JP4901365B2 - Positioning system, positioning method and positioning program - Google Patents

Positioning system, positioning method and positioning program Download PDF

Info

Publication number
JP4901365B2
JP4901365B2 JP2006225986A JP2006225986A JP4901365B2 JP 4901365 B2 JP4901365 B2 JP 4901365B2 JP 2006225986 A JP2006225986 A JP 2006225986A JP 2006225986 A JP2006225986 A JP 2006225986A JP 4901365 B2 JP4901365 B2 JP 4901365B2
Authority
JP
Japan
Prior art keywords
reference point
propagation delay
point
measurement point
radio wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006225986A
Other languages
Japanese (ja)
Other versions
JP2008051568A (en
Inventor
友宏 増成
美明 武地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP2006225986A priority Critical patent/JP4901365B2/en
Publication of JP2008051568A publication Critical patent/JP2008051568A/en
Application granted granted Critical
Publication of JP4901365B2 publication Critical patent/JP4901365B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Description

本発明は、GPS衛星等の測位用衛星からの電波を利用する測位方法に関し、特に電波の対流圏伝播遅延に起因する測位誤差の低減に関する。   The present invention relates to a positioning method that uses radio waves from positioning satellites such as GPS satellites, and more particularly to reduction of positioning errors caused by tropospheric propagation delay of radio waves.

従来から、測定点および位置が既知である基準点にそれぞれ設置された受信装置でGPS衛星からの電波を受信して、受信した電波の搬送波の位相データ等から基準点に対する測定点の相対位置や測定点の三次元座標が干渉測位法によって求められている(例えば、特許文献1)。干渉測位法は、誤差が1cm程度以下の高い精度で測定点を測位できることから、測量や地盤変動の監視などに広く利用されている。ところで、GPS衛星からの電波が乾燥大気と水蒸気とからなる対流圏を通過するときに、電波が屈折して伝搬遅延が生じる。この伝搬遅延(以下、対流圏伝搬遅延という)は相対湿度などの気象条件の影響を受ける。対流圏伝搬遅延量は、干渉測位法によって測定点の位置を求めるときに必要な値であり、対流圏伝搬遅延量計算モデル、例えば下記の非特許文献1に示される修正Hopfieldモデルに気象条件(気温、相対湿度および大気圧)を代入することにより算出される。   Conventionally, radio waves from GPS satellites are received by receivers installed at reference points whose measurement points and positions are known, and the relative positions of the measurement points with respect to the reference points are determined from the phase data of the carrier waves of the received radio waves. The three-dimensional coordinates of the measurement point are obtained by the interference positioning method (for example, Patent Document 1). Interferometric positioning is widely used for surveying and monitoring of ground fluctuations because it can measure a measurement point with high accuracy with an error of about 1 cm or less. By the way, when a radio wave from a GPS satellite passes through a troposphere composed of dry air and water vapor, the radio wave is refracted to cause a propagation delay. This propagation delay (hereinafter referred to as tropospheric propagation delay) is affected by weather conditions such as relative humidity. The tropospheric propagation delay amount is a value required when the position of the measurement point is obtained by the interferometric positioning method. The tropospheric propagation delay amount calculation model, for example, the modified Hopfield model shown in Non-Patent Document 1 below, is applied to weather conditions (temperature, Relative humidity and atmospheric pressure) are substituted.

図5に示す基準点Psから測定点Paまでの直線距離(基線長)が長い(例えば100km)場合、上記モデルを使って対流圏伝搬遅延量を算出するためには、GPS衛星jから送信される電波の伝搬経路に沿っての気象条件の値が必要になるが、このような気象条件を観測することは難しい。そこで、標準気象条件(例えば、気温=20℃、相対湿度=50%、気圧=1010hPa)を上記モデルに代入して対流圏伝搬遅延量を算出している。このため、測定点Paと基準点Psの気象条件が標準気象条件と異なる場合や、測定点Paと基準点Psの気象条件が日時の経過にともなって変化する場合など、対流圏伝搬遅延量が正しく算出されず、測定点Paの測位に誤差が生じる。   When the linear distance (baseline length) from the reference point Ps to the measurement point Pa shown in FIG. 5 is long (for example, 100 km), the troposphere propagation delay amount is calculated using the above model, and is transmitted from the GPS satellite j. Although the value of the weather condition along the propagation path of a radio wave is needed, it is difficult to observe such a weather condition. Therefore, the tropospheric propagation delay amount is calculated by substituting standard weather conditions (for example, temperature = 20 ° C., relative humidity = 50%, atmospheric pressure = 1010 hPa) into the model. Therefore, the tropospheric propagation delay amount is correct when the weather conditions at the measurement point Pa and the reference point Ps are different from the standard weather conditions, or when the weather conditions at the measurement point Pa and the reference point Ps change with the passage of time. It is not calculated and an error occurs in the positioning of the measurement point Pa.

それに対し、基準点Psから測定点Pbまでの基線長が短い(例えば6km)場合、基準点Psで受信される電波の伝搬経路と測定点Pbで受信される電波の伝搬経路とが略同じであり、しかも両伝搬経路での気象条件も略同じであるので、相対測位法の1つである干渉測位法によって測定点Pbの位置を求めるときに両伝搬経路で生じる対流圏伝搬遅延量が相殺される。このことから、基線長が短い場合は気象条件の変化に応じて対流圏伝播遅延量を補正しなくてもよいとされてきた。   On the other hand, when the baseline length from the reference point Ps to the measurement point Pb is short (for example, 6 km), the propagation path of the radio wave received at the reference point Ps is substantially the same as the propagation path of the radio wave received at the measurement point Pb. In addition, since the weather conditions in both propagation paths are substantially the same, the tropospheric propagation delay amount generated in both propagation paths is canceled when the position of the measurement point Pb is obtained by the interference positioning method which is one of the relative positioning methods. The For this reason, it has been said that when the baseline length is short, the tropospheric propagation delay amount need not be corrected in accordance with changes in weather conditions.

特開平6−160509号公報(平成5年6月3日に提出された手続補正書による補正後の段落0012〜0017)Japanese Patent Laid-Open No. 6-160509 (paragraphs 0012 to 0017 after amendment according to the procedure amendment submitted on June 3, 1993) B.ホフマン−ウェレンホフ他2名著、西修二郎訳、GPS理論と応用、シュプリンガー・フェアラーク東京株式会社、2005年、頁122−133)B. Hoffman-Wellenhof and two other works, translated by Shujiro Nishi, GPS theory and application, Springer Fairlark Tokyo, 2005, pp. 122-133)

しかしながら、基線長が短くても、基準点Psと測定点Pc(図5参照)との間に高低差がある場合には、基準点Psで受信される電波の伝搬経路と測定点Pbで受信される電波の伝搬経路との間に高低差による伝搬経路差が生じ、両伝搬経路での対流圏伝搬遅延量が相殺されなくなる。この相殺されない対流圏伝搬遅延量は気象条件の影響を受けるため、気象条件の変化によって測定点Pcの測位に誤差が生じ、測定点Pcの変位や地盤変動などの真の挙動を見失うおそれがある。なお、特許文献1に示されるように、傾斜地に位置する測定点を測位する測位システムもあるが、大多数の測位は高低差の少ない平坦な地域で行われているため、上記の問題点については今まで十分に認識されていなかった。   However, even if the baseline length is short, if there is a difference in height between the reference point Ps and the measurement point Pc (see FIG. 5), the propagation path of the radio wave received at the reference point Ps and the reception at the measurement point Pb. A propagation path difference due to a difference in height occurs between the propagation path of the radio wave and the tropospheric propagation delay amount in both propagation paths is not canceled out. Since the tropospheric propagation delay amount that is not offset is affected by the weather conditions, an error occurs in the positioning of the measurement point Pc due to a change in the weather conditions, and there is a possibility of losing the true behavior such as the displacement of the measurement point Pc and ground deformation. In addition, as shown in Patent Document 1, there is a positioning system that measures a measurement point located on a sloping ground. However, since most of the positioning is performed in a flat area with a small difference in height, Has not been fully recognized until now.

本発明は、上記問題点を解決するものであって、その課題とするところは、基準点から測定点までの基線長が短い場合において、両地点間に高低差があっても、気象条件の変化の影響を受けることなく、測定点の位置を求めることのできる測位システム、測位方法および測位用プログラムを提供することにある。   The present invention solves the above problems, and the problem is that when the baseline length from the reference point to the measurement point is short, even if there is a height difference between the two points, An object of the present invention is to provide a positioning system, a positioning method, and a positioning program that can determine the position of a measurement point without being affected by changes.

第1の発明に係る測位システムは、位置が既知の基準点に設置され、測位衛星からの電波を受信して当該電波の位相に関するデータを求める基準点受信装置と、基準点からの基線長が15km以下と短い範囲内に位置するとともに、基準点に対して高低差のある所に位置する測定点に設置され、測位衛星からの電波を受信して当該電波の位相に関するデータを求める測定点受信装置と、基準点あるいは測定点の気温と相対湿度とを観測する気象観測装置と、測定点の位置を求める測定点位置算出手段と、を備える。この測定点位置算出手段は、気象観測装置で観測される気温と相対湿度とを少なくともウエット項を持つ対流圏伝播遅延量計算モデルのウエット項だけに代入することにより、基準点における電波の対流圏伝播遅延量と測定点における電波の対流圏伝播遅延量とを計算し、当該両対流圏伝播遅延量、基準点受信装置で求められる位相に関するデータ、測定点受信装置で求められる位相に関するデータ、および測位衛星の位置情報から測定点の位置を求める。
ここで、上記の電波の位相に関するデータとは、実施形態に示す位相差積算値に相当するものである。また、基準点から測定点までの基線長が短いこと、別の表現をすれば、基準点と気象条件(気温など)が略同じである範囲内に測定点が位置することが本発明の前提条件である。この範囲は基準点からの基線長が10km〜15km以下の範囲であると言われている。この前提条件が成り立つ範囲では、測位衛星から基準点へ至る電波の伝搬経路と測定点へ至る電波の伝搬経路との間隔が小さいため、両伝搬経路における対流圏の気象条件が同じであると看做すことができる。
A positioning system according to a first aspect of the present invention is a reference point receiving device that is installed at a reference point whose position is known, receives a radio wave from a positioning satellite and obtains data relating to the phase of the radio wave, and has a baseline length from the reference point Measurement point reception that is located within a short range of 15 km or less, and is located at a measurement point located at a height difference from the reference point, and receives radio waves from positioning satellites and obtains data related to the phase of the radio waves An apparatus, a meteorological observation device for observing the temperature and relative humidity of the reference point or measurement point, and a measurement point position calculating means for obtaining the position of the measurement point. This measurement point position calculation means substitutes the tropospheric propagation delay of the radio wave at the reference point by substituting only the wet term of the tropospheric propagation delay calculation model having at least the wet term with the temperature and relative humidity observed by the weather observation device. And the tropospheric propagation delay of the radio wave at the measurement point, both the tropospheric propagation delay, the phase data obtained by the reference point receiver, the data obtained by the measurement point receiver, and the position of the positioning satellite The position of the measurement point is obtained from the information.
Here, the data regarding the phase of the radio wave corresponds to the phase difference integrated value shown in the embodiment. The premise of the present invention is that the baseline length from the reference point to the measurement point is short, and in other words, the measurement point is located within a range where the reference point and the weather conditions (such as temperature) are substantially the same. It is a condition. This range is said to be a range in which the base line length from the reference point is 10 km to 15 km or less. In the range where this precondition is satisfied, the distance between the radio wave propagation path from the positioning satellite to the reference point and the radio wave propagation path to the measurement point is small, so the tropospheric weather conditions in both propagation paths are considered to be the same. I can do it.

上記のようにすることで、基準点および測定点でそれぞれ受信される電波の対流圏伝搬遅延量のうちで、基準点および測定点の高い方よりも上方の対流圏で生じる対流圏伝搬遅延量が、干渉測位法などによって測定点の位置(基準点に対する測定点の相対位置あるいは測定点の三次元座標)を求めるときに相殺される。したがって、基準点に対して高低差のある測定点の位置を求めるときに必要になる、両地点での電波の対流圏伝搬遅延量の差分は、基準点および測定点の高い方よりも上方の気象条件の影響を受けることがない。しかも、両地点での対流圏伝搬遅延量は、基準点あるいは測定点の気温と相対湿度とを対流圏伝搬遅延量計算モデルのウエット項に代入することにより計算されるので、その計算値には地上の気象条件が反映されており、上記の対流圏伝搬遅延量の差分にも地上の気象条件が反映される。これにより、基準点と測定点の間に高低差があっても、上空や地上の気象条件の変化の影響を受けることなく、上記のようにして計算された両地点での両対流圏伝播遅延量、基準点受信装置で求められる位相に関するデータ、測定点受信装置で求められる位相に関するデータ、および測位衛星の位置情報から測定点の位置を求めることができる。このことから、本発明に係る測位システムは、基準点に対して高低差のある測定点の地盤変動を監視する場合や、当該測定点の位置を求める場合などに好適であるといえる。   By doing the above, among the tropospheric propagation delay amounts of radio waves received at the reference point and the measurement point, the troposphere propagation delay amount generated in the troposphere above the higher one of the reference point and the measurement point is the interference. It is canceled when the position of the measurement point (relative position of the measurement point with respect to the reference point or the three-dimensional coordinates of the measurement point) is obtained by a positioning method or the like. Therefore, the difference in the tropospheric propagation delay of radio waves at both points, which is required when determining the position of the measurement point with a difference in height relative to the reference point, is the weather above the higher of the reference point and the measurement point. Not affected by conditions. Moreover, since the tropospheric propagation delay at both points is calculated by substituting the temperature and relative humidity at the reference point or measurement point into the wet term of the tropospheric propagation delay calculation model, Weather conditions are reflected, and ground weather conditions are also reflected in the difference in the tropospheric propagation delay. As a result, even if there is a difference in height between the reference point and the measurement point, the tropospheric propagation delay at both points calculated as described above is not affected by changes in weather conditions above the sky or on the ground. The position of the measurement point can be obtained from the data relating to the phase obtained by the reference point receiver, the data relating to the phase obtained by the measurement point receiver, and the position information of the positioning satellite. From this, it can be said that the positioning system according to the present invention is suitable for monitoring the ground fluctuation of a measurement point having a height difference with respect to the reference point, or for obtaining the position of the measurement point.

また、基準点あるいは測定点の気温と相対湿度とを対流圏伝搬遅延量計算モデルのウエット項だけに代入することにより対流圏伝搬遅延量を計算しているので、気温と相対湿度と大気圧とを当該モデルのウエット項およびドライ項に代入することにより対流圏伝搬遅延量を計算する場合や、標準気象条件(例えば、気温=20℃、相対湿度=50%)をウエット項だけに代入して計算する場合に比べて、測定点の測位結果が気象条件の変化の影響を受け難くなる。この点については実験的に確かめられている。上記の対流圏伝搬遅延量の差分は基準点と測定点との高低差によるものであるが、高低差に係る範囲内では上空に比べて水蒸気分圧が高く、しかも高低差は乾燥大気の高さ(約40km)よりも十分に小さいため、当該範囲内での対流圏伝搬遅延量は水蒸気分圧の影響を大きく受ける。このことから、水蒸気分圧に影響を与える相対湿度と気温とを入力データとするウエット項だけから対流圏伝搬遅延量を計算すれば、対流圏伝搬遅延量の差分の計算値が実際の値に近似して、測定点の測位結果が気象条件の変化の影響を受け難くなると考えられる。   Also, since the tropospheric propagation delay is calculated by substituting the temperature and relative humidity at the reference point or measurement point only into the wet term of the tropospheric propagation delay calculation model, the temperature, relative humidity, and atmospheric pressure are When calculating the tropospheric propagation delay by substituting into the wet and dry terms of the model, or when substituting the standard weather conditions (for example, temperature = 20 ° C., relative humidity = 50%) only into the wet terms Compared to, the positioning results of the measurement points are less affected by changes in weather conditions. This point has been confirmed experimentally. The difference in the amount of tropospheric propagation delay is due to the difference in height between the reference point and the measurement point, but within the range related to the difference in height, the water vapor partial pressure is higher than the sky, and the difference in height is the height of the dry atmosphere. Since it is sufficiently smaller than (about 40 km), the tropospheric propagation delay amount within the range is greatly affected by the partial pressure of water vapor. Therefore, if the tropospheric propagation delay amount is calculated only from the wet term using the relative humidity and temperature that affect the water vapor partial pressure as input data, the calculated value of the tropospheric propagation delay amount approximates the actual value. Therefore, it is considered that the positioning results at the measurement points are less affected by changes in weather conditions.

さらに、同じ気象観測装置で観測される気温と相対湿度とを対流圏伝搬遅延量計算モデルのウエット項に代入して、測定点および基準点での電波の対流圏伝搬遅延量を計算しているので、別々の気象観測装置で観測される気温と相対湿度とをそれぞれウエット項に代入して両地点での対流圏伝搬遅延量を計算したときに起きる問題が生じない。この問題とは、両気象観測装置の観測値の違いによって、基準点および測定点でそれぞれ受信される電波の対流圏伝搬遅延量のうちで、基準点および測定点の高い方よりも上方の対流圏で生じる対流圏伝搬遅延量が相殺されなくなって、測位誤差が発生することである。   Furthermore, because the temperature and relative humidity observed by the same weather observation device are substituted into the wet term of the tropospheric propagation delay calculation model, the tropospheric propagation delay of the radio wave at the measurement point and reference point is calculated. The problem that occurs when the tropospheric propagation delay at both points is calculated by substituting the temperature and relative humidity observed by different meteorological observation devices into the wet terms respectively. This problem is due to the difference in the observation values of both meteorological observation devices, in the troposphere above the higher of the reference point and the measurement point, among the tropospheric propagation delays of the radio waves received at the reference point and the measurement point, respectively. The amount of tropospheric propagation delay that occurs is no longer offset and a positioning error occurs.

第2の発明に係る測位システムは、位置が既知の基準点に設置され、測位衛星からの電波を受信して当該電波の位相に関するデータを求める基準点受信装置と、基準点からの基線長が15km以下と短い範囲内に位置するとともに、基準点に対して高低差のある所に位置する複数の測定点にそれぞれ設置され、測位衛星からの電波を受信して当該電波の位相に関するデータを求める測定点受信装置と、基準点あるいは各測定点の気温と相対湿度とを観測する単一または複数の気象観測装置と、各測定点の位置を求める測定点位置算出手段と、を備える。この測定点位置算出手段は、上記単一または複数の気象観測装置のいずれか1つで観測される気温と相対湿度とを、少なくともウエット項を持つ対流圏伝播遅延量計算モデルのウエット項だけに代入することにより、基準点における電波の対流圏伝播遅延量と各測定点における電波の対流圏伝播遅延量とを計算し、当該両該対流圏伝播遅延量、基準点受信装置で求められる位相に関するデータ、各測定点受信装置で求められる位相に関するデータ、および測位衛星の位置情報から各測定点の位置を求める。このようにすることで、複数の測定点にそれぞれ設置される測定点受信装置と、基準点あるいは各測定点の気温と相対湿度とを観測する単一または複数の気象観測装置とを備える測位システムにおいても、第1の発明と同様の作用効果が得られる。   A positioning system according to a second aspect of the present invention includes a reference point receiving device that is installed at a reference point whose position is known, receives a radio wave from a positioning satellite and obtains data relating to the phase of the radio wave, and has a baseline length from the reference point. Located within a short range of 15 km or less, and installed at each of a plurality of measurement points located at a height difference from the reference point, receives radio waves from positioning satellites and obtains data relating to the phase of the radio waves A measurement point receiving device, a single or a plurality of weather observation devices for observing the temperature and relative humidity of the reference point or each measurement point, and a measurement point position calculating means for obtaining the position of each measurement point are provided. This measuring point position calculating means substitutes the temperature and relative humidity observed by any one of the above-mentioned single or multiple weather observation devices only into the wet term of the tropospheric propagation delay calculation model having at least a wet term. By calculating the tropospheric propagation delay amount of the radio wave at the reference point and the tropospheric propagation delay amount of the radio wave at each measurement point, both the tropospheric propagation delay amount, the phase-related data obtained by the reference point receiver, each measurement The position of each measurement point is obtained from the phase-related data obtained by the point receiver and the position information of the positioning satellite. By doing in this way, a positioning system provided with a measuring point receiving device installed at each of a plurality of measuring points and a single or a plurality of weather observation devices for observing the reference point or the temperature and relative humidity of each measuring point In this case, the same effect as that of the first invention can be obtained.

第3の発明に係る測位方法は、位置が既知の基準点において測位衛星から受信した電波の位相に関するデータを求め、基準点からの基線長が15km以下と短い範囲内に位置するとともに、基準点に対して高低差のある所に位置する測定点において測位衛星から受信した電波の位相に関するデータを求め、基準点あるいは測定点の気温と相対湿度とを少なくともウエット項を持つ対流圏伝播遅延量計算モデルのウエット項だけに代入することにより、基準点における電波の対流圏伝播遅延量と測定点における電波の対流圏伝播遅延量とを計算し、当該両対流圏伝播遅延量、基準点において求められた位相に関するデータ、測定点において求められた位相に関するデータ、および測位衛星の位置情報から測定点の位置を求める。このようにすることで、第1の発明と同様の作用効果が得られる。 The positioning method according to the third invention obtains data relating to the phase of the radio wave received from the positioning satellite at a reference point whose position is known, and the base line length from the reference point is within a short range of 15 km or less, and the reference point A model for calculating the tropospheric propagation delay with at least a wet term for the temperature and relative humidity of the reference point or measurement point at the measurement point located at a height difference with respect to By substituting only in the wet term, the tropospheric propagation delay amount of the radio wave at the reference point and the tropospheric propagation delay amount of the radio wave at the measurement point are calculated, and both the tropospheric propagation delay amount and the phase data obtained at the reference point are calculated. The position of the measurement point is obtained from the phase-related data obtained at the measurement point and the position information of the positioning satellite. By doing in this way, the effect similar to 1st invention is acquired.

第4の発明に係る測位用プログラムは、位置が既知の基準点、あるいは基準点からの基線長が15km以下と短い範囲内に位置するとともに、基準点に対して高低差のある所に位置する測定点の気温と相対湿度とを、少なくともウエット項を持つ対流圏伝播遅延量計算モデルのウエット項だけに代入することにより、基準点において測位衛星から受信する電波の対流圏伝播遅延量と、測定点において測位衛星から受信する電波の対流圏伝播遅延量とを計算する手順と、上記手順で計算された両対流圏伝播遅延量、基準点において受信する電波の位相に関するデータ、測定点において受信する電波の位相に関するデータ、および測位衛星の位置情報から測定点の位置を求める手順と、をコンピュータに実行させる。このようにすることで、第1の発明と同様の作用効果が得られる。 The positioning program according to the fourth invention is located at a reference point whose position is known or within a short range where the base line length from the reference point is 15 km or less and at a height difference from the reference point. By substituting only the wet term of the tropospheric propagation delay calculation model with at least a wet term, the tropospheric propagation delay of the radio wave received from the positioning satellite at the reference point and the measurement point at the measurement point The procedure for calculating the tropospheric propagation delay of the radio wave received from the positioning satellite, the tropospheric propagation delay calculated in the above procedure, the data on the phase of the radio wave received at the reference point, and the phase of the radio wave received at the measurement point The computer is caused to execute a procedure for obtaining the position of the measurement point from the data and the position information of the positioning satellite. By doing in this way, the effect similar to 1st invention is acquired.

本発明によれば、基準点から測定点までの基線長が短い場合において、両地点間に高低差があっても、上空や地上の気象条件の変化の影響を受けることなく、測定点の位置を求めることができる。 According to the present invention, when the base line length from the reference point to the measurement point is short, even if there is a height difference between the two points, the position of the measurement point is not affected by the change in the weather conditions in the sky or on the ground. Can be requested.

以下、図面を参照して本発明の実施形態を説明する。図1は本発明に係る測位システムを示す。測位衛星であるGPS衛星j、kから送信される電波は、測定点に設置された受信装置uと位置が既知である基準点に設置された受信装置sとで受信される。受信装置sの近くには気象観測装置11が設けられている。受信装置u、sおよび気象観測装置11の出力信号は、それぞれケーブル13、14、15を介して解析装置12に送信される。また、基準点から測定点までの基線長は短く(例えば6km)、測定点は基準点よりも高い(例えば200m高い)位置にある。ここでは受信装置u、sなどの出力信号がそれぞれ解析装置12に送信されるが、解析装置12が受信装置u、sなどから遠く離れた場所に設置されている場合などには、受信装置u、sなどの出力信号は信号中継装置を介して解析装置12に送信される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a positioning system according to the present invention. Radio waves transmitted from GPS satellites j and k, which are positioning satellites, are received by a receiving device u installed at a measurement point and a receiving device s installed at a reference point whose position is known. A weather observation device 11 is provided near the reception device s. Output signals of the receiving devices u and s and the weather observation device 11 are transmitted to the analysis device 12 via cables 13, 14 and 15, respectively. The base line length from the reference point to the measurement point is short (for example, 6 km), and the measurement point is at a position higher (for example, 200 m higher) than the reference point. Here, output signals from the receiving devices u and s are transmitted to the analyzing device 12, respectively. However, when the analyzing device 12 is installed at a location far away from the receiving devices u and s, the receiving device u. , S and the like are transmitted to the analysis device 12 via the signal relay device.

受信装置u、sは、ハードウエア的には従来のものと同じであり、アンテナと受信機とから構成される。受信装置u、sは、GPS衛星j、kから送信された電波を受信し、電波の搬送波の位相データ(後述する位相差積算値のこと)や位相データの受信時刻、航法メッセージに含まれるGPS衛星j、kの軌道情報などを解析装置12に送信する。気象観測装置11は、地上の気温と相対湿度とを観測して観測値を解析装置12に送信する。解析装置12は、受信装置u、sから受信した位相データ等や気象観測値を用いて干渉測位法によって基準点に対する測定点の相対位置あるいは測定点の三次元座標を求め、さらに測位結果の表示や、測位結果に対する統計処理などを行う。ここでは解析装置12としてパーソナルコンピュータが使用される。   The receiving apparatuses u and s are the same as those in the conventional hardware, and are composed of an antenna and a receiver. The receiving devices u and s receive radio waves transmitted from the GPS satellites j and k, and receive the phase data of a radio wave carrier wave (phase difference integrated value described later), the reception time of the phase data, and the GPS included in the navigation message. The orbit information of the satellites j and k is transmitted to the analysis device 12. The weather observation device 11 observes the ground temperature and relative humidity, and transmits the observation value to the analysis device 12. The analysis device 12 obtains the relative position of the measurement point with respect to the reference point or the three-dimensional coordinates of the measurement point by the interference positioning method using the phase data received from the receiving devices u and s and the weather observation value, and further displays the positioning result. And statistical processing for positioning results. Here, a personal computer is used as the analysis device 12.

まず、干渉測位法の概要を以下に説明する。この干渉測位法に係る演算処理(後述する対流圏伝搬遅延量の計算も含む)は、上記の解析装置12にインストールされた測位用プログラムを解析装置12のCPUが実行することにより実現される。干渉測位法では、測定点および基準点の受信装置u、sにおいて、GPS衛星j、kの電波から再生された搬送波の位相(波数)と受信装置u、sで生成された搬送波のレプリカの位相(波数)との位相差が積算される。この積算された位相差(以下、位相差積算値という)は解析装置12に送信され、干渉測位法による演算処理の入力データとなる。GPS衛星jの電波に関して、ある時刻における受信装置uでの位相差積算値Φ および受信装置sでの位相差積算値Φ は、それぞれ下式で表される。
Φ =(ρ +I +T )/λ+c(δt−δt)/λ−N
Φ =(ρ +I +T )/λ+c(δt−δt)/λ−N
First, the outline of the interference positioning method will be described below. The arithmetic processing related to this interference positioning method (including calculation of the tropospheric propagation delay amount described later) is realized by the CPU of the analysis device 12 executing the positioning program installed in the analysis device 12 described above. In the interferometric positioning method, the phase of the carrier wave (wave number) regenerated from the radio waves of the GPS satellites j and k and the phase of the replica of the carrier wave generated by the receivers u and s at the receivers u and s at the measurement point and the reference point. The phase difference from (wave number) is integrated. This accumulated phase difference (hereinafter referred to as a phase difference accumulated value) is transmitted to the analysis device 12 and becomes input data for arithmetic processing by the interference positioning method. Respect Telecommunications GPS satellites j, the phase difference accumulation value [Phi j s in the phase difference accumulation value [Phi j u and receiving apparatus s of the receiving apparatus u at a given time are respectively represented by the following formula.
Φ j u = (ρ j u + I j u + T j u) / λ + c (δt j -δt u) / λ-N j u
Φ j s = (ρ j s + I j s + T j s ) / λ + c (δt j −δt s ) / λ−N j s

ここで、λは電波の搬送波の波長、cは真空中での電波の伝搬速度、ρ (ρ )はGPS衛星jと受信装置u(受信装置s)との距離、I (I )は受信装置u(受信装置s)で受信された電波の電離層伝搬遅延量(単位はm)、T (T )は受信装置u(受信装置s)で受信された電波の対流圏伝搬遅延量(単位はm)、δtはGPS衛星jの時計誤差、δt(δt)は受信装置u(受信装置s)の時計誤差である。N 、N は整数値バイアスであり、位相差積算値Φ 、Φ の積算時間に依存しない整数である。ここでは受信電波のマルチパスなどによって生じる誤差は省略されている。また、本発明は基線長が短いことを前提条件としているので、受信装置u、sでそれぞれ受信される電波の電離層伝搬遅延量I 、I は略等しいといえる。すなわち、I =I と見做すことができる。 Where λ is the wavelength of the carrier wave of the radio wave, c is the propagation speed of the radio wave in vacuum, ρ j uj s ) is the distance between the GPS satellite j and the receiving device u (receiving device s), and I j u (I j s ) is the ionospheric propagation delay amount (unit: m) of the radio wave received by the receiving device u (receiving device s), and T j u (T j s ) is received by the receiving device u (receiving device s). The amount of radio wave tropospheric propagation delay (unit: m), δt j is the clock error of GPS satellite j, and δt u (δt s ) is the clock error of receiver u (receiver s). N j u and N j s are integer value biases, and are integers that do not depend on the integration time of the phase difference integrated values Φ j u and Φ j s . Here, errors caused by multipath of received radio waves are omitted. Further, the present invention since the prerequisite that the base length is short, the receiving apparatus u, ionospheric propagation delay of radio waves received respectively by s I j u, I j s is said to substantially equal. That is, it can be assumed that I j u = I j s .

上記の位相差積算値Φ 、Φ から、下式で表される一重位相差Φ suが得られる。
Φ su=Φ −Φ =(ρ su+T su)/λ−cδtsu/λ−N su
ここで、ρ su=ρ −ρ 、T su=T −T 、δtsu=δt−δt、N su=N −N である。一重位相差をとることにより、電離層伝搬遅延量I 、I とGPS衛星jの時計誤差δtとが消去される。同様にして、GPS衛星kに関する一重位相差Φ suは下式で表される。
Φ su=Φ −Φ =(ρ su+T su)/λ−cδtsu/λ−N su
The above phase difference accumulation value [Phi j u, from [Phi j s, singlet phase difference [Phi j su represented by the following formula is obtained.
Φ j su = Φ j u -Φ j s = (ρ j su + T j su) / λ-cδt su / λ-N j su
Here, a ρ j su = ρ j u -ρ j s, T j su = T j u -T j s, δt su = δt u -δt s, N j su = N j u -N j s. By taking the single phase difference, the ionospheric propagation delay amounts I j u and I j s and the clock error δt j of the GPS satellite j are eliminated. Similarly, the single phase difference Φ k su for the GPS satellite k is expressed by the following equation.
Φ k su = Φ k u −Φ k s = (ρ k su + T k su ) / λ−cδt su / λ−N k su

上記の一重位相差Φ su、Φ suから、下式で表される二重位相差Φjk suが得られる。
Φjk su=Φ su−Φ su=(ρjk su+Tjk su)/λ−Njk su (1)
ここで、ρjk su、Tjk su、Njk suは、それぞれ下式で表される。
ρjk su=ρ −ρ −ρ +ρ
jk su=T −T −T +T
jk su=N −N −N +N
二重位相差をとることにより、受信装置u、sの時計誤差δtsuが消去される。
From the single phase differences Φ j su and Φ k su , a double phase difference Φ jk su expressed by the following equation is obtained.
Φ jk su = Φ k su −Φ j su = (ρ jk su + T jk su ) / λ−N jk su (1)
Here, ρ jk su , T jk su , and N jk su are represented by the following equations, respectively.
ρ jk su = ρ k u -ρ k s -ρ j u + ρ j s
T jk su = T k u -T k s -T j u + T j s
N jk su = N k u -N k s -N j u + N j s
By taking the double phase difference, the clock error δt su of the receiving devices u and s is eliminated.

上記の二重位相差Φjk suは受信装置u、sでの観測値であり、対流圏伝搬遅延量Tjk su(T 、T 、T 、T )は計算で求められる。計算方法については後述する。したがって、整数値バイアスNjk suが決定されれば、ρjk suが求められる。ρjk suは未知数として測定点の三次元座標を含むから、4つ以上のGPS衛星からの電波の位相差積分値を観測して、3つ以上の独立な二重位相差を求めれば、3つの未知数の解が得られる。なお、基準点の三次元座標は既知であり、GPS衛星の位置は航法メッセージに含まれる軌道情報などから算出される。上記の整数値バイアスは時刻に依存しない整数であるので、所定の時間間隔ごとに得られる3つ以上の独立な二重位相差を用いて、従来からの方法で整数値バイアスが決定される。一度、整数値バイアスが決定されると、電波の受信が中断しない限りその値は保持され、上記の式(1)を用いて測定点の位置を時刻ごとに連続して計算することができる。 Additional double phase difference [Phi jk su is the observed value of the receiving apparatus u, s, tropospheric propagation delay T jk su (T j u, T j s, T k u, T k s) is determined by calculation It is done. The calculation method will be described later. Therefore, if the integer value bias N jk su is determined, ρ jk su is obtained. Since ρ jk su includes the three-dimensional coordinates of the measurement point as an unknown, observing the phase difference integral value of radio waves from four or more GPS satellites to obtain three or more independent double phase differences, 3 Two unknown solutions are obtained. Note that the three-dimensional coordinates of the reference point are known, and the position of the GPS satellite is calculated from orbit information included in the navigation message. Since the integer bias is an integer that does not depend on time, the integer bias is determined by a conventional method using three or more independent double phase differences obtained at predetermined time intervals. Once the integer value bias is determined, the value is held unless reception of radio waves is interrupted, and the position of the measurement point can be calculated continuously for each time using the above equation (1).

次に、上記の式(1)に代入される対流圏伝搬遅延量の求め方について説明する。本実施形態では、非特許文献1に示される対流圏伝搬遅延量計算モデルである修正Hopfieldモデルに気象観測装置11の観測値を代入することにより対流圏伝搬遅延量T 等を求める。上記モデルで算出される対流圏伝搬遅延量をΔR(単位はm)とすると、ΔR=ΔRw+ΔRdと表される。ΔRwはウエット項であり、地上から約11kmの高さまで存在する水蒸気を含む湿潤大気に起因する伝搬遅延量である。ΔRdはドライ項であり、地上から約40kmの高さまで存在する乾燥大気に起因する伝搬遅延量である。以下にウエット項ΔRwとドライ項ΔRdとを示す。

Figure 0004901365
Next, how to obtain the tropospheric propagation delay amount substituted into the above equation (1) will be described. In this embodiment, it obtains the troposphere propagation delay T j u like by substituting the observed value of the meteorological observation system 11 in modified Hopfield model is tropospheric propagation delay calculation model shown in Non-Patent Document 1. When the tropospheric propagation delay amount calculated by the above model is ΔR (unit: m), ΔR = ΔRw + ΔRd. ΔRw is a wet term, and is a propagation delay amount caused by a moist atmosphere including water vapor existing up to a height of about 11 km from the ground. ΔRd is a dry term, which is a propagation delay amount due to the dry atmosphere existing up to a height of about 40 km from the ground. The wet term ΔRw and the dry term ΔRd are shown below.
Figure 0004901365

図2に示すように、Rは地球の半径、hは観測点(基準点あるいは測定点)の地表からの高さ、zは観測点から見たGPS衛星の天頂角、rは地球の中心から電波の伝搬経路と地表からの高さがhの湿潤大気の上側境界面とが交わる点までの距離、rは地球の中心から電波の伝搬経路と地表からの高さがhの乾燥大気の上側境界面とが交わる点までの距離、rは地球の中心から電波の伝搬経路上の任意の点までの距離である。 As shown in FIG. 2, RE is the radius of the earth, h is the height of the observation point (reference point or measurement point) from the ground surface, z 0 is the zenith angle of the GPS satellite viewed from the observation point, and r w is the earth distance from the center to the point where the height from the propagation path and ground radio wave intersection between the upper boundary surface of the wet atmosphere h w, r d is the height of the radio propagation path and surface from the center of the earth h The distance to the point where the upper boundary surface of the dry atmosphere of d intersects, and r is the distance from the center of the earth to an arbitrary point on the propagation path of the radio wave.

w,0は地球の表面における湿潤大気の屈折指数であり、Nd,0は地球の表面における乾燥大気の屈折指数である。Nw,0、Nd,0は、それぞれ下式で表される。
w,0=−12.96e/T+3.718・10e/T
d,0=77.64p/T
ここで、Tはケルビン温度、pはhPaで表した大気圧である。eはhPa単位の水蒸気分圧であり、以下に示すようにケルビン温度Tと相対湿度Hとで表される。
e=0.01H・exp(−37.2465+0.213166T
−0.00025698T) (4)
N w, 0 is the refractive index of the wet atmosphere at the surface of the earth, and N d, 0 is the refractive index of the dry atmosphere at the surface of the earth. N w, 0 and N d, 0 are each represented by the following equation.
N w, 0 = -12.96 e / T + 3.718 · 10 5 e / T 2
N d, 0 = 77.64p / T
Here, T is the Kelvin temperature, and p is the atmospheric pressure expressed in hPa. e is the water vapor partial pressure in hPa units, and is expressed by the Kelvin temperature T and the relative humidity H as shown below.
e = 0.01H · exp (−37.2465 + 0.213166T
-0.00025698T 2 ) (4)

以上では、ウエット項ΔRwとドライ項ΔRdとについて説明したが、本発明ではウエット項ΔRwだけを用いて対流圏伝搬遅延量が計算される。具体的には、気象観測装置11で観測された気温と相対湿度とがウエット項ΔRwに代入され、計算結果が対流圏伝搬遅延量として上記の式(1)のTjk su(T など)に代入される。ウエット項ΔRwだけを用いる理由については後述する Although the wet term ΔRw and the dry term ΔRd have been described above, the tropospheric propagation delay amount is calculated using only the wet term ΔRw in the present invention. Specifically, the observed temperature by weather stations 11 and relative humidity is substituted for the wet section DerutaRw, calculation results (such as T j u) T jk su of formula as tropospheric propagation delay (1) Is assigned to The reason for using only the wet term ΔRw will be described later.

上記の式(2)から分かるように、ウエット項ΔRwの値を計算するためには、観測点から見たGPS衛星の天頂角z(図2参照)と観測点の高さhの値が必要である。基準点における天頂角zは、既知の座標とGPS衛星の位置とから計算可能である。測定点の高さhと測定点における天頂角zについては、予め単独測位あるいはディッファレンシャルGPS測位によってラフな値が求められる。干渉測位法では測定点の測位が繰り返し行われるが、初回の測位では上記のラフな値の高さhと天頂角zとが式(2)に代入される。2回目以降の測位では前回の測位結果から得られた測定点の高さhと天頂角zとが式(2)に代入される。このようにして、式(2)に代入される高さhおよび天頂角zの精度と測定点の測位精度とが次第に高まっていく。 As can be seen from the above equation (2), in order to calculate the value of the wet term ΔRw, the zenith angle z 0 (see FIG. 2) of the GPS satellite viewed from the observation point and the height h of the observation point are is necessary. The zenith angle z 0 at the reference point can be calculated from the known coordinates and the position of the GPS satellite. As for the height h of the measurement point and the zenith angle z 0 at the measurement point, rough values are obtained in advance by single positioning or differential GPS positioning. In the interferometric positioning method, positioning of the measurement point is repeatedly performed. In the first positioning, the rough height h and the zenith angle z 0 are substituted into the equation (2). In the second and subsequent positioning, the height h of the measurement point and the zenith angle z 0 obtained from the previous positioning result are substituted into the equation (2). In this way, the accuracy of the height h and the zenith angle z 0 assigned to the equation (2) and the positioning accuracy of the measurement point gradually increase.

上述の実施形態では、基準点から測定点までの基線長が短いこと、別の表現をすれば、基準点と気象条件(気温など)が略同じである範囲内に測定点が位置することを前提条件としている。この範囲は基準点からの基線長が10km〜15km以下の範囲であると言われている。この前提条件が成り立つ範囲では、GPS衛星j、kから基準点へ至る電波の伝搬経路と測定点へ至る電波の伝搬経路との間隔が小さいため、両伝搬経路における対流圏の気象条件(気温など)が同じであると看做すことができる。このため、基準点および測定点でそれぞれ受信される電波の対流圏伝搬遅延量(例えば上記のT 、T )のうちで、図1に示す測定点よりも上方の対流圏で生じる対流圏伝搬遅延量が、干渉測位法によって測定点の位置を求めるときに相殺される。これにより、測定点の位置を求めるときに必要になる、両地点での電波の対流圏伝搬遅延量の差分(例えば上記のT −T )は、測定点よりも上方の気象条件の影響を受けることがない。しかも、両地点での対流圏伝搬遅延量は、気象観測装置11で観測された気温と相対湿度とを修正Hopfieldモデルのウエット項ΔRwに代入することにより計算されるので、その計算値には地上の気象条件が反映されており、上記の対流圏伝搬遅延量の差分にも地上の気象条件が反映される。これにより、基準点と測定点の間に高低差があっても、上空や地上の気象条件の変化の影響を受けることなく、上記のようにして計算された両地点での両対流圏伝播遅延量を用いて測定点の位置を求めることができる。 In the above-described embodiment, the baseline length from the reference point to the measurement point is short, and in other words, the measurement point is located within a range where the reference point and the weather conditions (such as temperature) are substantially the same. It is a prerequisite. This range is said to be a range in which the base line length from the reference point is 10 km to 15 km or less. In the range where this precondition is satisfied, the distance between the radio wave propagation path from the GPS satellites j and k to the reference point and the radio wave propagation path to the measurement point is small, so the tropospheric weather conditions (temperature, etc.) in both propagation paths Can be regarded as the same. Therefore, tropospheric propagation delay of radio waves received respectively by the reference point and the measurement point (such as the above-mentioned T j u, T j s) Of, tropospheric propagation occurring above the troposphere than the measurement points shown in FIG. 1 The amount of delay is canceled when the position of the measurement point is obtained by the interference positioning method. This makes it necessary when determining the position of the measuring points, the difference between the radio wave troposphere propagation delay in both locations (e.g., above T j u -T j s) is above the weather conditions than the measurement point Not affected. In addition, the tropospheric propagation delay at both points is calculated by substituting the temperature and relative humidity observed by the meteorological observation device 11 into the wet term ΔRw of the modified Hopfield model. Weather conditions are reflected, and ground weather conditions are also reflected in the difference in the tropospheric propagation delay. As a result, even if there is a difference in height between the reference point and the measurement point, the tropospheric propagation delay at both points calculated as described above is not affected by changes in weather conditions above the sky or on the ground. Can be used to determine the position of the measurement point.

また、上述の実施形態では、気象観測装置11で観測された気温と相対湿度とを上記モデルのウエット項ΔRwだけに代入することにより対流圏伝搬遅延量を計算している。このように計算する方が、気温と相対湿度と大気圧とを上記モデルのウエット項ΔRwおよびドライ項ΔRdに代入することにより対流圏伝搬遅延量を計算する場合や、標準気象条件(例えば、気温=20℃、相対湿度=50%)をウエット項ΔRwだけに代入して計算する場合に比べて、測定点の測位結果が気象条件の変化の影響を受け難くなる。この点については、後述するように実験的に確かめられている。上記の対流圏伝搬遅延量の差分は基準点と測定点との高低差によるものであるが、高低差に係る範囲内では上空に比べて水蒸気分圧が高く、しかも高低差は乾燥大気の高さ(約40km)よりも十分に小さいため、当該範囲内での対流圏伝搬遅延量は水蒸気分圧の影響を大きく受ける。このことから、水蒸気分圧に影響を与える相対湿度と気温とを入力データとするウエット項ΔRwだけから対流圏伝搬遅延量を計算すれば、対流圏伝搬遅延量の差分の計算値が実際の値に近似して、測定点の測位結果が気象条件の変化の影響を受け難くなると考えられる。なお、修正Hopfieldモデルなどの対流圏伝搬遅延量計算モデルは、経験的に決められたものであり、地球上の全地域の気象条件に最適なようにモデル化されているわけではない。   In the above-described embodiment, the tropospheric propagation delay amount is calculated by substituting only the wet term ΔRw of the model with the temperature and relative humidity observed by the meteorological observation device 11. This calculation is performed when the tropospheric propagation delay amount is calculated by substituting the temperature, relative humidity, and atmospheric pressure into the wet term ΔRw and the dry term ΔRd of the above model, or when the standard weather condition (for example, temperature = Compared to the case where calculation is performed by substituting only the wet term ΔRw for 20 ° C. and relative humidity = 50%), the positioning result at the measurement point is less affected by changes in weather conditions. This point has been experimentally confirmed as described later. The difference in the amount of tropospheric propagation delay is due to the difference in height between the reference point and the measurement point, but within the range related to the difference in height, the water vapor partial pressure is higher than the sky, and the difference in height is the height of the dry atmosphere. Since it is sufficiently smaller than (about 40 km), the tropospheric propagation delay amount within the range is greatly affected by the partial pressure of water vapor. Therefore, if the tropospheric propagation delay amount is calculated only from the wet term ΔRw using the relative humidity and temperature affecting the water vapor partial pressure as input data, the calculated value of the difference in the tropospheric propagation delay amount approximates the actual value. Thus, it is considered that the positioning result of the measurement point is not easily affected by changes in weather conditions. Note that tropospheric propagation delay calculation models such as the modified Hopfield model are determined empirically and are not modeled optimally for the weather conditions of all regions on the earth.

さらに、上述の実施形態では、気象観測装置11で観測される気温と相対湿度とを上記モデルのウエット項ΔRwに代入して、測定点および基準点での電波の対流圏伝搬遅延量を計算している。別々の気象観測装置で観測される気温と相対湿度とをそれぞれウエット項ΔRwに代入して両地点での対流圏伝搬遅延量を計算すると、両気象観測装置の観測値の違いによって、基準点および測定点でそれぞれ受信される電波の対流圏伝搬遅延量のうちで、図1に示す測定点よりも上方の対流圏で生じる対流圏伝搬遅延量が相殺されなり、測位誤差が生じてしまう。また、相対湿度を高い精度で観測することは難しいとされている。   Further, in the above-described embodiment, the temperature and relative humidity observed by the weather observation device 11 are substituted into the wet term ΔRw of the above model, and the tropospheric propagation delay amount of the radio wave at the measurement point and the reference point is calculated. Yes. Substituting the temperature and relative humidity observed by separate meteorological observation devices into the wet term ΔRw, and calculating the tropospheric propagation delay at both locations, the reference point and measurement will differ depending on the difference in the observation values of both meteorological observation devices. Among the tropospheric propagation delay amounts of the radio waves received at the respective points, the tropospheric propagation delay amount generated in the troposphere above the measurement point shown in FIG. 1 is canceled out, resulting in a positioning error. It is also difficult to observe relative humidity with high accuracy.

さらに、上述の実施形態では、基準点の近くに気象観測装置11が配置されている。これは、山頂にある測定点の周辺は足場が悪く、その近くに気象観測装置を設置するが難しいからである。また、上述のようにウエット項ΔRwだけから対流圏伝搬遅延量を計算していることから、ウエット項ΔRwに影響を与える相対湿度の高い位置(図1では基準点)の近くで気象条件を観測した方が、上記の対流圏伝搬遅延量の差分の計算値が実際の値に近くなるとも考えられる。なお、測定点あるいは基準点の気象条件を両地点の間に設置した気象観測装置で観測するようにすることもできる。また、基準点と測定点との高低差が50m未満であると、両地点での対流圏伝搬遅延量が略相殺されるため、本発明の顕著な効果は高低差が50m以上の場合に得られる。ただし、高低差が50m未満の場合に本発明を実施しても不都合はない。   Furthermore, in the above-described embodiment, the weather observation apparatus 11 is arranged near the reference point. This is because the area around the measurement point at the top of the mountain has a poor footing and it is difficult to install a weather observation device near it. Further, since the tropospheric propagation delay amount is calculated only from the wet term ΔRw as described above, the weather condition was observed near a position (reference point in FIG. 1) having a high relative humidity that affects the wet term ΔRw. On the other hand, the calculated value of the difference in the tropospheric propagation delay may be closer to the actual value. Note that the meteorological conditions at the measurement point or the reference point may be observed with a meteorological observation device installed between the two points. Further, if the difference in height between the reference point and the measurement point is less than 50 m, the tropospheric propagation delay amount at both points is substantially offset, so that the remarkable effect of the present invention is obtained when the difference in height is 50 m or more. . However, there is no inconvenience even if the present invention is implemented when the height difference is less than 50 m.

次に、国内のある場所で行った本発明の実施例について説明する。この場所では、基準点から測定点までの基線長が9.4kmであり、測定点は基準点よりも412m高い位置にある。気象観測装置は、基準点の近くに設置されており、気温と相対湿度と大気圧とを観測する。また、測定点および基準点にそれぞれ設置された受信装置の出力信号と気象観測装置の出力信号とは、信号中継装置に送られる。信号中継装置は、これらの信号をインターネット経由で解析装置に送信する。   Next, an embodiment of the present invention performed at a certain place in the country will be described. In this place, the baseline length from the reference point to the measurement point is 9.4 km, and the measurement point is at a position 412 m higher than the reference point. The meteorological observation device is installed near the reference point, and observes temperature, relative humidity, and atmospheric pressure. Further, the output signal of the receiving device and the output signal of the meteorological observation device respectively installed at the measurement point and the reference point are sent to the signal relay device. The signal relay device transmits these signals to the analysis device via the Internet.

図3(a)は、約2年間にわたって1日1回ずつ測位した基準点に対する測定点の相対位置の高さ成分の値(初日の測位値を基準とする値)を、所定のトレンドモデルで平滑化して得られた予測曲線を示す。この予測曲線の標準偏差は0.01cmであった。本実施例では、ウエット項ΔRw(式(2)参照)に気象観測された気温と相対湿度を代入して対流圏伝搬遅延量が算出された。なお、測定点の相対位置の水平方向(東西方向および南北方向)成分については、基線長が短いため測定点での電波の対流圏伝搬遅延量と基準点での電波の対流圏伝搬遅延量が相殺され、測位結果が気象条件の変化の影響を殆ど受けないため、図示を省略している。   FIG. 3 (a) shows the value of the height component of the relative position of the measurement point with respect to the reference point measured once a day for about two years (value based on the positioning value on the first day) using a predetermined trend model. The prediction curve obtained by smoothing is shown. The standard deviation of this prediction curve was 0.01 cm. In this example, the tropospheric propagation delay amount was calculated by substituting the temperature and relative humidity observed in the weather into the wet term ΔRw (see Equation (2)). For the horizontal component (east-west direction and north-south direction) of the relative position of the measurement point, since the baseline length is short, the tropospheric propagation delay amount of the radio wave at the measurement point and the tropospheric propagation delay amount of the radio wave at the reference point are offset. Since the positioning result is hardly affected by changes in weather conditions, the illustration is omitted.

図3(b)は第1の比較例の予測曲線を示す。この比較例では、標準気象条件(気温=20℃、相対湿度=50%)をウエット項ΔRwに代入して対流圏伝搬遅延量が算出された。また、予測曲線の標準偏差は0.1cmであった。図3(c)は第2の比較例の予測曲線を示す。この比較例では、ウエット項ΔRwおよびドライ項ΔRd(式(2)、(3)参照)に気象観測された気温と相対湿度と大気圧とを代入して対流圏伝搬遅延量が算出された。また、予測曲線の標準偏差は0.03cmであった。図3(a)〜(c)から以下のことが分かる。標準気象条件を用いる比較例1では、高温多湿の夏季と低温乾燥の冬季とで対流圏伝搬遅延量が変動して測定点の相対位置の高さ成分の測位値も大きく変動する。ウエット項ΔRwとドライ項ΔRdの加算値を対流圏伝搬遅延量とする第2の比較例では、気象条件の変化が測位値に与える影響が小さくなっているが十分とはいえない。本発明の実施例では測位値が年間を通じて略一定である。すなわち、基準点に対する測定点の相対位置が気象条件の変化の影響を受けずに求められている。   FIG. 3B shows a prediction curve of the first comparative example. In this comparative example, the tropospheric propagation delay amount was calculated by substituting standard weather conditions (temperature = 20 ° C., relative humidity = 50%) into the wet term ΔRw. The standard deviation of the prediction curve was 0.1 cm. FIG. 3C shows a prediction curve of the second comparative example. In this comparative example, the tropospheric propagation delay amount was calculated by substituting the temperature, relative humidity, and atmospheric pressure observed in the weather into the wet term ΔRw and the dry term ΔRd (see equations (2) and (3)). The standard deviation of the prediction curve was 0.03 cm. The following can be seen from FIGS. In Comparative Example 1 using standard weather conditions, the tropospheric propagation delay amount varies between the hot and humid summer and the low temperature dry winter, and the positioning value of the height component of the relative position of the measurement point also varies greatly. In the second comparative example in which the addition value of the wet term ΔRw and the dry term ΔRd is the tropospheric propagation delay amount, the influence of the change in the weather conditions on the positioning value is small, but it is not sufficient. In the embodiment of the present invention, the positioning value is substantially constant throughout the year. That is, the relative position of the measurement point with respect to the reference point is obtained without being affected by changes in weather conditions.

以上では、図1に示す基準点、測定点および気象観測装置11の配置に基づいて本発明の実施形態を説明した。ここでは他の配置例について図4を参照しつつ簡単に説明する。図4では、基準点を黒丸、測定点を白丸、気象観測装置を四角形で表す。GPS衛星、受信装置および解析装置の図示は省略されている。ここでも基準点から全ての測定点までの基線長は短いものとする。図4(a)では、1つの気象観測装置24が基準点21の近くに設けられており、この気象観測装置24の観測値を用いて基準点21よりも高い位置にある2つの測定点22、23の測位が行われる。図4(b)では、上述のように、相対湿度の高い地点(測定点および基準点のうちで低い方の地点)での気象観測値を対流圏伝搬遅延量の計算に用いるのが望ましいと考えられることから、下側の測定点33の近くに1つの気象観測装置34が設けられている。この気象観測装置34の観測値を用いて基準点31よりも低い位置にある2つの測定点32、33の測位が行われる。   The embodiment of the present invention has been described above based on the arrangement of the reference points, measurement points, and weather observation apparatus 11 shown in FIG. Here, another arrangement example will be briefly described with reference to FIG. In FIG. 4, the reference point is represented by a black circle, the measurement point is represented by a white circle, and the meteorological observation device is represented by a square. Illustration of the GPS satellite, the receiving device, and the analyzing device is omitted. Again, the baseline length from the reference point to all measurement points is assumed to be short. In FIG. 4A, one weather observation device 24 is provided near the reference point 21, and two measurement points 22 located at a position higher than the reference point 21 using the observation values of the weather observation device 24. , 23 positioning is performed. In FIG. 4B, as described above, it is desirable to use the meteorological observation value at the point where the relative humidity is high (the lower one of the measurement point and the reference point) for calculating the tropospheric propagation delay amount. Therefore, one meteorological observation device 34 is provided near the lower measurement point 33. Using the observation value of the meteorological observation device 34, positioning of the two measurement points 32 and 33 located at a position lower than the reference point 31 is performed.

図4(c)では、基準点41から2つの測定点42、43までの基線長は短いが、2つの測定点42、43の間の距離は長く、しかも山頂にある基準点41の周辺の足場が悪い。このため、基準点41よりも低い位置にある2つの測定点42、43の近くにそれぞれ気象観測装置44、45が設けられている。測定点42の測位を行う場合、その近くの気象観測装置44の観測値を用いて測定点42および基準点41で受信される電波の対流圏伝搬遅延量が計算される。測定点43の測位を行う場合、その近くの気象観測装置45の観測値を用いて、測定点43および基準点41で受信される電波の対流圏伝搬遅延量が計算される。もし、基準点41の周辺の足場が良く、その近くに気象観測装置を設けることができれば、この気象観測装置の観測値を用いて測定点42、43の測位を行うことができる。なお、図4(a)〜(c)に示す測位システムは、それぞれ図1に示すシステムを2つ含むシステムであると考えることもできる。   In FIG. 4C, the base line length from the reference point 41 to the two measurement points 42 and 43 is short, but the distance between the two measurement points 42 and 43 is long, and the area around the reference point 41 at the top of the mountain is The scaffolding is bad. For this reason, meteorological observation devices 44 and 45 are provided in the vicinity of the two measurement points 42 and 43 at positions lower than the reference point 41, respectively. When positioning the measurement point 42, the tropospheric propagation delay amount of the radio wave received at the measurement point 42 and the reference point 41 is calculated using the observation value of the nearby weather observation device 44. When positioning the measurement point 43, the tropospheric propagation delay amount of the radio wave received at the measurement point 43 and the reference point 41 is calculated using the observation value of the nearby weather observation device 45. If the scaffolding around the reference point 41 is good and a meteorological observation device can be provided in the vicinity, the measurement points 42 and 43 can be measured using the observation values of the meteorological observation device. Note that the positioning systems shown in FIGS. 4A to 4C can be considered as systems each including two systems shown in FIG.

以上述べた実施形態においては、修正Hopfieldモデルのウエット項ΔRwだけを用いて対流圏伝搬遅延量を計算したが、ウエット項とドライ項とからなる他の対流圏伝搬遅延量計算モデル、例えば非特許文献1に示されるHopfieldモデルや簡易化Hopfieldモデルなどのウエット項を用いることもできる。簡易化Hopfieldモデルのウエット項ΔRwsを以下に示す。

Figure 0004901365
ここで、eは水蒸気圧、Tはケルビン温度、θは観測点でのGPS衛星の仰角、hおよびhは図2に示すものである。水蒸気圧eは上記の式(4)で定義される。対流圏伝搬遅延量計算モデルは、低仰角(概ね15度以下)の人工衛星(GPS衛星以外のものも含む)からの電波の対流圏伝搬遅延量の計算精度を高めるために適宜修正・改良されているが、測定点の測位では低仰角のGPS衛星からの電波を使わないようにしているので、どのモデルを使っても大差はないと考えられる。また、少なくともウエット項を持つ対流圏伝搬遅延量計算モデルのウエット項だけを用いて対流圏伝搬遅延量を計算することもできると考えられる。 In the embodiment described above, the tropospheric propagation delay amount is calculated using only the wet term ΔRw of the modified Hopfield model. However, other tropospheric propagation delay amount calculation models including a wet term and a dry term, for example, Non-Patent Document 1 Wet terms such as the Hopfield model and the simplified Hopfield model shown in FIG. The wet term ΔRws of the simplified Hopfield model is shown below.
Figure 0004901365
Here, e is the water vapor pressure, T is the Kelvin temperature, θ is the elevation angle of the GPS satellite at the observation point, and h w and h are those shown in FIG. The water vapor pressure e is defined by the above equation (4). The tropospheric propagation delay calculation model has been appropriately modified and improved to improve the calculation accuracy of the tropospheric propagation delay of radio waves from satellites (including those other than GPS satellites) with a low elevation angle (approximately 15 degrees or less). However, it is considered that there is not much difference in using any model because the radio wave from the low elevation angle GPS satellite is not used in the measurement point positioning. It is also possible to calculate the tropospheric propagation delay amount using only the wet term of the tropospheric propagation delay calculation model having at least a wet term.

また、上記実施形態では、測定点および基準点の受信装置u、sと気象観測装置11とで観測されたデータを用いて解析装置12で干渉測位法によって測定点の位置を求めるようにしたが、測定点の受信装置uおよび気象観測装置11で観測されたデータを基準点の受信装置sに送信し、受信装置sで測定点の位置を求めるようにしてもよい。さらに、上記実施形態では、干渉測位法によって測定点の位置を求めたが、測定点および基準点でそれぞれ受信される電波の対流圏伝搬遅延量の差分を用いる他の測位方法においても本発明を実施することができる。   In the above embodiment, the position of the measurement point is obtained by the interference positioning method by the analysis device 12 using the data observed by the receiving devices u and s of the measurement point and the reference point and the weather observation device 11. The data observed by the receiving device u at the measurement point and the weather observation device 11 may be transmitted to the receiving device s at the reference point, and the position of the measuring point may be obtained by the receiving device s. Furthermore, in the above embodiment, the position of the measurement point is obtained by the interferometric positioning method, but the present invention is also implemented in other positioning methods that use the difference in the tropospheric propagation delay amount of radio waves received at the measurement point and the reference point, respectively. can do.

本発明に係る測位システムを示す図である。It is a figure which shows the positioning system which concerns on this invention. GPS衛星の天頂角などを示す図である。It is a figure which shows the zenith angle etc. of a GPS satellite. 本発明による測位結果と比較例による測位結果とを示す図である。It is a figure which shows the positioning result by this invention, and the positioning result by a comparative example. 測定点、基準点および気象観測装置の他の配置例を示す図である。It is a figure which shows the other example of arrangement | positioning of a measurement point, a reference point, and a weather observation apparatus. 従来の対流圏伝搬遅延に起因する問題点を説明するための図である。It is a figure for demonstrating the problem resulting from the conventional troposphere propagation delay.

符号の説明Explanation of symbols

11 気象観測装置
12 解析装置
j GPS衛星
k GPS衛星
s 基準点に設置された受信装置
u 測定点に設置された受信装置
11 Meteorological observation device 12 Analysis device j GPS satellite k GPS satellite s Receiver installed at reference point u Receiver installed at measurement point

Claims (4)

位置が既知の基準点に設置され、測位衛星からの電波を受信して当該電波の位相に関するデータを求める基準点受信装置と、
基準点からの基線長が15km以下と短い範囲内に位置するとともに、基準点に対して高低差のある所に位置する測定点に設置され、測位衛星からの電波を受信して当該電波の位相に関するデータを求める測定点受信装置と、
基準点あるいは測定点の気温と相対湿度とを観測する気象観測装置と、
前記気象観測装置で観測される気温と相対湿度とを少なくともウエット項を持つ対流圏伝播遅延量計算モデルのウエット項だけに代入することにより、基準点における電波の対流圏伝播遅延量と測定点における電波の対流圏伝播遅延量とを計算し、当該両対流圏伝播遅延量、前記基準点受信装置で求められる位相に関するデータ、測定点受信装置で求められる位相に関するデータ、および測位衛星の位置情報から測定点の位置を求める測定点位置算出手段と、を備えることを特徴とする測位システム。
A reference point receiving device that is installed at a reference point whose position is known, receives a radio wave from a positioning satellite, and obtains data relating to a phase of the radio wave;
The base line length from the reference point is located within a short range of 15 km or less, and is installed at a measurement point located at a height difference with respect to the reference point, receiving radio waves from positioning satellites and receiving the phase of the radio waves A measuring point receiving device for obtaining data on,
A weather observation device for observing the temperature and relative humidity of the reference point or measurement point;
By substituting only the wet term of the tropospheric propagation delay calculation model having at least a wet term, the temperature and relative humidity observed by the meteorological observation device, the tropospheric propagation delay amount of the radio wave at the reference point and the radio wave propagation at the measurement point are measured. The tropospheric propagation delay amount is calculated, and the position of the measurement point is calculated from the both tropospheric propagation delay amounts, the data relating to the phase obtained by the reference point receiving device, the data relating to the phase obtained by the measuring point receiving device, and the position information of the positioning satellite. And a measuring point position calculating means for obtaining a positioning system.
位置が既知の基準点に設置され、測位衛星からの電波を受信して当該電波の位相に関するデータを求める基準点受信装置と、
基準点からの基線長が15km以下と短い範囲内に位置するとともに、基準点に対して高低差のある所に位置する複数の測定点にそれぞれ設置され、測位衛星からの電波を受信して当該電波の位相に関するデータを求める測定点受信装置と、
基準点あるいは各測定点の気温と相対湿度とを観測する単一または複数の気象観測装置と、
前記単一または複数の気象観測装置のいずれか1つで観測される気温と相対湿度とを、少なくともウエット項を持つ対流圏伝播遅延量計算モデルのウエット項だけに代入することにより、基準点における電波の対流圏伝播遅延量と各測定点における電波の対流圏伝播遅延量とを計算し、当該両該対流圏伝播遅延量、前記基準点受信装置で求められる位相に関するデータ、各測定点受信装置で求められる位相に関するデータ、および測位衛星の位置情報から各測定点の位置を求める測定点位置算出手段と、を備えることを特徴とする測位システム。
A reference point receiving device that is installed at a reference point whose position is known, receives a radio wave from a positioning satellite, and obtains data relating to a phase of the radio wave;
The base line from the reference point is located within a short range of 15 km or less, and is installed at each of multiple measurement points located at different elevations from the reference point. A measuring point receiver for obtaining data on the phase of the radio wave;
A single or multiple weather observation devices for observing the temperature and relative humidity of the reference point or each measurement point;
By substituting only the wet term of the tropospheric propagation delay calculation model having at least a wet term, the temperature and the relative humidity observed by any one of the single or plural weather observation devices, the radio wave at the reference point The tropospheric propagation delay amount and the tropospheric propagation delay amount of the radio wave at each measurement point are calculated, both the tropospheric propagation delay amount, the data relating to the phase obtained by the reference point receiving device, and the phase obtained by each measuring point receiving device. And a measurement point position calculating means for determining the position of each measurement point from the position data of the positioning satellite and the position information of the positioning satellite.
位置が既知の基準点において測位衛星から受信した電波の位相に関するデータを求め、
基準点からの基線長が15km以下と短い範囲内に位置するとともに、基準点に対して高低差のある所に位置する測定点において測位衛星から受信した電波の位相に関するデータを求め、
基準点あるいは測定点の気温と相対湿度とを少なくともウエット項を持つ対流圏伝播遅延量計算モデルのウエット項だけに代入することにより、基準点における電波の対流圏伝播遅延量と測定点における電波の対流圏伝播遅延量とを計算し、
当該両対流圏伝播遅延量、前記基準点において求められた位相に関するデータ、測定点において求められた位相に関するデータ、および測位衛星の位置情報から測定点の位置を求めることを特徴とする測位方法。
Obtain data on the phase of radio waves received from positioning satellites at a reference point with a known position,
Obtain the data on the phase of the radio wave received from the positioning satellite at a measurement point located within a short range of 15 km or less from the reference point and at a height difference from the reference point ,
By substituting only the wet term of the tropospheric propagation delay calculation model with at least the wet term, the temperature and relative humidity at the reference point or measurement point, and the tropospheric propagation delay of the radio wave at the reference point and the tropospheric propagation of the radio wave at the measurement point Calculate the amount of delay and
A positioning method characterized in that the position of a measurement point is obtained from the amount of both tropospheric propagation delay, the data relating to the phase obtained at the reference point, the data relating to the phase obtained at the measurement point, and the position information of the positioning satellite.
位置が既知の基準点、あるいは基準点からの基線長が15km以下と短い範囲内に位置するとともに、基準点に対して高低差のある所に位置する測定点の気温と相対湿度とを、少なくともウエット項を持つ対流圏伝播遅延量計算モデルのウエット項だけに代入することにより、基準点において測位衛星から受信する電波の対流圏伝播遅延量と、測定点において測位衛星から受信する電波の対流圏伝播遅延量とを計算する手順と、
前記手順で計算された両対流圏伝播遅延量、基準点において受信する電波の位相に関するデータ、測定点において受信する電波の位相に関するデータ、および測位衛星の位置情報から測定点の位置を求める手順と、をコンピュータに実行させることを特徴とする測位用プログラム。
A reference point with a known position , or a baseline length from the reference point that is within a short range of 15 km or less, and at least a temperature and a relative humidity at a measurement point located at a height difference with respect to the reference point , By substituting only the wet term of the tropospheric propagation delay calculation model with a wet term, the tropospheric propagation delay of the radio wave received from the positioning satellite at the reference point and the tropospheric propagation delay of the radio wave received from the positioning satellite at the measurement point The procedure for calculating and
A procedure for obtaining the position of the measurement point from the bi-tropospheric propagation delay amount calculated in the above procedure, the data on the phase of the radio wave received at the reference point, the data on the phase of the radio wave received at the measurement point, and the position information of the positioning satellite; A positioning program characterized by causing a computer to execute.
JP2006225986A 2006-08-23 2006-08-23 Positioning system, positioning method and positioning program Expired - Fee Related JP4901365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006225986A JP4901365B2 (en) 2006-08-23 2006-08-23 Positioning system, positioning method and positioning program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006225986A JP4901365B2 (en) 2006-08-23 2006-08-23 Positioning system, positioning method and positioning program

Publications (2)

Publication Number Publication Date
JP2008051568A JP2008051568A (en) 2008-03-06
JP4901365B2 true JP4901365B2 (en) 2012-03-21

Family

ID=39235775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006225986A Expired - Fee Related JP4901365B2 (en) 2006-08-23 2006-08-23 Positioning system, positioning method and positioning program

Country Status (1)

Country Link
JP (1) JP4901365B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106908815A (en) * 2017-02-15 2017-06-30 东南大学 A kind of Northern Hemisphere tropospheric delay correction method based on sounding data

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106324620A (en) * 2016-08-02 2017-01-11 中国人民解放军空军工程大学 Tropospheric zenith delay method based not on real-time measurement of surface meteorological data
JP6625238B2 (en) * 2016-11-15 2019-12-25 三菱電機株式会社 Local error generation device, local error generation program, and positioning reinforcement information distribution system
KR101992346B1 (en) * 2018-12-28 2019-06-24 아주대학교 산학협력단 Method and apparatus for analyzing electromagnetic wave propagation based in dispersive atmospheric environments
JP7369737B2 (en) * 2021-05-28 2023-10-26 Ales株式会社 Positioning system, server, reference station, information distribution method, program, positioning target device and mobile object

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3889719B2 (en) * 2003-03-25 2007-03-07 株式会社東芝 Troposphere characteristics calculation system
EP1613978B1 (en) * 2003-04-17 2010-12-29 The Secretary Of State For Defence Correction of troposphere induced errors in global positioning systems
JP4723801B2 (en) * 2003-08-25 2011-07-13 古野電気株式会社 Relative positioning device
JP2005283238A (en) * 2004-03-29 2005-10-13 Seiko Epson Corp Positioning system, terminal device, control method of terminal device, control program of terminal device, and recording medium readable by compuer for recording control program of terminal device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106908815A (en) * 2017-02-15 2017-06-30 东南大学 A kind of Northern Hemisphere tropospheric delay correction method based on sounding data
CN106908815B (en) * 2017-02-15 2019-04-30 东南大学 A kind of Northern Hemisphere tropospheric delay correction method based on sounding data

Also Published As

Publication number Publication date
JP2008051568A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
CN114518586B (en) GNSS precise single-point positioning method based on spherical harmonic expansion
RU2479855C2 (en) Distance dependant error mitigation in real-time kinematic positioning
Duan et al. GPS meteorology: Direct estimation of the absolute value of precipitable water
US8242953B2 (en) Distance dependent error mitigation in real-time kinematic (RTK) positioning
Ning et al. Multi-technique comparisons of 10 years of wet delay estimates on the west coast of Sweden
Yasyukevich et al. Influence of GPS/GLONASS differential code biases on the determination accuracy of the absolute total electron content in the ionosphere
Tuka et al. Performance evaluation of different troposphere delay models and mapping functions
RU2502080C2 (en) Method of probing ionosphere, troposphere, geologic movements and set for implementing said method
Wielgosz et al. Troposphere modeling for precise GPS rapid static positioning in mountainous areas
JP4901365B2 (en) Positioning system, positioning method and positioning program
CN105509770B (en) A kind of barometer on-line correction method in GNSS and MEMS integrated navigation systems
Ma et al. Influence of the inhomogeneous troposphere on GNSS positioning and integer ambiguity resolution
JP2008039691A (en) Carrier-wave phase type position measuring instrument
JP5352492B2 (en) Positioning device and program
Gurbuz et al. Assessment of precipitable water vapor over Turkey using GLONASS and GPS
Yi et al. Improving PPP smartphone processing with adaptive quality control method in obstructed environments when carrier-phase measurements are missing
CN110865425B (en) Rain gauge gross error detection method based on prior information
Liu et al. Evaluation of a nonlocal quasi-phase observation operator in assimilation of CHAMP radio occultation refractivity with WRF
JP4928114B2 (en) Carrier phase relative positioning device
US20140043188A1 (en) Global positioning system radiometric evaluation
KR102365291B1 (en) Global positioning system and method for improving relative position accuracy of gnss and barometer
Cederholm Statistical characteristics of L1 carrier phase observations from four low-cost GPS receivers
Riley et al. A new system for RTK performance evaluation
JP3889719B2 (en) Troposphere characteristics calculation system
Pikridas Monitoring Climate changes on small scale networks using ground based GPS and meteorological data

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R150 Certificate of patent or registration of utility model

Ref document number: 4901365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees