JP4911702B2 - Pressure sensor - Google Patents

Pressure sensor Download PDF

Info

Publication number
JP4911702B2
JP4911702B2 JP2007022118A JP2007022118A JP4911702B2 JP 4911702 B2 JP4911702 B2 JP 4911702B2 JP 2007022118 A JP2007022118 A JP 2007022118A JP 2007022118 A JP2007022118 A JP 2007022118A JP 4911702 B2 JP4911702 B2 JP 4911702B2
Authority
JP
Japan
Prior art keywords
thin film
electrode pad
lead wire
thickness
relay lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007022118A
Other languages
Japanese (ja)
Other versions
JP2008190866A (en
Inventor
雄二 有村
宏 竹中
幹雄 沢村
Original Assignee
日本リニアックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本リニアックス株式会社 filed Critical 日本リニアックス株式会社
Priority to JP2007022118A priority Critical patent/JP4911702B2/en
Publication of JP2008190866A publication Critical patent/JP2008190866A/en
Application granted granted Critical
Publication of JP4911702B2 publication Critical patent/JP4911702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

本発明は、圧力センサに関し、特にサニタリ用オイルレス圧力センサに関するものである。 The present invention relates to a pressure sensor, and more particularly to a sanitary oilless pressure sensor.

図6に示すサニタリ用オイルレス圧力センサは、一面が測定流体に接する金属製測定ダイアフラム1を有する。さらに、測定ダイアフラム1の他面に絶縁薄膜2、薄膜歪ゲージ3および電極パッド薄膜4が順次積層蒸着され、中継リード線5が電極パッド薄膜4に接続され、中継リード線5によって薄膜歪ゲージ3の電気信号が取り出される(たとえば、特許文献1参照)。
特開2005−148002号公報
The sanitary oilless pressure sensor shown in FIG. 6 has a metal measurement diaphragm 1 whose one surface is in contact with the measurement fluid. Further, an insulating thin film 2, a thin film strain gauge 3 and an electrode pad thin film 4 are sequentially laminated and deposited on the other surface of the measurement diaphragm 1, and the relay lead wire 5 is connected to the electrode pad thin film 4, and the thin film strain gauge 3 is connected by the relay lead wire 5. (See, for example, Patent Document 1).
JP 2005-148002 A

この場合、中継リード線5を電極パッド薄膜4に直接溶接すると、溶接熱によって絶縁薄膜2が破壊され、絶縁不良が生じる。溶接条件を変更し、溶接熱を低減させ、絶縁薄膜2が破壊されないようにすることはできるが、溶接熱を低減させると、電極パッド薄膜4と中継リード線5の引っ張り剥離強度が低下し、実用に耐える品質を得ることができない。   In this case, when the relay lead wire 5 is directly welded to the electrode pad thin film 4, the insulating thin film 2 is broken by welding heat, resulting in insulation failure. Although it is possible to change the welding conditions to reduce the welding heat and prevent the insulating thin film 2 from being destroyed, when the welding heat is reduced, the tensile peel strength between the electrode pad thin film 4 and the relay lead wire 5 is reduced, Quality that can withstand practical use cannot be obtained.

したがって、中継リード線5を電極パッド薄膜4に直接溶接することができず、はんだ付け部6によって中継リード線5と電極パッド薄膜4がはんだ付けされることが多い。中継リード線5には銅単線、錫またははんだメッキした被覆単線が使用され、はんだには融点が180〜230℃の錫−鉛系はんだまたは錫−銀を主体とした融点170〜210℃の鉛レスはんだが使用される。   Therefore, the relay lead wire 5 cannot be directly welded to the electrode pad thin film 4, and the relay lead wire 5 and the electrode pad thin film 4 are often soldered by the soldering portion 6. The relay lead wire 5 is a single copper wire, tin or a coated single wire plated with solder, and the solder has a melting point of 180 to 230 ° C., a tin-lead solder or a lead having a melting point of 170 to 210 ° C. mainly composed of tin-silver. Less solder is used.

ところで、この圧力センサは食品産業に使用されることが多い。しかしながら、測定される洗浄液、殺菌用高温スチーム、冷却炭酸ガスなどの液体または気体が頻繁に導入され、その圧力が測定ダイアフラム1に作用し、高温スチームや冷却ガスによる冷熱サイクルによってはんだ付け部6の機械的脆化およびはんだクラックが生じ、通常、半年から一年で電極パッド薄膜4と中継リード線5が剥離し、断線状態となるという問題があった。   By the way, this pressure sensor is often used in the food industry. However, a liquid or gas such as cleaning liquid to be measured, high temperature steam for sterilization, or cooled carbon dioxide gas is frequently introduced, and the pressure acts on the measurement diaphragm 1. Mechanical embrittlement and solder cracks occur, and there has been a problem that the electrode pad thin film 4 and the relay lead wire 5 are usually peeled off in a half year to a year and become disconnected.

図7に示すように、金層が積層蒸着された電極パッド薄膜4に金細線7がボンディングされることもある。金細線7の直径は0.02〜0.05μmである。さらに、中継端子台8に積層蒸着された電極パッド薄膜9に金層が積層蒸着され、その電極パッド薄膜9に金細線7がボンディングされ、はんだ付け部6によって中継リード線5と電極パッド薄膜9がはんだ付けされ、電極パッド薄膜9によって金細線7と中継リード線5が接続される。   As shown in FIG. 7, a fine gold wire 7 may be bonded to the electrode pad thin film 4 on which a gold layer is laminated and deposited. The diameter of the gold fine wire 7 is 0.02 to 0.05 μm. Further, a gold layer is laminated and deposited on the electrode pad thin film 9 laminated and deposited on the relay terminal block 8, and a gold fine wire 7 is bonded to the electrode pad thin film 9. Are soldered, and the gold wire 7 and the relay lead wire 5 are connected by the electrode pad thin film 9.

しかしながら、図7の構成は、金細線7、中継端子台8および電極パッド薄膜9が必要となり、構造が複雑であり、小型化が困難であるだけではなく、工数が増加し、高価な材料を使用せねばならず、コストが高く、実用的ではないという問題があった。   However, the configuration of FIG. 7 requires the fine gold wire 7, the relay terminal block 8, and the electrode pad thin film 9. The structure is complicated and not only is difficult to downsize, but also man-hours increase and expensive materials are used. There was a problem that it had to be used, was expensive, and was not practical.

上記課題を鑑みて、本発明は、冷熱サイクル耐用性に優れ、実用的であるサニタリ用オイルレス圧力センサを提供することを目的としてなされたものである。   In view of the above-described problems, the present invention has been made for the purpose of providing a sanitary oilless pressure sensor that has excellent thermal cycle durability and is practical.

本発明者は、圧力センサの小型化および経済性の両面から改良に取り組み、中継リード線5を電極パッド薄膜4に直接溶接することについて研究し、一定の条件下であれば、直接溶接しても、問題はないことを見出した。
すなわち、本発明は、一面が測定流体に接する金属製測定ダイアフラムと、前記測定ダイアフラムの他面に順次積層蒸着された絶縁薄膜、薄膜歪ゲージおよび電極パッド薄膜と、前記電極パッド薄膜に接続され、前記薄膜歪ゲージの電気信号を取り出す中継リード線とを備えた圧力センサにおいて、前記電極パッド薄膜にニッケルを使用し、前記電極パッド薄膜の膜厚を2.0〜6.0μmに選定し、前記中継リード線を前記電極パッド薄膜に直接溶接し、前記中継リード線は銀メッキした銅単線であり、その直径は0.10〜0.16mmであり、銀メッキ厚さは1.0〜2.0μmであることを特徴とするものである。
The present inventor has made efforts to improve the pressure sensor in terms of both miniaturization and economy, and has studied the direct welding of the relay lead wire 5 to the electrode pad thin film 4. Even found no problem.
That is, the present invention is connected to the metal measurement diaphragm whose one surface is in contact with the measurement fluid, the insulating thin film sequentially deposited on the other surface of the measurement diaphragm, the thin film strain gauge and the electrode pad thin film, and the electrode pad thin film, In a pressure sensor including a relay lead for taking out an electric signal of the thin film strain gauge , nickel is used for the electrode pad thin film, and a film thickness of the electrode pad thin film is selected to be 2.0 to 6.0 μm, A relay lead wire is directly welded to the electrode pad thin film, and the relay lead wire is a silver-plated copper single wire having a diameter of 0.10 to 0.16 mm and a silver plating thickness of 1.0 to 2. It is 0 μm .

そして、上記中継リード線を押圧して偏平形状となし、その偏平厚さを、押圧前のリード線径の60〜70%とし、偏平面をフラットとすることが好ましい。 Then, it is preferable that the relay lead wire is pressed into a flat shape, the flat thickness is 60 to 70% of the lead wire diameter before pressing , and the flat surface is flat.

本発明の圧力センサは、中継リード線5と電極パッド薄膜4とをはんだ付けする必要がなく、中継リード線5を電極パッド薄膜4に直接溶接することができ、食品産業などの高頻度の冷熱サイクルを受けるサニタリ用途において、長寿命の圧力センサを得ることができる。
また、測定ダイアフラムと受圧支持部とを溶接するとき、溶接熱によってはんだ付け部6が再溶融するという問題もなく、作業が容易であり、品質が安定する。そして、はんだ付けにともなうフラックス残渣を洗浄する必要もなく、工程が短縮化され、環境問題に貢献することができる。
さらに、金細線7、中継端子台8および電極パッド薄膜9は使用しないため、コストは低く、実用的である。
The pressure sensor of the present invention does not require soldering of the relay lead wire 5 and the electrode pad thin film 4, and can directly weld the relay lead wire 5 to the electrode pad thin film 4. In sanitary applications that undergo cycling, a long-life pressure sensor can be obtained.
Moreover, when welding a measurement diaphragm and a pressure receiving support part, there is no problem that the soldering part 6 is remelted by welding heat, work is easy, and quality is stabilized. And it is not necessary to clean the flux residue accompanying soldering, the process is shortened, and it can contribute to an environmental problem.
Further, since the gold wire 7, the relay terminal block 8, and the electrode pad thin film 9 are not used, the cost is low and practical.

以下、この発明の実施例を説明する。
図1は本発明に係る圧力センサを示す。この圧力センサはサニタリ用オイルレス圧力センサであり、一面が測定流体FLに接する金属製測定ダイアフラム1を有する。測定ダイアフラム1はオーステナイト系ステンレスまたはコバルト−ニッケル合金などの金属製であり、感圧部10に形成される。
Examples of the present invention will be described below.
FIG. 1 shows a pressure sensor according to the present invention. This pressure sensor is a sanitary oilless pressure sensor, and has a metal measurement diaphragm 1 whose one surface is in contact with the measurement fluid FL. The measurement diaphragm 1 is made of metal such as austenitic stainless steel or cobalt-nickel alloy, and is formed in the pressure-sensitive portion 10.

この圧力センサは2つの薄膜歪ゲージ3を有する。一方の歪ゲージ3は圧縮歪ゲージであり、他方の歪ゲージ3は引っ張り歪ゲージである。その歪ゲージ3はスパッタされた酸化クロム薄膜ゲージ、炭化ケイ素クロム薄膜ゲージまたはその他のスパッタ薄膜ゲージからなる。そして、図2に示すように、測定ダイアフラム1の他面に絶縁薄膜2、薄膜歪ゲージ3および電極パッド薄膜4が順次積層蒸着されている。絶縁薄膜2は酸化ケイ素薄膜からなる。電極パッド薄膜4は薄膜歪ゲージ3にスパッタ蒸着したもので、ニッケル、クロムまたは銀薄膜からなるが、その薄膜に銀薄膜を積層蒸着したものであってもよい。   This pressure sensor has two thin film strain gauges 3. One strain gauge 3 is a compressive strain gauge, and the other strain gauge 3 is a tensile strain gauge. The strain gauge 3 comprises a sputtered chromium oxide thin film gauge, a silicon carbide chromium thin film gauge or other sputtered thin film gauge. As shown in FIG. 2, an insulating thin film 2, a thin film strain gauge 3 and an electrode pad thin film 4 are sequentially deposited on the other surface of the measurement diaphragm 1. The insulating thin film 2 is made of a silicon oxide thin film. The electrode pad thin film 4 is sputter-deposited on the thin film strain gauge 3 and is made of a nickel, chromium or silver thin film, but may be a film obtained by laminating and depositing a silver thin film on the thin film.

さらに、測定ダイアフラム1の他面側において、感圧部10と支持部11によって基準圧力室12が形成されており、基準圧力P0が測定ダイアフラム1に導かれる。したがって、基準圧力P0と測定流体FLの圧力の差によって測定ダイアフラム1が変形し、薄膜歪ゲージ3によって測定流体FLの圧力が検出される。さらに、中継リード線5が電極パッド薄膜4に接続され、増幅回路基板13に接続されており、中継リード線5によって薄膜歪ゲージ3の電気信号が取り出されるものであり、これは図6の圧力センサと同様である。   Furthermore, a reference pressure chamber 12 is formed on the other surface side of the measurement diaphragm 1 by the pressure-sensitive part 10 and the support part 11, and the reference pressure P 0 is guided to the measurement diaphragm 1. Therefore, the measurement diaphragm 1 is deformed by the difference between the reference pressure P0 and the pressure of the measurement fluid FL, and the pressure of the measurement fluid FL is detected by the thin film strain gauge 3. Further, the relay lead 5 is connected to the electrode pad thin film 4 and is connected to the amplifier circuit board 13, and the electrical signal of the thin film strain gauge 3 is taken out by the relay lead 5 and this is the pressure shown in FIG. It is the same as the sensor.

さらに、この圧力センサでは、電極パッド薄膜4にニッケル、クロムまたは銀薄膜が使用されるが、その膜厚が2.0〜6.0μmに設定され、中継リード線5が電極パッド薄膜4に直接溶接されている。溶接は抵抗溶接であってもよく、超音波溶接であってもよく、スポット溶接であってもよい。   Further, in this pressure sensor, a nickel, chromium or silver thin film is used for the electrode pad thin film 4, but the film thickness is set to 2.0 to 6.0 μm, and the relay lead 5 is directly applied to the electrode pad thin film 4. Welded. The welding may be resistance welding, ultrasonic welding, or spot welding.

電極パッド薄膜厚さと引っ張り強度および耐電圧の関係を試験するため、下記の試料を作製した。
測定ダイアフラムの他面側に、絶縁薄膜2を厚さ5.0μmとなるように酸化ケイ素を蒸着し、次に薄膜歪みゲージ3を線幅40μm、厚さ0.1μmとなるように酸化クロムを蒸着し、さらにニッケルを蒸着して電極パッド薄膜4とした。電極パッド薄膜厚さは1.0μm、2.0μm、6.0μm、10.0μmの4種類を作製した。
電極パッド薄膜4に溶接する中継リード線5は、銀メッキした銅線であり、0.1mmφと0.16mmφの2種類使用し、銅線の表面に厚さ1.0μmの銀メッキを施したものである。
銀メッキ厚さは、1.0μm未満になると、溶接時にメッキの銀が溶融して、リード線に残らず溶接強度が低下し、また強度のバラツキが大きくなる。
銀メッキ厚さが2.0μmを超えると、溶接電流が低抵抗の銀に流れ、電流を大きくしないと、ニッケル電極パッドに溶接できない。
よって、銀メッキ厚さは1.0〜2.0μmが好適である。
In order to test the relationship between the electrode pad thin film thickness, the tensile strength, and the withstand voltage, the following samples were prepared.
On the other side of the measurement diaphragm, silicon oxide is deposited so that the insulating thin film 2 has a thickness of 5.0 μm, and then the thin film strain gauge 3 is coated with chromium oxide so that the line width is 40 μm and the thickness is 0.1 μm. The electrode pad thin film 4 was formed by vapor deposition and further vapor deposition of nickel. Four types of electrode pad thin film thicknesses of 1.0 μm, 2.0 μm, 6.0 μm, and 10.0 μm were prepared.
The relay lead wire 5 to be welded to the electrode pad thin film 4 is a silver-plated copper wire, and two types of 0.1 mmφ and 0.16 mmφ are used, and the surface of the copper wire is subjected to silver plating with a thickness of 1.0 μm. Is.
If the silver plating thickness is less than 1.0 μm, the plated silver melts at the time of welding, so that the welding strength does not remain on the lead wire and the variation in strength increases.
If the silver plating thickness exceeds 2.0 μm, the welding current flows through the low-resistance silver, and if the current is not increased, it cannot be welded to the nickel electrode pad.
Accordingly, the silver plating thickness is preferably 1.0 to 2.0 μm.

本試料では中継リード線の金属メッキに銀を使用したが、金、銅、ニッケル、錫でもよい。電極パッドのニッケルより融点が低くはんだより融点が高いこと、電極パッドのニッケルと相性(相溶性)がよいこと、銅線にメッキが工業的に可能なこと、表面酸化腐食が起こりにくいことなどから、銀メッキが好適である。   In this sample, silver was used for metal plating of the relay lead wire, but gold, copper, nickel, and tin may be used. Because melting point is lower than nickel of electrode pad, melting point is higher than solder, good compatibility (compatibility) with nickel of electrode pad, copper wire can be plated industrially, surface oxidation corrosion hardly occurs Silver plating is preferred.

中継リード線を溶接前に、鏡面加工面を有するバイスで、中継リード線をスペーサではさみ、押圧前の中継リード線径の65%の偏平厚さになるように圧力を加えた。
偏平厚さが60%未満になると、断線するトラブルが発生しやすく、溶接後の引張り強度が著しく低下する。
また、偏平厚さが70%を超えると、溶接面積が小さくなり溶接強度が低下する。よって扁平厚さは60〜70%が好適である。
偏平面は、鏡面加工面を持つバイスで、フラットになるように加工した。
Before welding the relay lead wire, a vice having a mirror-finished surface was used to sandwich the relay lead wire with a spacer, and pressure was applied so that the flat thickness was 65% of the relay lead wire diameter before pressing .
When the flat thickness is less than 60%, a trouble of disconnection is likely to occur, and the tensile strength after welding is significantly reduced.
On the other hand, if the flat thickness exceeds 70%, the welding area is reduced and the welding strength is lowered. Therefore, the flat thickness is preferably 60 to 70%.
The eccentric plane was a vise with a mirror-finished surface and was processed to be flat.

リード線の溶接条件は、0.16mmφの中継リード線を用いたものは、加圧力:2.0kg、電圧:2.0V、電流:120A、時間:4.0msec、また、0.10mmφ中継リード線を用いたものは、加圧力:2.0kg、電圧:0.6V、電流:100A、時間:3.5msecとした。
中継リード線径と電極パッド厚さの組合せ毎に各300個の試料を作製し、以下の各試験でそれぞれ100個使用した。測定データは平均値と測定範囲を示した。
The welding conditions for the lead wires were those using a 0.16 mmφ relay lead wire: Pressurizing force: 2.0 kg, voltage: 2.0 V, current: 120 A, time: 4.0 msec, and 0.10 mmφ relay lead In the case of using the wire, the applied pressure was 2.0 kg, the voltage was 0.6 V, the current was 100 A, and the time was 3.5 msec.
300 samples were prepared for each combination of relay lead wire diameter and electrode pad thickness, and 100 samples were used in each of the following tests. The measurement data showed the average value and the measurement range.

図3はニッケル電極厚さ(ニッケル薄膜からなる電極パッド薄膜の厚さ)と中継リード線の引っ張り破壊強度の試験結果を示す。
ニッケル電極厚さ1.0μmの場合、中継リード線の引張破壊強度は著しく低下し、バラツキも大きくなる傾向が認められた。引っ張り破壊箇所はニッケル電極と歪ゲージ薄膜の界面での剥離が主で、溶接時の熱影響で、ニッケル層が破壊され、下地歪ゲージとの接着強度を低下させたものと思われる。2.0μm以上では比較的溶接強度が高く、バラツキも少ない。これは2.0μm以上になれば、ニッケル層が破壊されず、良好な接着強度を保持していることを示している。
FIG. 3 shows the test results of the nickel electrode thickness (thickness of the electrode pad thin film made of a nickel thin film) and the tensile breaking strength of the relay lead wire.
When the thickness of the nickel electrode was 1.0 μm, the tensile fracture strength of the relay lead wire was remarkably lowered, and the variation tended to increase. The tensile fracture location is mainly due to peeling at the interface between the nickel electrode and the strain gauge thin film, and the nickel layer is destroyed due to the thermal effect during welding, and the adhesive strength with the underlying strain gauge is reduced. When the thickness is 2.0 μm or more, the welding strength is relatively high and there is little variation. This indicates that when the thickness is 2.0 μm or more, the nickel layer is not broken and maintains good adhesive strength.

図4は、作製した試料に金属ダイアフラムと溶接電極間での直流耐電圧試験を実施したものである。本テストは初期耐圧試験として実施されているものであり、400VDC1分間の電圧を印加する。ニッケル電極厚1.0μmの試料は著しく耐電圧が低下していることがわかる。他の水準の試料は全て、400VDC以上を保持している。通常金属ダイアフラム上の絶縁体薄膜の破壊電圧は500VDC以上あるので、耐電圧の低下は溶接時の熱で絶縁体薄膜が何らかのダメージを受け、クラック等が発生し、耐電圧が低下したものと考えられる。   FIG. 4 is a diagram in which a DC withstand voltage test between a metal diaphragm and a welding electrode was performed on the manufactured sample. This test is performed as an initial withstand voltage test, and a voltage of 400 VDC for 1 minute is applied. It can be seen that the withstand voltage of the sample having a nickel electrode thickness of 1.0 μm is significantly reduced. All other levels of samples retain 400 VDC or higher. Usually, the breakdown voltage of the insulator thin film on the metal diaphragm is 500 VDC or more. Therefore, the breakdown voltage is considered to have been reduced due to some damage to the insulator thin film caused by heat during welding, causing cracks, etc. It is done.

図5は、作製した試料の熱サイクル試験(150℃20秒―5℃20秒のサイクル)を1万回実施した後、中継リード線の引っ張り破壊試験を上記と同様に実施したものである。ニッケル厚10.0μmの試料のみリード線引っ張り破壊強度のバラツキが大きくなり、平均強度も著しく低下している。本試料を分析した結果、破壊点はニッケル電極パッドと歪ゲージの界面の剥離が認められた。
これはニッケル電極が厚くなることにより、下地絶縁薄膜や歪ゲージとの熱膨張係数の違いにより冷熱サイクル時、剥離ストレスが上記界面で発生し、1万回の冷熱サイクルにより、電極剥れが一部発生したものと思われる。したがってニッケル電極厚みは総合的に判断すれば、2.0〜6.0μmが安定溶接および製品の熱ショック対策またコスト面においても、有効な範囲であることがわかった。
FIG. 5 shows a case where a thermal break test (a cycle of 150 ° C. for 20 seconds—5 ° C. for 20 seconds) of the prepared sample was performed 10,000 times, and then a tensile break test of the relay lead wire was performed in the same manner as described above. Only in the sample having a nickel thickness of 10.0 μm, the variation in the tensile strength of the lead wire is increased, and the average strength is significantly reduced. As a result of analyzing this sample, peeling at the interface between the nickel electrode pad and the strain gauge was observed at the fracture point.
This is because when the nickel electrode becomes thicker, peeling stress occurs at the interface during the cooling cycle due to the difference in thermal expansion coefficient between the underlying insulating thin film and the strain gauge, and the peeling of the electrode becomes uniform after 10,000 cooling cycles. It seems that part was generated. Therefore, if the thickness of the nickel electrode is judged comprehensively, it was found that 2.0 to 6.0 μm is an effective range in terms of stable welding, measures against heat shock of products, and cost.

以下、実施例1、2、比較例、従来例に基づいて、さらに本発明を具体的に説明する。まず、表1に示す構成で圧力センサを各3台作製した。そして、冷熱ヒートショック繰返し寿命試験を実施し、その測定結果を表2に示す。   Hereinafter, the present invention will be described more specifically based on Examples 1 and 2, Comparative Examples, and Conventional Examples. First, three pressure sensors with the configuration shown in Table 1 were produced. And the heat / heat shock repeated life test was implemented, and the measurement result is shown in Table 2.

Figure 0004911702
Figure 0004911702

冷熱ショック繰返し寿命試験は上記と同様の条件(150℃20秒−5℃20秒のサイクル)で実施し、1.0MPaで加圧した。 判定基準は、装置の出力値の異常変動でもって寿命とし、サイクル数を測定した。   The thermal shock repeated life test was performed under the same conditions as described above (cycle at 150 ° C. for 20 seconds−5 ° C. for 20 seconds) and pressurized at 1.0 MPa. Judgment criteria were the life due to abnormal fluctuations in the output value of the apparatus, and the number of cycles was measured.

Figure 0004911702

上記結果、実施例1、2は従来例に比べ12倍以上の長期寿命が得られた。また、比較例はバラツキが大きいことが確認された。
Figure 0004911702

As a result, Examples 1 and 2 were 12 times longer than the conventional example. Moreover, it was confirmed that the comparative example has a large variation.

本発明の実施例を示す断面図である。It is sectional drawing which shows the Example of this invention. 図1の圧力センサの要部を示す拡大図である。It is an enlarged view which shows the principal part of the pressure sensor of FIG. 図2の圧力センサの溶接後のニッケル電極厚さと引っ張り剥離強度の関係を示すグラフである。It is a graph which shows the relationship between the nickel electrode thickness after welding of the pressure sensor of FIG. 2, and tensile peeling strength. 図2の圧力センサの溶接後のニッケル電極厚さと破壊電圧の関係を示すグラフである。It is a graph which shows the relationship between the nickel electrode thickness and the breakdown voltage after welding of the pressure sensor of FIG. 図2の圧力センサの冷熱サイクル試験後のニッケル電極厚さと引っ張り剥離強度の関係を示すグラフである。It is a graph which shows the relationship between the nickel electrode thickness after the thermal cycle test of the pressure sensor of FIG. 2, and tensile peeling strength. 従来の圧力センサの要部を示す拡大図である。It is an enlarged view which shows the principal part of the conventional pressure sensor. 従来の圧力センサの要部を示す拡大図である。It is an enlarged view which shows the principal part of the conventional pressure sensor.

符号の説明Explanation of symbols

1 測定ダイアフラム
2 絶縁薄膜
3 薄膜歪ゲージ
4 電極パッド薄膜
5 中継リード線
6 はんだ付け部
7 金細線
8 中継端子台
9 電極パッド薄膜
10 感圧部
11 支持部
12 基準圧力室
13 増幅回路基板
DESCRIPTION OF SYMBOLS 1 Measurement diaphragm 2 Insulating thin film 3 Thin film strain gauge 4 Electrode pad thin film 5 Relay lead wire 6 Solder part 7 Gold wire 8 Relay terminal block 9 Electrode pad thin film 10 Pressure sensitive part 11 Support part 12 Reference pressure chamber 13 Amplification circuit board

Claims (2)

一面が測定流体に接する金属製測定ダイアフラムと、前記測定ダイアフラムの他面に順次積層蒸着された絶縁薄膜、薄膜歪ゲージおよび電極パッド薄膜と、前記電極パッド薄膜に接続され、前記薄膜歪ゲージの電気信号を取り出す中継リード線とを備えた圧力センサにおいて、
前記電極パッド薄膜にニッケルを使用し、
前記電極パッド薄膜の膜厚を2.0〜6.0μmに選定し、前記中継リード線を前記電極パッド薄膜に直接溶接し
前記中継リード線は銀メッキした銅単線であり、その直径は0.10〜0.16mmであり、銀メッキ厚さは1.0〜2.0μmであることを特徴とする圧力センサ。
A metal measurement diaphragm having one surface in contact with a measurement fluid, an insulating thin film, a thin film strain gauge and an electrode pad thin film sequentially deposited on the other surface of the measurement diaphragm, and an electrode pad thin film connected to the electrode pad thin film. In a pressure sensor equipped with a relay lead for taking out a signal,
Using nickel for the electrode pad thin film,
The thickness of the electrode pad thin film is selected to be 2.0 to 6.0 μm, and the relay lead wire is directly welded to the electrode pad thin film ,
The relay lead wire is a silver-plated copper single wire, the diameter is 0.10 to 0.16 mm, and the silver plating thickness is 1.0 to 2.0 μm .
前記中継リード線を押圧して偏平形状となし、その偏平厚さを、押圧前のリード線径の60〜70%とし、偏平面をフラットとしたことを特徴とする請求項1に記載の圧力センサ。 2. The pressure according to claim 1, wherein the relay lead wire is pressed into a flat shape, the flat thickness is 60 to 70% of the lead wire diameter before pressing, and the flat surface is flat. Sensor.
JP2007022118A 2007-01-31 2007-01-31 Pressure sensor Active JP4911702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007022118A JP4911702B2 (en) 2007-01-31 2007-01-31 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007022118A JP4911702B2 (en) 2007-01-31 2007-01-31 Pressure sensor

Publications (2)

Publication Number Publication Date
JP2008190866A JP2008190866A (en) 2008-08-21
JP4911702B2 true JP4911702B2 (en) 2012-04-04

Family

ID=39751121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007022118A Active JP4911702B2 (en) 2007-01-31 2007-01-31 Pressure sensor

Country Status (1)

Country Link
JP (1) JP4911702B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5884110B2 (en) * 2011-12-02 2016-03-15 株式会社アサヒ電子研究所 Strain resistance element and strain detection apparatus using the same
JP5497222B2 (en) * 2012-09-28 2014-05-21 バンドー化学株式会社 Capacitance type sensor sheet and method for manufacturing capacitance type sensor sheet
JP6327633B2 (en) 2013-09-19 2018-05-23 セイコーインスツル株式会社 Diaphragm made of duplex stainless steel
CN114606545A (en) * 2022-02-24 2022-06-10 东南数字经济发展研究院 Electrochemical method for surface treatment of strain gauge bonding pad

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124876A (en) * 1983-12-08 1985-07-03 Sumitomo Electric Ind Ltd Strain sensor
JPH03238865A (en) * 1990-02-15 1991-10-24 Fuji Electric Co Ltd Semiconductor element
EP1434048A1 (en) * 2001-08-31 2004-06-30 Kurabe Industrial Co., Ltd CAPACITIVE HUMIDITY−SENSOR AND CAPACITIVE HUMIDITY−SENSOR MANUFACTURING METHOD

Also Published As

Publication number Publication date
JP2008190866A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP4971524B2 (en) Aluminum bonded alloy, clad material having bonded alloy layer formed of the alloy, and aluminum bonded composite
JP4961512B2 (en) Aluminum copper clad material
JP5968651B2 (en) Components for semiconductor manufacturing equipment
JP4911702B2 (en) Pressure sensor
JP4365766B2 (en) Wafer support member and semiconductor manufacturing apparatus using the same
JPWO2007125939A1 (en) Wiring connecting clad material and wiring connecting member processed from the clad material
TW202142523A (en) Copper/ceramic joined body and insulated circuit board
CN101515497A (en) Resistance metallic plate low-resistance value sheet shape resistor and manufacturing method thereof
JP2003212670A (en) Joined product of different kinds of materials and its manufacturing process
JP4627400B2 (en) Aluminum / nickel clad and battery external terminals
JP2010111523A (en) Ceramic member having conductor built-in, and method for manufacturing the same
JPH02196074A (en) Production of ceramics-metal joined body
JP4230377B2 (en) Clad material for terminal and terminal for aluminum wire formed by the clad material for terminal
TW457163B (en) A method for bonding ceramic and metal and a ceramic-metal bonding article prepared by the method
JPWO2006098233A1 (en) Electronic component package, its lid, lid for the lid, and method for manufacturing the lid
JPH0615115B2 (en) Silver brazing material
TW202142522A (en) Copper/ceramic assembly and insulated circuit board
JP2022022737A (en) Current detection resistor and circuit board
WO2007111017A1 (en) Clad contact point material and method for mounting the clad contact point
JP2005171341A (en) Ni alloy target and thin ni alloy film
JP6298247B2 (en) Resistance welding electrode
JP2013038188A (en) Lid for package sealing
JP2001089257A (en) Brazing filler metal for aluminum circuit sheet and ceramic circuit board using the same
JP2005194571A (en) Ni-Co ALLOY, CLAD MATERIAL, AND PRODUCTION METHOD THEREFOR
JP4646369B2 (en) Copper bus bar with excellent corrosion resistance and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090716

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20090716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120113

R150 Certificate of patent or registration of utility model

Ref document number: 4911702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250