JP4905836B2 - Contact angle measuring device - Google Patents

Contact angle measuring device Download PDF

Info

Publication number
JP4905836B2
JP4905836B2 JP2007201208A JP2007201208A JP4905836B2 JP 4905836 B2 JP4905836 B2 JP 4905836B2 JP 2007201208 A JP2007201208 A JP 2007201208A JP 2007201208 A JP2007201208 A JP 2007201208A JP 4905836 B2 JP4905836 B2 JP 4905836B2
Authority
JP
Japan
Prior art keywords
droplet
contact angle
vibration
measured
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007201208A
Other languages
Japanese (ja)
Other versions
JP2009036634A (en
Inventor
義和 松井
祥子 塩川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saw&spr Tech
Original Assignee
Saw&spr Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saw&spr Tech filed Critical Saw&spr Tech
Priority to JP2007201208A priority Critical patent/JP4905836B2/en
Publication of JP2009036634A publication Critical patent/JP2009036634A/en
Application granted granted Critical
Publication of JP4905836B2 publication Critical patent/JP4905836B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

本発明は、液滴の自由振動数を検出することから液滴と被測定物としての固体の間の接触角を測定し、固体表面の撥水性を評価するに好適な接触角測定装置に関する。   The present invention relates to a contact angle measuring apparatus suitable for evaluating the water repellency of a solid surface by measuring the contact angle between a droplet and a solid as an object to be measured by detecting the free frequency of the droplet.

雨水や湿気による腐食や機能の劣化を防止するため、大多数の物品はその表面を塗膜等で保護している。自動車等の絶えず外気・風雨等厳しい環境下で使用されるものは、特に、この対策が重要である。このような用途に用いられる塗膜には水、水分をはじく撥水性(疎水性)が求められる。従来の撥水性を評価する方法は水滴と被評価物(固体)間の接触角によって表す方法が一般的である。   In order to prevent corrosion and functional deterioration due to rainwater and moisture, the surface of most articles is protected with a coating film or the like. This measure is particularly important for automobiles and the like that are constantly used in harsh environments such as outside air and wind and rain. The coating film used for such applications is required to have water repellency (hydrophobicity) that repels water and moisture. A conventional method for evaluating water repellency is generally a method represented by a contact angle between a water droplet and an object to be evaluated (solid).

従来の接触角測定装置は、いずれも固体表面上の液滴を光学的映像として捕らえ、この画像から接触角を直接測定する。或いは液滴の接触面の直径と高さを測定し、計算により求める方法等である。このため、測定装置には撮像装置と画像表示装置が必要となり、一般的に高価であり、被測定物のサイズ、測定位置等に制限がある。また、測定において固液界面の状態を正確に識別することは非常に難しいため、測定値の精度、信頼性についても必ずしも満足できるものではなく、簡便で、信頼性の高い手法は実現されていない。 All conventional contact angle measuring devices capture a droplet on a solid surface as an optical image and directly measure the contact angle from this image. Alternatively, it is a method of measuring the diameter and height of the contact surface of the droplet and calculating it. For this reason, an imaging device and an image display device are required for the measuring device, which is generally expensive, and there are limitations on the size of the object to be measured, the measurement position, and the like. Moreover, since it is very difficult to accurately identify the state of the solid-liquid interface in measurement, the accuracy and reliability of the measurement values are not always satisfactory, and a simple and reliable method has not been realized. .

近年、非特許文献1に記載の如く、レイリータイプの表面弾性波を利用し、表面弾性波の励起によって液滴を励振させ、励起を停止後の液滴の自由振動の振動数と減衰率を測定することにより、液体の粘性、表面張力及び接触角を測定する研究報告もあるが、これは表面弾性波を励起可能な圧電基板上における液体の物性を測定するものである。 In recent years, as described in Non-Patent Document 1, a Rayleigh type surface acoustic wave is used to excite a droplet by excitation of the surface acoustic wave, and the frequency and attenuation rate of the free vibration of the droplet after excitation is stopped. Some research reports measure the viscosity, surface tension, and contact angle of a liquid by measuring it, but this measures the physical properties of a liquid on a piezoelectric substrate that can excite surface acoustic waves.

また、非特許文献2に記載の如く、固体の表面上に液滴を落下させることにより、液滴に自由振動を励起させ、光源の光をレンズに通した平行光を液滴に垂直にあて、液滴の影をホトダイオードに投影し、液滴の自由振動数を検出することから液滴と固体間の接触角を測定するものがある。
塩川、山北、松井“SAWストリーミング励振された液滴振動による液体の粘性、表面張力、接触角の測定”日本音響学会平成9年度秋季研究発表会講演論文集II、1083-1084、1997年9月 大島、松井、山北、杉山、塩川、“液滴振動法を用いた固定表面評価装置”、電子情報通信学会技術報告、US-99-62,23-28,(1999-11)
Further, as described in Non-Patent Document 2, by dropping a droplet onto the surface of a solid, free vibration is excited in the droplet, and parallel light passing through a lens is applied perpendicularly to the droplet. Some of them measure the contact angle between a droplet and a solid by projecting the shadow of the droplet onto a photodiode and detecting the free frequency of the droplet.
Shiokawa, Yamakita, Matsui "Measurement of liquid viscosity, surface tension, and contact angle by SAW streaming-excited droplet vibration" Proceedings of the Acoustical Society of Japan, Autumn 1997, II, 1083-1084, September 1997 Oshima, Matsui, Yamakita, Sugiyama, Shiokawa, “Fixed surface evaluation system using droplet vibration method”, IEICE Technical Report, US-99-62, 23-28, (1999-11)

非特許文献1に記載の発明は、圧電基板に接する液体と圧電基板の間の接触角を測るものであり、液体と圧電材料以外の固体の間の接触角を測ることはできない。また、弾性表面波を用いるため、これを発生する発信器等、多くの電源回路を必要とし、全ての測定は圧電基板上で行なわれる。 The invention described in Non-Patent Document 1 measures the contact angle between the liquid in contact with the piezoelectric substrate and the piezoelectric substrate, and cannot measure the contact angle between the liquid and a solid other than the piezoelectric material. Further, since surface acoustic waves are used, many power supply circuits such as a transmitter for generating the surface waves are required, and all measurements are performed on the piezoelectric substrate.

非特許文献2に記載の発明は、液滴(水滴)が載置される被測定物は例えば自動車ボディの金属板の切片等の形態で測定装置内に持ち込む必要がある。また、光源の光をレンズを介して平行光にし、液滴(水滴)に垂直に光をあて、比較的大きな光検出器を用いているため、必ず光軸上に液滴を配置しなければならず、被測定物の形状、サイズによって液滴の位置を調整する必要があり、液滴が載置される被測定物は昇降ステージの上に置かれている。この結果、被測定物の形状、サイズに制約があり、迅速、簡便な測定ができない。 In the invention described in Non-Patent Document 2, an object to be measured on which a droplet (water droplet) is placed needs to be brought into the measuring device in the form of a section of a metal plate of an automobile body, for example. In addition, the light from the light source is converted into parallel light through a lens, light is applied perpendicularly to the droplet (water droplet), and a relatively large photodetector is used. Therefore, the droplet must be placed on the optical axis. In addition, it is necessary to adjust the position of the droplet according to the shape and size of the object to be measured, and the object to be measured is placed on the lifting stage. As a result, the shape and size of the object to be measured are limited, and quick and simple measurement cannot be performed.

このような状況において、発明者らは、液滴の自由振動の利用について着目し、液滴の自由振動がこれと接する固体界面における接触角、或いは物性とどのような関係にあるか、また、任意かつ不特定の材料との接触角測定方法、及び装置の構成、特に光学系部品としてその配置のあり方等を種々検討してきた。この出願の発明は、以上のような経緯によりなされたものであって、従来の液滴の接触角測定装置の欠点を解消し、高い信頼性と非常に簡便な手段によって液滴と任意かつ不特定の固体材料間の接触角を測定し、ひいては固体表面の撥水性を評価できるようにすることを課題とする。即ち、液滴の自由振動を用いる新しい接触角測定装置を提供することを課題とする。 In such a situation, the inventors paid attention to the use of the free vibration of the droplet, how the free vibration of the droplet is related to the contact angle or physical property at the solid interface in contact therewith, Various studies have been made on a method for measuring a contact angle with an arbitrary and unspecified material, and a configuration of the apparatus, particularly an arrangement of the optical system component. The invention of this application has been made by the above-described circumstances, eliminates the drawbacks of the conventional droplet contact angle measuring device, and arbitrarily and undisturbs droplets with high reliability and very simple means. It is an object to measure a contact angle between specific solid materials, and thereby to evaluate water repellency of a solid surface. That is, it is an object of the present invention to provide a new contact angle measuring device that uses free vibration of a droplet.

請求項1の発明は、被測定物としての固体の周辺に配置できる測定機台に振動励起手段と振動検出手段を備えるとともに、接触角測定手段を該測定機台に付帯的に備え、振動励起手段は被測定物としての固体の表面上に載る所要の液滴に衝撃力を加えることで、液滴に自由振動を励起可能にし、振動検出手段は、光源の光を光ファイバから上記液滴に照射し、液滴の影を光電変換素子上に投影し、液滴の自由振動数を検出可能にし、接触角測定手段は、検出した自由振動数から液滴と被測定物間の接触角を測定可能にする接触角測定装置において、
前記測定機台は底部が開放されている外界の光を遮蔽した外箱からなり、且つ、前記光ファイバは前記外箱の開口端部の内側に光ファイバ支持ブロックを介して設置されているとともにこの光ファイバ支持ブロックに沿って前記外箱の内側方向に延び、この光ファイバの先端面は前記光ファイバ支持ブロックの内側面と略面一であることを特徴とする接触角測定装置である。
被測定物としての固体の周辺に配置できる測定機台に振動励起手段と振動検出手段を備えるとともに、接触角測定手段を該測定機台に付帯的に備え、振動励起手段は被測定物としての固体の表面上に載る所要の液滴に衝撃力を加えることで、液滴に自由振動を励起可能にし、振動検出手段は、光源の光を光ファイバから上記液滴に照射し、液滴の影を光電変換素子上に投影し、液滴の自由振動数を検出可能にし、接触角測定手段は、検出した自由振動数から液滴と被測定物間の接触角を測定可能にする接触角測定装置において、
前記測定機台は底部が開放されている外界の光を遮蔽した外箱からなり、且つ、前記光ファイバは前記外箱の開口端部の内側に光ファイバ支持ブロックを介して設置されているとともにこの光ファイバ支持ブロックに沿って前記外箱の内側方向に延び、この光ファイバの先端面は前記光ファイバ支持ブロックの内側面と略面一であることを特徴とする接触角測定装置である。
According to the first aspect of the present invention, the measurement machine base that can be arranged around the solid as the object to be measured is provided with the vibration excitation means and the vibration detection means, and the contact angle measurement means is incidentally provided on the measurement machine base, and vibration excitation is provided. The means applies an impact force to the required droplet placed on the surface of the solid as the object to be measured, thereby enabling free vibration to be excited in the droplet, and the vibration detecting means transmits the light of the light source from the optical fiber to the droplet. And the shadow of the droplet is projected onto the photoelectric conversion element so that the free frequency of the droplet can be detected. The contact angle measurement means detects the contact angle between the droplet and the object to be measured from the detected free frequency. In a contact angle measuring device that makes it possible to measure
The measuring machine base is composed of an outer box that shields light from the outside whose bottom is open, and the optical fiber is installed inside the open end of the outer box via an optical fiber support block. The contact angle measuring device is characterized in that it extends inward of the outer box along the optical fiber support block, and the front end surface of the optical fiber is substantially flush with the inner surface of the optical fiber support block.
A measuring machine base that can be arranged around the solid as the object to be measured is provided with vibration excitation means and vibration detecting means, and a contact angle measuring means is incidentally provided to the measuring machine base, and the vibration excitation means is used as the object to be measured. By applying an impact force to the required droplet placed on the surface of the solid, it is possible to excite the free vibration of the droplet, and the vibration detecting means irradiates the droplet with light from the light source from the optical fiber, A shadow is projected onto the photoelectric conversion element so that the free vibration frequency of the liquid droplet can be detected, and the contact angle measurement means can measure the contact angle between the liquid droplet and the object to be measured from the detected free vibration frequency. In the measuring device,
The measuring machine base is composed of an outer box that shields light from the outside whose bottom is open, and the optical fiber is installed inside the open end of the outer box via an optical fiber support block. The contact angle measuring device is characterized in that it extends inward of the outer box along the optical fiber support block, and the front end surface of the optical fiber is substantially flush with the inner surface of the optical fiber support block.

請求項2の発明は、請求項1の発明において更に、前記振動検出手段が、液滴に照射された光源の光を受光するセンシング用光電変換素子と、液滴に照射されない当該光源の光を直接的に受光するリファレンス用光電変換素子を用い、両光電変換素子の出力信号の差から液滴の自由振動数を検出するようにしたものである。 According to a second aspect of the invention, in the first aspect of the invention, the vibration detecting means further includes a sensing photoelectric conversion element that receives light of a light source irradiated on the droplet, and light of the light source that is not irradiated on the droplet. A reference photoelectric conversion element that directly receives light is used, and the free frequency of the droplet is detected from the difference between the output signals of both photoelectric conversion elements.

請求項3の発明は、請求項1又は請求項2のいずれかの発明において更に、前記被測定物が粉体であるとき、前記測定機台を粉体保持台の上に配置し、粉体保持台が金属又は高分子材料で作られ、粉体を収容する凹部を備え、この凹部は収容される粉体が液滴外径よりも大きな1平面をもつ固体として扱うことができる直径を備える粉体の接触角測定用とした接触角測定装置である。
According to a third aspect of the present invention, in the first or second aspect of the present invention, when the object to be measured is powder, the measuring machine base is disposed on the powder holding base, and the powder The holding base is made of a metal or a polymer material and has a recess for receiving powder, and the recess has a diameter that allows the stored powder to be handled as a solid having a single plane larger than the droplet outer diameter. This is a contact angle measuring device for measuring the contact angle of powder.

(請求項1)
(a)被測定物としての固体の周辺に配置できる測定機台に振動励起手段と振動検出手段を備えるとともに、接触角測定手段を該測定手段に付帯的に備えた。従って、例えば自動車ボディの金属板を被測定物とするとき、この金属板の切片を測定装置内に持ち込むことなく、測定装置の測定機台を自動車ボディの金属板上に単に配置するだけで液滴と金属板の間の接続角を測定し、ひいては金属板表面の撥水性を簡便に評価できる。従って、任意の形状、サイズの固体について接触角を測定し、ひいては撥水性を評価できる。
(Claim 1)
(a) A measuring machine base that can be arranged around a solid as an object to be measured is provided with vibration excitation means and vibration detection means, and contact angle measurement means is additionally provided for the measurement means. Therefore, for example, when a metal plate of an automobile body is used as an object to be measured, the liquid plate can be simply placed on the metal plate of the automobile body without bringing a section of the metal plate into the measurement apparatus. By measuring the connection angle between the droplet and the metal plate, the water repellency on the surface of the metal plate can be easily evaluated. Accordingly, the contact angle can be measured for a solid having an arbitrary shape and size, and the water repellency can be evaluated.

(b)液滴の落下、或いは液滴への空気の吹付等によって液滴に自由振動を励起して液滴と固体の間の接触角を測定するものである。微小な液滴の自由振動から接触角を測定するものであり、装置構成は小型で足り、被測定物の形状、サイズについて制約がない。 (b) The contact angle between the droplet and the solid is measured by exciting the droplet with free vibration by dropping the droplet or blowing air onto the droplet. The contact angle is measured from the free vibration of a minute droplet, the apparatus configuration is small, and there is no restriction on the shape and size of the object to be measured.


(c)弾性表面波を用いる必要がなく、圧電基板を用いるものでないから、圧電材料以外の不特定の固体についても接触角を測定し、ひいては撥水性を評価できる。

(c) Since it is not necessary to use a surface acoustic wave and a piezoelectric substrate is not used, the contact angle of an unspecified solid other than the piezoelectric material can be measured, and thus the water repellency can be evaluated.


(d)光源の光は光ファイバから液滴に照射されるから、被測定物の形状、サイズによって液滴の位置を調整する必要がなく、液滴が載置される被測定物を昇降ステージの上に置く必要がない。被測定物の形状、サイズの制約がなく、迅速、簡便に接触角を測定できる。

(d) Since the light from the light source is irradiated onto the droplet from the optical fiber, it is not necessary to adjust the position of the droplet according to the shape and size of the object to be measured, and the object to be measured is placed on the lifting stage. There is no need to put it on top. There is no restriction on the shape and size of the object to be measured, and the contact angle can be measured quickly and easily.


(e)振動検出手段が、液滴に照射された光源の光を受光するセンシング用光電変換素子と、液滴に照射されない当該光源の光を直接的に受光するリファレンス用光電変換素子を用い、両光電変換素子の出力信号の差から液滴の自由振動数を検出するようにした。従って、光源の光量が変動しても、液滴の自由振動数を高精度に測定できる。

(e) The vibration detection means uses a sensing photoelectric conversion element that receives light from the light source irradiated on the droplet and a reference photoelectric conversion element that directly receives light from the light source that is not irradiated on the droplet, The free frequency of the droplet was detected from the difference between the output signals of both photoelectric conversion elements. Therefore, even if the light quantity of the light source varies, the free vibration frequency of the droplet can be measured with high accuracy.

(f)本装置の特徴は、構造が簡単、簡素であり、被測定物のサイズに制限がないこと、特に微粉末の撥水性を測ることができる点にある。  (f) The feature of this apparatus is that the structure is simple and simple, the size of the object to be measured is not limited, and in particular the water repellency of fine powder can be measured.

図1は接触角測定装置を示すブロック図、図2は球形くぼみに固定された液滴を示す模式図、図3は液滴の自由振動数と接触角を示す線図、図4は理論解析より求めた液滴の自由振動数fと接触角θの関係を示す線図、図5は液滴の接触角の表示パターンを示す模式図、図6は液滴の自由振動の観測波形の一例を示す波形図、図7は粉体の接触角測定用保持台を示す断面図、図8は粉体の接触角測定用保持台の他の例を示す断面図である。 1 is a block diagram showing a contact angle measuring device, FIG. 2 is a schematic diagram showing a droplet fixed in a spherical recess, FIG. 3 is a diagram showing the free frequency and contact angle of the droplet, and FIG. 4 is a theoretical analysis. more obtained graph showing the relationship between the contact angle θ with the free vibration frequency f 0 of the droplet, FIG. 5 is a schematic diagram showing a display pattern of the contact angle of the droplet, FIG. 6 is observed waveform of free vibration of the droplet FIG. 7 is a waveform diagram showing an example, FIG. 7 is a cross-sectional view showing a powder contact angle measurement holding table, and FIG. 8 is a cross-sectional view showing another example of a powder contact angle measurement holding table.

本発明者らは、液滴の自由振動により液体の体積、密度が既知であるならば、振動の減衰率より粘性率が、自由振動数より表面張力及び接触角が測定できることを、実験(例えば非特許文献1)及び理論(例えば非特許文献2)により、特に接触角が80°〜170°の範囲において振動数と接触角が比例関係にあることを明らかにした。 The present inventors have conducted experiments (for example, that the viscosity and the surface tension and the contact angle can be measured from the free vibration frequency if the volume and density of the liquid are known from the free vibration of the droplet, if the volume and density of the liquid are known. Non-patent document 1) and theory (for example, non-patent document 2) revealed that the frequency and the contact angle are in a proportional relationship, particularly in the range of the contact angle of 80 ° to 170 °.

即ち、固体表面に液滴が比較的低い位置より落下すると、液滴は飛散することなく、落下位置において、固体表面の接触面を支点として自由振動をする。また、液滴の載った固体表面にパルス的振動を加えても液滴は同様な自由振動をする。このときの液滴の振動は一般に、バネ、マス、ダッシュポットモデルで表現され、液滴の自由振動数fは次のように表される。 In other words, when a droplet falls on a solid surface from a relatively low position, the droplet does not scatter, and freely vibrates at the dropping position with the contact surface of the solid surface as a fulcrum. Moreover, even if pulsed vibration is applied to the solid surface on which the droplet is placed, the droplet vibrates similarly. The vibration of the droplet at this time is generally expressed by a spring, mass, and dashpot model, and the free vibration frequency f 0 of the droplet is expressed as follows.

Figure 0004905836
Figure 0004905836

ここに、kはバネ定数、mは液滴の質量、Rは液滴の半径、ρは液滴密度、σは液体の表面張力である。また、Cは液滴形状が半球であるときの定数(k=Cσ)である。固体表面上の液滴の自由振動数は液滴体積が一定の場合、固体表面上の液滴形状に基づくバネ定数k=Cσの平方根に比例する。即ち、液体の表面張力σは一定であるので、自由振動数は液滴形状(接触角)に依存することを示している。この場合、液滴形状に対応したC1を予め実験により求める必要がある。図2は液滴を球形くぼみに固定されたモデルとして表したものである。この様なモデルを仮定したときの液滴の自由振動数は次のように表される。 Here, k is the spring constant, m is the mass of the droplet, R is the radius of the droplet, ρ is the droplet density, and σ is the surface tension of the liquid. C 1 is a constant (k = C 1 σ) when the droplet shape is a hemisphere. When the droplet volume is constant, the free frequency of the droplet on the solid surface is proportional to the square root of the spring constant k = C 1 σ based on the droplet shape on the solid surface. That is, since the surface tension σ of the liquid is constant, the free frequency depends on the droplet shape (contact angle). In this case, it is necessary to obtain C1 corresponding to the droplet shape by an experiment in advance. FIG. 2 shows a droplet as a model fixed to a spherical recess. When assuming such a model, the free frequency of the droplet is expressed as follows.

Figure 0004905836
Figure 0004905836

ここに、θは接触角、Vは液滴体積、Λは振動モードMに対応する固有値であり、接触角に依存する。ここでは、液滴の自由落下による振動モードM=1であり、液滴体積一定として、図2を基にそれぞれの接触角θに対応した固有値Λを求めておけば、接触角θと液滴の自由振動数fの関係を求めることができる。図3は式(2)を基に液滴の体積Vをそれぞれ5.5、8、10μlとしたときの接触角θと自由振動数の関係を計算によって求めたものである。いずれの液滴の体積においても、接触角80°以上において、自由振動数fはほぼ線形的に減少していることが分かる。また、図4は図3における縦軸を自由振動数fと液滴体積Vの平方根の積として表わしたものであり、液滴の体積Vによらないグラフになっている。振動数が接触角の80°〜170°の範囲において比例関係にあることを示している。 Here, θ is a contact angle, V 0 is a droplet volume, Λ M is an eigenvalue corresponding to the vibration mode M, and depends on the contact angle. Here, if the vibration mode M = 1 due to the free fall of the droplet and the droplet volume is constant, the eigenvalue Λ M corresponding to each contact angle θ is obtained based on FIG. The relationship of the free frequency f 0 of the droplet can be determined. FIG. 3 shows the relationship between the contact angle θ and the free frequency obtained by calculation based on the formula (2) when the volume V 0 of the droplet is 5.5, 8, and 10 μl, respectively. It can be seen that for any droplet volume, the free frequency f 0 decreases almost linearly at a contact angle of 80 ° or more. FIG. 4 shows the vertical axis in FIG. 3 as a product of the square root of the free frequency f 0 and the droplet volume V 0 , and is a graph that does not depend on the droplet volume V 0 . The frequency is proportional to the contact angle in the range of 80 ° to 170 °.

そこで、本発明にあっては、液滴の自由振動数を測定することから、液体とこれに接する物体間の接触角を検出し、ひいては固体表面の撥水性を評価するに有用となる接触角測定装置を提供するものである。 Therefore, in the present invention, since the free frequency of the droplet is measured, the contact angle between the liquid and the object in contact with the liquid is detected, and thus the contact angle useful for evaluating the water repellency of the solid surface. A measuring device is provided.

(実施例1)(図1、図5、図6)
図1に示す接触角測定装置10は、被測定物1としての固体、例えば自動車ボディの塗装された金属板の測定部周辺に配置できる測定機台11を有する。測定機台11は、下部開口の外箱11Aからなり、振動励起手段20と振動検出手段30を外箱11Aに内蔵して備える。また、測定機台11に接触角測定手段40を付帯的に備える。接触角測定手段40は測定機台11に取付けても、しなくても良い。
Example 1 (FIGS. 1, 5, and 6)
A contact angle measuring device 10 shown in FIG. 1 includes a measuring machine base 11 that can be arranged around a measuring part of a solid as a device under test 1, for example, a painted metal plate of an automobile body. The measuring machine base 11 includes an outer box 11A having a lower opening, and includes vibration excitation means 20 and vibration detection means 30 built in the outer box 11A. Further, the measuring machine base 11 is additionally provided with contact angle measuring means 40. The contact angle measuring means 40 may or may not be attached to the measuring machine base 11.

振動励起手段20は、測定機台11において外界の光を遮蔽した外箱11Aの内部で(但し、外箱11Aは外界の光を遮蔽しない単なるフレームであっても良い)、被測定物1としての固体の表面上に載る所要の液滴2(本実施例では水滴とする)に衝撃力を加えることで、液滴2に自由振動を励起する。具体的には、測定機台11の外箱11Aの上部(天板部)にノズルホルダ21を介してノズル22を取付け、このノズル22より所要量(数μl〜10μl)の液滴2を被測定物1の表面上に自由落下させることにより、液滴2に自由振動を励起する。液滴2は被測定物1の表面への衝突に伴ない、被測定物1の表面上で自由振動する。 The vibration excitation means 20 is located inside the outer box 11A that shields light from the outside in the measuring machine base 11 (however, the outer box 11A may be a simple frame that does not shield light from the outside). By applying an impact force to the required droplet 2 (which is a water droplet in this embodiment) placed on the surface of the solid, free vibration is excited in the droplet 2. Specifically, a nozzle 22 is attached to the upper portion (top plate portion) of the outer case 11A of the measuring machine base 11 via a nozzle holder 21, and a required amount (several μl to 10μl) of droplet 2 is covered from the nozzle 22. By free-falling on the surface of the measurement object 1, free vibration is excited in the droplet 2. The droplet 2 freely oscillates on the surface of the device under test 1 with the collision with the surface of the device under test 1.

振動検出手段30は、外箱11Aの内部で、DC電源31Aによりドライブされる光源31の光を光ファイバ32から液滴2に照射し、液滴2の影をセンシング用光電変換素子33上に投影し、液滴2の振動を電気信号に変換することにより、液滴2の自由振動数を検出する。光源31は外箱11Aに固定される光源支持ブロック31Bを介して光源ホルダ31Cに支持される。光ファイバ32は外箱11Aに固定される光ファイバ支持ブロック32Aに支持される。センシング用光電変換素子33は外箱11Aに固定される光電変換素子ホルダ33Aに支持される。 The vibration detecting means 30 irradiates the droplet 2 with light from the light source 31 driven by the DC power source 31A from the optical fiber 32 inside the outer box 11A, and the shadow of the droplet 2 is applied to the sensing photoelectric conversion element 33. The free frequency of the droplet 2 is detected by projecting and converting the vibration of the droplet 2 into an electrical signal. The light source 31 is supported by the light source holder 31C via a light source support block 31B fixed to the outer box 11A. The optical fiber 32 is supported by an optical fiber support block 32A fixed to the outer box 11A. The sensing photoelectric conversion element 33 is supported by a photoelectric conversion element holder 33A fixed to the outer box 11A.

振動検出手段30は、外箱11Aの内部で、光源31の光を別の光ファイバ34からリファレンス用光電変換素子35に受光させる。光ファイバ34、リファレンス用光電変換素子35は光ファイバ支持ブロック32Aに支持される。リファレンス用光電変換素子35は、液滴2に照射されない光源31の光を直接的に受光する。振動検出手段30はセンシング用光電変換素子33とリファレンス用光電変換素子35の出力信号を差動増幅器36に伝達し、差動増幅器36はセンシング用光電変換素子33とリファレンス用光電変換素子35の出力信号の差を増幅する。差動増幅器36の出力は周波数カウンタ37に伝達され、周波数カウンタ37は液滴2の自由振動数を計測して表示する。 The vibration detection means 30 causes the reference photoelectric conversion element 35 to receive the light of the light source 31 from another optical fiber 34 inside the outer box 11A. The optical fiber 34 and the reference photoelectric conversion element 35 are supported by the optical fiber support block 32A. The reference photoelectric conversion element 35 directly receives light from the light source 31 that is not irradiated onto the droplet 2. The vibration detection means 30 transmits the output signals of the sensing photoelectric conversion element 33 and the reference photoelectric conversion element 35 to the differential amplifier 36, and the differential amplifier 36 outputs the sensing photoelectric conversion element 33 and the reference photoelectric conversion element 35. Amplify the signal difference. The output of the differential amplifier 36 is transmitted to a frequency counter 37, which measures and displays the free frequency of the droplet 2.

このとき、振動検出手段30は、光源31から液滴2を介してセンシング用光電変換素子33に達する光路、光源31から直接的にリファレンス用光電変換素子35に達する光路を、測定機台11の外箱11Aにより外界の光から遮蔽しており、センシング用光電変換素子33とリファレンス用光電変換素子35の受光量に外乱を与えない。 At this time, the vibration detection means 30 has an optical path reaching the sensing photoelectric conversion element 33 from the light source 31 via the droplet 2 and an optical path reaching the reference photoelectric conversion element 35 directly from the light source 31. The outer box 11 </ b> A shields the light from the outside, and does not disturb the received light amounts of the sensing photoelectric conversion element 33 and the reference photoelectric conversion element 35.

接触角測定手段40は、パーソナルコンピュータ41からなり、振動検出手段30が周波数カウンタ37において得た液滴2の自由振動数から、液滴2と被測定物1の間の接触角を測定する。具体的には、パーソナルコンピュータ41にメモリしてある液滴の自由振動数fと接触角θの関係マップ、例えば前述した図4の関係マップを用いて(前述の液滴の自由振動数fと接触角θの理論関係式(1)、(2)を用いても可)、振動検出手段30により検出した自由振動数fに対応する接触角θを測定する。パーソナルコンピュータ41は今回の液滴2の既知の容量と、測定した接触角θを用いて、被測定物1の表面上における液滴2の形態を、図5に示す如くにパターン表示することもできる。 The contact angle measuring unit 40 includes a personal computer 41 and measures the contact angle between the droplet 2 and the DUT 1 from the free vibration frequency of the droplet 2 obtained by the vibration detection unit 30 in the frequency counter 37. Specifically, using the relationship map between the free vibration frequency f 0 of the droplet and the contact angle θ stored in the personal computer 41, for example, the relationship map of FIG. 4 described above (the aforementioned free vibration frequency f of the droplet). The theoretical relational expressions (1) and (2) between 0 and the contact angle θ may be used), and the contact angle θ corresponding to the free frequency f 0 detected by the vibration detecting means 30 is measured. The personal computer 41 may display a pattern of the form of the droplet 2 on the surface of the object 1 to be measured using the known volume of the droplet 2 and the measured contact angle θ as shown in FIG. it can.

使用者は、接触角測定手段40による今回の測定接触角θ(図5の表示パターンも含む)に基づき、今回の被測定物1について、接触角θの大きい被測定物1を撥水性が強いと評価し、接触角θの小さい被測定物を接触角が弱いと評価することができる。尚、パーソナルコンピュータ41は、被測定物1と液滴2の間で、接触角θに対応する定量的な撥水性評価値を予め定めておき、今回の測定接触角θに対応する撥水性評価値を出力し、今回の被測定物1についての使用者による撥水性の定量的な評価に供することもできる。 Based on the current contact angle θ measured by the contact angle measuring means 40 (including the display pattern of FIG. 5), the user has a strong water repellency for the current object 1 having a large contact angle θ. It can be evaluated that the object to be measured having a small contact angle θ is weak in contact angle. The personal computer 41 previously determines a quantitative water repellency evaluation value corresponding to the contact angle θ between the DUT 1 and the droplet 2 and evaluates the water repellency evaluation corresponding to the current measurement contact angle θ. A value can be output and used for quantitative evaluation of water repellency by the user for the device under test 1 this time.

図6は、振動検出手段30の周波数カウンタ37による液滴2の自由振動観測結果の一例である。図6の横軸は時間、縦軸は液滴の振動振幅を表す電圧である。使用した液滴2は純水5.5μlを約5cmの高さより被測定物1としてのテフロン(登録商標)板上に落下させたときの周波数カウンタ37の出力信号であり、この液滴2の自由振動数fは90Hzであることが認められる。接触角測定手段40のパーソナルコンピュータ41は、前述の如く、この90Hzに対応する接触角θを、例えば図4の関係マップを用いて、116°として知ることができる。 FIG. 6 is an example of a result of observation of free vibration of the droplet 2 by the frequency counter 37 of the vibration detecting means 30. In FIG. 6, the horizontal axis represents time, and the vertical axis represents voltage representing the vibration amplitude of the droplet. The used droplet 2 is an output signal of the frequency counter 37 when 5.5 μl of pure water is dropped from a height of about 5 cm onto a Teflon (registered trademark) plate as the object 1 to be measured. It can be seen that the frequency f 0 is 90 Hz. As described above, the personal computer 41 of the contact angle measuring means 40 can know the contact angle θ corresponding to 90 Hz as 116 °, for example, using the relationship map of FIG.

本実施例によれば以下の作用効果を奏する。
(a)被測定物1としての固体の周辺に配置できる測定機台11に振動励起手段20と振動検出手段30を備えるとともに、接触角測定手段40を該測定手段に付帯的に備えた。従って、例えば自動車ボディの金属板を被測定物1とするとき、この金属板の切片を測定装置10内に持ち込むことなく、測定装置10の測定機台11を自動車ボディの金属板上に単に配置するだけで液滴と金属板の間の接続角を測定し、ひいては金属板表面の撥水性を簡便に評価できる。従って、任意の形状、サイズの固体について接触角を測定し、ひいては撥水性を評価できる。
According to the present embodiment, the following operational effects can be obtained.
(a) The measuring machine base 11 that can be arranged around the solid as the object to be measured 1 is provided with the vibration excitation means 20 and the vibration detection means 30, and the contact angle measurement means 40 is incidentally provided to the measurement means. Therefore, for example, when a metal plate of an automobile body is used as the object 1 to be measured, the measuring machine base 11 of the measuring device 10 is simply disposed on the metal plate of the automobile body without bringing a section of the metal plate into the measuring device 10. By simply doing this, the connection angle between the droplet and the metal plate can be measured, and as a result, the water repellency of the surface of the metal plate can be easily evaluated. Accordingly, the contact angle can be measured for a solid having an arbitrary shape and size, and the water repellency can be evaluated.

(b)液滴の落下、或いは液滴への空気の吹付等によって液滴に自由振動を励起して液滴と固体の間の接触角を測定するものである。微小な液滴の自由振動から接触角を測定するものであり、装置構成は小型で足り、被測定物1の形状、サイズについて制約がない。 (b) The contact angle between the droplet and the solid is measured by exciting the droplet with free vibration by dropping the droplet or blowing air onto the droplet. The contact angle is measured from the free vibration of a minute droplet, the apparatus configuration is small, and the shape and size of the DUT 1 are not limited.

(c)弾性表面波を用いる必要がなく、圧電基板を用いるものでないから、圧電材料以外の不特定の固体についても接触角を測定し、ひいては撥水性を評価できる。 (c) Since it is not necessary to use a surface acoustic wave and a piezoelectric substrate is not used, the contact angle of an unspecified solid other than the piezoelectric material can be measured, and thus the water repellency can be evaluated.

(d)光源31の光は光ファイバ32から液滴に照射されるから、被測定物1の形状、サイズによって液滴の位置を調整する必要がなく、液滴が載置される被測定物1を昇降ステージの上に置く必要がない。被測定物1の形状、サイズの制約がなく、迅速、簡便に接触角を測定できる。 (d) Since the light from the light source 31 is irradiated onto the droplet from the optical fiber 32, it is not necessary to adjust the position of the droplet depending on the shape and size of the object 1 to be measured, and the object to be measured on which the droplet is placed. There is no need to place 1 on the lifting stage. There is no restriction on the shape and size of the DUT 1, and the contact angle can be measured quickly and easily.

(e)振動検出手段30が、液滴に照射された光源31の光を受光するセンシング用光電変換素子33と、液滴に照射されない当該光源31の光を直接的に受光するリファレンス用光電変換素子35を用い、両光電変換素子33、35の出力信号の差から液滴の自由振動数を検出するようにした。従って、光源31の光量が変動しても、液滴の自由振動数を高精度に測定できる。 (e) The sensing photoelectric conversion element 33 in which the vibration detecting unit 30 receives the light of the light source 31 irradiated on the droplet, and the reference photoelectric conversion that directly receives the light of the light source 31 not irradiated on the droplet. The element 35 was used, and the free frequency of the droplet was detected from the difference between the output signals of the photoelectric conversion elements 33 and 35. Therefore, even if the light quantity of the light source 31 fluctuates, the free frequency of the droplet can be measured with high accuracy.

(実施例2)
実施例2が実施例1と異なる点は、接触角測定装置10の振動励起手段20を変更したことにある。実施例2の振動励起手段20は、実施例1の振動励起手段20と同様に測定機台11に取付けたノズル22より所要の空気を予め被測定物1上にセットされた所要量(数μl〜10μl)の液滴2に吹付けることにより、液滴2に自由振動を励起するようにしたものである。
(Example 2)
The second embodiment is different from the first embodiment in that the vibration excitation means 20 of the contact angle measuring device 10 is changed. The vibration excitation means 20 of the second embodiment is similar to the vibration excitation means 20 of the first embodiment in that a required amount (several μl) of required air previously set on the measurement object 1 from the nozzle 22 attached to the measuring machine base 11 is used. The free vibration is excited in the droplet 2 by spraying on the droplet 2 of ˜10 μl).

(実施例3)
実施例3が実施例1と異なる点は、接触角測定装置10の振動励起手段20を変更したことにある。実施例2の振動励起手段20は、実施例1の振動励起手段20に対し、ノズルホルダ21とノズル22を用いず、他の構成を同じにし、被測定物1に打撃等の衝撃力を加えることで、予め被測定物1上にセットされた所要量(数μl〜10μl)の液滴2に間接的に自由振動を励起するようにしたものである。
Example 3
The third embodiment is different from the first embodiment in that the vibration excitation means 20 of the contact angle measuring device 10 is changed. The vibration excitation unit 20 of the second embodiment is the same as the vibration excitation unit 20 of the first embodiment except that the nozzle holder 21 and the nozzle 22 are not used, and the impact force such as hitting is applied to the object 1 to be measured. Thus, free vibration is indirectly excited in the required amount (several μl to 10 μl) of droplets 2 set in advance on the DUT 1.

(実施例4)
実施例4が実施例1と異なる点は、接触角測定装置10の振動励起手段20を変更したことにある。実施例4の振動励起手段20は、実施例1の振動励起手段20に対し、ノズルホルダ21とノズル22を用いず、他の構成を同じにし、予め被測定物1上にセットされた所要量(数μl〜10μl)の液滴2に直接、針状又は棒状物質でパルス的な力(衝撃力)を加えることにより、液滴2に自由振動を励起するようにしたものである。
Example 4
The fourth embodiment is different from the first embodiment in that the vibration excitation means 20 of the contact angle measuring device 10 is changed. The vibration excitation means 20 of the fourth embodiment is the same as the vibration excitation means 20 of the first embodiment except that the nozzle holder 21 and the nozzle 22 are not used, and the other configurations are the same, and the required amount set on the DUT 1 in advance. By applying a pulse-like force (impact force) directly to the droplet 2 (several μl to 10 μl) with a needle-like or rod-like substance, free vibration is excited in the droplet 2.

(実施例5)(図7)
実施例5は実施例1の接触角測定装置10を用い、被測定物1を粉体とするものであり、接触角測定装置10の測定機台11を粉体保持台50の上に配置するものとした。粉体保持台50は、図7に示す如く、金属又は高分子材料で作られ、円形又は矩形等の凹部51を備える。凹部51は、粉体が収容されるものであり、この粉体に載る液滴にも外径が粉体の外方にはみ出ることがないように、換言すれば平面視で、凹部51に収容された粉体の表面が液滴2の直径に比して十分な大きさの一平面を持つように、凹部51の直径が液滴2の直径の数倍の面積を提供できるように設定される。また、凹部51は、収容した粉体が計時的に凹部51内の深さ方向に沈下することなく、その表面が平面を維持できるように、凹部51の深さを設定する。粉体1を粉体保持台50の凹部51に型込め、充填し、その上面を粉体保持台50の表面と一致させる。液滴2は型込めされた粉体上に落下、或いは載置され、実施例1〜4と同じ手法による衝撃力によって自由振動を励起される。
(Example 5) (FIG. 7)
The fifth embodiment uses the contact angle measuring device 10 of the first embodiment and uses the object to be measured 1 as powder. The measuring machine base 11 of the contact angle measuring device 10 is disposed on the powder holding table 50. It was supposed to be. As shown in FIG. 7, the powder holding table 50 is made of a metal or a polymer material and includes a circular or rectangular recess 51. The concave portion 51 is for containing powder. In other words, the liquid droplet placed on the powder does not protrude outside the powder, in other words, in the concave portion 51 in plan view. The diameter of the recess 51 is set to provide an area several times the diameter of the droplet 2 so that the surface of the formed powder has a plane that is sufficiently larger than the diameter of the droplet 2. The Moreover, the recessed part 51 sets the depth of the recessed part 51 so that the surface which the accommodated powder does not sink in the depth direction in the recessed part 51 timely can maintain the surface. The powder 1 is cast into the recess 51 of the powder holding table 50 and filled, and the upper surface thereof is made to coincide with the surface of the powder holding table 50. The droplet 2 is dropped or placed on the molded powder, and free vibration is excited by the impact force by the same method as in the first to fourth embodiments.

(実施例6)(図8)
実施例6が実施例5と異なる点は、粉体保持台50の一部に打撃を与えて液滴2を加振するとき、粉体保持台50を支持脚52で保持するようにしたことにある。このとき、粉体保持台50は軽い打撃でも粉体上に載置した液滴2に自由振動を励起させるに十分な板厚と形状を備える。
Example 6 (FIG. 8)
Example 6 differs from Example 5 in that the powder holding table 50 is held by the support legs 52 when a droplet 2 is vibrated by hitting a part of the powder holding table 50. It is in. At this time, the powder holding table 50 has a plate thickness and shape sufficient to excite free vibration in the droplet 2 placed on the powder even with a light impact.

以上、本発明の実施例を図面により詳述したが、本発明の具体的な構成はこの実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。 The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration of the present invention is not limited to this embodiment, and even if there is a design change or the like without departing from the gist of the present invention. It is included in the present invention.

図1は接触角測定装置を示すブロック図である。FIG. 1 is a block diagram showing a contact angle measuring device. 図2は球形くぼみに固定された液滴を示す模式図である。FIG. 2 is a schematic diagram showing a droplet fixed in a spherical recess. 図3は液滴の自由振動数と接触角を示す線図である。FIG. 3 is a diagram showing the free frequency and contact angle of the droplet. 図4は理論解析より求めた液滴の自由振動数fと接触角θの関係を示す線図である。Figure 4 is a graph showing the relationship between the contact angle θ with the free vibration frequency f 0 of the droplets obtained from theoretical analysis. 図5は液滴の接触角の表示パターンを示す模式図である。FIG. 5 is a schematic diagram showing a display pattern of a contact angle of a droplet. 図6は液滴の自由振動の観測波形の一例を示す波形図である。FIG. 6 is a waveform diagram showing an example of the observation waveform of the free vibration of the droplet. 図7は粉体の接触角測定用保持台を示す断面図である。FIG. 7 is a cross-sectional view showing a support for measuring the contact angle of powder. 図8は粉体の接触角測定用保持台の他の例を示す断面図である。FIG. 8 is a cross-sectional view showing another example of a powder contact angle measurement holding table.

1 被測定物
2 液滴
10 接触角測定装置
11 測定機台
11A 外箱
20 振動励起手段
22 ノズル
30 振動検出手段
31 光源
32 光ファイバ
33 センシング用光電変換素子
34 光ファイバ
35 リファレンス用光電変換素子
36 差動増幅器
37 周波数カウンタ
40 接触角測定手段
50 粉体保持台
51 凹部
52 支持脚
DESCRIPTION OF SYMBOLS 1 Measured object 2 Droplet 10 Contact angle measuring device 11 Measuring machine base 11A Outer box 20 Vibration excitation means 22 Nozzle 30 Vibration detection means 31 Light source 32 Optical fiber 33 Photoelectric conversion element 34 for sensing Optical fiber 35 Photoelectric conversion element 36 for reference Differential amplifier 37 Frequency counter 40 Contact angle measuring means 50 Powder holding base 51 Recessed portion 52 Support leg

Claims (3)

被測定物としての固体の周辺に配置できる測定機台に振動励起手段と振動検出手段を備えるとともに、接触角測定手段を該測定機台に付帯的に備え、
振動励起手段は被測定物としての固体の表面上に載る所要の液滴に衝撃力を加えることで、液滴に自由振動を励起可能にし、振動検出手段は、光源の光を光ファイバから上記液滴に照射し、液滴の影を光電変換素子上に投影し、液滴の自由振動数を検出可能にし、接触角測定手段は、検出した自由振動数から液滴と被測定物間の接触角を測定可能にする接触角測定装置において、
前記測定機台は底部が開放されている外界の光を遮蔽した外箱からなり、且つ、前記光ファイバは前記外箱の開口端部の内側に光ファイバ支持ブロックを介して設置されているとともにこの光ファイバ支持ブロックに沿って前記外箱の内側方向に延び、この光ファイバの先端面は前記光ファイバ支持ブロックの内側面と略面一であることを特徴とする接触角測定装置。
A measuring instrument stand that can be placed around the solid as the object to be measured is provided with vibration excitation means and vibration detecting means, and a contact angle measuring means is incidentally provided to the measuring instrument stand,
The vibration excitation means applies an impact force to the required droplet placed on the surface of the solid as the object to be measured, thereby enabling free vibration to be excited on the droplet. The vibration detection means transmits the light from the light source from the optical fiber. The droplet is irradiated, the shadow of the droplet is projected onto the photoelectric conversion element, and the free frequency of the droplet can be detected, and the contact angle measuring means determines the distance between the droplet and the object to be measured from the detected free frequency. In a contact angle measurement device that enables measurement of a contact angle,
The measuring machine base is composed of an outer box that shields light from the outside whose bottom is open, and the optical fiber is installed inside the open end of the outer box via an optical fiber support block. A contact angle measuring device that extends inward of the outer box along the optical fiber support block, and that the tip surface of the optical fiber is substantially flush with the inner surface of the optical fiber support block.
前記振動検出手段が、液滴に照射された光源の光を受光するセンシング用光電変換素子と、液滴に照射されない当該光源の光を直接的に受光するリファレンス用光電変換素子を用い、両光電変換素子の出力信号の差から液滴の自由振動数を検出する請求項1に記載の接触角測定装置。 The vibration detection unit uses a sensing photoelectric conversion element that receives light from a light source irradiated on a droplet and a reference photoelectric conversion element that directly receives light from the light source that is not irradiated on the droplet. The contact angle measuring device according to claim 1 , wherein the free frequency of the droplet is detected from a difference between output signals of the conversion elements. 前記被測定物が粉体であるとき、前記測定機台を粉体保持台の上に配置し、粉体保持台が金属又は高分子材料で作られ、粉体を収容する凹部を備え、この凹部は収容される粉体が液滴外径よりも大きな1平面をもつ固体として扱うことができる直径を備える粉体の接触角測定用とした請求項1又は請求項2のいずれかに記載の接触角測定装置。 When the object to be measured is powder, the measuring machine table is disposed on the powder holding table, the powder holding table is made of a metal or a polymer material, and includes a recess for storing the powder. The concave portion is used for measuring a contact angle of a powder having a diameter that allows the powder contained therein to be handled as a solid having one plane larger than the outer diameter of the droplet. Contact angle measuring device.
JP2007201208A 2007-08-01 2007-08-01 Contact angle measuring device Expired - Fee Related JP4905836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007201208A JP4905836B2 (en) 2007-08-01 2007-08-01 Contact angle measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007201208A JP4905836B2 (en) 2007-08-01 2007-08-01 Contact angle measuring device

Publications (2)

Publication Number Publication Date
JP2009036634A JP2009036634A (en) 2009-02-19
JP4905836B2 true JP4905836B2 (en) 2012-03-28

Family

ID=40438683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007201208A Expired - Fee Related JP4905836B2 (en) 2007-08-01 2007-08-01 Contact angle measuring device

Country Status (1)

Country Link
JP (1) JP4905836B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101110330B1 (en) 2009-05-20 2012-02-15 서피스텍 주식회사 Contact angle measuring module and apparatus of measuring surface energy having the same
KR101110329B1 (en) * 2009-05-20 2012-02-15 서피스텍 주식회사 Contact angle measuring module, apparatus of measuring surface energy having the same, and method of measuring surface energy
JP5622266B2 (en) * 2009-08-12 2014-11-12 国立大学法人名古屋工業大学 Surface property measuring method and measuring apparatus
JP5891482B2 (en) * 2011-03-30 2016-03-23 SAW&SPR−Tech有限会社 Method and apparatus for measuring contact angle of solid surface
DE102014211369B4 (en) 2014-06-13 2022-03-10 Sita Messtechnik Gmbh contact angle meter
EP3009828A1 (en) 2014-10-14 2016-04-20 The Provost, Fellows, Foundation Scholars, & the other members of Board, of the College of the Holy & Undiv. Trinity of Queen Elizabeth near Dublin Methods of determining the properties of a fluid body
CN107389300B (en) * 2017-07-24 2019-03-26 西北工业大学 A kind of high-temperature fusion microlayer model crash device and method
CN111665170B (en) * 2020-06-16 2023-02-07 中国石油大学(华东) Liquid drop impact experimental device for quantitatively controlling deformation and tension of flexible substrate through ventilation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2928398B2 (en) * 1991-02-01 1999-08-03 株式会社小野測器 Multi-dimensional vibrometer
JP3660465B2 (en) * 1997-04-17 2005-06-15 塩野義製薬株式会社 Container damage determination device and container damage determination method
JPH11153582A (en) * 1997-11-21 1999-06-08 Japan Science & Technology Corp Method for measuring physical properties of fluid and apparatus therefor
DE19754765C1 (en) * 1997-11-28 1999-07-01 Kruess Gmbh Wissenschaftliche Contact angle measuring device
DE19860471C2 (en) * 1998-12-28 2000-12-07 Bosch Gmbh Robert Process for quality inspection of a workpiece

Also Published As

Publication number Publication date
JP2009036634A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
JP4905836B2 (en) Contact angle measuring device
Sharp Resonant properties of sessile droplets; contact angle dependence of the resonant frequency and width in glycerol/water mixtures
CN106872100B (en) Standing wave cast optical pressure sensitive coating Dynamic pressure calibration cabin
FR2939195B1 (en) DEVICE FOR ANALYZING MATERIALS BY SPECTROSCOPY OF PLASMA
US20110120218A1 (en) Hand-Held Detection Device for Determining the Height of a Material in a Container and Methods of Use
US20150177195A1 (en) Structure analyzing device and a structure analyzing method
JP5110796B2 (en) Health monitoring system with calibration function
RU2011105097A (en) SENSOR WITH OSCILLATING ELEMENT FOR DETECTING THE TRANSITION OF THE BOUNDARY LAYER
US20170254781A1 (en) A method and a device for acoustic estimation of bubble properties
Chung et al. Accurate noncontact calibration of colloidal probe sensitivities in atomic force microscopy
CN201935794U (en) Deflection detector
Fahrbach et al. Customized piezoresistive microprobes for combined imaging of topography and mechanical properties
CN104075797B (en) A kind of have under loading condition the method measuring power ultrasonic equipment output amplitude
Fujii Toward dynamic force calibration
Große et al. Dynamic calibration technique for the micro-pillar shear-stress sensor MPS3
JP2006153574A5 (en)
WO2019000261A1 (en) Non-contact type subsidence value detection system for portable falling weight deflectometer
WO2016184299A1 (en) Method for measuring performance parameter of micro/nano particles
Hokka et al. Methods for reliability assessment of MEMS devices—Case studies of a MEMS microphone and a 3-axis MEMS gyroscope
KR102011569B1 (en) Device for measuring viscosity of minute volume liquids and method thereof
WO2007097456A1 (en) Micro liquid quantity measuring device, and micro liquid quantity measuring method
TWI260410B (en) Optical accelerometer
TWI272388B (en) Two-dimensional optical accelerometer
JPH0298651A (en) Method and apparatus for measuring physical property of liquid
RU104320U1 (en) PENDULAR ACCELEROMETER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20111202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111229

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4905836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees