JP4904628B2 - Composite light emitting device - Google Patents

Composite light emitting device Download PDF

Info

Publication number
JP4904628B2
JP4904628B2 JP2001072222A JP2001072222A JP4904628B2 JP 4904628 B2 JP4904628 B2 JP 4904628B2 JP 2001072222 A JP2001072222 A JP 2001072222A JP 2001072222 A JP2001072222 A JP 2001072222A JP 4904628 B2 JP4904628 B2 JP 4904628B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
light
submount
side electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001072222A
Other languages
Japanese (ja)
Other versions
JP2002270905A (en
Inventor
登美男 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001072222A priority Critical patent/JP4904628B2/en
Publication of JP2002270905A publication Critical patent/JP2002270905A/en
Application granted granted Critical
Publication of JP4904628B2 publication Critical patent/JP4904628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複合発光素子に係り、特に発光素子をサブマウント素子にチップ接合させて複合素子化し、このサブマウント素子によって機能改善を可能とした複合発光素子に関する。
【0002】
【従来の技術】
GaN,GaAlN,InGaN及びInAlGaN等のGaN系化合物半導体を利用した青色発光の半導体発光素子は、従来のものに比べて格段に高輝度化されたので、青色発光だけでなく蛍光物質を含む波長変換層で被覆するようにして白色発光としても利用されるようになった。GaN系化合物半導体を利用する発光素子では、結晶基板として一般的には透明で絶縁性のサファイアが利用されるので、基板とは反対側の面にp側及びn側の電極がそれぞれ形成されたフリップチップ型である。このようなフリップチップ型の発光素子では、各電極をマイクロバンプを介して配線基板やリードフレームの搭載面に搭載して接合するフェイスダウン方式とし、透明のサファイア基板の上面を主光取り出し面とすることが効果的である。一方、このようなGaN系化合物半導体による青色発光の発光素子では、静電気に弱いという性質があるので、静電気保護用のツェナーダイオードと組み合わせた複合発光素子が近来では広く使用されるようになった。
【0003】
図11の(a)は従来の複合発光素子の平面図、(b)は正面図、(c)は等価回路図である。
【0004】
図示のように、発光素子51はサファイア基板51aの上にGaN系化合物半導体を積層したもので、p型層及びn型層に導通させてp側電極51c及びn側電極51bが形成されている。一方、ツェナーダイオードを利用したサブマウント素子52はn型のSi基板52aの上面側の一部に不純物を注入してp型半導体領域52bを形成し、このp型半導体領域52bに接触させてp側電極52cを設け、残りのn型半導体領域52aの上面側にn側電極52dを形成し、下面側に裏面電極52eを形成したものである。そして、発光素子51のn側電極51bがバンプ53aによってサブマウント素子52のp側電極52cに接続され、発光素子51のp側電極51cがバンプ53bによってサブマウント素子52のn側電極52dに接続されている。
【0005】
このように、n側とp側とを逆極性で導通させることにより、ツェナーダイオードを利用したサブマウント素子52によって発光素子51の静電気による破壊を防止できる。また、サファイア基板51aは熱伝導率が小さいので放熱が十分ではないが、Si基板52aには十分な放熱性があるので、発光素子51をサブマウント素子52と複合素子化することで、発光素子51の発熱による輝度低下も防ぐことができる。
【0006】
【発明が解決しようとする課題】
各発光色の発光素子(LED素子)は、各種の分野で広く利用されているが、近年では植物栽培用や照明用の光源としても検討されるようになってきた。この植物栽培用や照明用の光源とする場合では、大きな光度が必要となるため、多数のLEDランプ等の発光装置が必要になる。すなわち、現在までに開発されている発光素子では、通電可能な電流の大きさはせいぜい20mA程度と極めて小さいので、光度を大きくするためには多数のLED素子を必要とするためコストが極めて高くなる。
【0007】
このように多数の発光素子を使用する場合でも、図11に示したサブマウント素子52に発光素子51を搭載した複合発光素子を利用できる。この場合、サブマウント素子52にSi基板52aを用いることにより放熱性が促進されるため、発光効率が良くなり、照明用の光源としては適している。しかし、このタイプの発光素子51は、p側及びn側電極が同一面側に形成されたフリップチップ型でn側電極が4角の1角に形成されているため、流れる電流はn側とp側電極の境界近傍に集中し、その部分の電流密度が大きくなり、発熱も多く発光効率が悪くなるという欠点がある。そのため、発光素子51全体で考えても、均等に電流密度が分布している場合と比較すると、一部に電流が集中している場合のほうが発光効率は悪くなる。言い換えると、発光素子51全体で同じ発光量を得るためには、均等な電流密度分布に近いほうがトータルの発熱量が少ないということである。
【0008】
また、複合発光素子を多数設備する場合に、直列配置とすると100Vの商用電源をそのまま使えるような消費電力に設定できる。しかしながら、1個の発光素子51を1個のサブマウント素子52に搭載し、サブマウント素子52にSi基板52aを用いたものでも、この放熱性を利用するだけでは設備全体の放熱の促進には限界があり、発光素子51の発光効率低下をもたらしてしまう。
【0009】
また、図11の複合発光素子はマイクロバンプ53a,53bを介して発光素子51をサブマウント素子52上にフリップチップ実装するが、その実装工程は、発光素子51の1個ずつについて行われるので、この工程に要する時間がかなり長くなる。すなわち、発光素子51の搭載の工程は、この発光素子51をピックアップしてサブマウント素子52が形成されたウエハーの電極パターンに合わせて位置決めする工程と、これに続いて超音波、加熱及び荷重の負荷を加えながらバンプ接合する工程となるため、1個の発光素子51については3秒程度の時間が必要となる。そして、サブマウント素子52が形成されたウエハーにたとえば3万個程度の発光素子51を搭載できるようにしたものが多用されているので、このような多数の発光素子51の搭載完了までには24時間以上を費やすことになり、生産性への影響すなわちコストへの影響は無視できない。
【0010】
このように、図11に示した従来構造の複合発光素子により照明用など大きな光度が必要な光源を実現するには、上記のような問題点を改善することが必要である。
【0011】
そこで、本発明は、発光素子を複数個備えたブロック発光素子を1個のサブマウント素子に搭載することにより、コスト面及び発熱による発光効率の低下を改善した複合発光素子を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明の複合発光素子は、サブマウント素子上に発光素子が実装された複合発光素子であって、発光素子が複数個の発光素子で構成されたブロック発光素子からなることを特徴とする。
【0013】
本発明によれば、発光素子を複数個備えたブロック発光素子を1個のサブマウント素子に搭載することにより、コスト面と発熱による発光効率の低下を改善した複合発光素子が得られる。
【0014】
【発明の実施の形態】
本願第1の発明は、サブマウント素子上に発光素子が実装された複合発光素子であって、前記発光素子が複数個の発光素子で構成されたブロック発光素子からなることを特徴とする複合発光素子であり、複数の発光素子からなるブロック発光素子にすることにより、熱による発光効率の低下と生産性を含めたコストを改善できる。
【0015】
本願第2の発明は、前記サブマウント素子に対し、前記ブロック発光素子を構成する複数個の発光素子を直列、並列またはその組み合わせで接続したことを特徴とする複合発光素子であり、ブロック発光素子を構成する複数の発光素子を並列に接続することにより本願第1の発明と同様の作用が得られ、また、直列に接続することにより本願第1の発明による作用に加え、100Vの商用電源をそのまま使えるような消費電力に設定できる。
【0016】
本願第3の発明は、前記サブマウント素子に、前記ブロック発光素子を構成する複数個の発光素子が直列、並列またはその組み合わせで接続される配線を設けたことを特徴とする複合発光素子であり、配線により複数の発光素子を並列に接続することにより本願第1の発明と同様の作用が得られ、また、直列に接続することにより本願第1の発明による作用に加え、100Vの商用電源をそのまま使えるような消費電力に設定できる。
【0017】
本願第4の発明は、前記サブマウント素子は、少なくとも1つのダイオードからなり、前記ブロック発光素子と逆極性で並列に接続されたものであることを特徴とする複合発光素子であり、本願第2,3の発明による作用に加え、1つのサブマウント素子で複数の発光素子の静電気保護を行うことができる。
【0018】
以下、本発明の実施の形態を図面に基づいて説明する。
【0019】
図1は本発明の複合発光素子に用いるブロック発光素子の詳細であって、(a)は平面図、(b)は(a)のA−A線矢視による断面図である。
【0020】
図において、ブロック発光素子1はサファイア基板1aの上にGaN系化合物半導体を積層した青色発光のもので、GaN系化合物半導体のn型層の上面にn側電極1bを形成するとともに、p型層の上面にp側電極1cを形成したものである。n側電極1b及びp側電極1cの形成パターンは、従来例の図11で示したものの相似形で約4分の1の面積のものを4組配列したものに相当し、1個のブロック発光素子1で従来の発光素子の1.1倍の発光輝度を担うことができる。なお、n側電極1b及びp側電極1cの形成パターンを、図11で示したものと同じサイズのものを4組配列したものに相当するものとすれば、4倍以上の発光輝度を担うことができる。
【0021】
図2はサブマウント素子の詳細であって、(a)は平面図、(b)は正面図である。
【0022】
サブマウント素子2は、1つの静電気保護用のツェナーダイオードを利用してn型のSi基板2aの下面に裏面電極2bを形成するとともに上面にはSiO2の絶縁膜2cを形成したものである。Si基板2aの一部には不純物を注入してp型半導体領域2dを形成している。絶縁膜2cはSi基板2aの全体に形成されているが、p型半導体領域2dを開放するp側窓2e及びSi基板2aのn型層を開放するn側窓2fを一部に設けている。そして、絶縁膜2cの上にはp側窓2eに被さってp型半導体領域2dに導通するp側電極3aと、n側窓2fに被さってSi基板2aのn型層に導通するn側電極3bが形成されている。また、絶縁膜2cにはp側電極3a及びn側電極3bとともにブロック発光素子のn側電極1b及びp側電極1cのパターンを直列配置するための配線パターンとして第1電極4a,第2電極4b,第3電極4cがそれぞれ形成されている。
【0023】
図3はサブマウント素子2にブロック発光素子1を搭載したときの詳細であって、(a)は平面図、(b)は正面図である。
【0024】
ブロック発光素子1は図1の姿勢をそのまま反転してサブマウント素子2の上に被せたものであり、サブマウント素子2のp側電極3a,n側電極3b及び第1〜第3電極4a,4b,4cに予め形成したバンプ5によって導通接続されている。このとき、ブロック発光素子1の4組のn側電極1b及びp側電極1cとサブマウント素子2の各電極3a,3b,4a,4b,4cの対応は図4に示す通りである。このような導通構造により、図5の等価回路に示すように、1個のサブマウント素子2に対して4個の発光素子が直列配列されることになる。
【0025】
以上の構造において、サブマウント素子2の上に導通搭載されたブロック発光素子1には4個の発光素子が含まれているので、従来のものに比べて高輝度の発光が得られ、植物栽培用光源や照明用光源として最適に利用できる。また、ブロック発光素子1は4個の発光素子を直列配列しているので駆動電圧を家庭用電源の100Vに近づけることができ、植物栽培や照明施設等での使用が簡単になる。そして、駆動電流が大きくて発光素子による発熱が大きくても、Si基板2aを用いたサブマウント素子2による放熱が促進されるので、発熱輝度が低下することもない。
【0026】
図6はブロック発光素子1を並列配置するサブマウント素子2の詳細であって、(a)は平面図、(b)は正面図である。
【0027】
サブマウント素子2は、先の例と同様にn型のSi基板2aの下面に裏面電極2bを形成するとともに上面にはSiO2の絶縁膜2cを形成したものである。Si基板2aの一部には不純物を注入してp型半導体領域2dを形成している。絶縁膜2cはSi基板2aの全体に形成されているが、p型半導体領域2dを開放するp側窓2e及びSi基板2aのn型層を開放するn側窓2f,2gを一部に設けている。そして、絶縁膜2cの上にはp側窓2eに被さってp型半導体領域2dに導通するp側電極3aと、n側窓2fに被さってSi基板2aのn型層に導通するn側電極3bと、n側窓2gに被さってSi基板のn型層に導通するn側電極3cが形成されている。
【0028】
図6に示したサブマウント素子2に対するブロック発光素子1の実装は、ブロック発光素子1を図1の姿勢からそのまま反転してサブマウント素子2の上に被せたものである。すなわち、ブロック発光素子1の4組のn側電極1b及びp側電極1cとサブマウント素子2の各電極3a,3b,3cの対応は図7に示す通りである。このような導通構造により、図8の等価回路に示すように、1個のサブマウント素子2に対して4個の発光素子が並列配列されることになる。
【0029】
なお、上記実施形態では、ブロック発光素子1は、4分割の4個の発光素子で構成されているが、これに限ったものではなく、発光効率への効果は、分割が細かいほど、すなわち構成される発光素子の数が多いほど、また、電流が大きいほど大きくなる。
【0030】
このようにサブマウント素子2にブロック発光素子1を導通搭載することで、ブロック発光素子1の発光素子を並列配列することができ、高輝度の光源として利用できる。
【0031】
次に、複合発光素子をブロック発光素子1によって構成することにより,発光効率が良くなることを概算で説明する。
【0032】
図11に示した従来の構造の複合発光素子において、計算を簡単とするため発光素子51のチップサイズを図9(a)に示すように平面的で1辺が0.4mmの正方形とし、その一角(同図右下)に半径0.2mmの扇状のn側電極が形成されているものとする。また、n側電極以外の部分にはp側電極が形成されているものとし、この部分の下のp−nジャンクション部が発光する。電流は20mA流すものとする。このとき、n側とp側電極の境界線A近傍の電流密度と円弧B近傍の電流密度は、円弧Aと円弧Bの長さに逆比例する。すなわち、A近傍の電流密度はB近傍の電流密度の2倍となる。
【0033】
次に、図3に示した本実施形態における複合発光素子を示すものとして、図9(a)に示す1辺が0.4mmの正方形を図9(b)に示すように1辺が0.2mmの正方形に4等分し、その各々に1/4の面積で相似形のn側電極及びp側電極を形成する。その小さな4個の発光素子は並列に接続され、その各々には電流5mAが流される。このとき、小さな発光素子のn側電極とp側電極の境界線SA近傍の電流密度は、円弧SB近傍の電流密度の2倍となる。また、図9(a)に示すA近傍の電流密度は、SA近傍の電流密度の2倍となる。すなわち、A近傍の電流密度,B近傍の電流密度,SA近傍の電流密度,SB近傍の電流密度の比は4:2:2:1である。
【0034】
ここで、図10(a)に示すように発光素子の輝度が電流密度に比例して大きくなるものであれば、A近傍の輝度とB近傍の輝度との合計(4×1+2×2)はSA近傍の輝度とSB近傍の輝度との合計(2×1/2+1×1)の4倍に等しくなるはずであるが、実際は図10(b)に示すように電流密度が大きくなるにしたがって飽和していく。飽和の重みをそれぞれA,B,SA,SBの順に0.89,0.95,0.95,1とすると、A近傍の輝度とB近傍の輝度との合計は4×0.89×1+2×0.95×2=7.36、SA近傍の輝度とSB近傍の輝度との合計の4倍は4×(2×0.95×1/2+1×1×1)=7.8となる。すなわち、合計面積が同じで発光素子であっても、分割して並列に接続する方が、発光効率が高くなることを示している。なお、直列に接続する場合も同じように説明できる。
【0035】
また、コスト面では、発光効率が高くなるので発光装置の数が削減できる。また、発光素子を複数個形成したブロック発光素子を1つのサブマウント素子上に実装するため、1個ずつの発光素子をチップ接合するのに比べると、チップ接合時間の工程が大幅に短縮できるとともに、小型の発光素子もブロックで扱うのでハンドリングも容易にすることができる。また、複数個の発光素子の静電気保護を1つのツェナーダイオードで行えることもコスト的にメリットがある。
【0036】
なお、本実施形態においては、1つのツェナーダイオードを用いたサブマウント素子2の例について説明したが、複数のダイオードによって等価的に1つのダイオードとすることも可能である。
【0037】
【発明の効果】
本発明では、サブマウント素子上に複数の発光素子で構成されたブロック発光素子を搭載するので、発光輝度を向上させることができ、植物栽培用や照明用の光源として有効に利用できる。また、ブロック発光素子に含まれる複数の発光素子は、サブマウント素子を静電気保護用のSi基板のツェナーダイオードとすることによって静電気による破壊が防止されるとともに、大電流を流してもSi基板による放熱が促進されるので熱による発光素子の発光効率の低下を低く抑えることができる。
【図面の簡単な説明】
【図1】本発明の複合発光素子に使用する青色発光のブロック発光素子の詳細であって、
(a)は平面図
(b)は(a)のA−A線矢視による断面図
【図2】図1のブロック発光素子を搭載するサブマウント素子の詳細であって、
(a)は平面図
(b)は正面図
【図3】(a)はブロック発光素子をサブマウント素子に導通搭載したときの平面図
(b)は正面図
【図4】ブロック発光素子の電極とサブマウント素子の電極の対応を説明するための平面図
【図5】図3の実装のときのサブマウント素子とブロック発光素子の等価回路図
【図6】ブロック発光素子を並列配置するときの電極パターンを形成したサブマウント素子の詳細であって、
(a)は平面図
(b)は正面図
【図7】図6のサブマウント素子に対するブロック発光素子の電極の対応を説明するための平面図
【図8】並列配列のときの等価回路図
【図9】発光効率を説明するための発光素子の模式図であって、
(a)は従来の発光素子の模式図
(b)はブロック発光素子の模式図
【図10】発光素子(LED素子)の発光輝度(光束)の電流密度依存性を表したグラフであって、
(a)は理論値を示す図
(b)は実際値を示す図
【図11】従来例の複合発光素子であって、
(a)は平面図
(b)は正面図
(c)は等価回路図
【符号の説明】
1 ブロック発光素子
1a サファイア基板
1b n側電極
1c p側電極
2 サブマウント素子
2a Si基板
2b 裏面電極
2c 絶縁膜
2d p型半導体領域
2e p側窓
2f,2g n側窓
3a p側電極
3b,3c n側電極
4a 第1電極
4b 第2電極
4c 第3電極
5 バンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite light-emitting element, and more particularly to a composite light-emitting element in which a light-emitting element is chip-bonded to a submount element to form a composite element, and the function can be improved by the submount element.
[0002]
[Prior art]
Blue light-emitting semiconductor light-emitting devices using GaN-based compound semiconductors such as GaN, GaAlN, InGaN, and InAlGaN are much brighter than conventional ones, so wavelength conversion includes not only blue light emission but also fluorescent materials. It was also used as white light emission by coating with a layer. In a light-emitting device using a GaN-based compound semiconductor, transparent and insulating sapphire is generally used as a crystal substrate, and thus p-side and n-side electrodes are formed on the surface opposite to the substrate. It is a flip chip type. In such a flip-chip type light emitting element, each electrode is mounted on a wiring board or a lead frame mounting surface via a microbump and is a face-down method, and the upper surface of a transparent sapphire substrate is used as a main light extraction surface. It is effective to do. On the other hand, blue light emitting devices using such GaN-based compound semiconductors are susceptible to static electricity, and thus composite light emitting devices combined with a zener diode for electrostatic protection have been widely used in recent years.
[0003]
11A is a plan view of a conventional composite light emitting device, FIG. 11B is a front view, and FIG. 11C is an equivalent circuit diagram.
[0004]
As shown in the drawing, the light emitting element 51 is formed by laminating a GaN-based compound semiconductor on a sapphire substrate 51a, and a p-side electrode 51c and an n-side electrode 51b are formed in conduction with a p-type layer and an n-type layer. . On the other hand, in the submount element 52 using a Zener diode, an impurity is implanted into a part of the upper surface side of the n-type Si substrate 52a to form a p-type semiconductor region 52b. A side electrode 52c is provided, an n-side electrode 52d is formed on the upper surface side of the remaining n-type semiconductor region 52a, and a back electrode 52e is formed on the lower surface side. The n-side electrode 51b of the light-emitting element 51 is connected to the p-side electrode 52c of the submount element 52 by the bump 53a, and the p-side electrode 51c of the light-emitting element 51 is connected to the n-side electrode 52d of the submount element 52 by the bump 53b. Has been.
[0005]
In this way, by causing the n side and the p side to conduct with opposite polarities, the submount element 52 using a Zener diode can prevent the light emitting element 51 from being damaged due to static electricity. Further, the sapphire substrate 51a has a low thermal conductivity, so that the heat dissipation is not sufficient. However, since the Si substrate 52a has a sufficient heat dissipation property, the light emitting element 51 can be combined with the submount element 52 to obtain a light emitting element. It is also possible to prevent a decrease in luminance due to the heat generated by 51.
[0006]
[Problems to be solved by the invention]
Light emitting elements (LED elements) of each emission color are widely used in various fields, but in recent years, they have been studied as light sources for plant cultivation and illumination. In the case of using the light source for plant cultivation or illumination, a large luminous intensity is required, and thus a large number of light emitting devices such as LED lamps are necessary. That is, in the light emitting element developed so far, the magnitude of the current that can be energized is as small as about 20 mA at most, so a large number of LED elements are required to increase the luminous intensity, and the cost becomes extremely high. .
[0007]
Even when a large number of light emitting elements are used, a composite light emitting element in which the light emitting element 51 is mounted on the submount element 52 shown in FIG. 11 can be used. In this case, the use of the Si substrate 52a for the submount element 52 promotes heat dissipation, thereby improving the light emission efficiency and being suitable as a light source for illumination. However, this type of light-emitting element 51 is a flip chip type in which the p-side and n-side electrodes are formed on the same surface side, and the n-side electrode is formed in one corner of the square. There are disadvantages that the concentration is concentrated in the vicinity of the boundary of the p-side electrode, the current density in that portion is increased, the heat generation is large, and the light emission efficiency is deteriorated. Therefore, even when considering the entire light emitting element 51, the luminous efficiency is worse when the current is partially concentrated as compared with the case where the current density is evenly distributed. In other words, in order to obtain the same amount of light emission in the entire light emitting element 51, the closer to the uniform current density distribution, the smaller the total amount of heat generation.
[0008]
Further, when a large number of composite light emitting elements are installed, the power consumption can be set so that a commercial power supply of 100 V can be used as it is when arranged in series. However, even if one light-emitting element 51 is mounted on one submount element 52 and the Si substrate 52a is used for the submount element 52, the heat dissipation of the entire equipment can be promoted only by using this heat dissipation property. There is a limit, and the light emission efficiency of the light emitting element 51 is reduced.
[0009]
Further, in the composite light emitting device of FIG. 11, the light emitting device 51 is flip-chip mounted on the submount device 52 via the micro bumps 53a and 53b, but the mounting process is performed for each of the light emitting devices 51. The time required for this step is considerably long. That is, the mounting process of the light emitting element 51 includes picking up the light emitting element 51 and positioning the light emitting element 51 in accordance with the electrode pattern of the wafer on which the submount element 52 is formed, followed by ultrasonic, heating and load. Since it is a step of bump bonding while applying a load, one light emitting element 51 requires about 3 seconds. For example, about 30,000 light emitting elements 51 can be mounted on the wafer on which the submount element 52 is formed. It will take more time, and the impact on productivity, that is, the cost, cannot be ignored.
[0010]
As described above, it is necessary to improve the above-described problems in order to realize a light source that requires a large luminous intensity, such as for illumination, by the composite light emitting element having the conventional structure shown in FIG.
[0011]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a composite light emitting device in which a block light emitting device having a plurality of light emitting devices is mounted on one submount device, thereby improving cost and reduction in light emission efficiency due to heat generation. And
[0012]
[Means for Solving the Problems]
The composite light-emitting element of the present invention is a composite light-emitting element in which a light-emitting element is mounted on a submount element, and the light-emitting element is composed of a block light-emitting element composed of a plurality of light-emitting elements.
[0013]
According to the present invention, by mounting a block light-emitting element having a plurality of light-emitting elements on one submount element, a composite light-emitting element with improved cost and reduction in light emission efficiency due to heat generation can be obtained.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
A first aspect of the present invention is a composite light emitting element in which a light emitting element is mounted on a submount element, and the light emitting element is composed of a block light emitting element composed of a plurality of light emitting elements. By using a block light-emitting element that is an element and includes a plurality of light-emitting elements, it is possible to improve costs including reduction in luminous efficiency due to heat and productivity.
[0015]
A second invention of the present application is a composite light-emitting element characterized in that a plurality of light-emitting elements constituting the block light-emitting element are connected to the submount element in series, in parallel, or a combination thereof, and the block light-emitting element By connecting a plurality of light-emitting elements constituting the same in parallel, the same effect as that of the first invention of the present application can be obtained. In addition to the effect of the first invention of the present application by connecting in series, a commercial power supply of 100 V can be obtained. The power consumption can be set as it is.
[0016]
A third invention of the present application is a composite light emitting element characterized in that a wiring for connecting a plurality of light emitting elements constituting the block light emitting element in series, parallel or a combination thereof is provided on the submount element. By connecting a plurality of light emitting elements in parallel by wiring, the same effect as that of the first invention of the present application can be obtained, and by connecting them in series, a 100 V commercial power supply can be connected in addition to the action of the first invention of the present application. The power consumption can be set as it is.
[0017]
A fourth invention of the present application is a composite light-emitting element , wherein the submount element includes at least one diode and is connected in parallel with the block light-emitting element in reverse polarity . In addition to the effects of the inventions of (3) and (3), it is possible to perform electrostatic protection of a plurality of light emitting elements with one submount element.
[0018]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019]
1A and 1B show details of a block light-emitting element used in the composite light-emitting element of the present invention. FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view taken along line AA in FIG.
[0020]
In the figure, a block light emitting device 1 is a blue light emitting device in which a GaN-based compound semiconductor is stacked on a sapphire substrate 1a. An n-side electrode 1b is formed on the upper surface of the n-type layer of the GaN-based compound semiconductor, and a p-type layer is formed. A p-side electrode 1c is formed on the upper surface of the substrate. The formation pattern of the n-side electrode 1b and the p-side electrode 1c is similar to that shown in FIG. 11 of the conventional example, and corresponds to the arrangement of four sets having an area of about 1/4. The element 1 can bear light emission luminance 1.1 times that of the conventional light emitting element. In addition, if the formation pattern of the n-side electrode 1b and the p-side electrode 1c corresponds to an array of four sets having the same size as that shown in FIG. Can do.
[0021]
2A and 2B show details of the submount element. FIG. 2A is a plan view and FIG. 2B is a front view.
[0022]
The submount element 2 is formed by forming a back electrode 2b on the lower surface of an n-type Si substrate 2a using one Zener diode for electrostatic protection and forming an insulating film 2c of SiO 2 on the upper surface. An impurity is implanted into a part of the Si substrate 2a to form a p-type semiconductor region 2d. Although the insulating film 2c is formed on the entire Si substrate 2a, a p-side window 2e that opens the p-type semiconductor region 2d and an n-side window 2f that opens the n-type layer of the Si substrate 2a are provided in part. . Then, on the insulating film 2c, a p-side electrode 3a covering the p-side window 2e and conducting to the p-type semiconductor region 2d, and an n-side electrode covering the n-side window 2f and conducting to the n-type layer of the Si substrate 2a. 3b is formed. The insulating film 2c includes a first electrode 4a and a second electrode 4b as wiring patterns for arranging the patterns of the n-side electrode 1b and the p-side electrode 1c of the block light emitting element together with the p-side electrode 3a and the n-side electrode 3b. , Third electrodes 4c are respectively formed.
[0023]
3A and 3B show the details when the block light-emitting element 1 is mounted on the submount element 2. FIG. 3A is a plan view and FIG. 3B is a front view.
[0024]
The block light emitting element 1 is obtained by inverting the posture of FIG. 1 as it is and covering the submount element 2, and the p-side electrode 3a, the n-side electrode 3b, the first to third electrodes 4a, 4b and 4c are electrically connected by bumps 5 formed in advance. At this time, the correspondence between the four sets of the n-side electrode 1b and the p-side electrode 1c of the block light emitting element 1 and the electrodes 3a, 3b, 4a, 4b, 4c of the submount element 2 is as shown in FIG. With such a conductive structure, as shown in the equivalent circuit of FIG. 5, four light emitting elements are arranged in series with respect to one submount element 2.
[0025]
In the above structure, the block light-emitting element 1 that is conductively mounted on the submount element 2 includes four light-emitting elements, so that it can emit light with higher brightness than the conventional one, and plant cultivation. It can be optimally used as a light source for lighting or a light source for illumination. Moreover, since the block light emitting element 1 has four light emitting elements arranged in series, the drive voltage can be brought close to 100 V of a household power source, and the use in plant cultivation, lighting facilities, and the like is simplified. Even if the drive current is large and the heat generated by the light emitting element is large, the heat radiation by the submount element 2 using the Si substrate 2a is promoted, so that the heat generation luminance does not decrease.
[0026]
6A and 6B show details of the submount element 2 in which the block light emitting elements 1 are arranged in parallel. FIG. 6A is a plan view and FIG. 6B is a front view.
[0027]
As in the previous example, the submount element 2 has a back electrode 2b formed on the lower surface of an n-type Si substrate 2a and an insulating film 2c made of SiO 2 formed on the upper surface. An impurity is implanted into a part of the Si substrate 2a to form a p-type semiconductor region 2d. Although the insulating film 2c is formed on the entire Si substrate 2a, a p-side window 2e that opens the p-type semiconductor region 2d and n-side windows 2f and 2g that open the n-type layer of the Si substrate 2a are provided in part. ing. Then, on the insulating film 2c, a p-side electrode 3a covering the p-side window 2e and conducting to the p-type semiconductor region 2d, and an n-side electrode covering the n-side window 2f and conducting to the n-type layer of the Si substrate 2a. 3b and an n-side electrode 3c that covers the n-side window 2g and is electrically connected to the n-type layer of the Si substrate.
[0028]
6 is mounted on the submount element 2 by inverting the block light emitting element 1 as it is from the posture of FIG. That is, the correspondence between the four sets of the n-side electrode 1b and p-side electrode 1c of the block light-emitting element 1 and the electrodes 3a, 3b, 3c of the submount element 2 is as shown in FIG. With such a conductive structure, as shown in the equivalent circuit of FIG. 8, four light emitting elements are arranged in parallel with respect to one submount element 2.
[0029]
In the above embodiment, the block light-emitting element 1 is configured by four light-emitting elements divided into four parts. However, the present invention is not limited to this, and the effect on the light emission efficiency is as the division becomes finer, that is, the structure. The larger the number of light emitting elements to be applied, and the larger the current, the larger.
[0030]
As described above, the block light-emitting element 1 is conductively mounted on the submount element 2 so that the light-emitting elements of the block light-emitting element 1 can be arranged in parallel and can be used as a high-luminance light source.
[0031]
Next, it will be roughly described that the luminous efficiency is improved by constituting the composite light emitting element by the block light emitting element 1.
[0032]
In the composite light emitting device having the conventional structure shown in FIG. 11, the chip size of the light emitting device 51 is flat and square with a side of 0.4 mm as shown in FIG. It is assumed that a fan-shaped n-side electrode having a radius of 0.2 mm is formed at one corner (lower right in the figure). In addition, it is assumed that a p-side electrode is formed in a portion other than the n-side electrode, and the pn junction portion below this portion emits light. The current is assumed to flow 20 mA. At this time, the current density near the boundary line A between the n-side and p-side electrodes and the current density near the arc B are inversely proportional to the lengths of the arc A and the arc B. That is, the current density in the vicinity of A is twice the current density in the vicinity of B.
[0033]
Next, as an example of the composite light emitting device in the present embodiment shown in FIG. 3, a square having a side of 0.4 mm shown in FIG. 9A has a side of 0.4 mm as shown in FIG. A 2 mm square is divided into four equal parts, and an n-side electrode and a p-side electrode having a similar area are formed on each of the squares. The four small light emitting elements are connected in parallel, and a current of 5 mA flows through each of the small light emitting elements. At this time, the current density near the boundary line SA between the n-side electrode and the p-side electrode of the small light emitting element is twice the current density near the arc SB. Further, the current density near A shown in FIG. 9A is twice the current density near SA. That is, the ratio of the current density near A, the current density near B, the current density near SA, and the current density near SB is 4: 2: 2: 1.
[0034]
Here, if the luminance of the light emitting element is increased in proportion to the current density as shown in FIG. 10A, the sum of the luminance in the vicinity of A and the luminance in the vicinity of B (4 × 1 + 2 × 2) is Although it should be equal to four times the sum of the luminance in the vicinity of SA and the luminance in the vicinity of SB (2 × 1/2 + 1 × 1), in reality, as shown in FIG. I will do it. When the saturation weights are 0.89, 0.95, 0.95, and 1 in the order of A, B, SA, and SB, respectively, the sum of the luminance in the vicinity of A and the luminance in the vicinity of B is 4 × 0.89 × 1 + 2. × 0.95 × 2 = 7.36, 4 times the sum of the luminance near SA and the luminance near SB is 4 × (2 × 0.95 × 1/2 + 1 × 1 × 1) = 7.8. . That is, even if the total area is the same, even if it is a light emitting element, it is shown that the luminous efficiency is higher when divided and connected in parallel. The same can be said for the case of serial connection.
[0035]
In terms of cost, since the light emission efficiency is increased, the number of light emitting devices can be reduced. In addition, since the block light emitting element in which a plurality of light emitting elements are formed is mounted on one submount element, the chip bonding time process can be significantly shortened compared to chip bonding of each light emitting element. Since a small light emitting element is also handled by a block, handling can be facilitated. In addition, there is an advantage in cost that electrostatic protection of a plurality of light emitting elements can be performed with one Zener diode.
[0036]
In the present embodiment, the example of the submount element 2 using one Zener diode has been described. However, a plurality of diodes can be equivalently formed as one diode.
[0037]
【Effect of the invention】
In this invention, since the block light emitting element comprised by the several light emitting element is mounted on a submount element, light emission brightness can be improved and it can utilize effectively as a light source for plant cultivation or illumination. In addition, the plurality of light emitting elements included in the block light emitting element can be prevented from being destroyed by static electricity by using a submount element as a Zener diode of an Si substrate for electrostatic protection, and can also dissipate heat by the Si substrate even when a large current flows. Therefore, a decrease in light emission efficiency of the light emitting element due to heat can be suppressed to a low level.
[Brief description of the drawings]
FIG. 1 shows details of a blue light emitting block light emitting device used in a composite light emitting device of the present invention,
(A) is a plan view (b) is a cross-sectional view taken along line AA of (a). FIG. 2 is a detail of a submount element on which the block light emitting element of FIG.
(A) is a plan view (b) is a front view [FIG. 3] (a) is a plan view when a block light emitting element is conductively mounted on a submount element (b) is a front view [FIG. 4] electrodes of the block light emitting element FIG. 5 is a plan view for explaining the correspondence between the electrodes of the submount element and the submount element. FIG. 5 is an equivalent circuit diagram of the submount element and the block light emitting element when mounted in FIG. Details of the submount element on which the electrode pattern is formed,
(A) is a plan view (b) is a front view. FIG. 7 is a plan view for explaining the correspondence of the electrodes of the block light emitting elements to the submount elements in FIG. 6. FIG. 8 is an equivalent circuit diagram in a parallel arrangement. FIG. 9 is a schematic view of a light emitting device for explaining luminous efficiency,
(A) is a schematic diagram of a conventional light-emitting element (b) is a schematic diagram of a block light-emitting element. FIG. 10 is a graph showing the current density dependence of light emission luminance (light flux) of a light-emitting element (LED element),
FIG. 11A is a diagram showing theoretical values, and FIG. 11B is a diagram showing actual values. FIG. 11 shows a conventional composite light emitting device,
(A) is a plan view (b) is a front view (c) is an equivalent circuit diagram
1 block light emitting element 1a sapphire substrate 1b n-side electrode 1c p-side electrode 2 submount element 2a Si substrate 2b backside electrode 2c insulating film 2d p-type semiconductor region 2e p-side window 2f, 2g n-side window 3a p-side electrodes 3b, 3c n-side electrode 4a first electrode 4b second electrode 4c third electrode 5 bump

Claims (1)

サブマウント素子上にGaN系化合物半導体の発光素子が実装された複合発光素子であって、前記発光素子が複数個の発光素子で構成されたブロック発光素子からなり、前記サブマウント素子は、1つのダイオードからなり、かつ前記ブロック発光素子を構成する複数個の発光素子が直列、並列またはその組み合わせで接続される配線を設けたことを特徴とする複合発光素子。A composite light-emitting element in which a GaN-based compound semiconductor light-emitting element is mounted on a submount element, wherein the light-emitting element includes a block light-emitting element including a plurality of light-emitting elements, and the submount element has one Ri diode Tona, and composite light-emitting device in which a plurality of light emitting elements constituting the block light emitting element in series, characterized in that a wiring connected in parallel or a combination thereof.
JP2001072222A 2001-03-14 2001-03-14 Composite light emitting device Expired - Fee Related JP4904628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001072222A JP4904628B2 (en) 2001-03-14 2001-03-14 Composite light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001072222A JP4904628B2 (en) 2001-03-14 2001-03-14 Composite light emitting device

Publications (2)

Publication Number Publication Date
JP2002270905A JP2002270905A (en) 2002-09-20
JP4904628B2 true JP4904628B2 (en) 2012-03-28

Family

ID=18929832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001072222A Expired - Fee Related JP4904628B2 (en) 2001-03-14 2001-03-14 Composite light emitting device

Country Status (1)

Country Link
JP (1) JP4904628B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885035B2 (en) * 1999-12-22 2005-04-26 Lumileds Lighting U.S., Llc Multi-chip semiconductor LED assembly
US20040206970A1 (en) * 2003-04-16 2004-10-21 Martin Paul S. Alternating current light emitting device
JP4699681B2 (en) * 2003-06-27 2011-06-15 パナソニック株式会社 LED module and lighting device
JP4438492B2 (en) * 2003-09-11 2010-03-24 日亜化学工業株式会社 Semiconductor device and manufacturing method thereof
EP1753035A4 (en) * 2004-04-28 2011-12-21 Panasonic Corp Light-emitting device and method for manufacturing same
JP4632690B2 (en) 2004-05-11 2011-02-16 スタンレー電気株式会社 Semiconductor light emitting device and manufacturing method thereof
KR100927256B1 (en) * 2004-07-09 2009-11-16 엘지전자 주식회사 Method of fabricating a zener diode integrated sub-mount
TWI262608B (en) * 2004-12-08 2006-09-21 Univ Nat Central Light emitting device
KR100862457B1 (en) 2004-12-29 2008-10-08 삼성전기주식회사 Structure for flip-chip bonding a light emitting device using metal column
KR101055772B1 (en) * 2005-12-15 2011-08-11 서울반도체 주식회사 Light emitting device
CN101601135B (en) * 2007-01-22 2012-06-27 科锐公司 Illumination devices using externally interconnected arrays of light emitting devices, and methods of fabricating same
EP1983571B1 (en) 2007-04-18 2019-01-02 Nichia Corporation Light emission device
JP5053829B2 (en) * 2007-12-28 2012-10-24 パナソニック株式会社 Substrate and light emitting module
JP6519135B2 (en) * 2014-09-26 2019-05-29 日亜化学工業株式会社 Light emitting device and substrate for light emitting device
JP6927970B2 (en) * 2015-11-20 2021-09-01 ルミレッズ ホールディング ベーフェー Die bond pad design that allows for different electrical configurations
US11227985B2 (en) 2019-03-28 2022-01-18 Nichia Corporation Light-emitting device
KR102252598B1 (en) * 2019-10-01 2021-05-18 주식회사 에스엘바이오닉스 Substrate and semiconductor light emitting device using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5996221A (en) * 1996-12-12 1999-12-07 Lucent Technologies Inc. Method for thermocompression bonding structures
JP3505374B2 (en) * 1997-11-14 2004-03-08 三洋電機株式会社 Light emitting components
JP3893735B2 (en) * 1998-04-24 2007-03-14 松下電器産業株式会社 Light emitting device
JP3965777B2 (en) * 1998-05-20 2007-08-29 松下電器産業株式会社 Manufacturing method of semiconductor light emitting device

Also Published As

Publication number Publication date
JP2002270905A (en) 2002-09-20

Similar Documents

Publication Publication Date Title
US10679973B2 (en) Multiple pixel surface mount device package
JP4904628B2 (en) Composite light emitting device
KR100634307B1 (en) Light-emitting device and method of manufacturing the same
JP5528794B2 (en) AC drive type light emitting device
US7064354B2 (en) Color mixing light emitting diode
KR101784901B1 (en) Light emitting device
US7875473B2 (en) Method of manufacturing light emitting diode device
JP2008160046A (en) Light emitting element package and its manufacturing method
JP2003218397A (en) Semiconductor light emission device and light emission device for lighting using the same
JP3893735B2 (en) Light emitting device
US20120139444A1 (en) Light emitting device
EP1475835A2 (en) Color mixing light emitting diode
KR100670929B1 (en) Flip chip light-emitting device and Method of manufacturing the same
TW201129228A (en) Light emitting diode lighting apparatus
KR101537798B1 (en) white light emitting diode package
US20050156177A1 (en) Light-emitting device with enlarged area of active luminescence region
JPH10321915A (en) Light-emitting semiconductor element
JP2007188942A (en) Light emitting diode device coupling rectifying circuit to sub-carrier and manufacturing method thereof
KR101381987B1 (en) Luminous element having arrayed cells and method of manufacturing thereof
KR101119015B1 (en) The light emitting device
TWI393280B (en) Light-emitting device with magnetic field
KR20080044439A (en) Light emitting element having arrayed cells and method of fabricating the same
JP2007227675A (en) Light source apparatus
JP2004200277A (en) Compound light emitting element
CN116314505A (en) Single-color LED with double light-emitting areas and multiple light-emitting areas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080227

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080312

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees