JP4907771B2 - Method for inhibiting decomposition reaction in butene polymer treatment - Google Patents

Method for inhibiting decomposition reaction in butene polymer treatment Download PDF

Info

Publication number
JP4907771B2
JP4907771B2 JP2001019418A JP2001019418A JP4907771B2 JP 4907771 B2 JP4907771 B2 JP 4907771B2 JP 2001019418 A JP2001019418 A JP 2001019418A JP 2001019418 A JP2001019418 A JP 2001019418A JP 4907771 B2 JP4907771 B2 JP 4907771B2
Authority
JP
Japan
Prior art keywords
butene polymer
treatment
polymer
decomposition reaction
butene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001019418A
Other languages
Japanese (ja)
Other versions
JP2002220411A (en
Inventor
幸一 大橋
輝久 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2001019418A priority Critical patent/JP4907771B2/en
Priority to KR1020020001656A priority patent/KR100831104B1/en
Publication of JP2002220411A publication Critical patent/JP2002220411A/en
Application granted granted Critical
Publication of JP4907771B2 publication Critical patent/JP4907771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/02Neutralisation of the polymerisation mass, e.g. killing the catalyst also removal of catalyst residues
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/08Butenes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Lubricants (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機、無機またはこれらの混合物の形態で不純物としてブテンポリマー中に微量に残留するハロゲン化合物を、固体処理剤を用いて除去する方法に関し、その際ブテンポリマーの分解を実質的に抑制する方法を提供するものである。
【0002】
【従来の技術】
ブテンポリマー中に残存するハロゲン化合物を除去する方法は特公昭54−7836号公報、特開昭61−51009号公報などに提案されている。
しかしながら重要な問題点は、上記提案をはじめとして従来の方法では少なからずポリマーの分解は避けられないことである。またこれらの処理は回分式でも実施できるが、処理効率の点から連続的に処理することが好ましい。従来法では処理時間と共にポリマーの分解量が一般に増大する傾向にあり、ポリマー中の微量のハロゲン化合物を連続的に安定して除去することは困難であった。
【0003】
例えば、イソブテンを原料としてナフサ分解から得られるC留分からブタジエンを抽出した残りの、いわゆるブタジエンラフィネートを用い、塩化アルミを触媒として得られるブテンポリマー中には塩素として数質量ppm〜200質量ppm程度の有機塩素化合物が不純物として残留していることが認められる。この有機塩素化合物等の残留塩素は上記ブテンポリマーの燃焼の際に大気中に放出され、場合により大気汚染の原因となるため、残留塩素を低減することが望まれている。
これらポリマー中の残留ハロゲン化合物を除去するためには前述の文献等で提案されているように固体酸を使用するのが効果的であるが、比較例1に示すように当初からポリマーの分解と考えられる動粘度の低下、収率の低下が観察され、処理時間と共にその現象が増大するため、実際の工業的使用には耐えなかった。
【0004】
【発明が解決しようとする課題】
既に説明したように、残留ハロゲン化合物を不純物として含有するブテンポリマーと固体処理剤を単に適当な条件で接触させると、脱ハロゲン処理量の増大に応じて処理剤のポリマーに対する分解力が徐々に増大し、やがては、まだ脱ハロゲン能力が残っているのに、この増大した分解力のために脱ハロゲン処理を中止する必要が生じる。
そこで、本発明の課題は、不純物として微量のハロゲン化合物を含有するブテンポリマーから、残留ハロゲン濃度を低減させるための固体処理剤との接触処理において、分解反応に起因する物性の変化を生じさせることなく、残留ハロゲン化合物を除去する方法を提供することにある。
【0005】
【課題を解決するための手段】
そこで本発明者らは、有機塩基性物質を用いることによってこの分解現象を実質的に無害化することを見出し上記課題を解決したものである。
すなわち、本発明の第一は、ブテンポリマーを固体処理剤に接触させることにより微量のハロゲン化合物を除去するに際し、有機塩基性物質を反応系中に存在させることを特徴とする、ブテンポリマーの分解反応抑制方法に関する。
本発明の第二は、本発明の第一において前記有機塩基性物質がアンモニアまたは有機アミンである分解反応抑制方法に関する。
本発明の第三は、本発明の第一または第二において前記ブテンポリマーの処理を20℃以上350℃以下で行う分解反応抑制方法に関する。
本発明の第四は、本発明の第一から第三のいずれかのブテンポリマーの処理において、有機塩基性物質を連続的にまたは間欠的に供給する分解反応抑制方法に関する。
本発明の第五は、本発明の第一から第四のいずれかにおいて前記ブテンポリマーの処理後のブテンポリマーの動粘度が、処理前のブテンポリマーの動粘度の95%以上である分解反応抑制方法に関する。
本発明の第六は、本発明の第一から第五のいずれかにおいて前記ブテンポリマーの処理後のブテンポリマーの質量が、処理前のブテンポリマーの質量の95%以上である分解反応抑制方法に関する。
本発明の第七は、本発明の第一から第五のいずれかの方法により処理したブテンポリマーを含有する2サイクルエンジンオイル用添加剤組成物に関する。
本発明の方法によれば、ハロゲン化物を不純物として含有するブテンポリマーから、最大の副反応である化合物の分解を実質的に起こさないで、有効に、しかも経済的にハロゲンを除去することができる。
【0006】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
本発明で処理の対象とするブテンポリマーは、固体処理剤に吸着し得る不純物として微量のハロゲン化合物、たとえば塩素化合物やフッ素化合物等を含有するものである。該ブテンポリマーは固体処理剤に対して不活性であれば、その分子中に誘導された酸素やリンなどのヘテロ原子や、芳香族環などの各種官能基を有することができる。またその分子量も、特に限定されず、小さい分子量として炭素数4以上、好ましくは炭素数12以上から、大きい分子量としてオリゴマー領域からポリマーまでを含み得るものである。具体的な分子量でいえば、数万程度までの分子量のブテンポリマーでもよい。芳香族環二重結合や共役二重結合は処理に影響しない限り含んでいてもよく、また分子内に一つまたは複数の炭素−炭素二重結合を有するものでもよい。
また、イソブテンが、50質量%未満のブテン−1、50質量%未満のブテン−2、100質量%未満のイソブテン、50質量%未満のブタン類および10質量%未満のブタジエンからなるC供給原料を用いたブテンポリマーであると経済的に有利であるので特に好ましい。
【0007】
また、該ブテンポリマーに含まれる不純物としての微量のハロゲン化合物は、ブテンポリマーの製造時に使用される、含ハロゲン系触媒に起因して生成したハロゲン化合物がその代表であるが、そのほか触媒に限らず原料中の不純物に起因して含まれること等がある。例えば塩素化合物の場合、無機塩素化合物、有機塩素化合物またはこれらの混合物であり、例えば、塩化水素などの無機塩素化合物や、2−クロロ−2,4,4−トリメチルペンタンなどの有機塩素化合物が挙げられるが、特にこれらに限定されるものではない。さらには高分子量の塩素化炭化水素、たとえば塩素系触媒を用いて重合した際に副生する塩素化炭化水素などでもよい。これらのハロゲン化合物は微量であり、また沸点等も上記ブテンポリマーのそれと近接しているものが存在する故に、蒸留等の通常の分離手段では容易にそれらを分離・除去することが困難なものである。
【0008】
本発明のブテンポリマーの例として、例えば、含塩素系触媒によりC留分を重合することにより得られるブテンポリマーがある。このブテンポリマーは、不純物として塩素原子換算で数質量ppm以上、通常は数質量ppm〜200質量ppm程度の塩素が含まれ、その塩素は有機塩素化合物、具体的には塩素化炭化水素と考えられる。
さらには、上記C留分を重合した後の未反応C留分にも、微量の塩素化合物が含まれるので、本願の処理の対象となり得る。なお、この塩素も有機ハロゲン化合物と考えられる。
【0009】
固体処理剤と接触させる際のブテンポリマーは、触媒失活後のものであればよく、失活、水洗後における蒸留の有無に制限はない。また粘度が高い場合は、処理剤との接触効率を高めるため、不活性な溶媒で希釈することが好ましい。このような不活性な溶媒としては、ノルマルヘキサン、イソヘキサン等の脂肪族炭化水素溶剤が例として挙げられるが、回収したポリマーに含まれる低分子量ポリマーを溶媒として使用することもできる。
【0010】
本発明においては、固体処理剤、例えばアルミナを含有するもの等を接触させることにより残留ハロゲン含量を低減する。この場合、アルミナを含有する固体処理剤としては、天然または合成のアルミナを主として含む限り特に限定されない。適宜の量のシリカを含むシリカ・アルミナを用いることもできる。また、本発明の効果を阻害しない限りアルミナに適宜にアルカリ金属、アルカリ土類金属あるいはその他の金属を、酸化物、水酸化物あるいはその他の形態で、含浸あるいはその他の方法で適宜担持、修飾したものでもよい。しかしながら、通常は、特にこのような担持、修飾は必要がなく、ナトリウム等のアルカリ金属またはアルカリ土類金属の含有量が0.5質量%以下のアルミナ等でも十分使用に耐える。このような担持、修飾がないかまたは少ないアルミナは安価であり、そのような固体処理剤を用いる場合は、本発明は特に有利である。
また、アルミニウムの他に、珪素、またはチタンを含む各金属酸化物および/またはこれらの混合酸化物、例えばシリカ、ゼオライト、チタニア等を含む固体酸も処理剤として用いられる。
【0011】
固体処理剤と接触させる脱ハロゲン処理のための温度は、処理剤の種類および使用する有機塩基性物質の量によって異なるが、好ましくは20℃〜350℃、さらに好ましくは50℃〜300℃の温度範囲である。この範囲より処理温度が高いと残留ハロゲン濃度は低減されるが、処理対象物であるブテンポリマーの分解が起こり始め、一方、温度が低いと残留ハロゲン濃度が低減されないかまたは十分な低減効果が得られない懸念があるため、いずれも好ましくない。
【0012】
固体処理剤に対するブテンポリマーの接触時間は、残留ハロゲン化合物の低減が可能な限り特に制限されないが、通常約1分〜10時間の範囲が好ましい。この範囲より短いと接触が一般に不十分であり、長いと設備費が増大して好ましくない。
【0013】
接触のための方法としては、回分式または連続式のいずれも可能である。連続式の場合は、固定床式、流動床式などの方法によることができる。
【0014】
本発明においては、固体処理剤に接触させる際に、ブテンポリマーの分解を抑制するため有機塩基性物質を接触処理の反応系中に存在させることを特徴とする。
具体的な方法としては、たとえば、固定床あるいは流動床などにより連続的にブテンポリマーと固体処理剤を接触させて脱ハロゲンを行うに際し、ブテンポリマーからなる接触流体中に有機塩基性物質を連続的に供給して共存させる方法を採用することができる。また、この連続的に接触させる場合、有機塩基性物質を適宜に間欠的に接触流体中に供給することもできる。間欠的に有機塩基性物質を供給する場合には、有機塩基性物質の供給開始は、ブテンポリマーと固体処理剤との接触が進行し、その結果固体処理剤の分解力が増大し始める前または増大し始めた直後に有機塩基性物質を供給し始めるのが好ましい。
【0015】
その他、有機塩基性物質を存在させることなく脱ハロゲン処理を継続することにより脱ハロゲン能は一定のレベルを維持しているが、ブテンポリマーの処理量の増大と共にハロゲンの吸着によりポリマーの分解力が増大した固体処理剤を再生するために、有機塩基性物質を接触処理させ、脱ハロゲン能を維持しながら分解力を低下させ、その結果該固体処理剤を再生することもできる。
【0016】
ここで、接触させるべき有機塩基性物質は微量であるため、通常は不活性ガスまたは液体により有機塩基性物質を希釈して固体処理剤に接触させることもできる。不活性ガスまたは液体としては窒素、空気等の気体のほか、ノルマルヘキサン、イソヘキサン等の脂肪族炭化水素溶剤が例として挙げられるが、前記ライトポリマーを回収し希釈剤として使用することもできる。もちろん、脱ハロゲン処理の対象であるブテンポリマー自体を希釈に用いることもできる。
【0017】
本発明において用いる有機塩基性物質としては、アンモニアのほか、塩基性含窒素化合物が例示され、具体的な塩基性含窒素化合物としては1級、2級、3級を問わずアミノ基を官能基として持つ有機アミン類等である。これらはカルボキシル基などの弱酸部分を分子内に同時に有していてもよい。
【0018】
この有機アミン類の例としては、エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、イソプロピルアミン、ジイソプロピルアミン、2−エチルヘキシルアミン、ジイソブチルアミン、sec−ブチルアミン、t−ブチルアミン、トリ−n−オクチルアミン、ジ−2−エチルヘキシルアミン、アリルアミン、ジアリルアミン、トリアリルアミン、アニリン、ベンジルアミン、エチレンジアミン、ヘキサメチレンジアミン、テトラメチルエチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチルペンタミンなどのアミン類、3−(メチルアミノ)プロピルアミン、3−(ジメチルアミノ)プロピルアミン、3−(ジブチルアミノ)プロピルアミンなどのアミン類、3−メトキシプロピルアミン、3−エトキシプロピルアミン、3−(2−エチルヘキシルオキシ)プロピルアミンなどのオキシアミン類、N−メチルエタノールアミン、N,N−ジメチルエタノールアミン、N,N−ジエチルエタノールアミン、N,N−ジブチルエタノールアミン、N−メチルジエタノールアミン、N−(2−アミノエチル)エタノールアミン、3−アミノ−1−プロパノールなどのヒドロキシルアミン類、あるいはピリジン、アミノピリジンなどのピリジン類などが例として挙げられ、また、β−アラニンなどのアミノ酸類でも有効であるが、特にこれらに制限されるものではない。
【0019】
具体的な有機塩基性物質の使用量は、固定床または流動床などの設備により連続的に有機塩基性物質を処理原料と共に供給する場合には、処理対象としてのブテンポリマー中の残留ハロゲン原子1モルに対して0.0001モル以上、好ましくは0.0005モル以上、さらに好ましくは0.001モル以上である。有機塩基性物質の量がこの範囲より少ないと、分解力を十分に打ち消すことができないので好ましくない。過剰量でも、脱ハロゲン機能を阻害することは少なく、むしろ過剰分の有機塩基性物質を回収するためのコストが増大するという経済面で不利となる程度である。従って、通常は、最大限としては処理対象としてのブテンポリマー中の残留ハロゲン原子1モルに対して最高で100モルまでとするのが適当である。
【0020】
脱ハロゲン化合物の接触処理後、過剰の有機塩基性物質または溶媒などを、適宜に蒸留等により除去すれば、残留ハロゲン濃度の低減されたブテンポリマーを得ることができる。
【0021】
本発明の脱ハロゲン処理により、動粘度、低分子量分の含有率、ポリマーの収率、その他の物性を実質的に損なうことなく、残留ハロゲン化合物を除去できるため、製造時も品質管理上安定した処理を行うことができる。
なお本処理により、ブテンポリマーの分解反応の進行の目安である動粘度の減少が少なく、処理前の95%以上を維持することが可能である。また同時に本処理により分解反応が抑制されるため、ポリマーの収率も処理前の95質量%以上を維持することが可能である。
【0022】
また、実質的に残留ハロゲンが存在しないので、得られたブテンポリマーまたはその変性物を燃焼するような場合においても、大気中へのハロゲンの放出が少なく、したがって環境保全の面からも有用である。
このような特性を有するため、本発明の処理方法によって得られたブテンポリマーは希釈溶剤や各種添加剤と混合され2サイクルエンジンオイル用添加剤として添加されると、配管等の金属部品を腐食せず、また大気汚染をおこさない等のため極めて好ましいものとなる。
【0023】
【実施例】
以下、本発明を実施例により説明する。
<実施例1>
分子量750、塩素濃度82質量ppmのブテンポリマー(商品名: HV−35、日本石油化学(株)製)と、該ブテンポリマーに対して200質量ppmに相当する流量のアンモニアとをアルミナ充填容器の入口手前で混合して、3MPaの加圧下に、200℃で2時間減圧乾燥した活性アルミナ(PROCATALYSE社製、商品名:PSG−D25)を充填した容量4Lの固定床容器に通油した。
脱塩素処理条件は、温度180℃、WHSV1hr−1とした。脱塩素処理開始後、充填容器出口の処理液を任意の時間ごとに450時間までサンプリングしてその動粘度を測定した。なお動粘度の測定はキャノンフェンスケ粘度計を用い、100℃で測定した。ポリマー収率については当該サンプルをエバポレーターを用いて220℃で30分減圧下で蒸留を行い、その質量比を示した。結果を表1に示す。塩素濃度が低下とともに動粘度が低下せず、ブテンポリマーの分解が抑制されている。またポリマーの収率も低下していない。
【0024】
【表1】

Figure 0004907771
【0025】
<比較例1>
脱塩素処理前にアンモニアを混合しないこと以外は実施例1と同様に実験を行った。結果を表2に示す。処理時間とともに動粘度が急激に低下している。またポリマーの収率が低下している。
【0026】
【表2】
Figure 0004907771
【0027】
【発明の効果】
本発明においては、ブテンポリマー中に残留する微量のハロゲン化合物を固体処理剤に接触させることにより除去するに際し、有機塩基性物質を反応系内に存在させるため、ブテンポリマーの分解反応を抑制することが可能となり、収率の低下もきたさない。この方法によって得られたブテンポリマーは、動粘度やその他の物性を保持しつつ、ハロゲン化合物の含有量が低減されているので、2サイクルエンジンオイルやゴム等をはじめとした各種添加剤組成物原料や、電気絶縁剤用途、粘着剤用途に最適である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for removing a trace amount of halogen compounds remaining in butene polymer as impurities in the form of organic, inorganic or a mixture thereof using a solid processing agent, and at this time, substantially inhibiting decomposition of butene polymer. It provides a way to
[0002]
[Prior art]
Methods for removing halogen compounds remaining in the butene polymer have been proposed in JP-B-54-7836 and JP-A-61-51009.
However, an important problem is that degradation of the polymer is unavoidable in the conventional methods including the above proposal. These treatments can be carried out batchwise, but it is preferable to carry out the treatment continuously from the viewpoint of treatment efficiency. In the conventional method, the degradation amount of the polymer generally tends to increase with the treatment time, and it has been difficult to remove a trace amount of halogen compound in the polymer continuously and stably.
[0003]
For example, in a butene polymer obtained by using so-called butadiene raffinate obtained by extracting butadiene from a C 4 fraction obtained from naphtha decomposition using isobutene as a raw material and using aluminum chloride as a catalyst, about several ppm to 200 ppm by mass as chlorine. It is observed that the organochlorine compound remains as an impurity. Residual chlorine such as organic chlorine compounds is released into the atmosphere during the combustion of the butene polymer, and may cause air pollution in some cases, so it is desired to reduce residual chlorine.
In order to remove the residual halogen compound in these polymers, it is effective to use a solid acid as proposed in the above-mentioned literatures, but as shown in Comparative Example 1, the decomposition of the polymer from the beginning is effective. A possible decrease in kinematic viscosity and a decrease in yield were observed, and the phenomenon increased with the treatment time, so that it could not withstand actual industrial use.
[0004]
[Problems to be solved by the invention]
As already explained, when a butene polymer containing a residual halogen compound as an impurity and a solid processing agent are simply brought into contact with each other under appropriate conditions, the decomposition power of the processing agent to the polymer gradually increases as the dehalogenation treatment amount increases. However, over time, it is necessary to stop the dehalogenation treatment because of the increased decomposition power even though the dehalogenation ability still remains.
Therefore, the object of the present invention is to cause a change in physical properties due to a decomposition reaction in a contact treatment with a solid treatment agent for reducing the residual halogen concentration from a butene polymer containing a trace amount of a halogen compound as an impurity. And to provide a method for removing residual halogen compounds.
[0005]
[Means for Solving the Problems]
Therefore, the present inventors have found that the decomposition phenomenon is substantially rendered harmless by using an organic basic substance, and solve the above problems.
That is, in the first aspect of the present invention, when a trace amount of a halogen compound is removed by bringing the butene polymer into contact with a solid processing agent, an organic basic substance is present in the reaction system. The present invention relates to a reaction suppression method.
A second aspect of the present invention relates to a decomposition reaction suppressing method according to the first aspect of the present invention, wherein the organic basic substance is ammonia or an organic amine.
3rd of this invention is related with the decomposition-reaction suppression method which performs the process of the said butene polymer in 20 to 350 degreeC in the 1st or 2nd of this invention.
A fourth aspect of the present invention relates to a decomposition reaction suppression method for supplying an organic basic substance continuously or intermittently in the treatment of any one of the first to third butene polymers of the present invention.
In the fifth aspect of the present invention, the decomposition reaction inhibition according to any one of the first to fourth aspects of the present invention, wherein the kinematic viscosity of the butene polymer after the treatment of the butene polymer is 95% or more of the kinematic viscosity of the butene polymer before the treatment. Regarding the method.
6th of this invention is related with the decomposition reaction suppression method in which the mass of the butene polymer after the process of the said butene polymer is 95% or more of the mass of the butene polymer before a process in any one of the 1st to 5th of this invention .
A seventh aspect of the present invention relates to an additive composition for a two-cycle engine oil containing a butene polymer treated by any one of the first to fifth methods of the present invention.
According to the method of the present invention, a halogen can be effectively and economically removed from a butene polymer containing a halide as an impurity without substantially causing decomposition of the compound, which is the largest side reaction. .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
The butene polymer to be treated in the present invention contains a trace amount of a halogen compound such as a chlorine compound or a fluorine compound as an impurity that can be adsorbed to the solid processing agent. If the butene polymer is inert to the solid processing agent, it can have hetero atoms such as oxygen and phosphorus derived in the molecule and various functional groups such as an aromatic ring. Further, the molecular weight is not particularly limited, and the molecular weight may be from 4 or more, preferably 12 or more, as a small molecular weight, and from the oligomer region to the polymer as a large molecular weight. Speaking of a specific molecular weight, a butene polymer having a molecular weight of up to about tens of thousands may be used. An aromatic ring double bond or a conjugated double bond may be included as long as it does not affect the treatment, and it may have one or more carbon-carbon double bonds in the molecule.
C 4 feedstock wherein isobutene comprises less than 50 wt% butene-1, less than 50 wt% butene-2, less than 100 wt% isobutene, less than 50 wt% butanes and less than 10 wt% butadiene. A butene polymer using is particularly preferable because it is economically advantageous.
[0007]
In addition, a trace amount of halogen compound as an impurity contained in the butene polymer is typically a halogen compound produced due to the halogen-containing catalyst used in the production of the butene polymer, but is not limited to the catalyst. It may be contained due to impurities in the raw material. For example, in the case of a chlorine compound, it is an inorganic chlorine compound, an organic chlorine compound or a mixture thereof, and examples thereof include an inorganic chlorine compound such as hydrogen chloride and an organic chlorine compound such as 2-chloro-2,4,4-trimethylpentane. However, the present invention is not limited to these. Further, it may be a high molecular weight chlorinated hydrocarbon, for example, a chlorinated hydrocarbon produced as a by-product upon polymerization using a chlorine-based catalyst. Since these halogen compounds are in trace amounts, and there are those whose boiling point is close to that of the above butene polymer, it is difficult to easily separate and remove them by ordinary separation means such as distillation. is there.
[0008]
Examples of butene polymers of the present invention, for example, there is a butene polymer obtained by polymerizing C 4 fraction by chlorine Motokei catalyst. This butene polymer contains chlorine of several mass ppm or more as an impurity, usually several ppm to about 200 ppm by mass, and the chlorine is considered to be an organic chlorine compound, specifically a chlorinated hydrocarbon. .
Further, the C 4 fraction to be unreacted C 4 fraction after the polymerization of, because it contains chlorine compounds traces may be subject to application processing. This chlorine is also considered an organic halogen compound.
[0009]
The butene polymer in contact with the solid processing agent may be that after the catalyst is deactivated, and there is no restriction on the presence or absence of distillation after deactivation and washing with water. When the viscosity is high, it is preferable to dilute with an inert solvent in order to increase the contact efficiency with the treatment agent. Examples of such an inert solvent include aliphatic hydrocarbon solvents such as normal hexane and isohexane, but a low molecular weight polymer contained in the recovered polymer can also be used as a solvent.
[0010]
In the present invention, the residual halogen content is reduced by contacting a solid processing agent such as one containing alumina. In this case, the solid processing agent containing alumina is not particularly limited as long as it contains mainly natural or synthetic alumina. Silica-alumina containing an appropriate amount of silica can also be used. In addition, as long as the effect of the present invention is not hindered, alumina is appropriately loaded with or modified with an alkali metal, alkaline earth metal or other metal in an oxide, hydroxide or other form as appropriate by impregnation or other methods. It may be a thing. However, normally, such loading and modification are not particularly required, and even an alumina having a content of alkali metal such as sodium or alkaline earth metal of 0.5% by mass or less can sufficiently withstand use. Alumina with no or little such loading, modification is inexpensive, and the present invention is particularly advantageous when such solid processing agents are used.
In addition to aluminum, metal oxides containing silicon or titanium and / or mixed oxides thereof, for example, solid acids containing silica, zeolite, titania, etc. are also used as the treating agent.
[0011]
The temperature for the dehalogenation treatment to be brought into contact with the solid processing agent varies depending on the type of the processing agent and the amount of the organic basic substance to be used, but is preferably 20 ° C to 350 ° C, more preferably 50 ° C to 300 ° C. It is a range. If the treatment temperature is higher than this range, the residual halogen concentration is reduced, but the butene polymer, which is the object to be treated, begins to decompose, whereas if the temperature is low, the residual halogen concentration is not reduced or a sufficient reduction effect is obtained. Neither is desirable because there is a concern that it will not be possible.
[0012]
The contact time of the butene polymer with the solid processing agent is not particularly limited as long as the residual halogen compound can be reduced, but is usually preferably in the range of about 1 minute to 10 hours. If it is shorter than this range, contact is generally insufficient, and if it is longer, the equipment cost increases, which is not preferable.
[0013]
As a method for contacting, either a batch type or a continuous type is possible. In the case of a continuous type, a fixed bed type, a fluidized bed type or the like can be used.
[0014]
The present invention is characterized in that an organic basic substance is present in the reaction system of the contact treatment in order to suppress the decomposition of the butene polymer when contacting with the solid treatment agent.
As a specific method, for example, when dehalogenation is performed by continuously contacting a butene polymer and a solid treatment agent in a fixed bed or a fluidized bed, an organic basic substance is continuously added to the contact fluid made of butene polymer. It is possible to adopt a method of supplying to and coexisting. Moreover, when making it contact continuously, an organic basic substance can also be intermittently supplied in a contact fluid suitably. When the organic basic substance is intermittently supplied, the supply of the organic basic substance is started before the contact between the butene polymer and the solid processing agent proceeds, and as a result, the decomposition power of the solid processing agent starts to increase or It is preferred to start feeding the organic basic material immediately after it begins to increase.
[0015]
In addition, the dehalogenation ability is maintained at a certain level by continuing the dehalogenation treatment without the presence of an organic basic substance. However, as the throughput of butene polymer increases, the decomposition capacity of the polymer increases due to the adsorption of halogen. In order to regenerate the increased solid processing agent, the organic basic substance can be contact-treated to reduce the decomposition power while maintaining the dehalogenation ability, and as a result, the solid processing agent can be regenerated.
[0016]
Here, since the amount of the organic basic substance to be brought into contact is very small, it is usually possible to dilute the organic basic substance with an inert gas or liquid and bring it into contact with the solid processing agent. Examples of the inert gas or liquid include gases such as nitrogen and air, and aliphatic hydrocarbon solvents such as normal hexane and isohexane, but the light polymer can be recovered and used as a diluent. Of course, the butene polymer itself that is the subject of dehalogenation treatment can also be used for dilution.
[0017]
Examples of the organic basic substance used in the present invention include basic nitrogen-containing compounds in addition to ammonia, and specific basic nitrogen-containing compounds include amino groups having functional groups regardless of primary, secondary, and tertiary. As organic amines. These may have a weak acid moiety such as a carboxyl group in the molecule at the same time.
[0018]
Examples of the organic amines include ethylamine, diethylamine, triethylamine, propylamine, isopropylamine, diisopropylamine, 2-ethylhexylamine, diisobutylamine, sec-butylamine, t-butylamine, tri-n-octylamine, di-2. -Amines such as ethylhexylamine, allylamine, diallylamine, triallylamine, aniline, benzylamine, ethylenediamine, hexamethylenediamine, tetramethylethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylpentamine, 3- (methylamino) propylamine, 3 -(Dimethylamino) propylamine, amines such as 3- (dibutylamino) propylamine, 3-methoxypropylamine, 3- Oxyamines such as toxipropylamine and 3- (2-ethylhexyloxy) propylamine, N-methylethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, N, N-dibutylethanolamine, N Examples include hydroxylamines such as methyldiethanolamine, N- (2-aminoethyl) ethanolamine, and 3-amino-1-propanol, and pyridines such as pyridine and aminopyridine, and β-alanine and the like. These amino acids are also effective, but are not particularly limited thereto.
[0019]
The specific amount of the organic basic substance used is such that when the organic basic substance is continuously supplied together with the raw material to be treated by equipment such as a fixed bed or a fluidized bed, the residual halogen atom 1 in the butene polymer to be treated It is 0.0001 mol or more, preferably 0.0005 mol or more, more preferably 0.001 mol or more with respect to mol. If the amount of the organic basic substance is less than this range, it is not preferable because the decomposition force cannot be sufficiently canceled. Even if the amount is excessive, the dehalogenation function is hardly hindered. Rather, the cost for recovering the excess organic basic substance is disadvantageous in terms of economy. Accordingly, it is usually appropriate that the maximum is 100 moles per mole of residual halogen atoms in the butene polymer to be treated.
[0020]
After the contact treatment with the dehalogenated compound, if an excess of organic basic substance or solvent is appropriately removed by distillation or the like, a butene polymer having a reduced residual halogen concentration can be obtained.
[0021]
The dehalogenation treatment of the present invention can remove residual halogen compounds without substantially impairing kinematic viscosity, low molecular weight content, polymer yield, and other physical properties. Processing can be performed.
By this treatment, the decrease in kinematic viscosity, which is a measure of the progress of the decomposition reaction of butene polymer, is small, and it is possible to maintain 95% or more before the treatment. At the same time, since the decomposition reaction is suppressed by this treatment, the polymer yield can be maintained at 95% by mass or more before the treatment.
[0022]
In addition, since there is substantially no residual halogen, even when the obtained butene polymer or a modified product thereof is burned, the release of halogen into the atmosphere is small, and thus it is useful from the viewpoint of environmental conservation. .
Because of these characteristics, when the butene polymer obtained by the treatment method of the present invention is mixed with a diluent solvent and various additives and added as an additive for two-cycle engine oil, it corrodes metal parts such as piping. In addition, it is extremely preferable because it does not cause air pollution.
[0023]
【Example】
Hereinafter, the present invention will be described with reference to examples.
<Example 1>
A butene polymer having a molecular weight of 750 and a chlorine concentration of 82 ppm by mass (trade name: HV-35, manufactured by Nippon Petrochemical Co., Ltd.) and ammonia at a flow rate corresponding to 200 ppm by mass with respect to the butene polymer are contained in an alumina-filled container. The mixture was mixed in front of the inlet and passed through a fixed bed container having a capacity of 4 L filled with activated alumina (trade name: PSG-D25, manufactured by PROCATALYSE) dried under reduced pressure at 200 ° C. for 2 hours under a pressure of 3 MPa.
The dechlorination treatment conditions were a temperature of 180 ° C. and WHSV 1 hr −1 . After the start of the dechlorination treatment, the treatment liquid at the outlet of the filled container was sampled every 450 hours up to 450 hours and the kinematic viscosity was measured. The kinematic viscosity was measured at 100 ° C. using a Canon Fenceke viscometer. About the polymer yield, the said sample was distilled under reduced pressure for 30 minutes at 220 degreeC using the evaporator, and the mass ratio was shown. The results are shown in Table 1. As the chlorine concentration decreases, the kinematic viscosity does not decrease and the decomposition of the butene polymer is suppressed. Further, the yield of the polymer is not lowered.
[0024]
[Table 1]
Figure 0004907771
[0025]
<Comparative Example 1>
The experiment was performed in the same manner as in Example 1 except that ammonia was not mixed before the dechlorination treatment. The results are shown in Table 2. The kinematic viscosity decreases rapidly with the treatment time. In addition, the yield of polymer is reduced.
[0026]
[Table 2]
Figure 0004907771
[0027]
【Effect of the invention】
In the present invention, when a trace amount of halogen compound remaining in the butene polymer is removed by contacting with the solid processing agent, an organic basic substance is present in the reaction system, so that the decomposition reaction of the butene polymer is suppressed. And the yield is not reduced. The butene polymer obtained by this method has a reduced content of halogen compounds while maintaining kinematic viscosity and other physical properties, so various additive composition raw materials such as two-cycle engine oil and rubber It is most suitable for electrical insulation and adhesive applications.

Claims (7)

ブテンポリマーを固体処理剤に接触させることにより微量のハロゲン化合物を除去するに際し、有機塩基性物質を反応系中に存在させることを特徴とする、ブテンポリマーの分解反応抑制方法。A method for inhibiting a decomposition reaction of a butene polymer, wherein an organic basic substance is present in a reaction system when a trace amount of a halogen compound is removed by bringing the butene polymer into contact with a solid treatment agent. 前記有機塩基性物質がアンモニアまたは有機アミンである請求項1記載の分解反応抑制方法。The method for inhibiting decomposition reaction according to claim 1, wherein the organic basic substance is ammonia or an organic amine. 前記ブテンポリマーの処理を20℃以上350℃以下で行う請求項1または2に記載の分解反応抑制方法。The decomposition reaction suppression method according to claim 1 or 2, wherein the butene polymer is treated at 20 ° C or higher and 350 ° C or lower. 前記ブテンポリマーの処理において、有機塩基性物質を連続的にまたは間欠的に供給することを特徴とする請求項1から3の何れかに記載の分解反応抑制方法。The method for inhibiting a decomposition reaction according to any one of claims 1 to 3, wherein an organic basic substance is supplied continuously or intermittently in the treatment of the butene polymer. 前記ブテンポリマーの処理後のブテンポリマーの動粘度が、処理前のブテンポリマーの動粘度の95%以上である請求項1から4の何れかに記載の分解反応抑制方法。The method for inhibiting decomposition reaction according to any one of claims 1 to 4, wherein the kinematic viscosity of the butene polymer after the treatment of the butene polymer is 95% or more of the kinematic viscosity of the butene polymer before the treatment. 前記ブテンポリマーの処理後のブテンポリマーの質量が、処理前のブテンポリマーの質量の95%以上である請求項1から5の何れかに記載の分解反応抑制方法。The decomposition reaction suppression method according to any one of claims 1 to 5, wherein a mass of the butene polymer after the treatment of the butene polymer is 95% or more of a mass of the butene polymer before the treatment. 請求項1から6の何れかに記載の方法により処理したブテンポリマーを含有する2サイクルエンジンオイル用添加剤組成物。An additive composition for a two-cycle engine oil comprising a butene polymer treated by the method according to any one of claims 1 to 6.
JP2001019418A 2001-01-29 2001-01-29 Method for inhibiting decomposition reaction in butene polymer treatment Expired - Fee Related JP4907771B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001019418A JP4907771B2 (en) 2001-01-29 2001-01-29 Method for inhibiting decomposition reaction in butene polymer treatment
KR1020020001656A KR100831104B1 (en) 2001-01-29 2002-01-11 Method for suppressing decomposition reaction in the treatment of butene polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001019418A JP4907771B2 (en) 2001-01-29 2001-01-29 Method for inhibiting decomposition reaction in butene polymer treatment

Publications (2)

Publication Number Publication Date
JP2002220411A JP2002220411A (en) 2002-08-09
JP4907771B2 true JP4907771B2 (en) 2012-04-04

Family

ID=18885298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001019418A Expired - Fee Related JP4907771B2 (en) 2001-01-29 2001-01-29 Method for inhibiting decomposition reaction in butene polymer treatment

Country Status (2)

Country Link
JP (1) JP4907771B2 (en)
KR (1) KR100831104B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101511701B1 (en) 2013-07-30 2015-04-13 대림산업 주식회사 Apparatus and method for recirculation of raw material used during the polyisobutylene preparation process
KR101511708B1 (en) * 2013-08-28 2015-04-13 대림산업 주식회사 Apparatus and method for removing halogen generated during the polyisobutylene preparation process
KR101658545B1 (en) 2014-08-22 2016-09-21 대림산업 주식회사 Method for preparing polybutene

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518422A (en) * 1978-07-24 1980-02-08 Sumitomo Chem Co Ltd Purification of polyolefin
JPH0734084A (en) * 1993-07-23 1995-02-03 Tonen Corp Lubricant for 2 cycle engine
JPH08165486A (en) * 1994-12-13 1996-06-25 Idemitsu Kosan Co Ltd Lubricating oil composition for 2-cycle engine
CN1156494C (en) * 1999-02-23 2004-07-07 日本石油化学株式会社 Method of dehalogenating hydrocarbon containing carbon-carbon double bond

Also Published As

Publication number Publication date
JP2002220411A (en) 2002-08-09
KR100831104B1 (en) 2008-05-20
KR20020063499A (en) 2002-08-03

Similar Documents

Publication Publication Date Title
JP5318084B2 (en) Method for preventing fouling of hydrocarbon treatment equipment
JP4907771B2 (en) Method for inhibiting decomposition reaction in butene polymer treatment
US4992529A (en) Method for separating metal contaminants from organic polymers
JP2002529432A (en) Methods and compositions for inhibiting the polymerization of ethylenically unsaturated hydrocarbons
US5213678A (en) Method for inhibiting foulant formation in organic streams using erythorbic acid or oximes
EP1081165B1 (en) Method of dehalogenating hydrocarbon containing carbon-carbon double bond
JP2004513213A (en) Reduction of undesired polymerization in hydrocarbon cracking process
US7365152B2 (en) Method for producing highly reactive, low halogen polyisobutenes
JP4557194B2 (en) Process for dehalogenation of hydrocarbons containing carbon-carbon double bonds
JPH06122660A (en) N-vinylformamide composition
FR2768725A1 (en) PROCESS FOR THE PREPARATION OF 2-CHLOROPROP-1-ENE
US3260766A (en) Process for treating olefin monomers
KR100646123B1 (en) Methods for inhibiting fouling of vinyl monomers
JP2010201425A (en) Method for regenerating alumina to be used for dehalogenation of hydrocarbon containing carbon-carbon double bond
EP0392896A1 (en) Composition and process to reduce the corrosiveness of oxygenised salty solutions by bubbling with acid gases
KR940000150A (en) Acid soluble oil compositions produced as reaction byproducts in the process of purifying alkylation catalyst mixtures and in alkylation processes
JP5227490B2 (en) Process for producing olefin polymer
KR102189509B1 (en) A process for producing polybutene, polybutene production equipment and high performance polybutene produced thereby
CA1227449A (en) Composition for minimizing fouling of heat exchangers and other hydrocarbon processing equipment
JPS63241003A (en) Collection of chlorinated polymer from solution
RU2221822C2 (en) Acrylate-based rubber compound
US20170087544A1 (en) Process for removing cl from oxy-dehydro catalyst
JPH03251550A (en) Method for addition
KR20150139506A (en) Method for removing sulfur-containing compound
JP2012171964A (en) N-vinyl carboxylic acid amide polymer and production method of cationic water-soluble polymer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4907771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees