JP4903042B2 - Method and apparatus for controlling the separation of metals - Google Patents

Method and apparatus for controlling the separation of metals Download PDF

Info

Publication number
JP4903042B2
JP4903042B2 JP2006521600A JP2006521600A JP4903042B2 JP 4903042 B2 JP4903042 B2 JP 4903042B2 JP 2006521600 A JP2006521600 A JP 2006521600A JP 2006521600 A JP2006521600 A JP 2006521600A JP 4903042 B2 JP4903042 B2 JP 4903042B2
Authority
JP
Japan
Prior art keywords
reactor
zinc
cobalt
removal
basicity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006521600A
Other languages
Japanese (ja)
Other versions
JP2007500786A (en
Inventor
ヤールビネン,アイモ
ユディン,カイ
ナトゥネン,ハーリ
オイノネン,イルヨー
タロネン,パヌ
Original Assignee
オウトテック ユルキネン オサケユイチア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オウトテック ユルキネン オサケユイチア filed Critical オウトテック ユルキネン オサケユイチア
Publication of JP2007500786A publication Critical patent/JP2007500786A/en
Application granted granted Critical
Publication of JP4903042B2 publication Critical patent/JP4903042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/02Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • C22B19/22Obtaining zinc otherwise than by distilling with leaching with acids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • C22B19/26Refining solutions containing zinc values, e.g. obtained by leaching zinc ores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • C22B23/0469Treatment or purification of solutions, e.g. obtained by leaching by chemical methods by chemical substitution, e.g. by cementation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • C22B3/46Treatment or purification of solutions, e.g. obtained by leaching by chemical processes by substitution, e.g. by cementation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • ing And Chemical Polishing (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

The invention relates to a method and apparatus for controlling a continuous metal removal in conjunction with a zinc preparation process, in which the metal removal is performed in one or more reactors (11a-c), in conjunction with the reactor, the redox potential (16a-c) and the acidity and/or basicity are measured, and based on the measurement results, the process variables (17a-c) of the metal removal are adjusted towards the desired direction. According to the invention, the redox potential measurements (16a-c) are performed from the sludge produced in the reactor in conjunction with the outlet pipe of the reactor outside the reactor, and the measuring instrument (16a-c) is purified at predetermined intervals.

Description

本発明は、亜鉛の調製に関連して、例えば、コバルト、ニッケル、銅、ゲルマニウム及びカドミウムなどの金属の除去を制御するための、請求項1の前文に記載の方法、及び請求項13の前文に記載の装置に関する。   The present invention relates to the preparation of zinc, the method according to the preamble of claim 1 and the preamble of claim 13 for controlling the removal of metals such as, for example, cobalt, nickel, copper, germanium and cadmium. Relates to the apparatus described in 1. above.

亜鉛の湿式製錬調製法では、亜鉛鉱を濃縮し、焙焼し、硫酸に溶解する。亜鉛のほかに、銅、コバルト、ニッケル及びカドミウムも、そしてまたゲルマニウム及びアンチモンも、溶解液中に放出される。これらの金属又は半金属、すなわち不純物は、溶液精製プロセスにおいて亜鉛粉末を用いる還元により溶液から除去される。これらの金属の分離は、沈殿反応器などで亜鉛含有溶液から1以上の相中に沈殿させることにより行うことができる。前述の金属を除去後、亜鉛は電解で硫酸亜鉛溶液から還元される。亜鉛の調製では、電気分解をうまく且つ効率的に行って亜鉛を還元するために、不純物を亜鉛含有材料から除去しなければならない。特に、GeとSb、及び鉄族の金属イオンCo2+及びNi2+は、電気分解において層状化する亜鉛の再溶解を促進し、電流効率の低下をもたらす。 In the zinc smelting preparation method, zinc ore is concentrated, roasted, and dissolved in sulfuric acid. In addition to zinc, copper, cobalt, nickel and cadmium, and also germanium and antimony are released into the solution. These metals or metalloids, i.e. impurities, are removed from the solution by reduction with zinc powder in a solution purification process. Separation of these metals can be performed by precipitating in one or more phases from a zinc-containing solution, such as in a precipitation reactor. After removal of the aforementioned metals, zinc is reduced from the zinc sulfate solution by electrolysis. In the preparation of zinc, impurities must be removed from the zinc-containing material in order to perform electrolysis successfully and efficiently to reduce the zinc. In particular, Ge and Sb, and iron group metal ions Co 2+ and Ni 2+ promote re-dissolution of zinc that is layered in electrolysis, resulting in a decrease in current efficiency.

所望の金属の分離効率を改善し、且つ溶液精製プロセスでの分離を促進するために、金属亜鉛粉末、及びそれに加えて少なくとも一つの活性剤を、溶液中に導入する。活性剤は不純物金属の分離を活性化する。加えて、沈殿溶液中の沈殿最終生成物又はその特性を利用して、多くの場合、金属の分離又は沈殿速度に作用を及ぼすことができる。活性剤粒子又は沈殿金属化合物の表面は、それらが沈殿反応を活性化するのを目的として、浄化されねばならない。   In order to improve the separation efficiency of the desired metal and to facilitate the separation in the solution purification process, metal zinc powder, and in addition thereto, at least one activator is introduced into the solution. The activator activates the separation of impurity metals. In addition, the precipitation end product in the precipitation solution or its properties can often be used to affect the separation or precipitation rate of the metal. The surface of the activator particles or precipitated metal compound must be cleaned for the purpose of activating the precipitation reaction.

従来技術において、金属除去を最適化するための多くの様々な方法が知られている。沈殿反応器内の金属除去混合物の酸化還元電位及びpH値を測定することは、従来技術において公知である。測定結果によって、亜鉛消費量などのプロセス変数を調節している。しかし、反応混合物中に入れられる酸化還元電位及びpHの測定電極が汚れて測定結果の誤差を増加させるという問題がある。   Many different methods are known in the prior art for optimizing metal removal. It is known in the prior art to measure the redox potential and pH value of a metal removal mixture in a precipitation reactor. Process variables such as zinc consumption are adjusted according to the measurement results. However, there is a problem that the redox potential and pH measuring electrodes put in the reaction mixture become dirty and increase the error of the measurement results.

更に、連続金属除去法に伴う問題は、導入しようとする亜鉛粉末の調節であった。この調節は難しく、亜鉛粉末は反応に関して過剰に導入されてきた。   Furthermore, a problem with the continuous metal removal method was the adjustment of the zinc powder to be introduced. This adjustment is difficult and zinc powder has been introduced excessively with respect to the reaction.

本発明の目的は、上述の欠点を解消することである。本発明の一つの具体的な目的は、亜鉛調製に関連して金属の除去を向上させ最適化するための新規な制御方法及び装置を開示することである。更に、本発明の目的は、亜鉛粉末の消費量を最適化し、且つ、連続の金属除去における品質に関して改善される更に精製された亜鉛含有溶液を得ることである。   The object of the present invention is to eliminate the above-mentioned drawbacks. One particular object of the present invention is to disclose a novel control method and apparatus for improving and optimizing metal removal in connection with zinc preparation. Furthermore, the object of the present invention is to obtain a more purified zinc-containing solution that optimizes the consumption of zinc powder and is improved with regard to quality in continuous metal removal.

本発明による方法及び装置は、特許請求の範囲に提示されているものを特徴とする。   The method and the device according to the invention are characterized by what is presented in the claims.

本発明は、金属の除去を1以上の反応器中で行う亜鉛調製法に関連する金属の連続除去を制御するための方法を基にしている。反応器につないで、酸化還元電位と酸性度及び/又は塩基性度を測定し、そして測定結果に基づき、金属除去のプロセス変数を望ましい方向に向けて調節する。本発明によれば、酸化還元電位の測定は、反応器で生成したスラッジから、好ましくはスラッジの出口配管に連結した、反応槽の外部で行われ、そして測定機器を所定の間隔で浄化する。 The present invention is based on a method for controlling the continuous removal of metal associated with a zinc preparation process in which the removal of metal is carried out in one or more reactors. Connected to the reactor, the redox potential and acidity and / or basicity are measured, and based on the measurement results, the metal removal process variables are adjusted in the desired direction. According to the invention, the oxidation-reduction potential is measured from the sludge produced in the reactor, preferably outside the reaction vessel, connected to the sludge outlet piping, and the measuring device is purified at predetermined intervals.

ここで用いられるスラッジとは、その固形物含量が完全に溶液様のものからほぼ固形のものまで変動することができる、固形物含有量の多い溶液を意味する。   Sludge as used herein refers to a solution with a high solids content whose solids content can vary from completely solution-like to nearly solid.

金属の除去では、すなわちコバルト、ニッケル、銅又はカドニウムの除去では、目標とするところは、亜鉛含有溶液中の各金属に対して0.2mg/l未満の不純物金属含量を得ることである。ゲルマニウムとアンチモンに対しては、目標値は0.02mg/l未満である。   For metal removal, ie, removal of cobalt, nickel, copper or cadmium, the goal is to obtain an impurity metal content of less than 0.2 mg / l for each metal in the zinc-containing solution. For germanium and antimony, the target value is less than 0.02 mg / l.

一つの態様において、酸化還元電位は、コバルト、ニッケル及びゲルマニウムを沈殿させるのにはカロメル電極に対して−570〜−650mVの範囲、銅を沈殿させのには−480〜−550mVの範囲にあるように調節するのが好ましい。   In one embodiment, the redox potential is in the range of −570 to −650 mV to the calomel electrode for precipitating cobalt, nickel and germanium and in the range of −480 to −550 mV for copper. It is preferable to adjust as follows.

本発明は、酸化還元電位の測定機器が反応器の外部に配置され、測定機器を所望の間隔で浄化するのを可能とするという利点を有する。測定機器の汚れが防止され、そして同時に、そのために測定誤差が防止され、従って一層安定な測定を可能とする。   The present invention has the advantage that the instrument for measuring the oxidation-reduction potential is arranged outside the reactor and allows the instrument to be cleaned at a desired interval. Contamination of the measuring device is prevented and at the same time measurement errors are prevented, thus enabling a more stable measurement.

本発明は、金属の除去法において、例えば、導入しようとする亜鉛粉末の消費量を最小化し、そして正確に他のプロセス変数を調節することができる、円滑で中断なしの運転を実現するのを可能にする。更に、亜鉛電気分解用に、高度に精製された亜鉛溶液が得られる。本発明によって、金属の除去において除去しようとする金属を全体としてより良好に沈殿させることができる。   The present invention provides a smooth and uninterrupted operation in a metal removal process, for example, minimizing the consumption of zinc powder to be introduced and accurately adjusting other process variables. enable. Furthermore, a highly purified zinc solution is obtained for zinc electrolysis. According to the present invention, the metal to be removed in the removal of the metal can be better precipitated as a whole.

本発明の一つの態様では、反応器溶液の酸性度及び塩基性度を、BT値によって測定する。BT値、すなわちいわゆる滴定値は、溶液の酸性度又は塩基性度を表し、それはプロセスの状態をpH値よりも正確に表す。BT値は、滴定の転換点に達するのに必要とされる酸の量を示すのに用いられる。BT値はスラッジの塩基性度が上がるにつれて上昇する。BT値は、原料溶液、すなわち亜鉛調製溶液のほかに、プロセス中に導入される亜鉛粉末及び返送酸の量により影響を受ける。亜鉛粉末が溶解すると、不純物金属の沈殿又は水素発生のいずれかが還元反応として起こる。水素の発生はBT値を上げる。従って、過剰にプロセス中に導入される亜鉛粉末は、BTを上昇させる。例えば3.5を超える高いBTは、不所望の塩基性硫酸亜鉛及び塩が可溶性亜鉛粉末の表面上に析出し、これが粉末粒子の溶解を減速させて、その結果精製の効果を弱めるという事実を引き起こす。その反面、不所望の析出物は生成最終製品の表面を汚し、従って不純物の沈殿を減速させる。その場合、所望の結果を得るためには亜鉛粉末の導入を増加させねばならず、これはコストを増大させる。更に、問題の塩基性塩は、金属を除去するのに用いようとする濃縮器のオーバーフローのろ過圧力を増大させることがあり、これはろ過をより困難にし、そして固形物がろ布を通過してろ液中に入るという結果をもたらすことがある。 In one embodiment of the invention, the acidity and basicity of the reactor solution is measured by the BT value. BT value, i.e. so-called reverse titration value represents the acidity or basicity of the solution, it is also exactly representative than the pH value of the state of the process. BT value is used to indicate the amount of acid required to reach the turning point of the titration. The BT value increases as the basicity of the sludge increases. The BT value is influenced by the amount of zinc powder and return acid introduced during the process in addition to the raw material solution, ie the zinc preparation solution. When the zinc powder is dissolved, either impurity metal precipitation or hydrogen evolution occurs as a reduction reaction. Hydrogen generation increases the BT value. Thus, zinc powder that is introduced excessively into the process raises BT. For example, a high BT above 3.5 will account for the fact that undesired basic zinc sulfate and salts precipitate on the surface of the soluble zinc powder, which slows the dissolution of the powder particles and consequently weakens the effect of purification. cause. On the other hand, undesired deposits contaminate the surface of the resulting final product and thus slow down the precipitation of impurities. In that case, in order to obtain the desired result, the introduction of zinc powder has to be increased, which increases the cost. In addition, the basic salt in question may increase the filtration pressure of the concentrator overflow that is being used to remove the metal, which makes filtration more difficult and the solids pass through the filter cloth. May result in entering the filtrate.

好ましくは、約1.0〜約3.0の低BT値、最も好ましくは約2のBT値を得ることが試みられる。   Preferably, an attempt is made to obtain a low BT value of about 1.0 to about 3.0, most preferably a BT value of about 2.

BT値は、それ自体公知であるやり方でもって、試料と反応する所定量の化学物質を試料に添加し、そして反応後に、測定溶液を用いて残留化学物質を滴定することにより求められる。   The BT value is determined in a manner known per se by adding a predetermined amount of chemical which reacts with the sample to the sample and, after the reaction, titrating the residual chemical with the measuring solution.

BT値を監視し、好ましくはそれをより低くなるよう調節することにより、金属除去において、亜鉛溶液の良好な精製結果、均一な溶液及び亜鉛粉末の低消費量を実現することが可能である。更に、BT値は、プロセスの状態を評価するための正確な測定を行うことを可能とする。   By monitoring the BT value and preferably adjusting it to be lower, it is possible to achieve good purification results of the zinc solution, uniform solution and low consumption of zinc powder in the metal removal. Furthermore, the BT value allows an accurate measurement to evaluate the state of the process.

本発明の一つの態様では、反応器溶液の固形物含量を測定する。固形物含量を監視し、適切であるよう、好ましくは10〜200g/l、更に好ましくは30〜100g/lの範囲にあるように調節することにより、多くの活性反応表面が得られ、これは沈殿を加速し亜鉛粉末の消費量に影響を及ぼす。   In one embodiment of the invention, the solids content of the reactor solution is measured. By monitoring the solids content and adjusting it to be suitable, preferably in the range of 10-200 g / l, more preferably in the range of 30-100 g / l, many active reaction surfaces are obtained, which It accelerates the precipitation and affects the consumption of zinc powder.

本発明の一つの態様では、金属除去反応器への亜鉛粉末の導入を、測定結果に基づき調節する。亜鉛粉末は、好ましくは、亜鉛溶液の供給リットル当り0.3〜0.9g、更に好ましくは約0.4〜0.7g導入される。   In one embodiment of the invention, the introduction of zinc powder into the metal removal reactor is adjusted based on the measurement results. The zinc powder is preferably introduced from 0.3 to 0.9 g, more preferably from about 0.4 to 0.7 g, per liter of zinc solution supplied.

好ましくは、亜鉛粉末の導入のほかに、酸化還元電位、溶液の酸性度及び/又は塩基性度、固形物含量及び/又は反応器の温度を、測定結果に基づき調節する。   Preferably, in addition to the introduction of zinc powder, the redox potential, the acidity and / or basicity of the solution, the solids content and / or the temperature of the reactor are adjusted based on the measurement results.

温度を調節することにより、沈殿性の不所望の物質の生成を防止することが可能である。温度は、例えばコバルト除去では低すぎる温度で石膏が沈殿し、高過ぎる温度では硬石膏が沈殿し始めることを考慮に入れて、適切であるように最適化される。とは言え、これらの固形物の沈殿は、大きな径の固形物粒子を例えば分級によりプロセスから除去することにより、減少させることができる。   By adjusting the temperature, it is possible to prevent the formation of undesired and undesired substances. The temperature is optimized to be appropriate, taking into account, for example, that the gypsum precipitates at a temperature that is too low for cobalt removal and that the anhydrite begins to precipitate at a temperature that is too high. Nonetheless, the precipitation of these solids can be reduced by removing large sized solid particles from the process, for example by classification.

本発明の一つの態様では、金属の除去はコバルトの除去を意味する。一つの態様において、金属の除去は、直列に接続する少なくとも2つの反応器で行われる。   In one embodiment of the invention, removing the metal means removing cobalt. In one embodiment, metal removal is performed in at least two reactors connected in series.

本発明の一つの態様では、測定機器を、反応器の出口配管に連結して、又は反応器間の接続配管に連結して配置する。一つの態様においては、酸性度/塩基性度の測定機器を反応槽に連結して配置する。   In one aspect of the present invention, the measuring device is arranged connected to the outlet piping of the reactor or connected to the connecting piping between the reactors. In one embodiment, an acidity / basicity measuring instrument is connected to the reaction vessel.

本発明の一つの態様では、酸化還元電位の測定を測定電極を用いて行う。好ましくは、反応器の出口配管又は反応器間の接続配管に連結配管を配置し、その中に電極を入れる。   In one embodiment of the present invention, the redox potential is measured using a measurement electrode. Preferably, a connecting pipe is arranged in an outlet pipe of the reactor or a connecting pipe between the reactors, and an electrode is put therein.

本発明の一つの態様では、測定機器を定期的に、最も好ましくは1〜2時間の間隔で洗浄して、汚れを防止する。   In one embodiment of the invention, the measuring instrument is cleaned periodically, most preferably at intervals of 1-2 hours, to prevent contamination.

本発明の一つの態様では、各反応器につないで測定が行われ、それにより各反応器に対して特定的に、所望の1又は複数のプロセス変数の調節を制御する。一つの好ましい態様においては、各反応器の後で酸化還元電位の測定を行い、それにより、反応器特有の亜鉛粉末の導入を制御する。 In one embodiment of the invention , measurements are made at each reactor, thereby controlling the adjustment of the desired process variable (s) specifically for each reactor. In one preferred embodiment, the redox potential is measured after each reactor, thereby controlling the introduction of reactor specific zinc powder.

代わりの解決法では、所望量の亜鉛粉末を反応器に手動で導入することが可能である。   In an alternative solution, it is possible to manually introduce the desired amount of zinc powder into the reactor.

更に、本発明は、金属の除去を1以上の反応器で行う亜鉛調製法に関連する金属の連続除去を制御するための装置に関し、この装置は、反応器につないで酸化還元電位と酸性度及び/又は塩基性度を測定するための少なくとも一つの測定機器、測定結果に基づいて金属除去のプロセス変数を所望の方向に向けて調節するための少なくとも一つの調節装置、及び測定機器からの測定結果を調節装置に転送するための少なくとも一つの制御装置を含む。本発明によれば、酸化還元電位の測定機器は反応槽の外部に配置され、そして反応器に接続する配管に連結して取り付けられて、反応器で生成するスラッジがその配管を通って流れ、そして装置は所定の間隔で測定機器を浄化するための浄化手段を含む。 Furthermore, the present invention relates to an apparatus for controlling the continuous removal of metals associated with a zinc preparation process in which the removal of metal is carried out in one or more reactors, the apparatus being connected to the reactor and connected to the redox potential and acidity And / or at least one measuring device for measuring basicity, at least one adjusting device for adjusting the process variable of metal removal in the desired direction based on the measurement result, and measurement from the measuring device It includes at least one controller for transferring the result to the adjusting device. According to the present invention, the oxidation-reduction potential measuring device is disposed outside the reaction vessel and is connected to a pipe connected to the reactor, and sludge generated in the reactor flows through the pipe, The apparatus includes a purification means for purifying the measuring device at predetermined intervals.

本発明による装置は構造上簡単であり、従って実施する上で有利である。   The device according to the invention is simple in construction and is therefore advantageous in implementation.

本発明の一つの態様では、本発明は、亜鉛の調製に関連するコバルト除去プロセスにおいて本発明による方法及び装置を使用することに関する。コバルト除去プロセスに関しては、例えば銅、ニッケル、ゲルマニウム及びアンチモンを、沈殿させることが可能である。コバルト除去プロセスにおいては、亜鉛含有溶液からの金属の沈殿を促進するために例えば活性剤としての酸化ヒ素を、銅の除去からの残留銅(例えば50〜300mg/l)を含有する溶液に添加する。更に、還元性亜鉛粉末を溶液に添加し、この場合ヒ化銅が沈殿する。ヒ化銅は、溶液中で、亜鉛粉末の存在下にコバルト及びニッケルと反応してヒ化コバルトとヒ化ニッケルを生成する。例えば、ヒ素の存在下で、コバルト及びニッケルは比較的速く、約1.5時間で沈殿して、ヒ化コバルト及びヒ化ニッケルを生成することができる。ヒ化コバルト沈殿物などの生成沈殿物は、反応速度及び沈殿表面を最適化するために固形物として反応器に再循環される。このプロセスでは、表面に不純物が析出する十分な固形物が存在しなければならない。この表面は、析出を改善し活性化するために、浄化された金属銅、又は銅、コバルトもしくはニッケルのヒ化物から構成されねばならない。塩基性の亜鉛硫酸塩及びカルシウム硫酸塩などの粒子の表面に析出する不純物は、沈殿物を不活性化し、粒子寸法を増大させる。   In one aspect of the invention, the invention relates to the use of the method and apparatus according to the invention in a cobalt removal process associated with the preparation of zinc. For the cobalt removal process, for example, copper, nickel, germanium and antimony can be precipitated. In the cobalt removal process, for example, arsenic oxide as an activator is added to a solution containing residual copper (eg, 50-300 mg / l) from the removal of copper to promote precipitation of the metal from the zinc-containing solution. . Furthermore, reducing zinc powder is added to the solution, in which case copper arsenide precipitates. Copper arsenide reacts with cobalt and nickel in the presence of zinc powder in solution to form cobalt arsenide and nickel arsenide. For example, in the presence of arsenic, cobalt and nickel can be relatively fast and precipitate in about 1.5 hours to produce cobalt arsenide and nickel arsenide. Product precipitates, such as cobalt arsenide precipitates, are recycled to the reactor as solids to optimize reaction rate and precipitation surface. In this process, there must be enough solids to deposit impurities on the surface. This surface must be composed of purified metallic copper or arsenide of copper, cobalt or nickel in order to improve and activate the precipitation. Impurities that deposit on the surface of the particles, such as basic zinc sulfate and calcium sulfate, inactivate the precipitate and increase the particle size.

あるいはまた、本発明による方法及び装置は、亜鉛調製プロセスに関連する他の金属を分離又は除去するために用いることもできる。   Alternatively, the method and apparatus according to the present invention can be used to separate or remove other metals associated with the zinc preparation process.

以下において、添付図面を参照して詳細な態様の例により本発明を説明する。   In the following, the invention will be described by way of example of a detailed embodiment with reference to the accompanying drawings.

図1は、湿式製錬亜鉛調製法を示す。湿式製錬亜鉛調製法では、最初に亜鉛鉱を濃縮1し、そして亜鉛濃縮物を焙焼2する。焙焼2の目的は、硫化物の亜鉛を可溶性の酸化物形態にすることである。焙焼2の後、亜鉛焙焼物を1以上の工程でもって硫酸に溶解3させ、それによって亜鉛酸化物が反応して硫酸亜鉛を生成する。溶解工程3では、鉄を塩基性硫酸塩として、すなわちジャロサイト沈殿物、ゲータイト又はヘマタイトとして沈殿させる。溶解工程3においては、溶解不純物、例えば、銅、コバルト、ニッケル、ゲルマニウム、アンチモン及びカドミウムを、好ましくは3つの工程6、7、8で行われる溶液精製4の硫酸亜鉛溶液から除去する。第1工程6では、銅の主要部分を亜鉛ダスト9によって除去する。第2工程7では、コバルト、ニッケル、ゲルマニウム、アンチモンと、銅の残りを、三酸化ヒ素10及び亜鉛ダスト9によって溶液から金属ヒ化物として沈殿させ、ここでは亜鉛が還元剤として機能する。第3工程8では、カドミウムを亜鉛ダスト9によって除去する。浄化した亜鉛溶液を、冷却して電気分解工程5に導入し、そこで循環する電解質と混合する。電気分解工程5において、電流により亜鉛をカソードに対して還元して金属を生成させる。焙焼、溶解及び電気分解は、当該分野においてそれ自体公知のやり方で行われ、そのためここではそれらを更に詳しくは説明しない。   FIG. 1 shows a method for preparing hydrometallurgical zinc. In the hydrometallurgical zinc preparation process, the zinc ore is first concentrated 1 and the zinc concentrate is roasted 2. The purpose of roasting 2 is to make sulfide zinc into a soluble oxide form. After roasting 2, the zinc roast is dissolved 3 in sulfuric acid in one or more steps, whereby the zinc oxide reacts to produce zinc sulfate. In dissolution step 3, iron is precipitated as basic sulfate, i.e., jarosite precipitate, goethite or hematite. In the dissolution step 3, dissolved impurities such as copper, cobalt, nickel, germanium, antimony, and cadmium are removed from the zinc sulfate solution of the solution purification 4 that is preferably performed in the three steps 6, 7, and 8. In the first step 6, the main part of copper is removed by the zinc dust 9. In the second step 7, cobalt, nickel, germanium, antimony and the remainder of copper are precipitated from solution as metal arsenide by arsenic trioxide 10 and zinc dust 9, where zinc functions as a reducing agent. In the third step 8, cadmium is removed by the zinc dust 9. The purified zinc solution is cooled and introduced into the electrolysis process 5, where it is mixed with the circulating electrolyte. In the electrolysis step 5, zinc is reduced with respect to the cathode by an electric current to generate a metal. Roasting, melting and electrolysis are carried out in a manner known per se in the art and therefore they are not described here in more detail.

図2に示されるコバルトの除去では、コバルト、ニッケル、ゲルマニウム、アンチモン及び残留銅を、直列に接続される3つの反応器11a、11b及び11cでの多数の工程でもって硫酸亜鉛溶液18から沈殿させる。反応器11a〜cの出口配管又は接続配管の連結配管につないで、反応器中で生成するスラッジの酸化還元電位の自動測定用の測定電極16a〜cを配置する。酸化還元電位の測定電極16a〜cは、プロセスが関係するときに、各反応器に対して特定的に所望量の亜鉛粉末を反応器11a〜c中に導入するために、亜鉛粉末の供給装置の調節手段17a〜cに測定結果を送信する制御装置(図示せず)に接続される。電極は、約1時間の間隔で定期的に洗浄されて、それらの汚れ及びそれによる測定誤差を防止する。   In the removal of cobalt shown in FIG. 2, cobalt, nickel, germanium, antimony and residual copper are precipitated from the zinc sulfate solution 18 in a number of steps in three reactors 11a, 11b and 11c connected in series. . Measuring electrodes 16a to 16c for automatic measurement of the oxidation-reduction potential of sludge generated in the reactor are connected to the outlet piping of the reactors 11a to 11c or the connecting piping of the connecting piping. The redox potential measuring electrodes 16a-c are used to supply zinc powder in order to introduce a specific amount of zinc powder into the reactors 11a-c specifically for each reactor when the process is concerned. Connected to a control device (not shown) for transmitting the measurement results to the adjusting means 17a to 17c. The electrodes are periodically cleaned at intervals of about 1 hour to prevent their contamination and thereby measurement errors.

図2に示される装置では、BT値を、反応器内の溶液から自動滴定器を用いて測定する。滴定器は制御系に接続され、それによって測定BT値は、反応器11a〜c中のスラッジの酸性度及び塩基性度を所望の方向に向けて制御する制御系に送信される。   In the apparatus shown in FIG. 2, the BT value is measured from the solution in the reactor using an automatic titrator. The titrator is connected to a control system whereby the measured BT value is sent to a control system that controls the acidity and basicity of the sludge in the reactors 11a-c in the desired direction.

あるいはまた、酸化還元電位及びBT値は手動で測定することができ、それによるとそれらは制御系に入力されなければならず、又は所望のプロセス変数をそれらに基づいて手動で調節しなければならない。   Alternatively, the redox potential and BT value can be measured manually, so that they must be input to the control system or the desired process variables must be adjusted manually based on them. .

亜鉛粉末は、当該分野でそれ自体公知の供給装置17a〜cによって、例えばスクリューフィーダによって、コバルト除去反応器11a〜cに導入される。不所望の副反応物が作られるので、化学量論的に大過剰量の亜鉛粉末を導入することは有利でなく、従って過剰の亜鉛は沈殿速度に上昇させない。コバルトの除去では、酸化還元電位、温度及び反応器の析出表面が沈殿速度に影響を及ぼす。   Zinc powder is introduced into the cobalt removal reactors 11a-c by means of feeders 17a-c known per se in the art, for example by screw feeders. It is not advantageous to introduce a large stoichiometric excess of zinc powder because unwanted side reactants are created, so that excess zinc does not increase the precipitation rate. In the removal of cobalt, the redox potential, temperature and reactor deposition surface affect the precipitation rate.

コバルトの除去プロセスは、更に、並列接続の二つの濃縮器12を含み、それらは反応器11cの後に配置され、また一度にはそれらのうちの一方のみが用いられる。濃縮器のオーバーフローの出口側20には、固形物からのオーバーフローを精製するためのフィルタープレスが配置される。   The cobalt removal process further includes two concentrators 12 connected in parallel, which are placed after the reactor 11c, and only one of them is used at a time. At the overflow outlet side 20 of the concentrator, a filter press for purifying the overflow from the solids is arranged.

沈殿反応器11a〜cで生じて濃縮器13で沈殿するヒ化コバルトスラッジは、反応器の底に沈降し、そこからアンダーフローとして濃縮器12の連結配管19を通して反応器から引き出され、そして第1反応器11aに再循環して戻される。コバルトスラッジ13は、分級装置14を用いて分級することができ、プロセスの観点から所望される分級物15をプロセスの第1反応器11aに再循環し戻すことができる。分級装置を用いて分離された、本発明の観点から有害である粗い分級物は、オーバーフローのろ過器を通してプロセスから除去される。あるいはまた、全スラッジ分級物21を反応器11aに再循環して戻すか、又はプロセスから引き出すことができる。コバルト沈殿物は、好ましくは、1以上のコバルト除去反応器の固形物含量が約10〜200g/l、更に好ましくは30〜100g/lになるようなやり方で再循環される。   Cobalt arsenide sludge generated in the precipitation reactors 11a-c and precipitated in the concentrator 13 settles to the bottom of the reactor, and is withdrawn from the reactor through the connecting pipe 19 of the concentrator 12 as an underflow. Recycled back to 1 reactor 11a. The cobalt sludge 13 can be classified using a classifier 14, and the classification 15 desired from a process point of view can be recycled back to the first reactor 11a of the process. Coarse fractions that are separated from the viewpoint of the present invention, separated using a classifier, are removed from the process through an overflow filter. Alternatively, the entire sludge classification 21 can be recycled back to the reactor 11a or withdrawn from the process. The cobalt precipitate is preferably recycled in such a way that the solids content of the one or more cobalt removal reactors is about 10-200 g / l, more preferably 30-100 g / l.

〔例1〕
この試験では、連続のコバルト除去プロセスを検討した。プロセス条件下で行った試験において、亜鉛粉末を、並列に配置した5つの金属除去反応器にスクリューフィーダにより導入した。各反応器の後、又はそれらの間の接続配管に、特定的に各反応器に対する、反応器から出てくるスラッジの酸化還元電位を測定するために用いられる酸化還元電位の測定電極を配置した。測定結果により、各反応器について特定的に、亜鉛粉末の反応器への導入を制御した。測定電極を1時間の間隔で洗浄して、それらの汚れを防止した。
[Example 1]
In this test, a continuous cobalt removal process was considered. In tests performed under process conditions, zinc powder was introduced by screw feeders into five metal removal reactors arranged in parallel. A measurement electrode for the redox potential used to measure the redox potential of the sludge exiting the reactor, specifically for each reactor, was placed after each reactor or in the connecting piping between them. . Depending on the measurement results, the introduction of zinc powder into the reactor was controlled specifically for each reactor. The measuring electrodes were washed at 1 hour intervals to prevent their contamination.

反応器溶液の酸性度及び塩基性度を、それ自体公知の滴定法を用いてBT値により測定した。BT値は2.5〜3.5の間の範囲にあった。   The acidity and basicity of the reactor solution were measured by the BT value using a titration method known per se. The BT value was in the range between 2.5 and 3.5.

このプロセスにおいては、約0.6〜0.7gの亜鉛粉末が消費された。   In this process, about 0.6-0.7 g of zinc powder was consumed.

しかし、高いBTは、プロセスの開始直後に、ケイ酸亜鉛、すなわち異極鉱の沈殿を引き起こした。プロセスにおけるコバルト沈殿物の亜鉛及びシリカ濃度が増大した。異極鉱の存在は、シリカが原因となったろ過の困難性のせいで沈殿物からの亜鉛の溶解が同時にはうまくいかないので、亜鉛の損失を招いた。この問題は、BT値を約2に下げることにより解決できた。   However, the high BT caused the precipitation of zinc silicate, an heteropolarite, immediately after the start of the process. The cobalt precipitate zinc and silica concentration in the process increased. The presence of heteropolar ores resulted in the loss of zinc because the dissolution of zinc from the precipitate was not successful at the same time due to the difficulty of filtration due to silica. This problem could be solved by lowering the BT value to about 2.

〔例2〕
この試験においては、BT値が約2であることを除いて、例1の条件と同様の条件下でコバルトの連続除去を検討した。
[Example 2]
In this test, continuous removal of cobalt was examined under the same conditions as in Example 1 except that the BT value was about 2.

この試験では、6ヶ月を超える中断なしの実験を行い、更にプロセスの結果として、より良好でより均一な亜鉛含有溶液が得られた。亜鉛溶液から測定したコバルト、ニッケル及び銅の濃度は、基本的に0.2g/l未満であり、ゲルマニウム、アンチモン及びヒ素のそれらは0.02mg/l未満であった。   In this test, an uninterrupted experiment over 6 months was performed and the process resulted in a better and more uniform zinc-containing solution. The concentrations of cobalt, nickel and copper measured from the zinc solution were basically less than 0.2 g / l and those of germanium, antimony and arsenic were less than 0.02 mg / l.

これらのプロセス試験に基づき、本発明による方法及び装置は、他の亜鉛調製法に較べ、金属除去反応器に関連する亜鉛粉末の消費量を小くするのを可能とすることが認められた。溶液精製、すなわち金属の除去において、実際的に化学量論量の亜鉛粉末を用いて、銅及びカドミウムを沈殿させることが可能であった。十分にコバルト及びニッケルを沈殿させるためには、わずかに過剰の亜鉛粉末を必要とし、亜鉛粉末の導入量は約0.5g/lであった。対応する他の従来技術のコバルト除去プロセスでは、亜鉛粉末の導入量は様々であり、3〜4.5g/lであった。   Based on these process tests, it has been found that the method and apparatus according to the present invention allows for lower consumption of zinc powder associated with the metal removal reactor compared to other zinc preparation methods. In solution purification, ie metal removal, it was possible to precipitate copper and cadmium with practically stoichiometric amounts of zinc powder. In order to fully precipitate cobalt and nickel, a slight excess of zinc powder was required, and the amount of zinc powder introduced was about 0.5 g / l. In other corresponding prior art cobalt removal processes, the amount of zinc powder introduced varied and was 3 to 4.5 g / l.

本発明による装置と方法は、種々の態様において、亜鉛調製法に関連する種々の金属の除去の制御に応用可能である。   The apparatus and method according to the present invention are applicable in various aspects to controlling the removal of various metals associated with the zinc preparation process.

本発明の態様は上述の例に限定されず、それよりもそれらは特許請求の範囲の記載の範囲内で変更することができる。   Aspects of the invention are not limited to the examples described above, but rather may be varied within the scope of the claims.

湿式製錬亜鉛調製法を説明するブロック図である。It is a block diagram explaining the wet smelting zinc preparation method. コバルト除去プロセスにおける本発明による装置の一つの態様を説明する図である。FIG. 6 illustrates one embodiment of an apparatus according to the present invention in a cobalt removal process.

Claims (14)

亜鉛を含有する反応器溶液を収容する1以上の反応器でコバルトの除去を行い、反応器とつないで酸化還元電位と酸性度及び/又は塩基性度を測定し、コバルト除去のプロセス変数を測定結果に基づき所望の方向に向けて調節する、湿式製錬亜鉛調製法に関連してコバルトの連続除去を制御するための方法であって、酸化還元電位の測定を、反応槽の外部で、反応器において生成するスラッジから行い、また反応器溶液の酸性度及び/又は塩基性度を逆滴定(BT値によって求めて測定結果に基づき、当該コバルト除去反応器への亜鉛粉末の導入を調節し、且つ酸化還元電位の測定機器を所定の間隔で浄化することを特徴とする、湿式製錬亜鉛調製法に関連してコバルトの連続除去を制御するための方法。 Cobalt removal is performed in one or more reactors containing a reactor solution containing zinc, and connected to the reactor to measure redox potential and acidity and / or basicity and to measure process variables for cobalt removal A method for controlling the continuous removal of cobalt in the context of a hydrometallurgical zinc preparation method that adjusts in the desired direction based on the results, wherein the oxidation-reduction potential is measured outside the reaction vessel. From the sludge produced in the reactor, and the acidity and / or basicity of the reactor solution is determined by back titration ( BT ) value, and the introduction of zinc powder into the cobalt removal reactor is adjusted based on the measurement results and, and the measuring instrument of the redox potential, characterized in that purifying at predetermined intervals, a method for controlling the continuous removal of cobalt in relation to the hydrometallurgical zinc preparation. 反応器溶液の固形物含量を測定しそして適切になるよう調節することを特徴とする、請求項1に記載の方法。  The process according to claim 1, characterized in that the solids content of the reactor solution is measured and adjusted to be appropriate. 測定結果に基づき、スラッジの酸化還元電位、反応器溶液の酸性度/塩基性度、反応器溶液の固形物含量及び/又は反応器の温度を調節することを特徴とする、請求項1又は2に記載の方法。Based on the measurement results, the redox potential of the sludge, the reactor solution acidity / basicity, and adjusting the solids content and / or the temperature of the reactor of the reactor solution, according to claim 1 or 2 The method described in 1. コバルトの除去を直列に接続した少なくとも2つの反応器で行うことを特徴とする、請求項1〜のいずれか1つに記載の方法。The method according to the removal of cobalt and performing at least two reactors connected in series, any one of claims 1-3. 前記酸化還元電位の測定機器を、反応器出口配管につないで、又は反応器間の接続配管につないで配置することを特徴とする、請求項1〜のいずれか1つに記載の方法。The method according to any one of claims 1 to 4 , wherein the measuring device for the oxidation-reduction potential is arranged connected to a reactor outlet pipe or connected to a connecting pipe between the reactors. 酸性度及び/又は塩基性度の測定機器を反応槽につないで配置することを特徴とする、請求項1〜のいずれか1つに記載の方法。The method according to any one of claims 1 to 5 , wherein a measuring device for acidity and / or basicity is connected to a reaction vessel. 酸化還元電位の測定を測定電極を用いて行うことを特徴とする、請求項1〜のいずれか1つに記載の方法。The measurement of the redox potential and performing using the measuring electrode, the method according to any one of claims 1-6. 測定機器を定期的に、好ましくは1〜2時間の間隔で洗浄することを特徴とする、請求項1〜のいずれか1つに記載の方法。Periodically a measurement instrument, preferably characterized by washing at intervals of 1-2 hours, the method according to any one of claims 1-7. 特定的に各反応器に対する所望のプロセス変数の調節を制御する測定を各反応器につないで行うことを特徴とする、請求項1〜のいずれか1つに記載の方法。And performing by connecting a measurement for controlling the adjustment of the desired process variable for specifically each reactor to the reactor, the method according to any one of claims 1-8. 亜鉛を含有する反応器溶液を収容する1以上の反応器(11a〜c)でコバルトの除去を行う、湿式製錬亜鉛調製法に関連する連続のコバルト除去を制御するための装置であり、反応器とつないで酸化還元電位と酸性度及び/又は塩基性度を測定するための少なくとも一つの測定機器(16a〜c)、測定結果に基づいてコバルト除去のプロセス変数を所望の方向に向けて調節するための少なくとも1つの調節装置(17a〜c)、及び測定機器(16a〜c)からの測定結果を調節装置(17a〜c)に転送するための少なくとも1つの制御装置を含む、湿式製錬亜鉛調製法に関連する連続のコバルト除去を制御するための装置であって、酸化還元電位の測定機器(16a〜c)を反応槽の外部に配置して、反応器で生成したスラッジがそれを介して流出する反応器に接続される配管につないで取り付け、そして当該装置が反応器溶液の酸性度及び/又は塩基性度を求めるためのBT値測定装置を含み、測定結果に基づき、前記調節装置(17a〜c)が当該コバルト除去反応器(11a〜c)への亜鉛粉末の導入を調節し、且つ所定の間隔で当該酸化還元電位の測定機器を浄化するための浄化手段を含むことを特徴とする、湿式製錬亜鉛調製法に関連する連続のコバルト除去を制御するための装置。An apparatus for controlling continuous cobalt removal associated with a hydrometallurgical zinc preparation process, wherein cobalt is removed in one or more reactors (11a-c) containing a reactor solution containing zinc. At least one measuring device (16a-c) for measuring redox potential and acidity and / or basicity connected to a vessel, and adjusting the process variable of cobalt removal in a desired direction based on the measurement result at least one adjusting device for (17a to 17c), and at least one control device for forwarding the measurement results from the measuring instrument (16a-c) to the adjusting device (17a to 17c), hydrometallurgy an apparatus for controlling a continuous cobalt removal associated with zinc preparation, place the measuring instrument of the redox potential (16a-c) outside the reaction vessel, sludge pixel generated in the reactor Connecting the pipe attachment which is connected to the reactor flowing through, and wherein the device is a reactor solution BT level measuring apparatus order sought acidity and / or basicity of, based on the measurement result, The adjusting device (17a-c) includes purification means for regulating the introduction of zinc powder into the cobalt removal reactor (11a-c) and for purifying the measuring device for the oxidation-reduction potential at predetermined intervals. An apparatus for controlling continuous cobalt removal associated with a hydrometallurgical zinc preparation process. 亜鉛粉末を金属除去反応器(11a〜c)に導入するための供給装置(17a〜c)を含み、そしてこの供給装置が前記調節及び/又は制御装置に接続されることを特徴とする、請求項10に記載の装置。Comprising a feeding device (17a-c) for introducing zinc powder into the metal removal reactor (11a-c), and this feeding device is connected to said regulating and / or controlling device, Item 10. The apparatus according to Item 10 . 酸化還元電位の測定機器(16a〜c)を反応器間の接続配管につないで配置することを特徴とする、請求項10又は11に記載の装置。The apparatus according to claim 10 or 11 , characterized in that an oxidation-reduction potential measuring device (16a-c) is arranged connected to a connecting pipe between reactors. 酸性度及び/又は塩基性度の測定機器を反応槽につないで配置することを特徴とする、請求項1012のいずれか1つに記載の装置。The apparatus according to any one of claims 10 to 12 , wherein a measuring device for acidity and / or basicity is connected to a reaction vessel. 酸化還元電位の測定機器(16a〜c)が少なくとも1つの測定電極を含むことを特徴とする、請求項1013のいずれか1つに記載の装置。Device according to any one of claims 10 to 13 , characterized in that the measuring device (16a-c) of the redox potential comprises at least one measuring electrode.
JP2006521600A 2003-07-31 2004-07-15 Method and apparatus for controlling the separation of metals Expired - Fee Related JP4903042B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI20031119A FI116730B (en) 2003-07-31 2003-07-31 Method and apparatus for controlling demetallization
FI20031119 2003-07-31
PCT/FI2004/000455 WO2005010221A1 (en) 2003-07-31 2004-07-15 Method and apparatus for controlling metal separation

Publications (2)

Publication Number Publication Date
JP2007500786A JP2007500786A (en) 2007-01-18
JP4903042B2 true JP4903042B2 (en) 2012-03-21

Family

ID=27636144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006521600A Expired - Fee Related JP4903042B2 (en) 2003-07-31 2004-07-15 Method and apparatus for controlling the separation of metals

Country Status (18)

Country Link
US (1) US8021459B2 (en)
EP (1) EP1664358B1 (en)
JP (1) JP4903042B2 (en)
KR (1) KR101055073B1 (en)
CN (1) CN100362118C (en)
AT (1) ATE487804T1 (en)
AU (1) AU2004259869B2 (en)
BR (1) BRPI0413027B1 (en)
CA (1) CA2531772C (en)
DE (1) DE602004030022D1 (en)
EA (1) EA009626B1 (en)
ES (1) ES2355106T3 (en)
FI (1) FI116730B (en)
MX (1) MXPA06001155A (en)
NO (1) NO340160B1 (en)
PE (1) PE20050638A1 (en)
WO (1) WO2005010221A1 (en)
ZA (1) ZA200600796B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7639726B1 (en) 2009-03-20 2009-12-29 On-Ramp Wireless, Inc. Downlink communication
CN102628109B (en) * 2012-03-30 2013-11-13 中国林业科学研究院林产化学工业研究所 Complexing germanium depositing agent and application in germanium enriching in germanium-containing ore solution thereof
CN105483376B (en) * 2015-12-15 2017-11-14 江西理工大学 A kind of high-cobalt zinc sulfate solution removes cobalt agent and its Technology for removing cobalt
CN106350673B (en) * 2016-09-30 2017-12-15 中南大学 A kind of method for controlling current potential selective precipitation separation cobalt
KR101889680B1 (en) 2018-02-01 2018-08-17 고려아연 주식회사 Method for recovering Fe from zinc sulfate solution
CN112575200A (en) * 2020-12-08 2021-03-30 衢州华友钴新材料有限公司 Method for replacing and separating copper, zinc and manganese in inverse copper-manganese solution by using sulfide precipitation controlled electric position

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118160A (en) * 1984-10-30 1986-06-05 オウトクンプ オイ Measurement and control of electrochemical potential and/or component content in treatment process of expensive material
JPH0240551A (en) * 1988-08-01 1990-02-09 Jonan Kagaku Sangyo Kk Washing method of electrode by electrolysis
JPH07110314A (en) * 1993-10-08 1995-04-25 Dkk Corp Calibration method for ph measuring apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518189U (en) * 1974-07-04 1976-01-21
FI872488A (en) * 1987-06-03 1988-12-04 Outokumpu Oy SAETT ATT REGLERA MAENGDEN AV ZINKPULVER VID AVLAEGSNANDE AV ORENHETER I ZINKSULFATLOESNING.
CA2221779C (en) * 1995-06-07 2004-09-28 Cominco Ltd. Redox control in the electrodeposition of metals
JP4360696B2 (en) 1997-03-27 2009-11-11 日鉱金属株式会社 Copper leaching method from copper sulfide ore using bacteria
GB2367893B (en) * 1999-09-02 2003-11-12 Teijin Twaron Bv Process for determining the acidity of a washing solution for fibres
CN1345981A (en) * 2000-09-25 2002-04-24 中南大学 Process for enriching germanium and silver in zinc smelting process of heat acid leaching-ferro-alum method
DE10116614C5 (en) 2001-04-03 2008-10-16 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Automatable measuring, cleaning and calibration device for pH electrodes or electrodes for the measurement of redox potentials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118160A (en) * 1984-10-30 1986-06-05 オウトクンプ オイ Measurement and control of electrochemical potential and/or component content in treatment process of expensive material
JPH0762664B2 (en) * 1984-10-30 1995-07-05 オウトクンプ オイ Method for measuring and adjusting the electrochemical potential in a slurry
JPH0240551A (en) * 1988-08-01 1990-02-09 Jonan Kagaku Sangyo Kk Washing method of electrode by electrolysis
JPH07110314A (en) * 1993-10-08 1995-04-25 Dkk Corp Calibration method for ph measuring apparatus

Also Published As

Publication number Publication date
KR101055073B1 (en) 2011-08-05
CA2531772C (en) 2015-01-27
FI20031119A0 (en) 2003-07-31
ATE487804T1 (en) 2010-11-15
FI116730B (en) 2006-02-15
MXPA06001155A (en) 2006-04-24
EA200600299A1 (en) 2006-08-25
AU2004259869A1 (en) 2005-02-03
EA009626B1 (en) 2008-02-28
KR20060054375A (en) 2006-05-22
US8021459B2 (en) 2011-09-20
ES2355106T3 (en) 2011-03-22
BRPI0413027A (en) 2006-10-03
JP2007500786A (en) 2007-01-18
AU2004259869B2 (en) 2009-06-04
WO2005010221A1 (en) 2005-02-03
CN1829809A (en) 2006-09-06
BRPI0413027B1 (en) 2012-10-02
DE602004030022D1 (en) 2010-12-23
CA2531772A1 (en) 2005-02-03
EP1664358B1 (en) 2010-11-10
NO340160B1 (en) 2017-03-20
PE20050638A1 (en) 2005-09-02
CN100362118C (en) 2008-01-16
FI20031119A (en) 2005-02-01
US20070273071A1 (en) 2007-11-29
ZA200600796B (en) 2007-05-30
NO20060996L (en) 2006-02-28
EP1664358A1 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
CN102725086B (en) Method and arrangement for producing metal powder
JP3740491B1 (en) Fluorine adsorption / desorption agent capable of adsorbing and desorbing fluorine in electrolyte in zinc electrolytic smelting, and fluorine removal method using the fluorine adsorption / desorption agent
US8182697B2 (en) Method and apparatus for treating selenium-containing wastewater
JP4903042B2 (en) Method and apparatus for controlling the separation of metals
JP2009161803A (en) Nonferrous refining dust treatment method
JP2002511527A (en) Steel mill dust treatment method by wet processing
KR20090041305A (en) Producing method and cleaning method for scorodite
AU2004289843B2 (en) Method for removing thallium from a zinc-containing solution
JP4635231B2 (en) Zinc raw material processing method
JPS63312991A (en) Control of amount of zinc powder in removal of impurities from zinc sulfate solution
US4115222A (en) Method for electrolytic winning of lead
JP4673482B2 (en) Se and As-containing wastewater treatment methods
JP2000119764A (en) Adjusting method of copper concentration in leaching liquid in cleaning process of wet zinc metallurgy and adjusting equipment therefor
JP2019060018A (en) Separation method of zinc, manufacturing method of zinc material, and manufacturing method of iron material
JP2019060019A (en) Separation method of zinc, manufacturing method of zinc material, and manufacturing method of iron material
RU2743567C1 (en) Method of producing zinc powder from zinc-containing wastes
JP2019085618A (en) Recovery method of antimony
AU2004259870B2 (en) Method and apparatus for processing metalline sludge
RU2667927C1 (en) Method of producing of high purity copper
JP4735947B2 (en) Zinc raw material processing method
JP4914976B2 (en) Method for removing thallium from zinc sulfate solution
JP2023122674A (en) Analysis method for nickel raw material and smelting method for nickel
Kruyswijk Electrorefining of base metal refinery residue copper alloy for platinum group metal recovery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101102

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees