JP4901119B2 - Strobe device - Google Patents

Strobe device Download PDF

Info

Publication number
JP4901119B2
JP4901119B2 JP2005093359A JP2005093359A JP4901119B2 JP 4901119 B2 JP4901119 B2 JP 4901119B2 JP 2005093359 A JP2005093359 A JP 2005093359A JP 2005093359 A JP2005093359 A JP 2005093359A JP 4901119 B2 JP4901119 B2 JP 4901119B2
Authority
JP
Japan
Prior art keywords
voltage
main capacitor
circuit
charging
soft start
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005093359A
Other languages
Japanese (ja)
Other versions
JP2006276314A (en
Inventor
久典 星川
享一郎 荒木
勲 山本
洋一 為我井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2005093359A priority Critical patent/JP4901119B2/en
Priority to TW095110633A priority patent/TWI429335B/en
Priority to PCT/JP2006/306466 priority patent/WO2006104194A1/en
Priority to US11/887,232 priority patent/US7859229B2/en
Publication of JP2006276314A publication Critical patent/JP2006276314A/en
Application granted granted Critical
Publication of JP4901119B2 publication Critical patent/JP4901119B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stroboscope Apparatuses (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)

Description

本発明は、ストロボ装置に関するものである。   The present invention relates to a strobe device.

近年、デジタルスチルカメラ等のカメラの小型化が急速に進み、また小型カメラを搭載した携帯電話装置も急速に普及しているため、補助光源としてのストロボ装置の需要も増えてきており非常に小型なものが求められるようになってきている。   In recent years, the miniaturization of cameras such as digital still cameras has progressed rapidly, and mobile phone devices equipped with small cameras have also rapidly spread, so the demand for strobe devices as auxiliary light sources has increased and the size has become very small. There is a need for something.

従来のストロボ装置は、下記の(特許文献1)に見られるように他励式ストロボ充電回路の1次側を駆動した時の電池電圧と、充電中の電池電圧と、2次側主コンデンサの充電初期及び充電中の充電電圧を入力値として、適正と思われる駆動パルス幅およびデューティー比を少なくとも段階的に或いは連続的に切り換えて主コンデンサの充電が行われている。   As seen in the following (Patent Document 1), the conventional strobe device has a battery voltage when the primary side of a separately-excited strobe charging circuit is driven, a battery voltage during charging, and charging of a secondary main capacitor. The charging of the main capacitor is performed by switching the driving pulse width and the duty ratio, which are considered to be appropriate, at least stepwise or continuously with the initial charging voltage during charging and the charging voltage as input values.

また、(特許文献2)に見られるように作動時直前の電池の状態をマイクロコンピュータによって検出し、電池に過電流が流れないようにマイクロコンピュータが前記電池の状態に応じて駆動パルス幅を制御するように構成されている。
特開平7−85988号公報 特開2004−6083公報
Also, as seen in (Patent Document 2), the state of the battery immediately before operation is detected by the microcomputer, and the microcomputer controls the drive pulse width according to the state of the battery so that no overcurrent flows through the battery. Is configured to do.
JP-A-7-85888 JP 2004-6083 A

しかしながら、(特許文献1)の構成では電池に負荷をかけた時の電池電圧のみの検出結果から駆動パルス幅およびデューティー比を決定しているため、PWM(Pulse Width Modulation)駆動パルスが適正に設定されず電池に過電流が流れることがある。   However, in the configuration of (Patent Document 1), since the drive pulse width and the duty ratio are determined from the detection result of only the battery voltage when a load is applied to the battery, the PWM (Pulse Width Modulation) drive pulse is set appropriately. Overcurrent may flow through the battery.

また(特許文献2)の構成では、電池の消耗状態や、温度等による電池内部抵抗の変化に対応した、過電流を起こす事の無い、適正な駆動パルスによる駆動を実現できるが、充電中の他励式ストロボ充電回路の2次側の状態を正確に反映できないため、より適正な運転方法が望まれているのが現状である。   Further, in the configuration of (Patent Document 2), it is possible to realize driving with an appropriate driving pulse that does not cause an overcurrent, corresponding to a change in battery internal resistance due to a battery consumption state or a temperature. Since the state of the secondary side of the separately excited strobe charging circuit cannot be accurately reflected, a more appropriate driving method is desired at present.

そこで、他励式ストロボ充電回路の2次側の主コンデンサの充電初期及び充電中の充電電圧を入力値として、マイクロコンピュータによって駆動パルス幅およびデューティー比を決定してPWM駆動することが考えられるが、ストロボ装置の回路設計において、各種のカメラに要求されるストロボ性能を満足するために、駆動周波数や発振トランスのインダクタ値の変更の必要が生じた場合には、前記マイクロコンピュータのプログラムをその都度に変更したり、または主コンデンサ電圧に対応した適切なPWM駆動のパルス幅の相関テーブル等をマイクロコンピュータ内部に持たせる必要があり煩わしい制御になってしまう。   Therefore, it is conceivable to perform PWM driving by determining the driving pulse width and duty ratio by a microcomputer with the charging voltage of the secondary side main capacitor of the separately-excited strobe charging circuit and the charging voltage during charging as input values. In the circuit design of the strobe device, if it is necessary to change the drive frequency or the inductor value of the oscillation transformer in order to satisfy the strobe performance required for various cameras, the microcomputer program must be updated each time. It is necessary to change or to provide an appropriate PWM drive pulse width correlation table corresponding to the main capacitor voltage in the microcomputer, resulting in troublesome control.

本発明は、充電中の他励式ストロボ充電回路の2次側の状態を正確に反映して
適正なPWM駆動を実現できるストロボ装置を提供することを目的とする。
さらに、駆動周波数や発振トランスのインダクタ値の設計変更の必要が生じた場合にも、簡単な設定変更だけで対応できるストロボ装置を提供することを目的とする。
An object of the present invention is to provide a strobe device capable of accurately reflecting the state of the secondary side of a separately-excited strobe charging circuit during charging and realizing appropriate PWM driving.
It is another object of the present invention to provide a strobe device that can cope with a change in the design of the drive frequency and the inductor value of the oscillation transformer by simply changing the setting.

本発明の請求項1記載のストロボ装置は、他励式DC/DCコンバータを介して主コンデンサを充電し、主コンデンサのエネルギーでストロボ発光するストロボ装置において、前記他励式DC/DCコンバータの一次側での通電パルス幅を制御するパルス幅制御回路を設け、このパルス幅制御回路を、充電時において主コンデンサが所定の低電圧未満の場合には、前記他励式DC/DCコンバータの一次側での通電パルス幅を、段階的に最大パルス幅まで広げるPWMソフトスタート駆動を実行し、主コンデンサが所定の低電圧以上の場合には、前記最大パルス幅でPWM駆動を実行し、かつ、前記主コンデンサが所定の低電圧未満の場合に他励式DC/DCコンバータの一次側での通電パルス幅を段階的に最大パルス幅まで広げるPWMソフトスタート駆動中に、前記主コンデンサが所定の電圧に達したことを検出してPWMソフトスタート駆動を終了して最大パルス幅でPWM駆動を実行するよう構成したストロボ装置であって、前記パルス幅制御回路を、一定繰り返し周波数の三角波を発生する三角波電圧発生回路と、充電開始後の時間経過に伴って上昇するソフトスタート電圧を発生するソフトスタート電圧発生回路と、最大デューティ電圧を設定する最大デューティ設定電圧発生回路と、充電開始時における前記主コンデンサの端子電圧が所定の低電圧未満のときには前記三角波と前記ソフトスタート電圧とを比較して充電開始からの時間経過に伴って単一周波数で次第に通電時間を長くするデューティ信号を出力し、また充電開始時における前記主コンデンサの端子間電圧が所定の低電圧以上のときには前記三角波と前記最大デューティ設定電圧発生回路の設定電圧とで決まる最大デューティ信号を出力する比較器と、充電開始時における前記主コンデンサの端子間電圧が所定の低電圧未満のときに、前記主コンデンサの端子電圧が設定電圧に上昇したことを検出してソフトスタート動作をキャンセルさせるソフトスタート電圧キャンセル回路と、前記主コンデンサがフル充電になるまでは前記比較器の出力に基づいて主コンデンサを充電し、フル充電されたことを検出して充電を終了するように作用する論理回路とで構成したことを特徴とする。 The strobe device according to claim 1 of the present invention is a strobe device that charges a main capacitor via a separately excited DC / DC converter and emits strobe light with the energy of the main capacitor, on the primary side of the separately excited DC / DC converter. A pulse width control circuit for controlling the energization pulse width of the externally excited DC / DC converter when the main capacitor is less than a predetermined low voltage during charging. The PWM soft start drive is executed to gradually increase the pulse width to the maximum pulse width. When the main capacitor is equal to or higher than a predetermined low voltage, the PWM drive is executed with the maximum pulse width, and the main capacitor When the voltage is less than a predetermined low voltage, the PWM pulse width is gradually increased to the maximum pulse width on the primary side of the separately excited DC / DC converter. A strobe device configured to detect that the main capacitor has reached a predetermined voltage during start start driving, terminate PWM soft start driving and execute PWM driving with a maximum pulse width, The control circuit includes a triangular wave voltage generation circuit that generates a triangular wave with a constant repetition frequency, a soft start voltage generation circuit that generates a soft start voltage that increases with the passage of time after the start of charging, and a maximum duty that sets a maximum duty voltage. When the terminal voltage of the main capacitor at the start of charging is less than a predetermined low voltage, the triangular wave and the soft start voltage are compared with each other, and gradually with a single frequency as time elapses from the start of charging. Outputs a duty signal that lengthens the energization time, and between the terminals of the main capacitor at the start of charging A comparator that outputs a maximum duty signal determined by the triangular wave and a set voltage of the maximum duty set voltage generation circuit when the voltage is equal to or higher than a predetermined low voltage, and a voltage between terminals of the main capacitor at the start of charging is a predetermined low voltage A soft start voltage cancel circuit that detects that the terminal voltage of the main capacitor has risen to a set voltage when the voltage is less than the voltage, and cancels the soft start operation; and until the main capacitor is fully charged, The main capacitor is charged on the basis of the output, and is constituted by a logic circuit that operates to detect the full charge and terminate the charge.

本発明の請求項2記載のストロボ装置は、請求項1において、パルス幅制御回路に、他励式DC/DCコンバータの一次側に過電流が流れたことを検出して前記論理回路をオフする一次コイル過電流検出回路を設けたことを特徴とする。 Flash device according to claim 2 of the present invention, in claim 1, to the pulse width control circuit, one turns off the logic circuit detects that an overcurrent flows in the primary side of the separately excited DC / DC converter primary A coil overcurrent detection circuit is provided .

本発明の請求項3記載の特定用途集積回路装置は、請求項1に記載のストロボ装置を構成する特定用途集積回路装置であって、単一周波数の三角波を発生する三角波電圧発生回路と、充電開始後の時間経過に伴って上昇するソフトスタート電圧を発生するソフトスタート電圧発生回路と、最大デューティ電圧を設定する最大デューティ設定電圧発生回路と、充電開始時における前記主コンデンサの端子電圧が所定の低電圧未満のときには前記三角波と前記ソフトスタート電圧とを比較して充電開始からの時間経過に伴って単一周波数で次第に通電時間を長くするデューティ信号を出力し、また充電開始時における前記主コンデンサの端子間電圧が所定の低電圧以上のときには前記三角波と前記最大デューティ設定電圧発生回路の設定電圧とで決まる最大デューティ信号を出力する比較器と、前記主コンデンサの端子電圧が設定電圧に上昇したことを検出してソフトスタート動作をキャンセルさせるソフトスタート電圧キャンセル回路と、前記主コンデンサがフル充電になるまでは前記比較器の出力に基づいて前記主コンデンサを充電し、フル充電されたことを検出して充電を終了するように作用する論理回路とを構築したことを特徴とする。 An application specific integrated circuit device according to claim 3 of the present invention is the application specific integrated circuit device constituting the strobe device according to claim 1, a triangular wave voltage generating circuit for generating a single frequency triangular wave, and a charging A soft start voltage generating circuit for generating a soft start voltage that rises as time elapses after starting, a maximum duty setting voltage generating circuit for setting a maximum duty voltage, and a terminal voltage of the main capacitor at a start of charging is a predetermined voltage When the voltage is less than a low voltage, the triangular wave and the soft start voltage are compared to output a duty signal that gradually increases the energization time at a single frequency as time elapses from the start of charging, and the main capacitor at the start of charging When the voltage between the terminals is equal to or higher than a predetermined low voltage, the triangular wave and the set voltage of the maximum duty set voltage generation circuit A comparator for outputting a full maximum duty signal, and the soft-start voltage cancellation circuit for canceling the soft-start operation by detecting that the terminal voltage of the main capacitor is increased to a set voltage, to the main capacitor is fully charged And a logic circuit that charges the main capacitor based on the output of the comparator, detects that the main capacitor is fully charged, and terminates the charging.

本発明の請求項4記載の特定用途集積回路装置は、請求項3において、過電流の発生を検出して前記論理回路をオフする一次コイル過電流検出回路を設けたことを特徴とする。
本発明の請求項5記載の特定用途集積回路装置は、請求項3または請求項4において、前記三角波電圧発生回路と前記ソフトスタート電圧発生回路のうちの少なくとも一方の回路の時定数決定素子を接続する外部接続端子を設けたことを特徴とする。
The application specific integrated circuit device according to claim 4 of the present invention is characterized in that, in claim 3 , a primary coil overcurrent detection circuit for detecting occurrence of an overcurrent and turning off the logic circuit is provided.
Application specific integrated circuit device according to claim 5 of the present invention, the connection according to claim 3 or claim 4, the constant determining element when the at least one circuit of said and said triangular wave voltage generation circuit soft-start voltage generation circuit An external connection terminal is provided.

この構成のストロボ装置によると、他励式DC/DCコンバータの一次側での通電パルス幅を、段階的に最大パルス幅まで広げるPWMソフトスタート駆動を実行するので、高周波駆動(数百キロヘルツ程度の繰り返し周波数)した場合であっても過電流の発生を防止することができ、また、低周波駆動した場合のような電源リップルが発生しないので、このリップルを除去するために必要とされていたインダクタンス部品を設けなくても済み、高性能化とともに小型化を実現できる。   According to the strobe device of this configuration, the PWM soft start drive is executed to gradually increase the energization pulse width on the primary side of the separately excited DC / DC converter to the maximum pulse width, so that the high frequency drive (repetition of about several hundred kilohertz) is performed. Frequency), it is possible to prevent the occurrence of overcurrent, and since the power supply ripple does not occur as in the case of low frequency driving, the inductance component required to remove this ripple This eliminates the need to provide a small size and achieves high performance and downsizing.

また、本発明の特定用途集積回路によると、駆動周波数や発振トランスのインダクタ値の変更に迅速に対応可能である。さらに、三角波電圧発生回路とソフトスタート電圧発生回路のうちの少なくとも一方の回路の時定数決定素子を接続する外部接続端子を設けたことによって、外部に接続した部品の交換だけで駆動周波数や発振トランスのインダクタ値の異なる複数機種のストロボ装置に使用できる。   Further, according to the specific application integrated circuit of the present invention, it is possible to quickly respond to changes in the drive frequency and the inductor value of the oscillation transformer. Furthermore, by providing an external connection terminal for connecting the time constant determining element of at least one of the triangular wave voltage generation circuit and the soft start voltage generation circuit, the drive frequency and the oscillation transformer can be simply replaced by externally connected components. It can be used for multiple types of strobe devices with different inductor values.

図1は本発明のストロボ装置を示す。
このストロボ装置は、発振トランスT1の一次側巻線Pと直列に電界効果トランジスタQ1を接続し、このトランジスタQ1のスイッチングなどを制御集積回路装置1によって行っている。発振トランスT1の二次側巻線SにはダイオードD1を介して主コンデンサ2が並列に接続されている。また、キセノン管3と絶縁ゲート型バイポーラトランジスタ(Insulated Gate Bipolar Transistor)Q2の直列回路が主コンデンサ2と並列に接続されている。R1は発振トランスT1の一次側巻線Pに流れる電流を検出する抵抗、R3,R4は主コンデンサ2に充電される電圧を検出する抵抗、4はキセノン管3を励起させる高電圧パルスを発生させる高圧トリガ回路である。
FIG. 1 shows a strobe device of the present invention.
In this strobe device, a field effect transistor Q1 is connected in series with the primary side winding P of the oscillation transformer T1, and the switching of the transistor Q1 is performed by the control integrated circuit device 1. A main capacitor 2 is connected in parallel to the secondary winding S of the oscillation transformer T1 via a diode D1. A series circuit of a xenon tube 3 and an insulated gate bipolar transistor Q2 is connected in parallel with the main capacitor 2. R1 is a resistor for detecting a current flowing through the primary winding P of the oscillation transformer T1, R3 and R4 are resistors for detecting a voltage charged in the main capacitor 2, and 4 is a high voltage pulse for exciting the xenon tube 3. This is a high voltage trigger circuit.

ストロボの充電・発光を制御するパルス幅制御回路としての制御集積回路装置1は、最大デューティ設定電圧発生回路5と、三角波電圧発生回路6と、ソフトスタート電圧発生回路7と、比較器8と、発振トランスT1の一次側巻線Pに流れる過電流を検出する一次コイル過電流検出回路9と、充電が完了したことを検出するフル充電検出回路10と、主コンデンサ2の端子電圧が所定の電圧値に充電されたことを抵抗R3,R4の分圧電圧が設定電圧に上昇したことから検出してソフトスタート電圧を急激に上昇させソフトスタート動作をキャンセルさせるソフトスタート電圧キャンセル回路11と、アンドゲート12と、電界効果トランジスタQ1を駆動する駆動回路13などを集積回路化して構築されている。   A control integrated circuit device 1 as a pulse width control circuit for controlling charging / light emission of a strobe includes a maximum duty setting voltage generation circuit 5, a triangular wave voltage generation circuit 6, a soft start voltage generation circuit 7, a comparator 8, A primary coil overcurrent detection circuit 9 that detects an overcurrent flowing through the primary winding P of the oscillation transformer T1, a full charge detection circuit 10 that detects completion of charging, and a terminal voltage of the main capacitor 2 is a predetermined voltage. A soft start voltage cancel circuit 11 for detecting that the divided voltage of the resistors R3 and R4 has risen to the set voltage and suddenly increasing the soft start voltage to cancel the soft start operation, and an AND gate 12, a drive circuit 13 for driving the field effect transistor Q1, and the like are integrated into an integrated circuit.

なお、三角波電圧発生回路6の発生する三角波の周波数を設定する時定数決定素子としての抵抗R2と、ソフトスタート電圧発生回路7が発生するソフトスタート電圧の上昇カーブを設定する時定数決定素子としてのコンデンサ14とは、制御集積回路装置1の外部に設けられて、三角波電圧発生回路6,ソフトスタート電圧発生回路7と外部接続端子19,20を介して接続されている。   The resistor R2 as a time constant determining element for setting the frequency of the triangular wave generated by the triangular wave voltage generating circuit 6 and the time constant determining element for setting the rising curve of the soft start voltage generated by the soft start voltage generating circuit 7 are used. The capacitor 14 is provided outside the control integrated circuit device 1 and is connected to the triangular wave voltage generation circuit 6 and the soft start voltage generation circuit 7 via the external connection terminals 19 and 20.

図2と図3は電源をオンした直後の初期充電状態、具体的には主コンデンサ2の端子電圧が0ボルトの状態から低電圧値までの充電中のタイミングチャートを図2に示し、中電圧値のタイミングチャートを図3に示す。高電圧値までの充電中のタイミングチャートを図4に示す。なお、図4(d)では発振トランスT1の二次側巻線Sの電流が、ゲート信号18の次の“H”レベルへの立ち上がりのタイミングまで流れ続けているように図示されているが、実際には、ゲート信号18の次の“H”レベルへの立ち上がりのタイミングよりも主コンデンサ2の端子電圧に応じた時間だけ早い時期に流れなくなっている。   2 and 3 are timing charts during charging from the initial charging state immediately after the power supply is turned on, specifically, charging from the state where the terminal voltage of the main capacitor 2 is 0 volts to a low voltage value. A timing chart of values is shown in FIG. FIG. 4 shows a timing chart during charging up to a high voltage value. In FIG. 4D, the current of the secondary winding S of the oscillation transformer T1 is illustrated as continuing to flow until the next rising timing of the gate signal 18 to the “H” level. Actually, the current does not flow earlier by the time corresponding to the terminal voltage of the main capacitor 2 than the next rising timing of the gate signal 18 to the “H” level.

コンデンサ14を定電流で充電するソフトスタート電圧発生回路7は、電源が投入されると図2(a)に示すように時間の経過に伴って直線的に増加するソフトスタート電圧15を出力する。   When the power is turned on, the soft start voltage generating circuit 7 that charges the capacitor 14 with a constant current outputs a soft start voltage 15 that increases linearly with the passage of time as shown in FIG.

比較器8は、三角波電圧発生回路6の発生する定周波数(ここでは600kHz)の三角波電圧16と前記ソフトスタート電圧15とを比較して論理レベル“H”“L”のレベル判定信号17を出力する。具体的には、初期充電状態では主コンデンサ2の充電が完了していないためにフル充電検出回路10の出力は論理レベル“H”状態に維持されており、また発振トランスT1の一次側巻線Pに過電流が流れていないとすると一次コイル過電流検出回路9の出力は論理レベル“H”状態に維持されており、アンドゲート12は比較器8のレベル判定信号17のみに従って開閉され、駆動回路13を介してトランジスタQ1のゲートには、図2(b)に示すようにソフトスタート電圧15よりも三角波電圧16が低い期間に論理レベル“H”のゲート信号18が印加される。   The comparator 8 compares the soft start voltage 15 with a triangular wave voltage 16 having a constant frequency (600 kHz in this case) generated by the triangular wave voltage generation circuit 6 and outputs a level determination signal 17 having logic levels “H” and “L”. To do. Specifically, since charging of the main capacitor 2 is not completed in the initial charging state, the output of the full charge detection circuit 10 is maintained at the logic level “H” state, and the primary winding of the oscillation transformer T1 If no overcurrent flows through P, the output of the primary coil overcurrent detection circuit 9 is maintained at the logic level “H”, and the AND gate 12 is opened / closed only in accordance with the level determination signal 17 of the comparator 8 to drive. A gate signal 18 having a logic level “H” is applied to the gate of the transistor Q1 through the circuit 13 during a period when the triangular wave voltage 16 is lower than the soft start voltage 15 as shown in FIG.

これによって、発振トランスT1の一次側巻線Pにはゲート信号18の発生期間に応じて一次電流DI1が流れる。これに伴って抵抗R1の端子電圧DV1は図2(c)に示すように,通電期間が次第に長くなるに従って電圧値が次第に上昇する。ここではゲート信号18の通電の期間が何れも短くて抵抗R1の端子電圧DV1が、一次コイルに過電流値が流れたときの前記抵抗R1の端子電圧に応じて設定された一次コイル過電流設定電圧値より低いため、一次コイル過電流検出回路9の出力は論理レベル“H”状態に維持されている。   As a result, the primary current DI1 flows through the primary winding P of the oscillation transformer T1 in accordance with the generation period of the gate signal 18. Accordingly, as shown in FIG. 2C, the voltage value of the terminal voltage DV1 of the resistor R1 gradually increases as the energization period becomes longer. Here, the period of energization of the gate signal 18 is short, and the terminal voltage DV1 of the resistor R1 is set according to the terminal voltage of the resistor R1 when the overcurrent value flows through the primary coil. Since it is lower than the voltage value, the output of the primary coil overcurrent detection circuit 9 is maintained at the logic level “H”.

トランジスタQ1がPWMパルス駆動されることによって、発振トランスT1の二次側巻線Sの主コンデンサ2の充電回路には、図2(d)に示すように充電電流が流れる。これによって、主コンデンサ2が次第に充電されて図2(e)に示すように緩やかなカーブで端子電圧が上昇する。   When the transistor Q1 is PWM pulse driven, a charging current flows through the charging circuit of the main capacitor 2 of the secondary winding S of the oscillation transformer T1, as shown in FIG. As a result, the main capacitor 2 is gradually charged, and the terminal voltage rises with a gentle curve as shown in FIG.

ソフトスタート電圧キャンセル回路11が、抵抗R3,R4の分圧電圧DMCVから主コンデンサ2の端子電圧があらかじめ設定された中電圧値(主コンデンサ2の端子電圧100ボルト)に上昇したことを検出するまでは、図2および図3の前半部分のように、ゲート信号18の通電期間を比較器8による三角波電圧16とソフトスタート電圧15とを比較したレベル判定信号17によって決定したPWMソフトスタートを実行することによって、600kHz高周波駆動であっても過電流の発生を回避している。   Until the soft start voltage cancel circuit 11 detects that the terminal voltage of the main capacitor 2 has risen from the divided voltage DMCV of the resistors R3 and R4 to a preset medium voltage value (the terminal voltage of the main capacitor 2 is 100 volts). 2 and 3, the PWM soft start in which the energization period of the gate signal 18 is determined by the level determination signal 17 obtained by comparing the triangular wave voltage 16 and the soft start voltage 15 by the comparator 8 is executed. Thus, the occurrence of overcurrent is avoided even with 600 kHz high frequency driving.

なお、電源をオンした直後の初期充電状態において過電流が流れないようにするために数十キロヘルツの低周波駆動によって他励式DC−DCコンバータを運転することも考えられるが、この場合には、電源ラインにリップルが発生する。特に、携帯電話装置にカメラを組み込んだカメラ付き携帯電話装置のストロボ装置の場合には、電源ラインに低周波リップルが発生すると通話が途切れたり音声が聞き取りづらくなるという問題が確認されており、低周波駆動した場合には通話品質を維持するために電源ラインに大きなインダクタを挿入して電話機側へのラインノイズを低減させる対策が必要になり回路の小型化の障害となるが、この実施の形態のように、高周波駆動によって他励式DC−DCコンバータを運転することによって電源ラインでのリップル発生を無くし、低周波駆動した場合には組み込むことが必要な大きなインダクタを設けなくても通話品質を維持することができる。しかも、高周波駆動であってもPWMソフトスタートを実行することによって過電流の発生を確実に防止できる。   In order to prevent an overcurrent from flowing in the initial charging state immediately after the power is turned on, it is conceivable to operate the separately excited DC-DC converter by a low frequency drive of several tens of kilohertz. Ripple is generated in the power line. In particular, in the case of a strobe device for a camera-equipped mobile phone device in which a camera is incorporated in the mobile phone device, it has been confirmed that a low-frequency ripple occurs in the power supply line and the call is interrupted and it becomes difficult to hear the sound. In the case of frequency driving, it is necessary to take measures to reduce the line noise to the telephone side by inserting a large inductor in the power supply line in order to maintain the call quality, which is an obstacle to circuit miniaturization. Like this, by operating a separately-excited DC-DC converter by high-frequency driving, the generation of ripples in the power line is eliminated, and in the case of low-frequency driving, the communication quality is maintained without providing a large inductor that must be incorporated. can do. Moreover, overcurrent can be reliably prevented by executing PWM soft start even with high-frequency driving.

ソフトスタート電圧キャンセル回路11が、抵抗R3,R4の分圧電圧DMCVから主コンデンサ2の端子電圧があらかじめ設定された中電圧値(主コンデンサ2の端子電圧100ボルト)に上昇したことをタイミングTTで検出すると、図3(a)に示すように、ソフトスタート電圧発生回路7のソフトスタート電圧15は、最大デューティ設定電圧発生回路5の設定電圧と前記三角波電圧16とで決まる最大デューティ(オン時間0.75,オフ時間0.25)のゲート信号18で駆動する状態に強制的に切り換えるので、主コンデンサ2の充電の完了までコンデンサ14によって決まる傾きでソフトスタートを継続する場合に比べて効率の良い充電を実現できる。   At timing TT, the soft start voltage canceling circuit 11 indicates that the terminal voltage of the main capacitor 2 has risen from the divided voltage DMCV of the resistors R3 and R4 to a preset medium voltage value (terminal voltage of the main capacitor 2 is 100 volts). When detected, as shown in FIG. 3A, the soft start voltage 15 of the soft start voltage generation circuit 7 is the maximum duty (ON time 0) determined by the setting voltage of the maximum duty setting voltage generation circuit 5 and the triangular wave voltage 16. .75, OFF time 0.25) is forcibly switched to the state driven by the gate signal 18, so that it is more efficient than the case where the soft start is continued with the slope determined by the capacitor 14 until the charging of the main capacitor 2 is completed. Charging can be realized.

なお、ここであらかじめ設定された中電圧値(主コンデンサ2の端子電圧100ボルト)とは、最大デューティでのゲート信号18の駆動に切り換えても過電流が発生しない電圧値であって、フル充電時の主コンデンサ2の端子電圧が300ボルト程度の場合に100ボルト付近であった。図6は横軸に主コンデンサ2の端子電圧、縦軸に二次側放電時間係数を示し、発振トランスT1における通電期間を長くしても主コンデンサ2の端子電圧の上昇の傾きが、前記中電圧値の100ボルト付近で急になだらかになっている。   Note that the preset intermediate voltage value (the terminal voltage of the main capacitor 2 of 100 volts) is a voltage value at which no overcurrent is generated even when switching to driving of the gate signal 18 at the maximum duty, and is fully charged. When the terminal voltage of the main capacitor 2 was about 300 volts, it was around 100 volts. FIG. 6 shows the terminal voltage of the main capacitor 2 on the horizontal axis and the secondary-side discharge time coefficient on the vertical axis. Even when the energization period in the oscillation transformer T1 is lengthened, the slope of the increase in the terminal voltage of the main capacitor 2 is It suddenly becomes gentle around 100 volts.

図3において、タイミングTTの後は、最大デューティ設定電圧発生回路5の設定電圧と前記三角波電圧16とで決まる最大デューティのゲート信号18で駆動する状態に強制的に切り換えたが、抵抗R1の端子電圧DV1が一次コイル過電流検出回路9の設定電圧22に達するピーク電流で決定されるパルス幅まで広げて充電動作を行うことによっても実現することができる。   In FIG. 3, after the timing TT, the circuit is forcibly switched to a state driven by the gate signal 18 having the maximum duty determined by the setting voltage of the maximum duty setting voltage generation circuit 5 and the triangular wave voltage 16, but the terminal of the resistor R1 It can also be realized by performing a charging operation by expanding the voltage DV1 to a pulse width determined by a peak current reaching the set voltage 22 of the primary coil overcurrent detection circuit 9.

ここでは図3と図4に示すように最大デューティ設定電圧発生回路5の設定電圧21と前記三角波電圧16とで決まる最大デューティのゲート信号18で駆動する状態に強制的に切り換えた後に、一次コイル過電流検出回路9によってピーク電流を検出した場合にはアンドゲート12をオフして確実に過電流の発生を防止している。   Here, as shown in FIGS. 3 and 4, the primary coil is forcibly switched to the state driven by the gate signal 18 having the maximum duty determined by the setting voltage 21 of the maximum duty setting voltage generation circuit 5 and the triangular wave voltage 16. When the peak current is detected by the overcurrent detection circuit 9, the AND gate 12 is turned off to surely prevent the occurrence of overcurrent.

さらに充電電圧が上昇してフル充電検出回路10によって充電完了を検出すると、アンドゲート12をオフして充電を停止させる。
充電がフル充電状態になり撮影にストロボが必要とされる時に、端子FSWより“H”レベルの信号が出力されると、トランジスタQ2がオンして、高圧トリガ回路4から数キロボルトの高電圧パルスが出力されキセノン管3が励起され発光する。
When the charging voltage further rises and the full charging detection circuit 10 detects the completion of charging, the AND gate 12 is turned off to stop charging.
When the charge is fully charged and a strobe is required for shooting, if a signal of “H” level is output from the terminal FSW, the transistor Q2 is turned on, and a high voltage pulse of several kilovolts from the high voltage trigger circuit 4 Is output and the xenon tube 3 is excited to emit light.

端子FSWより出力されるパルス幅は撮影条件により変化する。例えば被写体距離が近い場合や被写体反射率が高い場合はパルス幅を短くして小光量の発光動作をする。反対に被写体距離が遠い場合や被写体反射率が低い場合はパルス幅を長くして大光量の発光動作をする。発光動作時の光量により主コンデンサ2の残存電圧の値が変化する。   The pulse width output from the terminal FSW varies depending on the photographing conditions. For example, when the subject distance is short or the subject reflectance is high, the pulse width is shortened and a light emission operation with a small amount of light is performed. On the other hand, when the subject distance is long or the subject reflectance is low, the pulse width is increased and a light emission operation with a large amount of light is performed. The value of the residual voltage of the main capacitor 2 varies depending on the amount of light during the light emission operation.

なお、主コンデンサ2の端子電圧が中電圧値の100ボルトに到達した時点で、最大デューティに切り換えることが効果的であることは、発光後の再充電において顕著である。
具体的には、図5に示すように、主コンデンサ2の残存電圧が、前記ソフトスタート電圧キャンセル回路11に設定されている中電圧値(主コンデンサ2の端子電圧100ボルト)未満である場合に、制御集積回路装置1がコンデンサ14を急速にディスチャージさせた後にコンデンサ14を定電流でチャージすることにより時間に対して直線的に増加する電圧を出力するソフトスタート電圧を発生させ、図2の場合と同様にパルス幅を絞って徐々に広げていくことにより磁気飽和による突入電流を抑制しつつ、効率よく充電を行うが、主コンデンサ2の残存電圧が図5に示すように60ボルト程度ある場合などには、図2のように電源オン直後の充電実行の場合に比べて早い時期(図5のタイミングTQ)に主コンデンサ2の端子電圧100ボルトに到達するので、このままコンデンサ14に基づくソフトスタート電圧15に従ってパルス幅を絞って徐々に広げて充電を継続したような場合には効率が低下する。この実施の形態では、主コンデンサ2の端子電圧が中電圧値の100ボルトに到達したことを検出して、最大デューティに切り換えてその後の主コンデンサ2を充電するので、主コンデンサ2を短時間でフル充電できることが分かる。
In addition, it is remarkable in the recharge after light emission that it is effective to switch to the maximum duty when the terminal voltage of the main capacitor 2 reaches the medium voltage value of 100 volts.
Specifically, as shown in FIG. 5, when the residual voltage of the main capacitor 2 is less than the medium voltage value (the terminal voltage of the main capacitor 2 is 100 volts) set in the soft start voltage cancel circuit 11. In the case of FIG. 2, the control integrated circuit device 1 generates a soft start voltage that outputs a voltage that increases linearly with time by charging the capacitor 14 with a constant current after rapidly discharging the capacitor 14. In the same manner as in FIG. 5, when the pulse width is narrowed and gradually expanded, charging is performed efficiently while suppressing inrush current due to magnetic saturation, but the residual voltage of the main capacitor 2 is about 60 volts as shown in FIG. For example, as shown in FIG. 2, the terminal voltage 10 of the main capacitor 2 at an earlier time (timing TQ in FIG. 5) than when charging is performed immediately after the power is turned on. Since reaching the bolt, when squeezing pulse width as to continue to charge gradually widening in accordance with soft-start voltage 15 based on the left capacitor 14 efficiency is reduced. In this embodiment, it is detected that the terminal voltage of the main capacitor 2 has reached the medium voltage value of 100 volts, and the main capacitor 2 is charged after switching to the maximum duty. You can see that it can be fully charged.

このように、高周波駆動で過電流を防止しながら効率よく主コンデンサ2を充電できるとともに、三角波電圧発生回路6の発生する三角波電圧16とソフトスタート電圧発生回路7が発生するソフトスタート電圧15とを比較してPWMソフトスタートをコントロールしているため、駆動周波数や発振トランスT1のインダクタ値などの変更の必要が生じた場合には、制御集積回路装置1の外部に設けた抵抗R2,コンデンサ14を変更するだけで適切に対応することができる。なお、三角波電圧発生回路6の発生する三角波電圧16とソフトスタート電圧発生回路7が発生するソフトスタート電圧15との比較によらずに同様のPWMソフトスタートをマイクロコンピュータで実現しようとした場合には、駆動周波数や発振トランスのインダクタ値の変更の必要が生じた場合には、その度に主コンデンサ電圧に対応した適切なPWM駆動のパルス幅の相関テーブル等をマイクロコンピュータの内部に持たせる必要があり煩わしい作業が必要になるが、上記の実施の形態の具体的な構成によると、駆動周波数や発振トランスのインダクタ値の変更に迅速に対応可能である。また、制御集積回路装置1の外部に設けた抵抗R2,コンデンサ14を変更するだけで対応できるので、駆動周波数や発振トランスのインダクタ値の異なる機種毎に制御集積回路装置を作成することなく、制御集積回路装置を複数の機種に使用することができる。   In this way, the main capacitor 2 can be efficiently charged while preventing overcurrent by high-frequency driving, and the triangular wave voltage 16 generated by the triangular wave voltage generation circuit 6 and the soft start voltage 15 generated by the soft start voltage generation circuit 7 are obtained. Since the PWM soft start is controlled by comparison, when the drive frequency or the inductor value of the oscillation transformer T1 needs to be changed, the resistor R2 and the capacitor 14 provided outside the control integrated circuit device 1 are connected. Appropriate responses can be made just by changing. When a similar PWM soft start is to be realized by a microcomputer without comparing the triangular wave voltage 16 generated by the triangular wave voltage generation circuit 6 with the soft start voltage 15 generated by the soft start voltage generation circuit 7. When there is a need to change the drive frequency or the inductor value of the oscillation transformer, it is necessary to provide an appropriate PWM drive pulse width correlation table corresponding to the main capacitor voltage in the microcomputer each time. Although annoying work is required, according to the specific configuration of the above-described embodiment, it is possible to quickly respond to changes in the drive frequency and the inductor value of the oscillation transformer. Further, since it is possible to cope with this by simply changing the resistor R2 and the capacitor 14 provided outside the control integrated circuit device 1, the control integrated circuit device can be controlled without creating a control integrated circuit device for each model having a different driving frequency and inductor value of the oscillation transformer. The integrated circuit device can be used for a plurality of models.

なお、上記の実施の形態では制御集積回路装置1に、一次コイル過電流検出回路9を設けたが、これを省くこともできる。
また、上記の各実施の形態では抵抗R2,コンデンサ14をの両方を制御集積回路装置1の外部に設けたが、抵抗R2とコンデンサ14のうちの一方を制御集積回路装置1の外部に設けて構成することもできる。
Although the primary coil overcurrent detection circuit 9 is provided in the control integrated circuit device 1 in the above embodiment, this can be omitted.
In each of the above embodiments, both the resistor R2 and the capacitor 14 are provided outside the control integrated circuit device 1, but one of the resistor R2 and the capacitor 14 is provided outside the control integrated circuit device 1. It can also be configured.

本発明のストロボ装置は、カメラ撮影に使用されるストロボ装置や、ストロボ装置内蔵のカメラ装置や携帯電話装置などの高機能化に寄与できる。   The strobe device of the present invention can contribute to enhancement of functions of a strobe device used for camera photography, a camera device with a built-in strobe device, a mobile phone device, and the like.

本発明のストロボ装置の実施の形態の構成図Configuration diagram of an embodiment of a strobe device of the present invention 同実施の形態の電源投入直後の要部波形図Main part waveform diagram immediately after power-on of the same embodiment 同実施の形態の中電圧値状態の要部波形図Main part waveform diagram of medium voltage value state of the same embodiment 同実施の形態の高電圧値状態の要部波形図Main part waveform diagram of high voltage value state of the same embodiment 同実施の形態の撮影後の再充電状態の要部波形図Waveform diagram of the main part of the recharge state after shooting in the same embodiment 同実施の形態の主コンデンサ2の端子電圧と二次側放電時間係数の関係図Relationship diagram between terminal voltage of main capacitor 2 and secondary side discharge time coefficient of the same embodiment

符号の説明Explanation of symbols

T1 発振トランス
Q1 電界効果トランジスタ
D1 ダイオード
Q2 絶縁ゲート型バイポーラトランジスタ
1 制御集積回路装置(特定用途集積回路装置)
2 主コンデンサ
3 キセノン管
4 高圧トリガ回路
5 最大デューティ設定電圧発生回路
6 三角波電圧発生回路
7 ソフトスタート電圧発生回路
8 比較器
9 一次コイル過電流検出回路
10 フル充電検出回路
11 ソフトスタート電圧キャンセル回路
12 アンドゲート
13 駆動回路
R2 抵抗(時定数決定素子)
14 コンデンサ(時定数決定素子)
19,20 外部接続端子
T1 Oscillation transformer Q1 Field effect transistor D1 Diode Q2 Insulated gate bipolar transistor 1 Control integrated circuit device (specific application integrated circuit device)
2 main capacitor 3 xenon tube 4 high voltage trigger circuit 5 maximum duty setting voltage generation circuit 6 triangular wave voltage generation circuit 7 soft start voltage generation circuit 8 comparator 9 primary coil overcurrent detection circuit 10 full charge detection circuit 11 soft start voltage cancel circuit 12 AND gate 13 drive circuit R2 resistance (time constant determining element)
14 Capacitor (time constant determining element)
19, 20 External connection terminal

Claims (5)

他励式DC/DCコンバータを介して主コンデンサを充電し、主コンデンサのエネルギーでストロボ発光するストロボ装置において、
前記他励式DC/DCコンバータの一次側での通電パルス幅を制御するパルス幅制御回路を設け、このパルス幅制御回路を、
充電時において主コンデンサが所定の低電圧未満の場合には、前記他励式DC/DCコンバータの一次側での通電パルス幅を、段階的に最大パルス幅まで広げるPWMソフトスタート駆動を実行し、
主コンデンサが所定の低電圧以上の場合には、前記最大パルス幅でPWM駆動を実行し、かつ、前記主コンデンサが所定の低電圧未満の場合に他励式DC/DCコンバータの一次側での通電パルス幅を段階的に最大パルス幅まで広げるPWMソフトスタート駆動中に、前記主コンデンサが所定の電圧に達したことを検出してPWMソフトスタート駆動を終了して最大パルス幅でPWM駆動を実行するよう構成したストロボ装置であって、
前記パルス幅制御回路を、
一定繰り返し周波数の三角波を発生する三角波電圧発生回路と、
充電開始後の時間経過に伴って上昇するソフトスタート電圧を発生するソフトスタート電圧発生回路と、
最大デューティ電圧を設定する最大デューティ設定電圧発生回路と、
充電開始時における前記主コンデンサの端子電圧が所定の低電圧未満のときには前記三角波と前記ソフトスタート電圧とを比較して充電開始からの時間経過に伴って単一周波数で次第に通電時間を長くするデューティ信号を出力し、また充電開始時における前記主コンデンサの端子間電圧が所定の低電圧以上のときには前記三角波と前記最大デューティ設定電圧発生回路の設定電圧とで決まる最大デューティ信号を出力する比較器と、
充電開始時における前記主コンデンサの端子間電圧が所定の低電圧未満のときに、前記主コンデンサの端子電圧が設定電圧に上昇したことを検出してソフトスタート動作をキャンセルさせるソフトスタート電圧キャンセル回路と、
前記主コンデンサがフル充電になるまでは前記比較器の出力に基づいて主コンデンサを充電し、フル充電されたことを検出して充電を終了するように作用する論理回路と、
で構成したことを特徴とするストロボ装置。
In a strobe device that charges a main capacitor via a separately excited DC / DC converter and emits strobe light with the energy of the main capacitor,
A pulse width control circuit for controlling the energization pulse width on the primary side of the separately excited DC / DC converter is provided.
When the main capacitor is less than a predetermined low voltage at the time of charging, PWM soft start driving is performed to gradually increase the energization pulse width on the primary side of the separately excited DC / DC converter to the maximum pulse width,
When the main capacitor is above a predetermined low voltage, PWM driving is performed with the maximum pulse width, and when the main capacitor is less than the predetermined low voltage, energization on the primary side of the separately excited DC / DC converter is performed. During PWM soft start drive that gradually increases the pulse width to the maximum pulse width, it detects that the main capacitor has reached a predetermined voltage, ends the PWM soft start drive, and executes PWM drive with the maximum pulse width. A strobe device configured as follows:
The pulse width control circuit;
A triangular wave voltage generating circuit for generating a triangular wave with a constant repetition frequency;
A soft start voltage generating circuit that generates a soft start voltage that rises with the passage of time after the start of charging;
A maximum duty setting voltage generation circuit for setting a maximum duty voltage;
When the terminal voltage of the main capacitor at the start of charging is less than a predetermined low voltage, the triangular wave and the soft start voltage are compared, and the duty to gradually increase the energization time at a single frequency as time elapses from the start of charging A comparator that outputs a signal and outputs a maximum duty signal determined by the triangular wave and a setting voltage of the maximum duty setting voltage generation circuit when a voltage between terminals of the main capacitor at the start of charging is equal to or higher than a predetermined low voltage; ,
A soft start voltage cancel circuit for detecting that the terminal voltage of the main capacitor has risen to a set voltage and canceling the soft start operation when the voltage between the terminals of the main capacitor at the start of charging is less than a predetermined low voltage; ,
Until the main capacitor is fully charged, the main capacitor is charged based on the output of the comparator, a logic circuit that operates to detect the full charge and terminate the charge,
A strobe device characterized by comprising.
パルス幅制御回路に、他励式DC/DCコンバータの一次側に過電流が流れたことを検出して前記論理回路をオフする一次コイル過電流検出回路を設けた請求項1記載のストロボ装置。 A pulse width control circuit, separately excited DC / DC converter of the flash device according to claim 1, wherein the overcurrent is provided a primary coil overcurrent detection circuit for turning off said logic circuit detects that the flow on the primary side. 請求項1に記載のストロボ装置を構成する特定用途集積回路装置であって、
単一周波数の三角波を発生する三角波電圧発生回路と、
充電開始後の時間経過に伴って上昇するソフトスタート電圧を発生するソフトスタート電圧発生回路と、
最大デューティ電圧を設定する最大デューティ設定電圧発生回路と、
充電開始時における前記主コンデンサの端子電圧が所定の低電圧未満のときには前記三角波と前記ソフトスタート電圧とを比較して充電開始からの時間経過に伴って単一周波数で次第に通電時間を長くするデューティ信号を出力し、また充電開始時における前記主コンデンサの端子間電圧が所定の低電圧以上のときには前記三角波と前記最大デューティ設定電圧発生回路の設定電圧とで決まる最大デューティ信号を出力する比較器と、
前記主コンデンサの端子電圧が設定電圧に上昇したことを検出してソフトスタート動作をキャンセルさせるソフトスタート電圧キャンセル回路と、
前記主コンデンサがフル充電になるまでは前記比較器の出力に基づいて前記主コンデンサを充電し、フル充電されたことを検出して充電を終了するように作用する論理回路と、
を構築した特定用途集積回路装置。
An application specific integrated circuit device constituting the strobe device according to claim 1,
A triangular wave voltage generating circuit for generating a single frequency triangular wave;
A soft start voltage generating circuit that generates a soft start voltage that rises with the passage of time after the start of charging;
A maximum duty setting voltage generation circuit for setting a maximum duty voltage;
When the terminal voltage of the main capacitor at the start of charging is less than a predetermined low voltage, the triangular wave and the soft start voltage are compared, and the duty to gradually increase the energization time at a single frequency as time elapses from the start of charging A comparator that outputs a signal and outputs a maximum duty signal determined by the triangular wave and a setting voltage of the maximum duty setting voltage generation circuit when a voltage between terminals of the main capacitor at the start of charging is equal to or higher than a predetermined low voltage; ,
A soft start voltage cancel circuit for detecting that the terminal voltage of the main capacitor has risen to a set voltage and canceling the soft start operation;
A logic circuit that charges the main capacitor based on the output of the comparator until the main capacitor is fully charged, detects that the main capacitor is fully charged, and terminates the charging;
Special purpose integrated circuit device built.
過電流の発生を検出して前記論理回路をオフする一次コイル過電流検出回路を設けた、
請求項3記載の特定用途集積回路装置。
A primary coil overcurrent detection circuit that detects the occurrence of overcurrent and turns off the logic circuit is provided.
4. The application specific integrated circuit device according to claim 3.
三角波電圧発生回路とソフトスタート電圧発生回路のうちの少なくとも一方の回路の時定数決定素子を接続する外部接続端子を設けた、
請求項3または請求項4記載の特定用途集積回路装置。
An external connection terminal for connecting a time constant determining element of at least one of the triangular wave voltage generation circuit and the soft start voltage generation circuit is provided,
The application specific integrated circuit device according to claim 3 or 4.
JP2005093359A 2005-03-29 2005-03-29 Strobe device Expired - Fee Related JP4901119B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005093359A JP4901119B2 (en) 2005-03-29 2005-03-29 Strobe device
TW095110633A TWI429335B (en) 2005-03-29 2006-03-28 Discharge device and integrated circuit device for specical purpose
PCT/JP2006/306466 WO2006104194A1 (en) 2005-03-29 2006-03-29 Discharging device
US11/887,232 US7859229B2 (en) 2005-03-29 2006-03-29 Discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005093359A JP4901119B2 (en) 2005-03-29 2005-03-29 Strobe device

Publications (2)

Publication Number Publication Date
JP2006276314A JP2006276314A (en) 2006-10-12
JP4901119B2 true JP4901119B2 (en) 2012-03-21

Family

ID=37211163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005093359A Expired - Fee Related JP4901119B2 (en) 2005-03-29 2005-03-29 Strobe device

Country Status (1)

Country Link
JP (1) JP4901119B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100856291B1 (en) 2006-11-14 2008-09-03 삼성전기주식회사 Mobile camera apparatus with variable flash

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05336745A (en) * 1992-05-30 1993-12-17 Tdk Corp Switching power source
JP3488120B2 (en) * 1999-02-24 2004-01-19 シャープ株式会社 Switching power supply circuit and switching power supply device
JP2001183728A (en) * 1999-10-14 2001-07-06 Fuji Photo Film Co Ltd Electronic flash device
JP4109844B2 (en) * 2001-07-26 2008-07-02 スタンレー電気株式会社 Strobe charging circuit
JP2003098578A (en) * 2001-09-20 2003-04-03 Fuji Photo Film Co Ltd Camera
JP2004180385A (en) * 2002-11-26 2004-06-24 Fujitsu Ltd Switching power supply

Also Published As

Publication number Publication date
JP2006276314A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
TWI429335B (en) Discharge device and integrated circuit device for specical purpose
JP2012090387A (en) Dc-dc converter
JP3465673B2 (en) Switching power supply
JP5142403B2 (en) Discharge lamp lighting device, lamp, and vehicle
JP7040542B2 (en) Resonant converter burst controller
JP6089273B2 (en) Lighting device, lighting fixture using the same, and lighting fixture for vehicle
JP5228567B2 (en) Boost DC-DC converter
EP1635621A2 (en) Rare gas fluorescent lamp lighting apparatus
JP2007028732A (en) Switching circuit and switching power unit
JP4649127B2 (en) Capacitor charging circuit, imaging device and strobe device
JP4744198B2 (en) Strobe device
JP4901119B2 (en) Strobe device
JP2009071997A (en) Power conversion device and vehicular lighting fixture
JP4744197B2 (en) Strobe device
JP5184937B2 (en) Switching power supply
JP4681437B2 (en) Power supply
JP7061330B1 (en) DC / DC converter
JP2009055691A (en) Switching power supply unit
JP2008022658A (en) Switching power circuit
JP4386133B2 (en) Power supply
JP4649729B2 (en) Power supply device and discharge lamp lighting device
JP4906265B2 (en) Strobe device
JP2004194452A (en) Dc-dc converter
JP3326955B2 (en) Discharge lamp lighting device
JPH07123706A (en) Dc-dc converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

R150 Certificate of patent or registration of utility model

Ref document number: 4901119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees