in FIG. 1 is the exhaust air passage 22 and exhausts the indoor air (RA) to the outside (EA). A heating heat exchanger 5 is provided in the exhaust air passage 22 of the ventilation unit 3, a cooling heat exchanger 12 is provided in the intake air passage 21, and the heating heat exchanger 5 and the cooling heat exchanger 12 are connected to each other. Between them, a gas-liquid separator 6 that is a refrigerant distributor and a second expansion valve 11 that is a second decompression device provided in the ventilation unit 3 are provided. Further, the desiccant rotor 16 is provided so as to be rotatable or reversible across the air paths 21 and 22. Intake and exhaust air are blown by fans provided in the respective air passages. The desiccant rotor 16 is disposed so as to alternately pass through the intake air passage 21 and the exhaust air passage 22 while rotating or reversing. The desiccant rotor 16 is formed by adsorbing an adsorbent such as zeolite or silica gel on the surface of a honeycomb member or a porous member, and moves moisture between intake and exhaust air. The heating heat exchanger 5 is provided in the exhaust air passage 22 and is arranged on the upstream side of the desiccant rotor 16 to exchange heat with the exhaust before flowing into the desiccant rotor 16, and the cooling heat exchanger 12 is provided in the intake air passage 21. It is arranged downstream of the desiccant rotor 16 and exchanges heat with the intake air that has passed through the desiccant rotor 16. The gas-liquid separator 6 separates the refrigerant into a gas-liquid two phase by gravity, the separated refrigerant gas flows out from the upper part of the gas-liquid separator 6 (upper part in FIG. 1), and the refrigerant liquid is in the gas-liquid separator 6. It flows out from the lower part (lower part of FIG. 1). The second expansion valve 11 is an electronic expansion valve whose opening degree is variable.

また、換気ユニット3内の気液分離器6の下部から流出し、第2膨張弁11、冷却熱交換器12を経て、圧縮機4吸入側に至るバイパス回路10が設けられる。   Further, a bypass circuit 10 is provided that flows out from the lower part of the gas-liquid separator 6 in the ventilation unit 3, passes through the second expansion valve 11 and the cooling heat exchanger 12, and reaches the suction side of the compressor 4.

室外ユニット1、室内ユニット2、換気ユニット3には温度センサ14が設けられ、温度センサ14aは圧縮機4の吐出側、温度センサ14bは圧縮機4の吸入側、温度センサ14dは室内熱交換器9の下流側に配置され、それぞれ配置場所の冷媒温度を計測する。また、温度センサ14cが室外ユニット1周囲の外気温度を計測し、温度センサ14eが室内ユニット2周囲の室内温度を計測し、温度センサ14fが換気ユニットの排気風路22のデシカントロータ16に流入する空気温度を計測する。   The outdoor unit 1, the indoor unit 2, and the ventilation unit 3 are provided with temperature sensors 14, the temperature sensor 14a is a discharge side of the compressor 4, the temperature sensor 14b is a suction side of the compressor 4, and the temperature sensor 14d is an indoor heat exchanger. The refrigerant temperature is measured at the arrangement location. Further, the temperature sensor 14c measures the outdoor temperature around the outdoor unit 1, the temperature sensor 14e measures the indoor temperature around the indoor unit 2, and the temperature sensor 14f flows into the desiccant rotor 16 of the exhaust air passage 22 of the ventilation unit. Measure the air temperature.

室外ユニット1には圧力センサ15が設けられ、圧力センサ15aは圧縮機4の吐出側、圧力センサ15bは圧縮機4の吸入側に配置され、それぞれ配置場所の冷媒圧力を計測する。また、室内ユニット2には湿度センサ13が設けられ、室内湿度を計測する。   The outdoor unit 1 is provided with a pressure sensor 15, the pressure sensor 15 a is arranged on the discharge side of the compressor 4, and the pressure sensor 15 b is arranged on the suction side of the compressor 4, and measures the refrigerant pressure at the arrangement location. The indoor unit 2 is provided with a humidity sensor 13 to measure indoor humidity.

室外ユニット1内の計測制御装置17は、各ユニットの湿度センサ13、温度センサ14、圧力センサ15の計測情報や、装置使用者から指示される運転内容に基づいて、圧縮機4の運転方法、室外熱交換器7、室内熱交換器9、換気ユニット3のファン送風量、室内膨張弁8、第2膨張弁11の開度などを制御する。   The measurement control device 17 in the outdoor unit 1 is based on the measurement information of the humidity sensor 13, the temperature sensor 14, and the pressure sensor 15 of each unit and the operation content instructed by the user of the device. The outdoor heat exchanger 7, the indoor heat exchanger 9, the fan air flow rate of the ventilation unit 3, the opening degree of the indoor expansion valve 8, the second expansion valve 11, and the like are controlled.

次に、この冷凍空調装置の運転動作について説明する。本装置では、冷房運転を行い、冷房負荷として発生する顕熱負荷については室内ユニット2で冷却を行い、潜熱負荷については、換気ユニット3で吸気の除湿を行うことで対応する。
まず、冷媒回路の動作について図1および図2に示すp−h線図をもとに説明する。圧縮機4から吐出された高温高圧のガス冷媒(図2の点1の状態)は室外ユニット1を流出して、換気ユニット3に流入し、加熱熱交換器5で排気風路22の空気に放熱しながら冷却し一部凝縮液化され(図2の点2の状態)、気液分離器6に流入する。気液分離器6で冷媒は、飽和ガス冷媒(図2の点2aの状態)と飽和液冷媒(図2の点2bの状態)とに分離され、ガス冷媒はその後、換気ユニット3を流出し、室外ユニット1に流入し、凝縮器となる室外熱交換器7にて室外ユニット1周囲の空気に放熱しながら凝縮液化し、高圧低温の液冷媒となる(図2の点3の状態)。
Next, the operation of the refrigeration air conditioner will be described. In this apparatus, the cooling operation is performed, the sensible heat load generated as the cooling load is cooled by the indoor unit 2, and the latent heat load is dealt with by dehumidifying the intake air by the ventilation unit 3.
First, the operation of the refrigerant circuit will be described based on the ph diagrams shown in FIGS. 1 and 2. The high-temperature and high-pressure gas refrigerant discharged from the compressor 4 (state of point 1 in FIG. 2) flows out of the outdoor unit 1 and flows into the ventilation unit 3, and is converted into the air in the exhaust air passage 22 by the heating heat exchanger 5. It cools while dissipating heat and is partially condensed and liquefied (state of point 2 in FIG. 2) and flows into the gas-liquid separator 6. In the gas-liquid separator 6, the refrigerant is separated into a saturated gas refrigerant (state 2a in FIG. 2) and a saturated liquid refrigerant (state 2b in FIG. 2), and the gas refrigerant then flows out of the ventilation unit 3. Then, it flows into the outdoor unit 1 and is condensed and liquefied while dissipating heat to the air around the outdoor unit 1 in the outdoor heat exchanger 7 serving as a condenser, and becomes a high-pressure and low-temperature liquid refrigerant (state 3 in FIG. 2).

その後、冷媒は室外ユニット1を流出し、室内ユニット2に流入し、室内膨張弁8にて減圧され低圧の二相冷媒となり(図2の点4の状態)、そして蒸発器となる室内熱交換器9に流入し、そこで室内空気から吸熱し、蒸発ガス化(図2の点5の状態)しながら室内ユニット2内の空気に冷熱を供給する。室内熱交換器9を出た低圧ガス冷媒は室内ユニット2を出て、バイパス回路10を流れてきた冷媒と合流し、若干昇温(図2の点6の状態)された後で圧縮機4に吸入される。   Thereafter, the refrigerant flows out of the outdoor unit 1, flows into the indoor unit 2, is decompressed by the indoor expansion valve 8, becomes a low-pressure two-phase refrigerant (state of point 4 in FIG. 2), and indoor heat exchange that becomes an evaporator It flows into the vessel 9, where it absorbs heat from the room air and supplies cold heat to the air in the room unit 2 while evaporating gas (in the state of point 5 in FIG. 2). The low-pressure gas refrigerant that has exited the indoor heat exchanger 9 exits the indoor unit 2, joins with the refrigerant that has flowed through the bypass circuit 10, and after being slightly heated (in the state of point 6 in FIG. 2), the compressor 4 Inhaled.

気液分離器6で分離された液冷媒(図2の点2bの状態)はバイパス回路10を流れ、図2の点線で示される状態変化をたどる。即ち、冷媒は第2膨張弁11に流入し、低圧まで減圧され低圧の二相冷媒となり(図2の点7の状態)、その後冷却熱交換器12に流入し、吸気風路21の空気から吸熱し蒸発ガス化しながら(図2の点8の状態)、吸気風路21の空気に冷熱を供給する。その後、冷媒はバイパス回路10を流れて、圧縮機4の吸入側で室内ユニット2を出た冷媒(図2の点5の状態)と合流する。   The liquid refrigerant separated by the gas-liquid separator 6 (the state at the point 2b in FIG. 2) flows through the bypass circuit 10 and follows the state change indicated by the dotted line in FIG. That is, the refrigerant flows into the second expansion valve 11 and is decompressed to a low pressure to become a low-pressure two-phase refrigerant (the state at point 7 in FIG. 2), and then flows into the cooling heat exchanger 12 and from the air in the intake air passage 21 Cold heat is supplied to the air in the intake air passage 21 while absorbing heat and evaporating gas (state of point 8 in FIG. 2). Thereafter, the refrigerant flows through the bypass circuit 10 and merges with the refrigerant that has exited the indoor unit 2 on the suction side of the compressor 4 (the state at the point 5 in FIG. 2).

次に、換気ユニット3における吸排気の動作について説明する。室外から室内への吸気(OA)は、まず、デシカントロータ16を通過し、その際水分を吸着し、除湿されるとともに吸着熱により温度が上昇し、高温低湿の空気となる。その後冷却熱交換器12にて冷却され、低温低湿の空気となり、室内に供給される(SA)。室内から室外への排気(RA)は、低温低湿の状態から加熱熱交換器5によって加熱され、高温低湿の状態となる。その後デシカントロータ16に流入し、デシカントロータ16の吸着水分を再生、脱着する。その際、脱着熱を奪われ若干温度が低下し、高温高湿の状態となった後で排気される(EA)。   Next, the operation of intake and exhaust in the ventilation unit 3 will be described. The intake air (OA) from the outdoor to the indoor first passes through the desiccant rotor 16, and adsorbs moisture at that time, dehumidifies and rises in temperature by adsorption heat, and becomes high-temperature and low-humidity air. Thereafter, it is cooled by the cooling heat exchanger 12 to become low-temperature and low-humidity air, which is supplied indoors (SA). Exhaust air (RA) from the room to the outside is heated from the low temperature and low humidity state by the heating heat exchanger 5 and becomes a high temperature and low humidity state. Thereafter, it flows into the desiccant rotor 16 to regenerate and desorb the adsorbed moisture of the desiccant rotor 16. At that time, desorption heat is taken away, the temperature is slightly lowered, and after being in a high temperature and high humidity state, it is exhausted (EA).

次に、この冷凍空調装置の運転制御動作について図3のフローチャートに基づいて説明する。圧縮機4の容量、室内膨張弁8の開度、第2膨張弁11の開度、室外熱交換器7のファン送風量、室内熱交換器9のファン送風量、換気ユニット3の換気風量が初期値に設定される(ステップS1)。各ファン送風量は初期値設定のまま維持される。室外熱交換器7のファン送風量は、温度センサ14cで検知される外気温度に基づいて設定され、外気温度が低い場合には低風量で運転されるが、外気温度が所定温度よりも高い場合は、基本的に装置の定格風量で運転される。室内熱交換器9のファン送風量、換気ユニット3の換気風量は、装置使用者が設定する風量で運転される。その後、所定の時間が経過すると(ステップS2)、それ以降運転状態に応じた各アクチュエータは以下のように制御される。   Next, the operation control operation of this refrigeration air conditioner will be described based on the flowchart of FIG. The capacity of the compressor 4, the opening degree of the indoor expansion valve 8, the opening degree of the second expansion valve 11, the fan air volume of the outdoor heat exchanger 7, the fan air volume of the indoor heat exchanger 9, and the ventilation air volume of the ventilation unit 3 are The initial value is set (step S1). Each fan blast volume is maintained at the initial value setting. The fan air flow rate of the outdoor heat exchanger 7 is set based on the outside air temperature detected by the temperature sensor 14c. When the outside air temperature is low, the fan is operated with a low air volume, but the outside air temperature is higher than a predetermined temperature. Is basically operated at the rated airflow of the device. The fan air volume of the indoor heat exchanger 9 and the ventilation air volume of the ventilation unit 3 are operated with the air volume set by the user of the apparatus. Thereafter, when a predetermined time elapses (step S2), the actuators corresponding to the operating state are controlled as follows.

まず、圧縮機4の容量は、基本的に室内ユニット2の温度センサ14eで計測される空気温度(室内温度)が、冷凍空調装置使用者が設定する温度になるように制御される。即ち、室内ユニット2の空気温度と設定温度とを比較する(ステップS3)。そして、空気温度が設定温度と等しいか或いは近接している場合には、圧縮機4の容量はそのまま維持されて次のステップに進む。また、空気温度が設定温度より上昇している場合は、圧縮機4の容量は増加され、空気温度が設定温度より低い場合には圧縮機4の容量は減少されるというように圧縮機4の容量を変更する(ステップS4)。   First, the capacity of the compressor 4 is basically controlled so that the air temperature (indoor temperature) measured by the temperature sensor 14e of the indoor unit 2 becomes a temperature set by the user of the refrigeration air conditioner. That is, the air temperature of the indoor unit 2 is compared with the set temperature (step S3). When the air temperature is equal to or close to the set temperature, the capacity of the compressor 4 is maintained as it is, and the process proceeds to the next step. When the air temperature is higher than the set temperature, the capacity of the compressor 4 is increased. When the air temperature is lower than the set temperature, the capacity of the compressor 4 is decreased. The capacity is changed (step S4).

各膨張弁の制御は以下のように行われる。まず、室内膨張弁8は、温度センサ14dで検知される室内熱交換器9の出口温度と圧力センサ15bで検知される冷凍サイクルの低圧を換算して得られる蒸発温度との差温で求められる室内熱交換器9出口の冷媒過熱度(SH)が予め設定された目標値、例えば2℃になるように制御される(ステップS5)。即ち、室内熱交換器9出口SHと目標値とを比較する(ステップS6)。そして、室内熱交換器9出口のSHが目標値と等しいか或いは近接している場合には、室内膨張弁8の開度はそのまま維持されて次のステップに進む。また、室内熱交換器9出口のSHが目標値より大きい場合には、室内膨張弁8の開度は大きく、SHが目標値より小さい場合には、室内膨張弁8の開度は小さく制御されるというように室内膨張弁8の開度を変更する(ステップS7)。   Each expansion valve is controlled as follows. First, the indoor expansion valve 8 is obtained by a temperature difference between the outlet temperature of the indoor heat exchanger 9 detected by the temperature sensor 14d and the evaporation temperature obtained by converting the low pressure of the refrigeration cycle detected by the pressure sensor 15b. The refrigerant superheat degree (SH) at the outlet of the indoor heat exchanger 9 is controlled to be a preset target value, for example, 2 ° C. (step S5). That is, the indoor heat exchanger 9 outlet SH is compared with the target value (step S6). When the SH at the outlet of the indoor heat exchanger 9 is equal to or close to the target value, the opening of the indoor expansion valve 8 is maintained as it is, and the process proceeds to the next step. When the SH at the outlet of the indoor heat exchanger 9 is larger than the target value, the opening degree of the indoor expansion valve 8 is large, and when the SH is smaller than the target value, the opening degree of the indoor expansion valve 8 is controlled to be small. Thus, the opening degree of the indoor expansion valve 8 is changed (step S7).

次に、第2膨張弁11は、湿度センサ13で得られる室内湿度が、冷凍空調装置使用者が設定する湿度になるように制御され、湿度状況に応じて設定されるデシカントロータ16に流入する排気温度が目標値となるように制御を行い、デシカントロータ16における除湿量を制御する。即ち、室内ユニット2の空気湿度と設定湿度とを比較する(ステップS8)。そして、空気湿度が設定湿度と等しいか或いは近接している場合には、排気温度の目標値はそのまま維持されて次のステップに進む。また、空気湿度が設定湿度より上昇している場合は、換気ユニット3での除湿量がより多くなるように、デシカントロータ16に流入する排気温度の目標値をより高くする(ステップS9)。逆に、空気湿度が設定湿度より低下している場合は、換気ユニット3での除湿動作を抑制するように、デシカントロータ16に流入する排気温度の目標値を低く変更する(ステップS9)。   Next, the second expansion valve 11 is controlled so that the indoor humidity obtained by the humidity sensor 13 becomes the humidity set by the user of the refrigeration air conditioner, and flows into the desiccant rotor 16 set according to the humidity condition. Control is performed so that the exhaust temperature becomes the target value, and the amount of dehumidification in the desiccant rotor 16 is controlled. That is, the air humidity of the indoor unit 2 is compared with the set humidity (step S8). If the air humidity is equal to or close to the set humidity, the target value of the exhaust temperature is maintained as it is, and the process proceeds to the next step. When the air humidity is higher than the set humidity, the target value of the exhaust temperature flowing into the desiccant rotor 16 is increased so that the amount of dehumidification in the ventilation unit 3 is increased (step S9). On the contrary, when the air humidity is lower than the set humidity, the target value of the exhaust temperature flowing into the desiccant rotor 16 is changed to be low so as to suppress the dehumidifying operation in the ventilation unit 3 (step S9).

次に、第2膨張弁11の開度と、デシカントロータ16に流入する排気温度の相関について説明する。排気温度は、加熱熱交換器5での冷媒温度、即ち圧縮機4の吐出温度(図2の点1の状態)が高いほど上昇する。圧縮機4の吐出温度は、圧縮機4の吸入温度(図2の点6の状態)が高いほど高くなり、圧縮機4の吸入温度は室内熱交換器9を出た冷媒と、バイパス回路10を流れる冷媒の合流後の冷媒状態で決定される。
バイパス回路10を流れる冷媒のエネルギー、即ち流量×エンタルピーがより大きいほど、合流後の冷媒エンタルピーは高くなり吸入温度も上昇する。バイパス回路10を流れる冷媒のエネルギーは、冷却熱交換器12の熱交換量によって決定されるので、熱交換量が多くなるように冷却熱交換器12の冷媒流量を多くする。即ち、第2膨張弁11の開度を大きくすると、圧縮機4の吸入温度、吐出温度が上昇し、排気温度が高くなる。そこで制御動作としては以下の動作を実施する。まず、温度センサ14fで検知される排気温度と目標値とを比較する(ステップS10)。そして、排気温度が目標値と等しいか或いは近接している場合には、第2膨張弁11の開度はそのまま維持されて次のステップに進む。また、排気温度が目標値より高い場合には、第2膨張弁11の開度は小さく、排気温度が目標値より低い場合には、第2膨張弁11の開度は大きく制御されるというように第2膨張弁11の開度を変更する(ステップS11)。
Next, the correlation between the opening degree of the second expansion valve 11 and the exhaust temperature flowing into the desiccant rotor 16 will be described. The exhaust gas temperature rises as the refrigerant temperature in the heating heat exchanger 5, that is, the discharge temperature of the compressor 4 (state of point 1 in FIG. 2) is higher. The discharge temperature of the compressor 4 becomes higher as the intake temperature of the compressor 4 (the state at the point 6 in FIG. 2) is higher. The intake temperature of the compressor 4 is increased by the refrigerant that has exited the indoor heat exchanger 9 and the bypass circuit 10. It is determined by the refrigerant state after the refrigerant flowing through
The larger the energy of the refrigerant flowing through the bypass circuit 10, that is, the flow rate × enthalpy is, the higher the refrigerant enthalpy after merging and the higher the suction temperature. Since the energy of the refrigerant flowing through the bypass circuit 10 is determined by the heat exchange amount of the cooling heat exchanger 12, the refrigerant flow rate of the cooling heat exchanger 12 is increased so that the heat exchange amount is increased. That is, when the opening degree of the second expansion valve 11 is increased, the intake temperature and discharge temperature of the compressor 4 are increased and the exhaust temperature is increased. Therefore, the following operation is performed as the control operation. First, the exhaust temperature detected by the temperature sensor 14f is compared with the target value (step S10). When the exhaust temperature is equal to or close to the target value, the opening of the second expansion valve 11 is maintained as it is and the process proceeds to the next step. When the exhaust temperature is higher than the target value, the opening degree of the second expansion valve 11 is small, and when the exhaust temperature is lower than the target value, the opening degree of the second expansion valve 11 is controlled to be large. The opening degree of the second expansion valve 11 is changed to (Step S11).

以上のような構成、制御動作とすることで、本実施の形態では以下のような効果を実現できる。まず、冷房の空調を行う場合に発生する潜熱負荷、顕熱負荷のうち、潜熱負荷については換気ユニット3にて処理される。従って室内ユニット2では、顕熱負荷のみに対応する運転がなされる。空気を冷却する熱交換において、潜熱、顕熱を同時に処理する場合、空気の露点温度以下で冷却する必要があり、冷凍サイクルの動作蒸発温度も同様に低下させる運転が求められるが、本実施の形態では顕熱のみに対応すればよいので、蒸発温度については、露点温度よりも高いが室内空気温度よりも適度に低い温度で運転することができる。従って蒸発温度は、潜熱、顕熱を同時に処理する場合に比べて高く設定できるため、より高効率の運転を実現できる。   By adopting the above configuration and control operation, the following effects can be realized in the present embodiment. First, among the latent heat load and sensible heat load that occur when air conditioning is performed for cooling, the latent heat load is processed by the ventilation unit 3. Therefore, the indoor unit 2 is operated only for the sensible heat load. In the heat exchange for cooling the air, when processing latent heat and sensible heat at the same time, it is necessary to cool the air below the dew point temperature of the air, and an operation that lowers the operating evaporation temperature of the refrigeration cycle is also required. Since the embodiment only needs to deal with sensible heat, the evaporation temperature can be operated at a temperature that is higher than the dew point temperature but moderately lower than the room air temperature. Therefore, the evaporating temperature can be set higher than in the case where latent heat and sensible heat are processed simultaneously, so that a more efficient operation can be realized.

また、デシカントロータ16での脱着に必要な高温を生成する際に、加熱熱交換器5において、圧縮機4吐出の冷媒顕熱にて排気を昇温し、脱着温度を高くすることで、冷凍サイクルの高圧側凝縮温度を脱着に必要な温度(60℃〜80℃)にまで上昇する必要が無くなり、外気温度に見合った凝縮温度(45℃〜50℃)程度で運転可能となる。そのため凝縮温度を、一般の空調機と同様に低くでき、高効率の運転を実現できる。   Further, when generating a high temperature necessary for desorption by the desiccant rotor 16, the heating heat exchanger 5 raises the temperature of the exhaust gas by sensible heat discharged from the compressor 4 and raises the desorption temperature. It is no longer necessary to raise the high-pressure side condensation temperature of the cycle to the temperature required for desorption (60 ° C. to 80 ° C.), and it becomes possible to operate at a condensation temperature (45 ° C. to 50 ° C.) that matches the outside air temperature. Therefore, the condensation temperature can be lowered similarly to a general air conditioner, and high-efficiency operation can be realized.

また、圧縮機4の吸入の冷媒温度を、冷却熱交換器12における吸気の冷却の際に加熱することで、高くすることができる。そのため圧縮機4の吐出温度がより上昇し、凝縮温度が低い条件であっても脱着用の高温空気を生成することができる。一般の空調機で同様に吸入温度を高めて吐出温度を高めようとする場合、蒸発器出口のSHを大きくする必要があり、そのためには冷凍サイクルの動作蒸発温度をより低くする必要があり、効率が低下する運転となる。本実施の形態の場合、低圧側の冷媒の加熱源として、室内空気と吸気の2つがあるが、冷房運転であるため室内空気よりも外気温度が高く、吸気の方が高温となる。吸気はデシカントロータ16での吸着熱によりさらに高温となる。従って、本実施の形態のように構成することで、冷凍サイクルの動作蒸発温度を室内空気が冷却できるように適切に運転すると同時に、より高温の吸気と冷媒を熱交換させ加熱することで、一般の空調機のような動作蒸発温度の低下がなくても圧縮機4の吸入温度を高めることができ、より効率的に脱着用空気の高温生成が可能となる。   In addition, the refrigerant temperature of the suction of the compressor 4 can be increased by heating when the intake air is cooled in the cooling heat exchanger 12. For this reason, the discharge temperature of the compressor 4 is further increased, and high-temperature air for desorption can be generated even under a condition where the condensation temperature is low. Similarly, in the case of trying to increase the discharge temperature by increasing the suction temperature in a general air conditioner, it is necessary to increase the SH at the outlet of the evaporator, and for that purpose, it is necessary to lower the operating evaporation temperature of the refrigeration cycle, Operation will be less efficient. In the present embodiment, there are two sources of heat for the refrigerant on the low-pressure side, indoor air and intake air. However, because of the cooling operation, the outside air temperature is higher than the indoor air, and the intake air is hotter. The intake air is further heated by the heat of adsorption at the desiccant rotor 16. Therefore, by configuring as in the present embodiment, the operation evaporating temperature of the refrigeration cycle is appropriately operated so that the indoor air can be cooled, and at the same time, heat exchange is performed by heat exchange between the higher-temperature intake air and the refrigerant. Even if the operating evaporation temperature does not decrease as in the case of the air conditioner, the suction temperature of the compressor 4 can be increased, and the desorption air can be more efficiently generated at a high temperature.

また、吸気を冷却することで、冷媒の低圧顕熱側も負荷に対する冷却に用いることができる。そのため、冷凍サイクルにおいて、負荷の冷却に活用される冷媒エンタルピー差をより大きくできる(図2の点4−5間を点4−6間に拡大)。圧縮機4の吸入冷媒の加熱に他の空調負荷に関連しない高温熱源を用いることもできるが、この場合は冷媒顕熱部分のエンタルピー差は冷却作用として機能しないので、エンタルピー差の拡大の無いまま単に高温の媒体を圧縮することになり、圧縮動力のみ増加し、運転効率が低下する。
本実施の形態では、圧縮機4の吸入温度を高めると同時に冷却に作用する冷媒エンタルピー差も拡大しているので、運転効率の低下が小さく、圧縮機4の吸入温度、吐出温度を高めることができ、より高効率の運転を実現できる。
In addition, by cooling the intake air, the low-pressure sensible heat side of the refrigerant can also be used for cooling the load. Therefore, in the refrigeration cycle, the refrigerant enthalpy difference utilized for cooling the load can be further increased (between points 4-5 in FIG. 2 and enlarged between points 4-6). A high-temperature heat source that is not related to other air conditioning loads can also be used for heating the refrigerant sucked in the compressor 4, but in this case, the enthalpy difference of the refrigerant sensible heat portion does not function as a cooling action, so that the enthalpy difference does not increase. The high temperature medium is simply compressed, and only the compression power is increased, and the operation efficiency is lowered.
In the present embodiment, since the refrigerant enthalpy difference acting on cooling is increased at the same time as the suction temperature of the compressor 4 is increased, the reduction in operating efficiency is small, and the suction temperature and discharge temperature of the compressor 4 can be increased. And more efficient operation can be realized.

また、換気ユニット3においては、加熱熱交換器5と冷却熱交換器12が搭載されているので、それぞれの熱交換のために室外ユニット1から冷媒搬送すると、各熱交換器の出入口を接続する必要があるので、通常は4本の冷媒配管を室外ユニット1と換気ユニット3の間に接続する必要がある。そこで、本実施の形態では加熱熱交換器5を流出した冷媒を分岐し、一部の冷媒を冷却熱交換器12に流す構成としている。これにより、室外ユニット1と換気ユニット3の間に接続される冷媒配管を3本にでき、構成が簡素化されより低コスト、省工事な装置とすることができる。   Moreover, since the heating unit 5 and the cooling unit 12 are mounted in the ventilation unit 3, when the refrigerant is conveyed from the outdoor unit 1 for each heat exchange, the inlet / outlet of each heat exchanger is connected. Since it is necessary, it is usually necessary to connect four refrigerant pipes between the outdoor unit 1 and the ventilation unit 3. Therefore, in the present embodiment, the refrigerant that has flowed out of the heating heat exchanger 5 is branched, and a part of the refrigerant is caused to flow to the cooling heat exchanger 12. Thereby, three refrigerant | coolant piping connected between the outdoor unit 1 and the ventilation unit 3 can be made, and a structure can be simplified and it can be set as a low-cost and labor-saving apparatus.

また、本実施の形態では気液分離器6にて、全冷媒流量のうちの一部をバイパス回路10に流す構成としている。そのため、室内ユニット2から室外ユニット1に流入される低圧のガス冷媒(図2の点5の状態)を加熱する場合に比べると、低圧のガス冷媒(図2の点5の状態)を加熱するための熱交換器などの冷媒流路が不要となり、その間の冷媒の圧力損失の発生を防止できる。従って、圧縮機4の吸入側のガス冷媒の顕熱部分を加熱する場合において、冷媒圧力損失を小さくでき、より高効率の運転を実現できる。   In the present embodiment, the gas-liquid separator 6 is configured to flow a part of the total refrigerant flow rate to the bypass circuit 10. Therefore, as compared with the case where the low-pressure gas refrigerant flowing from the indoor unit 2 into the outdoor unit 1 (the state at point 5 in FIG. 2) is heated, the low-pressure gas refrigerant (the state at point 5 in FIG. 2) is heated. For this reason, a refrigerant flow path such as a heat exchanger is not required, and pressure loss of the refrigerant during that period can be prevented. Therefore, when the sensible heat portion of the gas refrigerant on the suction side of the compressor 4 is heated, the refrigerant pressure loss can be reduced, and more efficient operation can be realized.

また、本実施の形態ではバイパス回路10に分配される冷媒を、気液分離器6で分離される液冷媒としている。加熱熱交換器5を流出する冷媒のなかで、高圧のガス冷媒(図2の点2aの状態)については、凝縮液化することで、冷媒エンタルピーを低くし冷却に用いることのできる冷媒エンタルピー差を拡大することで、冷却能力をより多く発揮させることができるが、このガス冷媒をバイパス回路10に流すと、そのまま第2膨張弁11で減圧され低圧のガス冷媒となるので、その後の冷却に用いることのできる冷媒エンタルピー差が小さく、冷凍サイクルの冷却能力が低下する運転となる。本実施の形態では、既に冷却のための冷媒エンタルピー差が確保されている液冷媒のみをバイパス回路10に流すので、前述のような冷却能力の低下が発生しない運転となり、より高効率の運転を実現できる。   In the present embodiment, the refrigerant distributed to the bypass circuit 10 is a liquid refrigerant separated by the gas-liquid separator 6. Among the refrigerant flowing out of the heat exchanger 5, the high-pressure gas refrigerant (the state at point 2a in FIG. 2) is condensed and liquefied to reduce the refrigerant enthalpy that can be used for cooling. By enlarging, it is possible to exert more cooling capacity. However, when this gas refrigerant flows through the bypass circuit 10, it is decompressed by the second expansion valve 11 as it is and becomes a low-pressure gas refrigerant, and is used for subsequent cooling. The refrigerant enthalpy difference that can be performed is small, and the cooling capacity of the refrigeration cycle is reduced. In the present embodiment, only the liquid refrigerant that has already secured the refrigerant enthalpy difference for cooling is allowed to flow to the bypass circuit 10, so that the cooling capacity is not reduced as described above, and a more efficient operation is performed. realizable.

なお、本作用を実現させるには、気液分離器6に流入する冷媒状態が気液二相状態となっていることが重要となる。そのため加熱熱交換器5出口の冷媒温度を検出し、その温度と冷凍サイクルの高圧から得られる凝縮温度から気液二相状態でないと判別される場合には、冷凍サイクルの高圧を変更するなどして、気液二相状態を生成することが望ましい。例えば、加熱熱交換器5の出口状態が過熱ガス状態である場合には、冷凍サイクルの高圧を下げる、圧縮機4で搬送される冷媒流量を低下する、圧縮機4の吐出温度を低下させるなどの作用により、加熱熱交換器5出口状態の冷媒エンタルピーを低下させ、気液二相状態とできるので、室外熱交換器7のファン送風量を増加させる、圧縮機4の運転容量を低下させる、第2膨張弁11の開度を小さくするなどの制御動作を実施させる。   In order to realize this action, it is important that the refrigerant flowing into the gas-liquid separator 6 is in a gas-liquid two-phase state. Therefore, the refrigerant temperature at the outlet of the heating heat exchanger 5 is detected, and when it is determined that the gas-liquid two-phase state is not obtained from the temperature and the condensation temperature obtained from the high pressure of the refrigeration cycle, the high pressure of the refrigeration cycle is changed. Thus, it is desirable to generate a gas-liquid two-phase state. For example, when the outlet state of the heating heat exchanger 5 is a superheated gas state, the high pressure of the refrigeration cycle is lowered, the flow rate of refrigerant conveyed by the compressor 4 is lowered, the discharge temperature of the compressor 4 is lowered, etc. As a result, the refrigerant enthalpy at the outlet state of the heating heat exchanger 5 can be reduced and a gas-liquid two-phase state can be achieved, so that the fan blowing amount of the outdoor heat exchanger 7 is increased, and the operating capacity of the compressor 4 is reduced. A control operation such as reducing the opening of the second expansion valve 11 is performed.

また、本実施の形態ではバイパス回路10を流れる冷媒流量を制御することで、排気温度の高低を制御し、デシカントロータ16での除湿量を制御する。前述したように、圧縮機4の吸入温度を高めるための熱交換を吸気と行うことで、冷却作用を行わせながら実施しているので、吸入温度を高く運転することによる効率低下は抑制されるが、それでも吸入温度が高いほど、若干運転効率の低下が生じる。本実施の形態では室内の調湿状況に応じて、適宜脱着に用いられる排気の温度を調整し、圧縮機4の吸入温度を変更するので、除湿量が少なくてもよい条件では圧縮機4の吸入温度を低下させた運転となる。従って、常に一定の脱着温度、即ち圧縮機4の吸入温度が一定で運転される場合に比べて、低負荷条件では吸入温度を低下させる運転を行うことができ、より高効率の運転を行うことができる。   Further, in the present embodiment, the flow rate of the refrigerant flowing through the bypass circuit 10 is controlled to control the level of the exhaust temperature, and the dehumidification amount in the desiccant rotor 16 is controlled. As described above, the heat exchange for increasing the suction temperature of the compressor 4 is performed with the intake air, so that the cooling operation is performed. Therefore, the efficiency decrease due to the operation at a high suction temperature is suppressed. However, the higher the suction temperature, the lower the operating efficiency slightly. In the present embodiment, the temperature of the exhaust used for desorption is appropriately adjusted according to the humidity control condition in the room, and the intake temperature of the compressor 4 is changed. The operation is performed with the suction temperature lowered. Therefore, compared with the case where the operation is always performed with a constant desorption temperature, that is, with the intake temperature of the compressor 4 being constant, the operation of lowering the intake temperature can be performed under a low load condition, and a more efficient operation can be performed. Can do.

なお、本実施の形態では室内ユニット2が1台の場合を示したが、室内ユニット2が複数台であっても同様の効果を得ることができる。   In the present embodiment, the case where there is one indoor unit 2 is shown, but the same effect can be obtained even when there are a plurality of indoor units 2.

また、室内膨張弁8は室外熱交換器7と室内熱交換器9の間の冷媒配管にあれば同様の機能を実現できるので、配置は室内ユニット2内に限定されるものではなく、例えば室外ユニット1内に配置してもよい。   Moreover, since the indoor expansion valve 8 can implement | achieve the same function if it exists in the refrigerant | coolant piping between the outdoor heat exchanger 7 and the indoor heat exchanger 9, arrangement | positioning is not limited in the indoor unit 2, For example, outdoor It may be arranged in the unit 1.

また、冷却熱交換器12は、吸気風路21のデシカントロータ16の下流側に配置しているが、デシカントロータ16の上流側に配置してもよく、同様の効果を得ることができる。また、冷却熱交換器12を複数用意し、デシカントロータ16の上流側、下流側のそれぞれに配置しても良い。   Moreover, although the cooling heat exchanger 12 is arrange | positioned in the downstream of the desiccant rotor 16 of the intake air path 21, you may arrange | position in the upstream of the desiccant rotor 16, and can acquire the same effect. Alternatively, a plurality of cooling heat exchangers 12 may be prepared and arranged on the upstream side and the downstream side of the desiccant rotor 16.

また、加熱熱交換器5、冷却熱交換器12は、冷媒と吸排気が対向流となる構造をとることが望ましい。例えば熱交換器をプレートフィンチューブ熱交換器の多列の構成とし、冷媒は風路下流側の列から風路上流側の列に流れるようにすることで、対向流の構成とすることができる。この場合、加熱熱交換器5ではより高温である熱交換器流入の冷媒が、熱交換器内の最下流の空気と熱交換することになるので、加熱熱交換器5での出口空気温度の昇温が効率的になされ、より高温でデシカントロータ16の脱着がなされ、除湿量を向上することができる。
また冷却熱交換器12では、熱交換器出口の冷媒が最も高温である熱交換器流入空気と熱交換することになるので、冷却熱交換器12での出口冷媒温度の昇温が効率的になされ、圧縮機4の吸入温度、吐出温度を高めることができる。そのため、より高温でデシカントロータ16の脱着がなされ、除湿量を向上することができる。
Moreover, it is desirable that the heating heat exchanger 5 and the cooling heat exchanger 12 have a structure in which the refrigerant and the intake / exhaust flow in opposite directions. For example, the heat exchanger may have a multi-row configuration of plate fin tube heat exchangers, and the refrigerant may flow from the row on the downstream side of the air passage to the row on the upstream side of the air passage, thereby forming a counter flow configuration. . In this case, since the refrigerant flowing into the heat exchanger having a higher temperature in the heating heat exchanger 5 exchanges heat with the most downstream air in the heat exchanger, the temperature of the outlet air temperature in the heating heat exchanger 5 is reduced. The temperature is increased efficiently, and the desiccant rotor 16 is desorbed at a higher temperature, so that the amount of dehumidification can be improved.
Further, in the cooling heat exchanger 12, the refrigerant at the outlet of the heat exchanger exchanges heat with the heat exchanger inflow air having the highest temperature, so that the temperature increase of the outlet refrigerant temperature in the cooling heat exchanger 12 is efficiently performed. Thus, the suction temperature and discharge temperature of the compressor 4 can be increased. Therefore, the desiccant rotor 16 is desorbed at a higher temperature, and the dehumidifying amount can be improved.

実施の形態2.
図4は本発明の実施の形態2に係る冷凍空調装置の冷媒回路と換気時の風路構成を示す構成図である。
本実施の形態では、圧縮機4を流出した高圧ガス冷媒を分岐し、一部は室外熱交換器7に分配し、一部はバイパス回路10を流れて加熱熱交換器5に流れる構成とする。この構成では、図1の構成に比べると、圧縮機4の吐出ガス冷媒の一部が室外熱交換器7で冷却されることになり、圧縮機4で生成される高温の冷媒顕熱を十分に生かすことができず、脱着のための高温生成機能が低下するものの、室外ユニット1と換気ユニット3を接続する配管数を2本とすることができ、構成が簡素化され、より低コスト、省工事な装置とすることができる。
Embodiment 2. FIG.
FIG. 4 is a configuration diagram showing the refrigerant circuit of the refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention and the air path configuration during ventilation.
In the present embodiment, the high-pressure gas refrigerant that has flowed out of the compressor 4 is branched, partly distributed to the outdoor heat exchanger 7, and partly flows through the bypass circuit 10 and flows into the heating heat exchanger 5. . In this configuration, as compared with the configuration of FIG. 1, a part of the refrigerant discharged from the compressor 4 is cooled by the outdoor heat exchanger 7, and the high-temperature refrigerant sensible heat generated by the compressor 4 is sufficiently increased. However, the number of pipes connecting the outdoor unit 1 and the ventilation unit 3 can be two, the configuration is simplified, and the cost is lower. The equipment can be reduced.

実施の形態3.
図5は本発明の実施の形態3に係る冷凍空調装置の冷媒回路と換気時の風路構成を示す構成図である。
本実施の形態では、室外ユニット1内にアキュムレータ18を設け、室内ユニット2から戻る冷媒がアキュムレータ18を通過した後で、換気ユニット3から流入する冷媒と合流する冷媒回路構成とする。この回路構成では、室内膨張弁8の制御は室内熱交換器9出口のSHを制御するのではなく、室外熱交換器7出口の冷媒過冷却度(SC)が所定値となるように制御され、SCを検出するために、室外熱交換器7出口に温度センサ14gが設けられる。
Embodiment 3 FIG.
FIG. 5 is a configuration diagram showing a refrigerant circuit of the refrigeration air-conditioning apparatus according to Embodiment 3 of the present invention and an air path configuration during ventilation.
In the present embodiment, an accumulator 18 is provided in the outdoor unit 1, and a refrigerant circuit configuration in which the refrigerant returning from the indoor unit 2 merges with the refrigerant flowing in from the ventilation unit 3 after passing through the accumulator 18. In this circuit configuration, the indoor expansion valve 8 is controlled not to control SH at the outlet of the indoor heat exchanger 9, but to control the degree of refrigerant supercooling (SC) at the outlet of the outdoor heat exchanger 7 to a predetermined value. In order to detect SC, a temperature sensor 14g is provided at the outlet of the outdoor heat exchanger 7.

このように構成することで、室内熱交換器9出口の冷媒状態を常にSH=0の飽和ガス状態とすることができ、室内熱交換器9で賄われる顕熱の冷却は冷媒の二相部の熱で賄われ、圧縮機4の吸入温度を高めるための加熱は、冷却熱交換器12における吸気の冷却時の冷媒加熱により実施される。そのため、より温度の低い室内の顕熱分の冷却は冷凍サイクルで最も温度の低い二相部の熱で賄い、圧縮機4の吸入温度を蒸発温度から高めるための熱は、より高温の吸気から得ることができるので、冷媒の温度レベルに応じた温度である負荷側空気と熱交換でき、冷媒と空気の温度差が拡大することによる不可逆損失を減少させる運転となり、より高効率の運転が実施される。また、室内熱交換器9ではSHを得る運転を実施することによる熱交換器伝熱性能の低下が無く、より冷凍サイクルの蒸発温度を高く運転でき、高効率の運転となる。   With this configuration, the refrigerant state at the outlet of the indoor heat exchanger 9 can always be a saturated gas state of SH = 0, and the sensible heat provided by the indoor heat exchanger 9 is cooled by the two-phase portion of the refrigerant. Heating to increase the intake temperature of the compressor 4 is performed by refrigerant heating during cooling of the intake air in the cooling heat exchanger 12. Therefore, the cooling of the sensible heat in the cooler room is covered by the heat of the two-phase part having the lowest temperature in the refrigeration cycle, and the heat for raising the intake temperature of the compressor 4 from the evaporation temperature is from the higher intake air. Therefore, heat can be exchanged with the load-side air, which has a temperature corresponding to the temperature level of the refrigerant, and the operation will reduce irreversible loss due to an increase in the temperature difference between the refrigerant and air, resulting in higher efficiency operation. Is done. Further, in the indoor heat exchanger 9, there is no deterioration in the heat transfer performance of the heat exchanger due to the operation for obtaining SH, and the evaporating temperature of the refrigeration cycle can be operated higher, resulting in a highly efficient operation.

本発明の実施の形態1に係る冷凍空調装置の構成図である。1 is a configuration diagram of a refrigeration air conditioner according to Embodiment 1 of the present invention. 実施の形態1に係る冷凍空調装置の動作を示すp−h線図である。It is a ph diagram which shows operation | movement of the refrigeration air conditioning apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る冷凍空調装置の運転制御フローチャートを表す図である。It is a figure showing the operation control flowchart of the refrigerating and air-conditioning apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係る冷凍空調装置の構成図である。It is a block diagram of the refrigerating and air-conditioning apparatus according to Embodiment 2. 実施の形態3に係る冷凍空調装置の構成図である。It is a block diagram of the refrigeration air conditioning apparatus which concerns on Embodiment 3. FIG.

符号の説明Explanation of symbols

1 室外ユニット、2 室内ユニット、3 換気ユニット、4 圧縮機、5 加熱熱交換器、6 気液分離器、7 室外熱交換器、8 室内膨張弁、9 室内熱交換器、10 バイパス回路、11 第2膨張弁(第2減圧装置)、12 冷却熱交換器、13 湿度センサ、14a、b、c、d、e、f 温度センサ、15a、b 圧力センサ、16 デシカントロータ、17 計測制御装置、18 アキュムレータ、21 吸気風路、22 排気風路。   DESCRIPTION OF SYMBOLS 1 Outdoor unit, 2 Indoor unit, 3 Ventilation unit, 4 Compressor, 5 Heating heat exchanger, 6 Gas-liquid separator, 7 Outdoor heat exchanger, 8 Indoor expansion valve, 9 Indoor heat exchanger, 10 Bypass circuit, 11 2nd expansion valve (2nd decompression device), 12 cooling heat exchanger, 13 humidity sensor, 14a, b, c, d, e, f temperature sensor, 15a, b pressure sensor, 16 desiccant rotor, 17 measurement control device, 18 accumulator, 21 intake air passage, 22 exhaust air passage.

Claims (5)

圧縮機、加熱熱交換器、冷媒分配機、凝縮器として作用する室外熱交換器、減圧装置、蒸発器として作用する室内熱交換器を含み、これらの機器を環状に接続して冷凍サイクルを構成する冷媒回路と、
室内と室外の間で換気を行うための吸気風路、排気風路と、
吸気風路にて室外からの吸気より水分を吸着し、排気風路にて室内からの排気へ水分を脱着するデシカントロータと、
吸気風路にデシカントロータより下流側に配置された冷却熱交換器とを備え、
前記冷媒回路は、前記冷媒分配器より分岐され、前記圧縮機の吸入側に接続されるバイパス回路を備えるとともに、前記バイパス回路に、第2減圧装置および前記冷却熱交換器を備え
前記加熱熱交換器は、前記排気風路に前記デシカントロータより上流側に配置され、前記圧縮機から吐出された高温高圧のガス冷媒により前記排気風路の排気を加熱するとともに、前記室外熱交換器は前記加熱熱交換器を流出後の冷媒が室外空気に放熱し凝縮液化することを特徴とする冷凍空調装置。
Compressor, heating heat exchanger, a refrigerant distributor, the outdoor heat exchanger acts as a condenser, pressure reducing device, viewed including the indoor heat exchanger acting as the evaporator, the refrigeration cycle of these devices is connected in a ring A refrigerant circuit comprising;
Intake and exhaust air passages for ventilation between indoors and outdoors,
A desiccant rotor that adsorbs moisture from the intake air from the outside in the intake air passage, and desorbs moisture to the exhaust from the room in the exhaust air passage;
A cooling heat exchanger disposed downstream of the desiccant rotor in the intake air passage;
The refrigerant circuit includes a bypass circuit branched from the refrigerant distributor and connected to the suction side of the compressor, and the bypass circuit includes a second decompression device and the cooling heat exchanger ,
The heating heat exchanger is disposed upstream of the desiccant rotor in the exhaust air passage, and heats the exhaust air in the exhaust air passage with a high-temperature and high-pressure gas refrigerant discharged from the compressor, and the outdoor heat exchange The refrigeration air conditioner is characterized in that the refrigerant flows out of the heating heat exchanger and dissipates heat to the outdoor air to be condensed and liquefied .
前記冷媒分配器は、冷媒を気液二相状態に分離する気液分離器であることを特徴とする請求項1記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to claim 1, wherein the refrigerant distributor is a gas-liquid separator that separates the refrigerant into a gas-liquid two-phase state. 前記バイパス回路の圧縮機吸入側にて、前記冷却熱交換器からの吸入冷媒と前記室内熱交換器からの吸入冷媒とを合流させてから前記圧縮機に吸入させることを特徴とする請求項1または2記載の冷凍空調装置。   The refrigerant sucked from the cooling heat exchanger and the refrigerant sucked from the indoor heat exchanger are merged on the compressor suction side of the bypass circuit and then sucked into the compressor. Or the refrigeration air conditioner of 2. 冷凍空調装置の計測、制御を実施する制御装置を備え、制御装置にて圧縮機の吐出温度、または加熱熱交換器入口の冷媒温度、または加熱熱交換器で加熱される室内からの排気の空気温度に基づいて、第2減圧装置の開度を制御し、バイパス回路を流れる冷媒流量を制御することを特徴とする請求項1〜3のいずれかに記載の冷凍空調装置。   Equipped with a control device that measures and controls the refrigeration and air-conditioning system. The controller discharge temperature of the compressor, the refrigerant temperature at the inlet of the heating heat exchanger, or the air exhausted from the room heated by the heating heat exchanger The refrigerating and air-conditioning apparatus according to any one of claims 1 to 3, wherein the opening of the second decompression device is controlled based on the temperature to control the flow rate of the refrigerant flowing through the bypass circuit. 制御装置にて加熱熱交換器出口の冷媒状態が気液二相状態となるように、圧縮機容量、室外熱交換器の熱交換容量、第2減圧装置の開度のうちの少なくとも一つを制御することを特徴とする請求項1〜3のいずれかに記載の冷凍空調装置。   In the control device, at least one of the compressor capacity, the heat exchange capacity of the outdoor heat exchanger, and the opening of the second decompression device is set so that the refrigerant state at the heating heat exchanger outlet becomes a gas-liquid two-phase state. The refrigeration air conditioner according to any one of claims 1 to 3, which is controlled.
JP2008281547A 2008-10-31 2008-10-31 Refrigeration air conditioner Active JP4912382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008281547A JP4912382B2 (en) 2008-10-31 2008-10-31 Refrigeration air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008281547A JP4912382B2 (en) 2008-10-31 2008-10-31 Refrigeration air conditioner

Publications (2)

Publication Number Publication Date
JP2010107152A JP2010107152A (en) 2010-05-13
JP4912382B2 true JP4912382B2 (en) 2012-04-11

Family

ID=42296772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008281547A Active JP4912382B2 (en) 2008-10-31 2008-10-31 Refrigeration air conditioner

Country Status (1)

Country Link
JP (1) JP4912382B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109253555A (en) * 2017-07-12 2019-01-22 荏原冷热***株式会社 Compression refrigerating machine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9874360B2 (en) 2013-05-14 2018-01-23 Mitsubishi Electric Corporation Air-conditioning system
CN105202825A (en) * 2014-05-28 2015-12-30 青岛海尔空调电子有限公司 Refrigerant supercooling structure for air-conditioner and central air-conditioner
CN105526745A (en) * 2016-02-04 2016-04-27 天津商业大学 Refrigerating system utilizing flash air to supercool high-pressure liquid refrigerant and realizing single-phase liquid-state uniform distribution of refrigerant
KR20210098019A (en) * 2020-01-31 2021-08-10 엘지전자 주식회사 Air Conditioner
KR20210098023A (en) * 2020-01-31 2021-08-10 엘지전자 주식회사 Air Conditioner
KR20210098018A (en) * 2020-01-31 2021-08-10 엘지전자 주식회사 Air Conditioner
CN111998565B (en) * 2020-08-13 2024-02-27 珠海格力电器股份有限公司 Double-temperature air conditioning system and control method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2502197B2 (en) * 1990-05-31 1996-05-29 三菱電機株式会社 Refrigeration cycle equipment
JP2948776B2 (en) * 1997-03-25 1999-09-13 株式会社荏原製作所 Air conditioning system
JP2001263732A (en) * 2000-03-24 2001-09-26 Daikin Ind Ltd Humidity control system
JP3668763B2 (en) * 2003-10-09 2005-07-06 ダイキン工業株式会社 Air conditioner
JP2005164220A (en) * 2003-11-12 2005-06-23 Daikin Ind Ltd Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109253555A (en) * 2017-07-12 2019-01-22 荏原冷热***株式会社 Compression refrigerating machine

Also Published As

Publication number Publication date
JP2010107152A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
JP5068235B2 (en) Refrigeration air conditioner
JP4912382B2 (en) Refrigeration air conditioner
JP5822931B2 (en) Humidity control apparatus, air conditioning system, and control method of humidity control apparatus
JP5695752B2 (en) Dehumidification system
TWI532957B (en) Dehumidification device
US6199392B1 (en) Air conditioning system
JP6494765B2 (en) Air conditioning system
JP4835688B2 (en) Air conditioner, air conditioning system
JP2012026700A (en) Desiccant air-conditioning system
JP2006250414A (en) Air-conditioner
JP7009174B2 (en) Ventilation device
JP5611079B2 (en) Outside air treatment equipment using desiccant rotor
JP5868416B2 (en) Refrigeration air conditioner and humidity control device
JP5218135B2 (en) Humidity control device
JP5627721B2 (en) Dehumidifier
JP5575029B2 (en) Desiccant ventilation fan
JP2019199998A (en) Air conditioning device
JP5890873B2 (en) Outside air treatment equipment using desiccant rotor
JP5537832B2 (en) External air conditioner and external air conditioning system
JP5062216B2 (en) Air conditioner
JP7126611B2 (en) air conditioner
JP6050107B2 (en) Dehumidification system
JP2014126255A (en) Humidity controller and dehumidification system using humidity controller
JP2968230B2 (en) Air conditioning system
JP6085468B2 (en) Dehumidification system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4912382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250