JP4912163B2 - Carbon steel or special steel formed with a fluorinated passive film and method for forming the same - Google Patents

Carbon steel or special steel formed with a fluorinated passive film and method for forming the same Download PDF

Info

Publication number
JP4912163B2
JP4912163B2 JP2007004788A JP2007004788A JP4912163B2 JP 4912163 B2 JP4912163 B2 JP 4912163B2 JP 2007004788 A JP2007004788 A JP 2007004788A JP 2007004788 A JP2007004788 A JP 2007004788A JP 4912163 B2 JP4912163 B2 JP 4912163B2
Authority
JP
Japan
Prior art keywords
steel
temperature
passive film
forming
fluorinated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007004788A
Other languages
Japanese (ja)
Other versions
JP2008169448A (en
Inventor
知彦 里永
宗孝 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stella Chemifa Corp
Original Assignee
Stella Chemifa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stella Chemifa Corp filed Critical Stella Chemifa Corp
Priority to JP2007004788A priority Critical patent/JP4912163B2/en
Publication of JP2008169448A publication Critical patent/JP2008169448A/en
Application granted granted Critical
Publication of JP4912163B2 publication Critical patent/JP4912163B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

ステンレス材は主成分である鉄以外にニッケルおよびクロムにより構成されている。しかし、ステンレス材以外の特殊用途鋼で、軸受け鋼は鉄(Fe)以外の添加物が合計10%未満しか含まれていない。このため、前述の金属基材は腐食性雰囲気では、腐食が進行し、さらに腐食が進んだ部分の皮膜が剥離し、装置内部部品の欠損による回転の不安定化を引き起こしたり、装置内部に混在することによって、後段の装置へ流入し、機器の損傷を起こしていた。   The stainless steel material is composed of nickel and chromium in addition to the main component of iron. However, with special purpose steels other than stainless steel, bearing steel contains a total of less than 10% of additives other than iron (Fe). For this reason, in the corrosive atmosphere, the above-mentioned metal base material is corroded, and the coating of the part where the corrosion has further progressed is peeled off. As a result, it flowed into the subsequent apparatus, causing damage to the equipment.

腐食性ガスに晒されても腐食が生じない真空ポンプに使用される回転部分において、ベアリングのような軸受け部分は潤滑油によって満たされているが、使用状況によっては腐食性ガス雰囲気になることがある。このとき、潤滑油に溶け込んだ腐食性ガス成分に由来するハロゲンが軸受け部の金属と反応し、表面に腐食が発生する。   In rotating parts used in vacuum pumps that do not corrode even when exposed to corrosive gas, bearing parts such as bearings are filled with lubricating oil, but depending on the usage situation, the atmosphere may be corrosive gas. is there. At this time, the halogen derived from the corrosive gas component dissolved in the lubricating oil reacts with the metal of the bearing portion, and corrosion occurs on the surface.

このために、金属材料表面に耐腐食性処理を行うことが必要になってくる。ステンレス材に関しては、特許文献1(特許第3030351号公報)にフッ化不動態膜をその表面に形成することの優位性が述べられている。   For this reason, it is necessary to perform a corrosion resistance treatment on the surface of the metal material. Regarding the stainless steel material, Patent Document 1 (Japanese Patent No. 3030351) describes the superiority of forming a fluorinated passive film on the surface thereof.

特許文献1では、SUS316Lに対して、200〜500℃の温度において2時間のフッ化処理を行うことによりフッ化第一鉄の単独層ないしフッ化第一鉄とフッ化第二鉄との混合層からなるフッ化不動態膜の形成を行っている(特許文献1の実施例)。   In Patent Document 1, SUS316L is mixed with ferrous fluoride alone or ferrous fluoride and ferric fluoride by performing fluorination treatment at a temperature of 200 to 500 ° C. for 2 hours. A fluorinated passive film composed of layers is formed (Example of Patent Document 1).

しかし、ステンレス材以外の鉄鋼、特に、ニッケル、クロムの含有量が少ない鉄鋼材料(例えば、構造用炭素鋼(JIS:SC材)や軸受用炭素鋼(JIS:SUJ材))について特許文献1に記載された方法によりフッ化不動態膜の形成を試みたところ耐食性を有するフッ化不動態膜の形成はできなかった。   However, Patent Document 1 discloses steel materials other than stainless steel, particularly steel materials with low nickel and chromium contents (for example, structural carbon steel (JIS: SC material) and bearing carbon steel (JIS: SUJ material)). Attempts to form a fluorinated passivated film by the described method failed to form a fluorinated passivated film having corrosion resistance.

ステンレス材とそれ以外の特殊用途鋼とではフッ化不動態膜の形成方法が異なってくることがわかった。
特許第30351号公報)
It was found that the method of forming a fluoride passivation film differs between stainless steel and other special purpose steels.
(Patent No. 30351)

本発明は、耐食性を有するフッ化不動態膜をステンレス材以外の鉄鋼基材に形成することが可能なフッ化不動態膜の形成方法を提供することを目的とする。   An object of the present invention is to provide a method for forming a fluorinated passive film capable of forming a fluorinated passive film having corrosion resistance on a steel substrate other than a stainless steel material.

本発明は、耐食性を有するフッ化不動態膜を表面に有するステンレス材以外の鉄鋼基材を提供することを目的とする。
本発明は、耐食性及び耐磨耗性を有するフッ化不動態膜を表面に有する鋼材を提供することを目的とする。
本発明は、摺動部分において腐食性ガスに晒されても腐食が起こらない装置を提供することを目的とする。
An object of this invention is to provide steel base materials other than the stainless steel which has the fluoride passive film which has corrosion resistance on the surface.
An object of the present invention is to provide a steel material having a fluorinated passivated film having corrosion resistance and wear resistance on the surface.
An object of the present invention is to provide a device in which corrosion does not occur even when exposed to a corrosive gas in a sliding portion.

本発明は、炭素鋼又は特殊鋼(但しステンレス鋼は除く)からなる基材をベーキングし、次いで、50℃以上150℃未満の温度においてフッ素化処理を行うことを特徴とするフッ化不動態膜の形成方法である。
本発明は、炭素鋼又は特殊鋼(但しステンレス鋼は除く)からなる基材表面の少なくとも一部に化学量論比を満足するフッ化第一鉄とフッ化第二鉄との混合層を主成分とする金属フッ化物からなる不動態皮膜が形成されていることを特徴とするフッ化不動態膜が形成された鉄鋼材である。
The present invention is a fluorinated passive film characterized in that a substrate made of carbon steel or special steel (excluding stainless steel) is baked and then fluorinated at a temperature of 50 ° C. or higher and lower than 150 ° C. It is the formation method.
The present invention mainly includes a mixed layer of ferrous fluoride and ferric fluoride that satisfies the stoichiometric ratio on at least a part of the surface of the base material made of carbon steel or special steel (excluding stainless steel). A steel material having a fluorinated passive film formed with a passive film made of a metal fluoride as a component.

(基材)
本発明における対象基材は炭素鋼又は特殊鋼(但しステンレス鋼を除く)である。
鋼には、鉄にC,Si、Mn、P、Sが含まれた炭素鋼(普通鋼)と炭素鋼に特殊元素が添加された特殊鋼がある。
炭素鋼には一般構造用圧延材(SS)と溶接構造用圧延鋼材(SM)、高張力鋼材(ハイテン)があり、これらはいずれも本発明の対象である。
(Base material)
The target substrate in the present invention is carbon steel or special steel (excluding stainless steel).
Steel includes carbon steel (ordinary steel) in which C, Si, Mn, P, and S are contained in iron, and special steel in which special elements are added to carbon steel.
Carbon steel includes general structural rolled material (SS), rolled steel for welded structure (SM), and high-tensile steel (high-tensile), all of which are objects of the present invention.

特殊鋼には、合金鋼(SA)、工具鋼(SK)、特殊用途鋼の3種類がある。
合金鋼には、機械構造用炭素材(SC)と構造用合金材(SA)がある。機械構造用炭素材はクロムを含有せず本発明の対象である。構造用合金材の中にはクロムを含有するものがあるがそのうちクロムが2重量%以下のものが特に好ましい。
工具鋼には、工具用炭素鋼材(SK)、合金工具鋼(SKS、SKD)、高速度鋼(SKH)がある。工具用炭素鋼は、多くは耐摩耗用部材として使用される。
There are three types of special steel: alloy steel (SA), tool steel (SK), and special purpose steel.
Alloy steels include mechanical structural carbon materials (SC) and structural alloy materials (SA). The carbon material for mechanical structure does not contain chromium and is the object of the present invention. Some structural alloy materials contain chromium, of which chromium is particularly preferably 2% by weight or less.
Tool steel includes carbon steel for tools (SK), alloy tool steel (SKS, SKD), and high speed steel (SKH). Most carbon steel for tools is used as a wear-resistant member.

特殊用途鋼(SU)にはステンレス鋼(SUS)、高C高Cr軸受鋼(SUJ)、ばね鋼(SUP)、快削鋼(SUM)がある。ステンレス鋼は本発明の対象外である。高C高Cr軸受鋼(SUJ)は本発明の対象である。
なお、構造用炭素鋼あるいは軸受鋼は一般的に、球状化炭化物が均一に分布しており、耐摩耗性に優れたベアリングに多用される。
なお、機械構造用炭素鋼(SC)、軸受材(SUJ)の組成例を表1、表2に示す。
Special purpose steels (SU) include stainless steel (SUS), high C high Cr bearing steel (SUJ), spring steel (SUP), and free cutting steel (SUM). Stainless steel is outside the scope of the present invention. High C high Cr bearing steel (SUJ) is the subject of the present invention.
In general, structural carbon steel or bearing steel is often used for bearings in which spheroidized carbides are uniformly distributed and have excellent wear resistance.
Tables 1 and 2 show composition examples of carbon steel for machine structure (SC) and bearing material (SUJ).

Figure 0004912163
Figure 0004912163


機械構造用炭素鋼(SC)、軸受け鋼(SUJ)は一般的に、焼入れ後焼鈍を行う。この焼きなまし後の組織はパーライト中のセメンタイトを又は網状セメンタイトを球状化するための処理である。従って、これら鋼の場合フッ化処理前においては、球状炭化物が均一に分布している。
鋼としては、炭素含有率が0.02〜2.1%の鋼を用いることが好ましい。
0.02%未満の場合、鉄とフッ素との反応が進みすぎて、表面に均一なフッ化不動態皮膜が形成されないことがある。
2.1%を超えると、球状炭化物の分布量が多くなり、フッ化不動態膜の密着性が低下することがある。また、フッ素と炭素との反応生成物であるフッ化炭素がガス化した際に、基材表面にピット部分を発生させ、表面が荒れてしまい良好な皮膜の形成に影響を及ぼすことがある。また、クロム含有率が2%以下の鋼が好ましい。本発明におけるフッ化膜の形成方法における条件においては、クロムの含有率が2%以下の場合が2%を超えた場合に比べるとより耐食性の良好なフッ化不動態膜を形成することができる。
Figure 0004912163
Figure 0004912163


Carbon steel for machine structural use (SC) and bearing steel (SUJ) are generally annealed after quenching. This annealed structure is a treatment for spheroidizing cementite in pearlite or reticulated cementite. Therefore, in the case of these steels, spherical carbides are uniformly distributed before the fluorination treatment.
As the steel, it is preferable to use steel having a carbon content of 0.02 to 2.1%.
If it is less than 0.02%, the reaction between iron and fluorine may proceed excessively, and a uniform fluorinated passive film may not be formed on the surface.
If it exceeds 2.1%, the distribution amount of the spherical carbide increases, and the adhesion of the fluorinated passivated film may be lowered. In addition, when carbon fluoride, which is a reaction product of fluorine and carbon, is gasified, a pit portion is generated on the surface of the substrate, and the surface becomes rough, which may affect the formation of a good film. Further, steel having a chromium content of 2% or less is preferable. Under the conditions in the method for forming a fluoride film in the present invention, a fluoride passivated film with better corrosion resistance can be formed when the chromium content is 2% or less than 2%. .

(前処理(ベーキング))
本発明において、フッ化処理前においては、ベーキングを行うことが好ましい。
ベーキングは100℃〜300℃の温度において、炉内を不活性ガスでパージしながら行うことが好ましい。
すなわち、フッ素化の前に予めある特定雰囲気下に熱処理する。この雰囲気として特に水分が極めて低い雰囲気の条件下に更に好ましくはその温度がステンレス鋼表面の付着水分を完全に除去しうる温度で熱処理を行うものである。このような条件下で予め熱処理した後フッ素化を行うと、FeFとFeFとが共に生成しても、得られる不働態膜は極めて優れた特性を有し、剥離や割れ等は全く生じない。
(Pretreatment (baking))
In the present invention, baking is preferably performed before the fluorination treatment.
Baking is preferably performed at a temperature of 100 ° C. to 300 ° C. while purging the inside of the furnace with an inert gas.
That is, heat treatment is performed in a specific atmosphere in advance before fluorination. In this atmosphere, the heat treatment is more preferably performed under a condition where the moisture is extremely low, and the temperature is more preferably a temperature at which the moisture adhering to the stainless steel surface can be completely removed. When fluorination is performed after pre-heat treatment under such conditions, even if both FeF 3 and FeF 2 are formed, the obtained passive film has extremely excellent characteristics, and peeling, cracking, etc. occur at all. Absent.

フッ素化すべき鋼を予め特定の予備処理を行うと、たとえフッ素化温度が高温になっても、換言すればFeFとFeFとが混在して生成しても優れた耐食性を有する不働態膜が強固に形成され、剥離や亀裂が全く生じない。予め特定の予備処理を行わない場合には、鋼を高温でフッ素化すると、FeFとFeFとが共に生成して得られる不働態膜は亀裂や剥離が生ずる可能性があるが、フッ素化する前に予めある特定の処理、即ちある特定雰囲気下で熱処理すると、フッ素化温度に関係なくたとえFeFとFeFとが共に生成しても優れた不働態膜が得られる。 If the steel to be fluorinated is subjected to a specific pretreatment in advance, even if the fluorination temperature becomes high, in other words, a passive film having excellent corrosion resistance even if it is formed by mixing FeF 2 and FeF 3 Is firmly formed and no peeling or cracking occurs. In the case where specific pretreatment is not performed in advance, when the steel is fluorinated at high temperature, the passive film obtained by forming both FeF 2 and FeF 3 may be cracked or peeled off. If heat treatment is performed in advance in a specific process, that is, in a specific atmosphere, an excellent passive film can be obtained even if both FeF 2 and FeF 3 are formed regardless of the fluorination temperature.

(フッ化処理)
フッ素化の条件は50〜150℃の温度範囲で、フッ素化の時間は30分〜3時間の間である。フッ素化は基本的に常圧にて行うが、必要に応じて減圧下もしくは加圧化にて行うことも可能である。この際の圧力は2気圧以下程度でよい。フッ素化の雰囲気は酸素の存在しない状態で行うのが好ましく、したがって、フッ素を単独で、あるいは適宜な不活性ガス(たとえば、N,Ar,He等)で希釈することが望ましい。
(Fluoride treatment)
The fluorination conditions are in the temperature range of 50 to 150 ° C., and the fluorination time is between 30 minutes and 3 hours. Fluorination is basically carried out at normal pressure, but it can also be carried out under reduced pressure or increased pressure as necessary. The pressure at this time may be about 2 atm or less. The fluorination atmosphere is preferably performed in the absence of oxygen. Therefore, it is desirable to dilute fluorine alone or with an appropriate inert gas (for example, N 2 , Ar, He, etc.).

(フッ化処理温度)
フッ化処理の温度は、50℃以上150℃未満である。
50℃以上とすることにより耐食性が優れたフッ化不動態が形成される。一方、150℃を越えると表面にクラックを有するフッ化不動態が形成され、腐食性ガスがそのクラック部分から浸入し、基材と反応するため、耐食性が得られない。
(Fluorination treatment temperature)
The temperature of the fluorination treatment is 50 ° C. or higher and lower than 150 ° C.
By adjusting the temperature to 50 ° C. or higher, a fluorination passive having excellent corrosion resistance is formed. On the other hand, when the temperature exceeds 150 ° C., a fluorination passivation having cracks on the surface is formed, and corrosive gas enters from the crack portion and reacts with the base material, so that corrosion resistance cannot be obtained.

(フッ化処理時間)
フッ化処理時間としては30分から3時間が好ましい。30分未満では十分の厚さのフッ化不動態が形成されないことがある。また、3時間を超えると皮膜の厚膜化が進み、表面にクラックを有するフッ化不動態が形成され、腐食性ガスがそのクラック部分から浸入し、基材と反応するため、耐食性が得られない。
(Fluorine treatment time)
The fluorination treatment time is preferably 30 minutes to 3 hours. If it is less than 30 minutes, a sufficient thickness of the fluorinated passive state may not be formed. In addition, when the time exceeds 3 hours, the film becomes thicker, and a fluorination passivation with cracks is formed on the surface, and corrosive gas penetrates from the cracks and reacts with the base material, so corrosion resistance is obtained. Absent.

(フッ化処理の処理ガス)
フッ化処理の処理ガスとしては、フッ素単独またはフッ素を不活性ガスで希釈したガスを用いることができる。
(Processing gas for fluorination treatment)
As a treatment gas for the fluorination treatment, fluorine alone or a gas obtained by diluting fluorine with an inert gas can be used.

フッ化処理を、鉄鋼基材の使用温度以上の温度で行うことが好ましい。フッ素の存在する雰囲気において、フッ化処理を行った温度以上の温度に保持するとフッ化不動態の膜厚の増加が認められる。それに対して、フッ素の存在する雰囲気中において、フッ化処理を行った温度より低い温度に保持した場合にはフッ化不動態の膜厚の増加は認められない。使用中にフッ化不動態膜の増加が生じると、例えば軸受材においては回転摺動性が悪くなる。従って、使用中におけるフッ化不動態の膜厚の増加を防ぐために、フッ化処理は使用温度よりも低い温度で行うことが好ましい。   The fluorination treatment is preferably performed at a temperature equal to or higher than the use temperature of the steel substrate. In an atmosphere containing fluorine, an increase in the thickness of the fluoride passivation film is observed when the temperature is maintained at a temperature higher than the temperature at which the fluorination treatment is performed. On the other hand, when the temperature is lower than the temperature at which the fluorination treatment is performed in an atmosphere in which fluorine is present, no increase in the thickness of the fluorinated passive film is observed. If an increase in the fluorinated passive film occurs during use, for example, in a bearing material, rotational slidability deteriorates. Therefore, in order to prevent an increase in the thickness of the fluorinated passive film during use, the fluorination treatment is preferably performed at a temperature lower than the use temperature.

なお、ベーキング前に表面の酸化物を除去することがより密着性の優れたフッ化不動態を形成する上から好ましい。   In addition, it is preferable to remove the oxide on the surface before baking from the viewpoint of forming a fluorinated passivity with better adhesion.

(後処理)
フッ化処理の後には、皮膜を構成するフッ素原子と鉄原子の化学量論比に近づけるために、再度不活性ガス中で熱処理を行う。熱処理の温度は100〜300℃の範囲で行うのがよいが、基材の設計上の熱によるひずみの許容範囲によって、温度を変えることもできる。
(Post-processing)
After the fluorination treatment, heat treatment is again performed in an inert gas in order to approach the stoichiometric ratio of fluorine atoms and iron atoms constituting the film. The temperature of the heat treatment is preferably in the range of 100 to 300 ° C., but the temperature can be changed depending on the allowable strain range due to heat in the design of the base material.

(フッ化不動態膜)
本発明により形成されるフッ化不動態膜はフッ化第一鉄とフッ化第二鉄との混合層を主成分とする。
フッ化第一鉄、フッ化第二鉄ともにほぼ化学量論比を満足する。FeFxとするとフッ化第一鉄の場合x=2±0.1、フッ化第二鉄の場合x=3±0.1である。
本発明に係るフッ化不動態皮膜は堅牢で、且つ緻密で金属との密着性もあり、さらに耐食性も充分に認められる不動態皮膜である。
(Fluoride passive film)
The fluorinated passive film formed according to the present invention is mainly composed of a mixed layer of ferrous fluoride and ferric fluoride.
Both ferrous fluoride and ferric fluoride almost satisfy the stoichiometric ratio. For FeFx, x = 2 ± 0.1 for ferrous fluoride and x = 3 ± 0.1 for ferric fluoride.
The fluorinated passive film according to the present invention is a passive film that is strong and dense, has adhesion to a metal, and has sufficient corrosion resistance.

(部材)
フッ化不動態膜が形成された部材は、腐食性ガスに晒される可能性がある環境下で使用される装置に用いることができる。特にフッ化不動態膜が形成された面を摺動面として用いることが好ましい。
例えば、軸受部材の軸受面をフッ化不動態膜で構成することが好ましい。
(Element)
The member on which the fluorinated passive film is formed can be used for an apparatus used in an environment where there is a possibility of being exposed to a corrosive gas. In particular, the surface on which the fluorinated passive film is formed is preferably used as the sliding surface.
For example, the bearing surface of the bearing member is preferably composed of a fluorinated passive film.

本発明のフッ化不動態膜は、例えば、次の各種腐食性ガス(あるいはその腐食性ガスを含むガス)に対して特に優れた耐腐食性を示す。F,Cl,NF,ClF,CF,IF,IF、SF,SF,SiF,BF,HF,WF,MoF,PF,PF,AsF,AsFの中から選ばれる少なくとも1種類から構成される無機ハロゲン系ガス、あるいは、SO,HS,NOの中から選ばれる少なくとも1種類から構成されるガス。特に、フッ素を含む無機フッ素系ガスに対して優れた耐食性を示す。 The fluorinated passive film of the present invention exhibits particularly excellent corrosion resistance against, for example, the following various corrosive gases (or gases containing such corrosive gases). F 2 , Cl 2 , NF 3 , ClF 3 , CF 4 , IF 5 , IF 7 , SF 4 , SF 6 , SiF 4 , BF 3 , HF, WF 6 , MoF 6 , PF 3 , PF 5 , AsF 3 , An inorganic halogen gas composed of at least one selected from AsF 5 or a gas composed of at least one selected from SO 2 , H 2 S, and NO 2 . In particular, it exhibits excellent corrosion resistance against inorganic fluorine-based gases containing fluorine.

本発明により、腐食性ガス雰囲気では使用ができなかった、または、腐食により、部品の交換が頻繁に行う必要があったものに対して、フッ化不動態膜を形成することにより、使用が可能、もしくは部品の長寿命化が可能となった。
発明によって達成された炭素鋼を中心とする鋼材へのフッ化不動態膜は耐フッ素特性のみならず、腐食性ガス対して優れているので、ターボ分子ポンプや真空ポンプを中心とする該当する鋼材を使用する装置部材として、極めて有効である。従って、本発明によりフッ化不動態膜を形成した金属材料もしくは金属皮膜は真空関連装置部材として、極めて有効である。
According to the present invention, it can be used by forming a fluorinated passivated film that cannot be used in a corrosive gas atmosphere or has to be frequently replaced due to corrosion. Or the life of parts can be extended.
The fluorinated passive film on steel materials centered on carbon steel achieved by the invention is superior not only in fluorine resistance but also in corrosive gases, so the applicable steel materials mainly in turbo molecular pumps and vacuum pumps. It is extremely effective as a device member that uses. Therefore, the metal material or metal film on which the fluorinated passive film is formed according to the present invention is extremely effective as a vacuum-related device member.

真空ポンプの回転部分を構成する軸受け材(材質:SUJ)にフッ化不動態皮膜を形成させることにより、腐食性ガス雰囲気でも、軸受け材の腐食を防止することができる。
ターボ分子ポンプの軸受け(磁気浮上式も含む)部分において、フッ化不動態皮膜を形成させることにより、同ポンプの回転翼部分が高速回転するため、軸部分の腐食によるぶれを大きく低減させることができる。
By forming a fluorinated passive film on the bearing material (material: SUJ) constituting the rotating part of the vacuum pump, corrosion of the bearing material can be prevented even in a corrosive gas atmosphere.
By forming a fluorinated passive film on the bearing (including the magnetic levitation type) of the turbo molecular pump, the rotor blade part of the pump rotates at a high speed, which can greatly reduce shake due to corrosion of the shaft part. it can.

自動車もしくは航空機に関して、燃料噴出部分付近のベアリングは、燃料の燃焼後のガスに含まれるSO,NOによって、腐食雰囲気に曝露される。フッ化不動態膜を施した場合、腐食防止がなされ、部品の延命対策が可能となる。
以下、各種条件によりフッ化不動態膜の形成及び形成された膜の評価を行った。
なお、試験例1及び7は比較例、試験例2〜6は本発明の実施例、試験例8〜10は、試験例1〜7のサンプルを用いた比較評価実施例である。
(試験例1)
With respect to automobiles or aircraft, the bearings near the fuel ejection portion are exposed to a corrosive atmosphere by SO 2 and NO 2 contained in the gas after combustion of the fuel. When a fluorinated passive film is applied, corrosion is prevented and measures for extending the life of parts are possible.
Hereinafter, formation of a fluorinated passive film and evaluation of the formed film were performed under various conditions.
Test Examples 1 and 7 are comparative examples, Test Examples 2 to 6 are examples of the present invention, and Test Examples 8 to 10 are comparative evaluation examples using the samples of Test Examples 1 to 7.
(Test Example 1)

軸受け鋼の例として、SUJ2を試験片とした。
常圧ガス流通式反応炉に、試験片を炉内部に装着して、不活性ガスである窒素(99.999%)を流通させながら、大気圧の状態で150℃にて8時間保持した。その後、反応炉を真空(真空度10Pa)にして、1%Fガス(窒素希釈)を導入させて、内圧を大気圧まで戻す。そのまま2時間保持し、窒素ガスにて、希釈フッ素ガスを置換しながら降温した。完全置換後、150℃にて8時間保持し、室温まで自然降温させた。
(試験例2)
As an example of bearing steel, SUJ2 was used as a test piece.
The test piece was mounted in an atmospheric pressure gas flow type reaction furnace, and maintained at 150 ° C. for 8 hours under atmospheric pressure while flowing nitrogen (99.999%) as an inert gas. Thereafter, the reactor is evacuated (vacuum degree: 10 Pa), 1% F 2 gas (diluted with nitrogen) is introduced, and the internal pressure is returned to atmospheric pressure. The temperature was maintained for 2 hours, and the temperature was lowered while replacing the diluted fluorine gas with nitrogen gas. After complete replacement, the temperature was maintained at 150 ° C. for 8 hours, and the temperature was naturally lowered to room temperature.
(Test Example 2)

常圧ガス流通式反応炉に、試験例1にて示した手法にて調整した試験片を炉内部に装着して、不活性ガスである窒素(99.999%)を流通させながら、大気圧の状態で150℃にて8時間保持した。140℃まで降温させ、その後、温度を保持したまま、反応炉を真空(真空度10Pa)にして、1%Fガス(窒素希釈)を導入させて、内圧を大気圧まで戻す。そのまま2時間保持し、窒素ガスにて、希釈フッ素ガスを置換しながら降温した。完全置換後、150℃にて8時間保持し、室温まで自然降温させた。
(試験例3)
Atmospheric pressure while nitrogen (99.999%), which is an inert gas, is circulated in a normal pressure gas flow type reaction furnace with a test piece adjusted by the method shown in Test Example 1 inside the furnace. And kept at 150 ° C. for 8 hours. The temperature is lowered to 140 ° C., and then the reactor is evacuated (vacuum degree: 10 Pa) while maintaining the temperature, 1% F 2 gas (diluted with nitrogen) is introduced, and the internal pressure is returned to atmospheric pressure. The temperature was maintained for 2 hours, and the temperature was lowered while replacing the diluted fluorine gas with nitrogen gas. After complete replacement, the temperature was maintained at 150 ° C. for 8 hours, and the temperature was naturally lowered to room temperature.
(Test Example 3)

常圧ガス流通式反応炉に、試験例1にて示した手法にて調整した試験片を炉内部装着して、不活性ガスである窒素(99.999%)を流通させながら、大気圧の状態で150℃にて8時間保持した。100℃まで降温させ、その後、温度を保持したまま、反応炉を真空(真空度10Pa)にして、1%Fガス(窒素希釈)を導入させて、内圧を大気圧まで戻す。そのまま2時間保持し、窒素ガスにて、希釈フッ素ガスを置換しながら降温した。完全置換後、150℃にて8時間保持し、室温まで自然降温させた。
(試験例4)
A test piece adjusted by the method shown in Test Example 1 was installed in the normal pressure gas flow reactor, and nitrogen (99.999%), which is an inert gas, was passed through the reactor while maintaining atmospheric pressure. The state was kept at 150 ° C. for 8 hours. The temperature is lowered to 100 ° C., and then the reactor is evacuated (vacuum degree: 10 Pa) while maintaining the temperature, 1% F 2 gas (diluted with nitrogen) is introduced, and the internal pressure is returned to atmospheric pressure. The temperature was maintained for 2 hours, and the temperature was lowered while replacing the diluted fluorine gas with nitrogen gas. After complete replacement, the temperature was maintained at 150 ° C. for 8 hours, and the temperature was naturally lowered to room temperature.
(Test Example 4)

常圧ガス流通式反応炉に、試験例1にて示した手法にて調整した試験片を炉内部に装着して、不活性ガスである窒素(99.999%)を流通させながら、大気圧の状態で150℃にて8時間保持した。80℃まで降温させ、その後、温度を保持したまま、反応炉を真空(真空度10Pa)にして、1%Fガス(窒素希釈)を導入させて、内圧を大気圧まで戻す。そのまま2時間保持し、窒素ガスにて、希釈フッ素ガスを置換しながら降温した。完全置換後、150℃にて8時間保持し、室温まで自然降温させた。
(試験例5)
Atmospheric pressure while nitrogen (99.999%), which is an inert gas, is circulated in a normal pressure gas flow type reaction furnace with a test piece adjusted by the method shown in Test Example 1 inside the furnace. And kept at 150 ° C. for 8 hours. The temperature is lowered to 80 ° C., and then the reactor is evacuated (vacuum degree: 10 Pa) while maintaining the temperature, 1% F 2 gas (diluted with nitrogen) is introduced, and the internal pressure is returned to atmospheric pressure. The temperature was maintained for 2 hours, and the temperature was lowered while replacing the diluted fluorine gas with nitrogen gas. After complete replacement, the temperature was maintained at 150 ° C. for 8 hours, and the temperature was naturally lowered to room temperature.
(Test Example 5)

常圧ガス流通式反応炉に、試験例1にて示した手法にて調整した試験片を炉内部に装着して、不活性ガスである窒素(99.999%)を流通させながら、大気圧の状態で150℃にて8時間保持した。50℃まで降温させ、その後、温度を保持したまま、反応炉を真空(真空度10Pa)にして、1%Fガス(窒素希釈)を導入させて、内圧を大気圧まで戻す。そのまま2時間保持し、窒素ガスにて、希釈フッ素ガスを置換しながら降温した。完全置換後、150℃にて8時間保持し、室温まで自然降温させた。
(試験例6)
Atmospheric pressure while nitrogen (99.999%), which is an inert gas, is circulated in a normal pressure gas flow type reaction furnace with a test piece adjusted by the method shown in Test Example 1 inside the furnace. And kept at 150 ° C. for 8 hours. The temperature is lowered to 50 ° C., and then the reactor is evacuated (vacuum degree: 10 Pa) while maintaining the temperature, 1% F 2 gas (diluted with nitrogen) is introduced, and the internal pressure is returned to atmospheric pressure. The temperature was maintained for 2 hours, and the temperature was lowered while replacing the diluted fluorine gas with nitrogen gas. After complete replacement, the temperature was maintained at 150 ° C. for 8 hours, and the temperature was naturally lowered to room temperature.
(Test Example 6)

常圧ガス流通式反応炉に、試験例1にて示した手法にて調整した試験片を炉内部に装着して、不活性ガスである窒素(99.999%)を流通させながら、大気圧の状態で150℃にて8時間保持した。30℃まで降温させ、その後、温度を保持したまま、反応炉を真空(真空度10Pa)にして、1%Fガス(窒素希釈)を導入させて、内圧を大気圧まで戻す。そのまま2時間保持し、窒素ガスにて、希釈フッ素ガスを置換しながら降温した。完全置換後、150℃にて8時間保持し、室温まで自然降温させた。
(試験例7)
Atmospheric pressure while nitrogen (99.999%), which is an inert gas, is circulated in a normal pressure gas flow type reaction furnace with a test piece adjusted by the method shown in Test Example 1 inside the furnace. And kept at 150 ° C. for 8 hours. The temperature is lowered to 30 ° C., and then the reactor is evacuated (vacuum degree: 10 Pa) while maintaining the temperature, 1% F 2 gas (diluted with nitrogen) is introduced, and the internal pressure is returned to atmospheric pressure. The temperature was maintained for 2 hours, and the temperature was lowered while replacing the diluted fluorine gas with nitrogen gas. After complete replacement, the temperature was maintained at 150 ° C. for 8 hours, and the temperature was naturally lowered to room temperature.
(Test Example 7)

常圧ガス流通式反応炉に、試験例1にて示した手法にて調整した試験片を炉内部に装着して、不活性ガスである窒素(99.999%)を流通させながら、大気圧の状態で150℃にて8時間保持した。30℃まで降温させ、その後、温度を保持したまま、2時間保持後降温した。その後150℃にて8時間保持し、室温まで自然降温させた。   Atmospheric pressure while nitrogen (99.999%), which is an inert gas, is circulated in a normal pressure gas flow type reaction furnace with a test piece adjusted by the method shown in Test Example 1 inside the furnace. And kept at 150 ° C. for 8 hours. The temperature was lowered to 30 ° C., and then the temperature was lowered after holding for 2 hours while keeping the temperature. Thereafter, the temperature was maintained at 150 ° C. for 8 hours, and the temperature was naturally lowered to room temperature.

(膜厚の測定結果)
試験例1,2,3,4,5,6の試験片をXPS(X−ray PhotoelectronSpectroscopy)にて解析した。アルゴンスパッタリングによって、深さ方向へエッチングを行った。フッ化膜の膜厚はフッ素原子と鉄原子の存在比率が等比になる深さをもって、膜厚とする。ただし、事前に膜厚が既知のSi上のSiO薄膜の酸素検出深さにつき、同様に測定を行い、スパッタレートを測定した。これらの試験片のXPSでの測定値を示す。
(Measurement result of film thickness)
Test specimens of Test Examples 1, 2, 3, 4, 5, and 6 were analyzed by XPS (X-ray Photoelectron Spectroscopy). Etching was performed in the depth direction by argon sputtering. The film thickness of the fluoride film is defined as the film thickness having a depth at which the abundance ratio of fluorine atoms and iron atoms is equal. However, the oxygen detection depth of the SiO 2 thin film on Si with a known film thickness was measured in advance and the sputtering rate was measured. The measured value by XPS of these test pieces is shown.

Figure 0004912163
(試験例8)
Figure 0004912163
(Test Example 8)

試験例1,2,3,4,5,6および7におけるフッ化処理を行った試験片を加圧式反応炉に装着して1%F(窒素希釈)を圧力0.2MPa(ゲージ圧)まで加圧し、温度を80℃まで加熱後、24時間保持して、窒素ガスにて、希釈フッ素ガスを置換しながら降温した。これらの試験片のXPSでの測定値を示す。 The test pieces subjected to the fluorination treatment in Test Examples 1, 2, 3, 4, 5, 6 and 7 were mounted in a pressure reactor and 1% F 2 (diluted with nitrogen) was applied at a pressure of 0.2 MPa (gauge pressure). The temperature was raised to 80 ° C. and maintained for 24 hours, and the temperature was lowered while replacing the diluted fluorine gas with nitrogen gas. The measured value by XPS of these test pieces is shown.

Figure 0004912163
表4に示す試験例8の結果から、試験例2,3,4で作成した試験片の皮膜の厚さに変化は見られなかったが、試験例1で作成した試験片は膜厚が1.5倍まで増加している。また、試験例1で作成した試験片の表面にクラックが発生してクラック部分からフッ素が浸入し、皮膜下地の鉄元素と反応が進んだため、さらにフッ素化が進んだ。また、試験例8におけるフッ素暴露温度よりもフッ素との反応温度が低い温度にて処理した試験例5,6で作成した試験片に対しては、各試験例にて生成された皮膜が薄いため、表層に存在しているフッ素と結合していない鉄原子が試験例8によるフッ素暴露によりフッ素が浸入し、反応が進んだ。なお、試験例7で作成した試験片についてはフッ化不動態皮膜がないため、フッ素の浸入が他の試験例よりも顕著に見られた。
(試験例9)
Figure 0004912163
From the results of Test Example 8 shown in Table 4, no change was found in the film thickness of the test pieces prepared in Test Examples 2, 3, and 4, but the test piece prepared in Test Example 1 had a film thickness of 1 Increased up to 5 times. Further, cracks were generated on the surface of the test piece prepared in Test Example 1, and fluorine entered from the cracked portion, and the reaction with the iron element on the film base proceeded. Moreover, since the film produced | generated in each test example was thin with respect to the test piece created in test example 5 and 6 processed at the temperature where the reaction temperature with fluorine is lower than the fluorine exposure temperature in test example 8. The iron atoms not bonded to the fluorine existing on the surface layer infiltrated the fluorine by the fluorine exposure in Test Example 8, and the reaction proceeded. In addition, about the test piece created in Test Example 7, since there was no fluorination passivating film, infiltration of fluorine was seen notably than other test examples.
(Test Example 9)

試験例8と同様に試験例1,2,3,4,5,6および7の試験片を加圧式反応炉に装着して系内を真空引きし、その後1%F(窒素希釈)を大気圧まで加圧し、温度を50℃まで加熱後、24時間保持して、窒素ガスにて、希釈フッ素ガスを置換しながら降温した。これらの試験片のXPSでの測定値を示す。 In the same manner as in Test Example 8, the test pieces of Test Examples 1, 2, 3, 4, 5, 6 and 7 were mounted in a pressurized reactor and the system was evacuated, and then 1% F 2 (nitrogen dilution) was added. The pressure was increased to atmospheric pressure, the temperature was heated to 50 ° C., held for 24 hours, and the temperature was lowered while replacing the diluted fluorine gas with nitrogen gas. The measured value by XPS of these test pieces is shown.

Figure 0004912163
表5に示す試験例9の結果から、試験例1,2,3,4,5で作成した試験片の皮膜の厚さに変化は見られなかった。また、試験例6で作成した試験片に関しては生成された皮膜が薄いため、表層に存在しているフッ素と結合していない鉄原子が試験例8でのフッ素暴露によりフッ素が浸入し、反応が進んだ。なお、試験例7の試験片についてはフッ化不動態皮膜がないため、フッ素の浸入が他の試験例1,2,3,4,5の試験片よりも顕著に見られた。
(試験例10)
Figure 0004912163
From the results of Test Example 9 shown in Table 5, no change was found in the film thickness of the test pieces prepared in Test Examples 1, 2, 3, 4, and 5. Moreover, since the produced | generated film | membrane was thin regarding the test piece created in Test Example 6, the fluorine atom penetrate | invades by the fluorine exposure in Test Example 8, and the iron atom which is not couple | bonded with the fluorine which exists in the surface layer reacts. Progressed. In addition, since the test piece of Test Example 7 did not have a fluorinated passive film, the penetration of fluorine was more noticeable than the test pieces of other Test Examples 1, 2, 3, 4, and 5.
(Test Example 10)

試験例1,2,3,4,5,6および7で作成した試験片を加圧式反応炉に装着して系内を真空引きし、その後5%Cl(窒素希釈)を大気圧まで加圧し、温度を50℃まで加熱後、24時間保持して、窒素ガスにて、希釈フッ素ガスを置換しながら降温した。これらの試験片のSEM−EDX(エネルギー分散型検出器)によって、10000倍での視野にて塩素原子の存在数を測定した。 The test pieces prepared in Test Examples 1, 2, 3, 4, 5, 6 and 7 are mounted in a pressurized reactor and the system is evacuated, and then 5% Cl 2 (nitrogen dilution) is added to atmospheric pressure. The temperature was raised to 50 ° C. and held for 24 hours, and the temperature was lowered while replacing the diluted fluorine gas with nitrogen gas. The number of chlorine atoms present in the field of view at 10,000 times was measured by SEM-EDX (energy dispersive detector) of these test pieces.

Figure 0004912163
Figure 0004912163

Claims (12)

炭素鋼又は特殊鋼(但しステンレス鋼は除く)からなる基材をベーキングし、次いで、50℃以上150℃未満の温度においてフッ素化処理を行うことを特徴とするフッ化不動態膜の形成方法。   A method for forming a fluorinated passivated film, comprising: baking a substrate made of carbon steel or special steel (excluding stainless steel), and then performing a fluorination treatment at a temperature of 50 ° C or higher and lower than 150 ° C. 前記フッ素化処理の処理時間は30分〜3時間であることを特徴とする請求項1記載のフッ化不動態膜の形成方法。   2. The method for forming a fluorinated passive film according to claim 1, wherein a treatment time of the fluorination treatment is 30 minutes to 3 hours. 前記フッ化処理の処理ガスは、フッ素単独またはフッ素を不活性ガスで希釈したガスであることを特徴とする請求項1又は2記載のフッ化不動態膜の形成方法。   The method for forming a fluorinated passive film according to claim 1 or 2, wherein the treatment gas for the fluorination treatment is fluorine alone or a gas obtained by diluting fluorine with an inert gas. 前記フッ化処理を、鉄鋼基材の使用温度以上の温度で行うことを特徴とする請求項1ないし3のいずれか1項記載のフッ化不動態膜の形成方法。   The method for forming a fluorinated passive film according to any one of claims 1 to 3, wherein the fluorination treatment is performed at a temperature equal to or higher than a use temperature of the steel substrate. 前記ベーキングは100℃〜300℃の温度において、炉内を不活性ガスでパージしながら行うことを特徴とする請求項1ないし4のいずれか1項記載のフッ化不動態膜の形成方法。   The method for forming a fluorinated passive film according to any one of claims 1 to 4, wherein the baking is performed at a temperature of 100 ° C to 300 ° C while purging the inside of the furnace with an inert gas. 前記ベーキング前に表面の酸化物を除去することを特徴とする請求項1ないし5のいずれか1項記載のフッ化不動態膜の形成方法。   6. The method for forming a fluorinated passive film according to claim 1, wherein oxides on the surface are removed before the baking. 前記鋼は、炭素含有率が0.02〜2.1%である請求項1ないし6のいずれか1項記載のフッ化不動態の形成方法。   The method for forming a fluorinated passive state according to any one of claims 1 to 6, wherein the steel has a carbon content of 0.02 to 2.1%. 前記鋼は、機械構造用炭素鋼であることを特徴とする請求項1ないし7のいずれか1項記載のフッ化不動態膜の形成方法。   The method for forming a fluorinated passive film according to any one of claims 1 to 7, wherein the steel is carbon steel for mechanical structures. 前記鋼は、特殊用途鋼であることを特徴とする請求項1ないし7のいずれか1項記載のフッ化不動態膜の形成方法。   8. The method for forming a fluorinated passive film according to claim 1, wherein the steel is special purpose steel. 前記鋼は工具用炭素鋼であることを特徴とする請求項1ないし7のいずれか1項記載のフッ化不動態膜の形成方法。   The said steel is carbon steel for tools, The formation method of the fluorinated passive film of any one of Claim 1 thru | or 7 characterized by the above-mentioned. 前記フッ化処理前の前記鉄鋼基材は、球状炭化物が分布した表面組織を有することを特徴とする請求項1ないし10のいずれか1項記載のフッ化不動態膜の形成方法。   The method for forming a fluorinated passive film according to any one of claims 1 to 10, wherein the steel substrate before the fluorination treatment has a surface structure in which spherical carbides are distributed. 請求項1ないし11のいずれか1項記載のフッ化不動態膜の形成方法により形成したことを特徴とする鉄鋼材。
A steel material formed by the method for forming a fluorinated passive film according to any one of claims 1 to 11.
JP2007004788A 2007-01-12 2007-01-12 Carbon steel or special steel formed with a fluorinated passive film and method for forming the same Expired - Fee Related JP4912163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007004788A JP4912163B2 (en) 2007-01-12 2007-01-12 Carbon steel or special steel formed with a fluorinated passive film and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007004788A JP4912163B2 (en) 2007-01-12 2007-01-12 Carbon steel or special steel formed with a fluorinated passive film and method for forming the same

Publications (2)

Publication Number Publication Date
JP2008169448A JP2008169448A (en) 2008-07-24
JP4912163B2 true JP4912163B2 (en) 2012-04-11

Family

ID=39697821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007004788A Expired - Fee Related JP4912163B2 (en) 2007-01-12 2007-01-12 Carbon steel or special steel formed with a fluorinated passive film and method for forming the same

Country Status (1)

Country Link
JP (1) JP4912163B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5317321B2 (en) * 2008-02-21 2013-10-16 岩谷産業株式会社 Metal material, storage container using the same, gas piping, apparatus, manufacturing method thereof, and ClF3 storage method
CN102517540B (en) * 2011-12-20 2013-11-20 广东华南特种气体研究所有限公司 Passivation method of excimer laser gas configuration device
CN111139428A (en) * 2019-12-30 2020-05-12 中船重工(邯郸)派瑞特种气体有限公司 Passivation treatment method for steel cylinder for storing fluorine-containing compound electronic grade gas
KR102223547B1 (en) * 2020-09-08 2021-03-05 (주)후성 Method for making noodles using dodam rice and konjac and noodles manufactured using the same
CN115448256B (en) * 2022-09-16 2023-03-21 福建德尔科技股份有限公司 Method and reaction device for synthesizing chlorine trifluoride by one-step method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100620857B1 (en) * 1998-12-04 2006-09-13 스텔라 케미파 코포레이션 Stainless steel having passive fluoride film formed thereon and equipment manufactured therefrom
JP3049553B1 (en) * 1998-12-25 2000-06-05 岩谷産業株式会社 Passivation treatment method in corrosive gas transfer system
JP4172938B2 (en) * 2002-02-14 2008-10-29 昭和電工株式会社 Exhaust gas treatment method and treatment apparatus
JP2004011896A (en) * 2002-06-11 2004-01-15 Nsk Ltd Rolling bearing, compressor, and blower

Also Published As

Publication number Publication date
JP2008169448A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
JP4912163B2 (en) Carbon steel or special steel formed with a fluorinated passive film and method for forming the same
US8753457B2 (en) Nitrogen alloyed martensitic stainless steel and process
EP1602744B1 (en) Carbo-nitrided case hardened martensitic stainless steels
JP5122768B2 (en) Titanium treatment to minimize fretting
CN106687615B (en) Method for modifying surface of metal and metal product
JP2010248568A (en) Rolling bearing for use in hydrogen atmosphere
US20060289088A1 (en) Titanium treatment to minimize fretting
US6101719A (en) Method of manufacturing rolling bearings
Xiaoping et al. Plasma alloying of TiAl with niobium and its wear resistance
EP2392685A1 (en) Method for manufacturing an oxidation resistant component and corresponding oxidation resistant component
JP2010222648A (en) Production method of carbon steel material and carbon steel material
JP2013007077A (en) Steel product
JP2010007134A (en) Surface treatment method for steel material, surface treatment device, and steel obtained thereby
US20070183703A1 (en) Rolling bearing having a nickel-phosphorus coating
Almeida et al. Investigation of borided layers contribution on the wear resistance and adhesion of TiN coatings
JP5685856B2 (en) Thermal spray coating
JP2021014611A (en) Slide member having abrasion-resistance coating, and formation method of abrasion-resistance coating
JP6915549B2 (en) Sliding member and its manufacturing method
JP7497034B2 (en) Sliding member and sliding method
EP3875630B1 (en) Thermally sprayed coating for sliding member and sliding device provided with said thermally sprayed coating for sliding member
JP2022157220A (en) Case hardening steel and carburized component
JP2009215606A (en) Vibration-damping material and its manufacturing method, and roller bearing and sliding member
Tarelnyk et al. Energy Dispersive X-Ray Microanalysis of Part Surface Layer Carburized by Electric Spark Alloying
JP2020056077A (en) Slide member and method for manufacturing the same
EP3875631A1 (en) Thermal spray coating for sliding member, and sliding device provided with thermal spray coating for sliding member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111012

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111027

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Ref document number: 4912163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees