JP4900179B2 - Manufacturing method of steel plate for can - Google Patents

Manufacturing method of steel plate for can Download PDF

Info

Publication number
JP4900179B2
JP4900179B2 JP2007265442A JP2007265442A JP4900179B2 JP 4900179 B2 JP4900179 B2 JP 4900179B2 JP 2007265442 A JP2007265442 A JP 2007265442A JP 2007265442 A JP2007265442 A JP 2007265442A JP 4900179 B2 JP4900179 B2 JP 4900179B2
Authority
JP
Japan
Prior art keywords
heating
heating rate
temperature
steel
soaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007265442A
Other languages
Japanese (ja)
Other versions
JP2009091640A (en
Inventor
雅毅 多田
克己 小島
祐介 中川
田中  匠
浩樹 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007265442A priority Critical patent/JP4900179B2/en
Publication of JP2009091640A publication Critical patent/JP2009091640A/en
Application granted granted Critical
Publication of JP4900179B2 publication Critical patent/JP4900179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は缶用鋼板原板の製造方法に関するもので、詳細には極低炭素鋼を素材として連続焼鈍法で製造するテンパー度T−1からT−3のいわゆる軟質の缶用鋼板原板の製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a method for producing a steel plate for cans, and more specifically, a method for producing a so-called soft steel plate for cans having a temper degree of T-1 to T-3, which is produced by using a very low carbon steel by a continuous annealing method. It is about.

缶用鋼板は、無被覆の鋼原板に対し、錫鍍金、クロム酸処理、あるいはそれらに有機樹脂ラミネートなどの表面処理が施されて使用される。
原板の硬さレベルはJIS−G3303に規定されているようにロックウェルT硬さ(HR30T)を指標とする調質度で表される。この中で、記号T−1(HR30Tで49±3)、T−2(HR30Tで53±3)、T−2.5(HR30Tで55±3)、T−3(HR30Tで57±3)は特に軟質原板とされている。
調質度がT−1からT−3である軟質原板の製造方法としては、Cを質量%で0.03%程度から0.09%程度まで含有する低炭素鋼を箱焼鈍法で製造する方法と、Cを0.0005%から0.005%程度まで含有する極低炭素鋼を連続焼鈍法で製造する方法がある。前者は長時間にわたる熱サイクルで徐加熱、徐冷却を行い、含有するCをセメンタイトとして析出させることで軟質な材質を得ている。後者は、Cの含有量自体を極力低減することで軟質化を図っている。
そして、これらは、その特性に応じて適した用途があり使い分けられている。たとえば、低炭素鋼を用いた箱焼鈍材は溶接缶に適している。これは、Cを多く含有するため溶接時の熱影響で強靭な溶接部を形成することができるためである。一方、極低炭素鋼を用いた連続焼鈍材はr値が高いものを得やすいために絞り加工の用途に適している。
しかし、近年では製造に要する時間が短いこと、および鋼帯全体にわたって材質が比較的均一であることから、極低炭素鋼を用いた連続焼鈍法材に対する要求が高まり、連続焼鈍材を用いてより優れた鋼板を得ようとする技術が提案されている。
The steel plate for cans is used after being subjected to surface treatment such as tin plating, chromic acid treatment, or organic resin laminating on an uncoated steel base plate.
The hardness level of the original plate is represented by a tempering degree using Rockwell T hardness (HR30T) as an index as defined in JIS-G3303. Among them, symbols T-1 (49 ± 3 for HR30T), T-2 (53 ± 3 for HR30T), T-2.5 (55 ± 3 for HR30T), T-3 (57 ± 3 for HR30T) Is considered to be a particularly soft original.
As a method for producing a soft base plate having a tempering degree of T-1 to T-3, a method of producing a low carbon steel containing C from about 0.03% to about 0.09% by mass% by a box annealing method, and C There is a method of manufacturing ultra-low carbon steel containing 0.0005% to 0.005% by continuous annealing. In the former, a soft material is obtained by slowly heating and cooling in a long-term heat cycle and precipitating the contained C as cementite. The latter aims at softening by reducing the C content itself as much as possible.
These are used properly depending on their characteristics. For example, a box annealed material using low carbon steel is suitable for a welding can. This is because a large amount of C is contained so that a tough weld can be formed due to the heat effect during welding. On the other hand, a continuous annealed material using ultra-low carbon steel is suitable for drawing because it has a high r value.
However, in recent years, since the time required for production is short and the material is relatively uniform throughout the steel strip, the demand for a continuous annealing method using ultra-low carbon steel has increased. Techniques for obtaining excellent steel sheets have been proposed.

特許文献1には、極低炭素鋼に対してNbを添加する技術が提案されている。この方法においては、Cと親和力の強いNbにより、鋼中Cの全量をNbCとして析出固定させるため、固溶Cが残存せず、安定して軟質な材質が得られ、また、完全非時効化が達成される。   Patent Document 1 proposes a technique for adding Nb to ultra-low carbon steel. In this method, the total amount of C in the steel is precipitated and fixed as NbC by Nb having a strong affinity for C, so that solid solution C does not remain and a stable and soft material is obtained, and complete non-aging is also achieved. Is achieved.

特許文献2には、極低炭素鋼に対してBを添加する技術が提案されている。この方法では、Bの存在により極低炭素鋼でありながら焼入れ性を具備し、溶接性に優れたものが得られる。   Patent Document 2 proposes a technique of adding B to an extremely low carbon steel. In this method, due to the presence of B, although it is an ultra-low carbon steel, it has hardenability and is excellent in weldability.

特許文献3には、極低炭素鋼に対して、Nb、Ti、Bの一種以上を添加する技術が提案されている。この技術では、NbやBの効果により非時効性に優れることを特徴とする。   Patent Document 3 proposes a technique of adding one or more of Nb, Ti, and B to ultra-low carbon steel. This technique is characterized by excellent non-aging properties due to the effects of Nb and B.

しかしながら、特許文献1〜3に記載の元素を添加する技術では、極低炭素鋼を用いた連続焼鈍材の特性が向上する一方で、これら添加元素により再結晶、結晶粒成長の遅延をもたらすことになる。そして、再結晶、粒成長が遅延する結果、硬度の上昇や延性の劣化が生じる。そのため、製造において、均熱温度の高温化、または、均熱時間の長時間化を行う必要が生じ、効率的な製造が阻害される結果となる。   However, in the technology of adding elements described in Patent Documents 1 to 3, the characteristics of continuous annealing material using ultra-low carbon steel are improved, while these additive elements cause recrystallization and delay of crystal grain growth. become. And as a result of delaying recrystallization and grain growth, hardness increases and ductility deteriorates. Therefore, in the production, it is necessary to increase the temperature of the soaking temperature or to lengthen the soaking time, which results in hindering efficient production.

このような中で、上記問題を受けて、極低炭素鋼を用いた連続焼鈍法で、再結晶、結晶成長を促進する技術がいくつか提案されている。   Under such circumstances, in response to the above problems, several techniques for promoting recrystallization and crystal growth by a continuous annealing method using ultra-low carbon steel have been proposed.

例えば、超急速加熱短時間焼鈍による技術があり、特許文献4には、少なくとも500℃以上の温度域を加熱速度300〜2000℃/sで加熱して均熱温度で3秒以下保持する技術が、特許文献5には、少なくとも500℃以上の温度域を加熱速度100〜2500℃/sで加熱して均熱温度で10s以下保持する技術が、特許文献6には、少なくとも500℃以上の温度域を100℃/s以上の加熱速度で加熱して均熱温度で3s以下保持する技術が、特許文献7には、加熱速度100〜2000℃/sで加熱して焼鈍を行う技術がそれぞれ提案されている。   For example, there is a technique based on ultra-rapid heating and short-time annealing. Patent Document 4 discloses a technique in which a temperature range of at least 500 ° C. is heated at a heating rate of 300 to 2000 ° C./s and maintained at a soaking temperature for 3 seconds or less. Patent Document 5 discloses a technique in which a temperature range of at least 500 ° C. is heated at a heating rate of 100 to 2500 ° C./s and maintained at a soaking temperature of 10 s or less. Patent Document 6 discloses a temperature of at least 500 ° C. or more. A technique for heating the zone at a heating rate of 100 ° C./s or more and holding it at a soaking temperature for 3 s or less is proposed in Patent Document 7 as a technique for heating at a heating rate of 100 to 2000 ° C./s for annealing. Has been.

このような超急速加熱の場合は、再結晶のスタート時に於けるサブグレインの粒界の移動速度並びに粒成長時の粒界の移動速度が極めて速いので、粒界への偏析元素の粒界への移動が追従しなくなり粒界の移動を妨げる偏析元素が少なくなる。その結果、超急速加熱を行うことにより再結晶がより低温で起こるとともに粒成長も容易となり、調質度T−1〜T−3の軟質缶用鋼板原板が安定的に得られるようになる。また、短時間の焼鈍であるために、焼鈍設備の規模をコンパクトにすることができ、建造コストを低減できる。
特公平1−52450号公報 特許第3377155号公報 特許第2035952号公報 特開平4−295427号公報 特許第3466263号公報 特許第3383019号公報 特開平7−188770号公報
In the case of such ultra-rapid heating, the movement speed of the subgrain grain boundary at the start of recrystallization and the movement speed of the grain boundary during grain growth are extremely fast. Segregation elements that hinder the movement of grain boundaries are reduced. As a result, by performing ultra-rapid heating, recrystallization occurs at a lower temperature and grain growth is facilitated, and a steel plate for a soft can having a refining degree of T-1 to T-3 can be stably obtained. Moreover, since the annealing is performed for a short time, the scale of the annealing equipment can be made compact, and the construction cost can be reduced.
Japanese Patent Publication No. 1-52450 Japanese Patent No. 3377155 Japanese Patent No. 2035952 JP-A-4-295427 Japanese Patent No. 3466263 Japanese Patent No. 3383019 JP-A-7-188770

特許文献4〜7に記載の技術は、極低炭素鋼を用いた軟質な連続焼鈍材を極めて効率的に製造するための技術であり、コンパクトな連続焼鈍設備で超急速加熱短時間焼鈍を行うものである。しかしながら、上記のようなヒートサイクルの再結晶焼鈍を行うには、通常の焼鈍方式の連続焼鈍法では不可能であり、新しい焼鈍設備、つまり、加熱速度で2桁速く、焼鈍時間での約2桁短い機能を有した、新しい焼鈍設備が必要となる。また、急速加熱を行うために用いる通電加熱はエネルギー源としての電力コストが高く、たとえ設備の建設コストが低減しても、製造時のランニングコストが非常に高くなる問題がある。   The techniques described in Patent Documents 4 to 7 are techniques for extremely efficiently producing a soft continuous annealing material using extremely low carbon steel, and performing ultra-rapid heating and short-time annealing with a compact continuous annealing equipment. Is. However, the recrystallization annealing of the heat cycle as described above is impossible by the normal annealing method of the continuous annealing method. The new annealing equipment, that is, the heating speed is two orders of magnitude faster and the annealing time is about 2 times. New annealing equipment with an order of magnitude shorter function is required. In addition, current heating used for rapid heating has a high power cost as an energy source, and even if the construction cost of the facility is reduced, there is a problem that the running cost at the time of manufacture becomes very high.

以上のように、従来の技術では、極低炭素鋼を用いた軟質な連続焼鈍材を効率的に製造するためには、新たな焼鈍設備が必要となり、既存の焼鈍設備を基として鋼板を効率的に製造することはできなかった。   As described above, in the conventional technology, in order to efficiently produce a soft continuous annealing material using ultra-low carbon steel, new annealing equipment is required, and steel sheets are efficiently used based on the existing annealing equipment. Could not be manufactured automatically.

本発明は、かかる事情に鑑みなされたもので、新たな焼鈍設備を必要とせず、既存の焼鈍設備を用いて、軟質で延性に優れた缶用鋼板原板を効率的に製造する方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a method for efficiently producing a steel plate for a can that is soft and excellent in ductility using an existing annealing facility without requiring a new annealing facility. For the purpose.

本発明者らは、上記課題を解決するために鋭意研究を行った。その結果、以下の知見を得た。   The inventors of the present invention have intensively studied to solve the above problems. As a result, the following knowledge was obtained.

既存の焼鈍設備を用いて再結晶、結晶粒成長を促進する熱処理を行い、極低炭素鋼の再結晶、粒成長を促進する手段について検討した。具体的には、まず、第一の実験として、特許文献4〜7に開示された超急速加熱処理について実験室的に検討した。ただし、特許文献に記載の技術はそれらの実施例に示されるように主眼とする加熱速度が1000℃/sと非常に早く、通常の連続焼鈍設備を想定した場合は現実的ではない。そこで、通常の連続焼鈍設備と、それに加えて補助的加熱手段を併用することを想定し、加熱速度は併用した場合に実現可能である10から300℃/sとした。加熱後の均熱温度は750℃とし、均熱時間は10sとした。鋼成分その他の焼鈍以外の条件は以下のとおりである。
(鋼成分)
C:0.0016%、Si:0.01%、Mn:0.30%、P:0.01%、
S:0.015%、sol.Al:0.050%、Nb:0.015%、N:0.0015%
(熱間圧延)
仕上げ温度:900℃、巻き取り温度:680℃
(冷間圧延率)
90%
(調質圧延)
1.5%
以上により得られた鋼板に対して、調質度としてロックウェルT硬さ(HR30T)の測定を行った。測定方法はJIS Z2245に準拠した。なお、均熱後の冷却速度は調質度に影響しないことを確認した上で一律に−50℃/sとした。
A heat treatment that promotes recrystallization and grain growth was performed using existing annealing equipment, and means to promote recrystallization and grain growth of ultra-low carbon steel were studied. Specifically, first, as a first experiment, the ultra-rapid heat treatment disclosed in Patent Documents 4 to 7 was examined in a laboratory. However, the techniques described in the patent documents have a very high heating rate of 1000 ° C./s as the main focus as shown in the examples, and are not realistic when assuming a normal continuous annealing facility. Therefore, it is assumed that a normal continuous annealing facility and an auxiliary heating means are used in combination, and the heating rate is set to 10 to 300 ° C./s, which is feasible when combined. The soaking temperature after heating was 750 ° C., and the soaking time was 10 s. Conditions other than steel components and other annealing are as follows.
(Steel component)
C: 0.0016%, Si: 0.01%, Mn: 0.30%, P: 0.01%,
S: 0.015%, sol. Al: 0.050%, Nb: 0.015%, N: 0.0015%
(Hot rolling)
Finishing temperature: 900 ° C, winding temperature: 680 ° C
(Cold rolling rate)
90%
(Temper rolling)
1.5%
The steel plate obtained as described above was measured for Rockwell T hardness (HR30T) as a tempering degree. The measuring method was based on JIS Z2245. In addition, after confirming that the cooling rate after soaking did not affect the tempering degree, the temperature was uniformly set to −50 ° C./s.

なお、図1に、実験で採用したヒートサイクルをヒートサイクル(A)として示す。このヒートサイクル(A)は、特許文献4〜7に則り加熱中で均一な加熱速度としたものである。   In addition, in FIG. 1, the heat cycle employ | adopted by experiment is shown as a heat cycle (A). This heat cycle (A) is a uniform heating rate during heating according to Patent Documents 4-7.

以上により得られた結果を図2(A)に示す。図2は、平均加熱速度とロックウェルT硬さ(HR30T)との関係を示した図である。図2によれば、特許文献4〜7で示されたように、加熱速度が速いと軟質化が認められる。ただし、通常の輻射管式過熱方法のみの連続焼鈍設備では、得られる加熱速度は40℃/s程度までであり、それ以上の加熱速度を得るには、補助加熱手段を併用する必要がある。   The results obtained as described above are shown in FIG. FIG. 2 is a graph showing the relationship between the average heating rate and Rockwell T hardness (HR30T). According to FIG. 2, as shown in Patent Documents 4 to 7, softening is recognized when the heating rate is high. However, in a continuous annealing facility using only a normal radiant tube type heating method, the heating rate obtained is up to about 40 ° C./s, and in order to obtain a higher heating rate, auxiliary heating means must be used in combination.

そこで、次なる第二の実験として、加熱前半段階を輻射管式加熱を用いた際の加熱速度を想定して15℃/sとし、100〜700℃に到達した時点で加熱速度を変更する2段加熱方式による実験を行った。この時のヒートサイクルをヒートサイクル(B)として、図1に示す。加熱後半での加熱速度は補助過熱手段を併用することを想定して加熱前半段階よりも高速とし、ここでは95℃/sとした。なお、鋼成分その他の焼鈍以外の条件は、第一の実験と同様に行った。   Therefore, as the next second experiment, the heating first half stage is assumed to be 15 ° C./s assuming the heating rate when using radiant tube heating, and the heating rate is changed when the temperature reaches 100 to 700 ° C. 2 Experiments using the step heating method were conducted. The heat cycle at this time is shown as a heat cycle (B) in FIG. The heating rate in the second half of the heating was assumed to be higher than that in the first half of the heating, assuming that the auxiliary superheating means was used in combination, and was 95 ° C./s here. The conditions other than the steel components and other annealing were the same as in the first experiment.

以上により得られた鋼板について、第一の実験と同様の方法により、調質度としてロックウェルT硬さ(HR30T)の測定を行った。   About the steel plate obtained by the above, the Rockwell T hardness (HR30T) was measured as a refining degree by the method similar to 1st experiment.

得られた結果を第一の実験と併せて図2(B)に示す。なお、図2において、横軸の平均加熱速度は、ヒートサイクル(A)は加熱中で均一な加熱速度をそのまま平均加熱速度とし、ヒートサイクル(B)では焼鈍前の状態から均熱温度までの温度上昇量を加熱に要する時間で除した値とした。   The obtained result is shown in FIG. 2 (B) together with the first experiment. In FIG. 2, the average heating rate on the horizontal axis indicates that the heat cycle (A) is an average heating rate as it is during heating in the heat cycle (A), and in the heat cycle (B), from the state before annealing to the soaking temperature. The temperature increase was divided by the time required for heating.

図2より、ヒートサイクル(B)では、特定の平均加熱速度において、ヒートサイクル(A)と比較して著しく軟質化が認められることがわかった。すなわち、特許文献4〜7のような単純なヒートサイクル(A)では、特に速い加熱速度でなければ軟質化することはできなかったのに対し、加熱前半段階と加熱後半段階で加熱速度を変更する加熱方式:ヒートサイクル(B)では、平均加熱速度を特定な条件に設定することで、軟質化することができるとの知見を得た。   From FIG. 2, it was found that in the heat cycle (B), softening was significantly observed at a specific average heating rate as compared with the heat cycle (A). That is, in the simple heat cycle (A) as in Patent Documents 4 to 7, it was not possible to soften unless the heating rate was particularly high, whereas the heating rate was changed between the first half of heating and the second half of heating. In the heating system: Heat cycle (B), it was found that softening can be achieved by setting the average heating rate to a specific condition.

上記知見に基づき、ヒートサイクル(B)の条件について更に検討した。
その結果、加熱前半段階での加熱速度を比較的低速にし、加熱速度を変更する温度を適切にして、平均加熱速度を加熱前半段階での加熱速度よりも高くすることで、軟質化が可能となるとの知見を得た。
Based on the above findings, the conditions of the heat cycle (B) were further examined.
As a result, the heating rate in the first half stage of heating can be made relatively slow, the temperature for changing the heating rate can be set appropriately, and the average heating rate can be made higher than the heating rate in the first half stage of heating, thereby enabling softening. I got the knowledge that it will be.

加熱前半段階と加熱後半段階で加熱速度を変更する加熱方式:ヒートサイクル(B)によって軟質化がもたらされる機構については、現段階では未解明であるが、例えば、以下のような機構が推定される。   Heating method that changes the heating rate in the first half of heating and the second half of heating: The mechanism that causes softening by heat cycle (B) has not been clarified at this stage, but the following mechanism is estimated, for example. The

冷間圧延後の鋼板を加熱していくと、冷間圧延で導入された歪エネルギーを駆動力として再結晶、粒成長が進行する。具体的には、まず転位や格子欠陥の消滅、再配列などにより歪エネルギーが開放された領域、つまり再結晶核が生じ、この領域が隣接した領域の歪エネルギーを開放しつつ成長していく。加熱前半段階での加熱速度が比較的低い場合、こうした現象は、特に歪エネルギーが開放されやすい位置で限定的に生じると考えられる。つまり、再結晶核が比較的少ない状態となる。この加熱速度で特定の温度まで加熱し、再限定的に形成した結晶核を確保した上で、加熱後半段階では加熱速度を比較的高くして、平均加熱速度を加熱前半段階よりも高速をすることで、限定的に形成した再結晶核が優先的に成長し、結果として結晶粒径が粗大化することで軟質化する。   When the steel sheet after cold rolling is heated, recrystallization and grain growth proceed using the strain energy introduced by cold rolling as a driving force. Specifically, first, a region in which strain energy is released by dislocation, lattice defect disappearance, rearrangement, or the like, that is, a recrystallization nucleus is generated, and this region grows while releasing strain energy in an adjacent region. When the heating rate in the first half of heating is relatively low, such a phenomenon is considered to occur in a limited manner particularly at a position where strain energy is easily released. That is, the recrystallization nuclei are relatively few. After heating to a specific temperature at this heating rate and securing re-limited crystal nuclei, the heating rate is relatively high in the latter half of the heating, and the average heating rate is higher than that in the first half of the heating. As a result, the recrystallized nuclei formed in a limited manner preferentially grow, and as a result, the crystal grain size becomes coarse and softens.

以上の結果、平均加熱速度としては同じであっても、ヒートサイクル(B)ではヒートサイクル(A)よりも軟質化されたものと推定される。   As a result, even if the average heating rate is the same, it is estimated that the heat cycle (B) is softer than the heat cycle (A).

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]質量%で、C:0.0005〜0.005%、Mn:0.1〜0.8%、Al:0.01〜0.10%、N:0.0010〜0.0070%、および、Nb:0.002〜0.05%、Ti:0.002〜0.05%、B:0.0005〜0.0030%のいずれか一種以上を含有し、残部はFeおよび不可避的不純物からなる鋼を鋼片とし、熱間圧延、酸洗した後、冷間圧延を行い、次いで、連続焼鈍法により加熱、均熱を行うに際し、320〜680℃の温度にて、加熱速度を変更する加熱方式で、320〜680℃の温度までの前半の加熱速度を10〜30℃/sで、均熱温度までの平均加熱速度を、20〜35℃/sで、かつ、前記前半加熱速度よりも高速として加熱を行い、730〜780℃の均熱温度、5秒以上の均熱時間で均熱を行い、次いで、冷却し、調質圧延を行うことを特徴とする缶用鋼板原板の製造方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] By mass%, C: 0.0005 to 0.005%, Mn: 0.1 to 0.8%, Al: 0.01 to 0.10%, N: 0.0010 to 0.0070% Nb: 0.002 to 0.05%, Ti: 0.002 to 0.05%, B: 0.0005 to 0.0030%, and the balance is Fe and inevitable Steel made of impurities is made into a steel slab, hot rolled, pickled, then cold rolled, and then heated and soaked by a continuous annealing method at a temperature of 320 to 680 ° C. In the heating method to be changed, the heating rate in the first half to a temperature of 320 to 680 ° C. is 10 to 30 ° C./s, the average heating rate to the soaking temperature is 20 to 35 ° C./s, and the heating in the first half Heating is performed at a higher speed than the speed, soaking temperature of 730-780 ° C., soaking for 5 seconds or more In performed soaking, then it cooled, the manufacturing method of a steel sheet for cans original substrate and performing temper rolling.

なお、本明細書において、鋼の成分を示す%は、すべて質量%である。   In the present specification, “%” indicating the component of steel is “% by mass”.

本発明によれば、再結晶、結晶粒成長を促進する熱処理を行うことで、軟質で延性に優れた缶用鋼板原板を効率的に製造することができる。   According to the present invention, by performing a heat treatment that promotes recrystallization and crystal grain growth, it is possible to efficiently produce a steel plate for a can that is soft and excellent in ductility.

本発明では、従来の焼鈍設備を基に、通常の輻射管式などの加熱方式に加えて補助的な加熱手段を用いることで達成できるヒートサイクルにおいて、平均加熱速度、急速加熱開始温度を特定の条件にすることにより、軟質化、延性の向上を図っているため、従来技術のような新しい焼鈍設備を必要としない、また、製造時のランニングコストも高くならない。   In the present invention, an average heating rate and a rapid heating start temperature are specified in a heat cycle that can be achieved by using an auxiliary heating means in addition to a heating method such as a normal radiant tube type based on conventional annealing equipment. By setting the conditions, softening and ductility are improved, so that a new annealing facility as in the prior art is not required, and the running cost at the time of manufacture does not increase.

以下に本発明について詳細に説明する。まず、鋼成分含有量の限定理由についてそれぞれ述べる。
C:0.0005〜0.005%
Cは、鋼板の調質度を本発明の対象とするT−1からT−3とするために重要な元素である。Cは固溶、もしくは炭化物として存在し、いずれの形態においても多量になるほど鋼が硬質化する。特に、Cが0.005%を超えると硬質となるためにT−1からT−3の調質度を得ることが困難となる。よって、Cは0.005%以下と限定する。一方、Cが0.0005%未満では、T−1からT−3の調質度を得ることは可能だが、脱炭工程での操業負荷が増加し、コスト上昇をもたらす。よって、Cの下限を0.0005%以上とする。
The present invention is described in detail below. First, the reasons for limiting the steel component content will be described.
C: 0.0005 to 0.005%
C is an important element for changing the tempering degree of the steel sheet from T-1 to T-3, which is an object of the present invention. C exists as a solid solution or carbide, and the steel becomes harder as the amount increases in any form. In particular, when C exceeds 0.005%, it becomes hard, and it becomes difficult to obtain a refining degree from T-1 to T-3. Therefore, C is limited to 0.005% or less. On the other hand, if C is less than 0.0005%, it is possible to obtain a tempering degree from T-1 to T-3, but the operation load in the decarburization process increases, resulting in an increase in cost. Therefore, the lower limit of C is set to 0.0005% or more.

Mn:0.1〜0.8%
Mn量が0.1%未満では、熱間脆性を生じることがある。一方、0.8%を超えると鋼板が過剰に硬質化して本発明の対象とする調質度がT−1からT−3の鋼板を得ることが困難となる。よって、Mnの含有量は0.1%以上0.8%以下の範囲とする。
Mn: 0.1 to 0.8%
If the amount of Mn is less than 0.1%, hot brittleness may occur. On the other hand, if it exceeds 0.8%, the steel sheet becomes excessively hard, and it becomes difficult to obtain a steel sheet having a tempering degree of T-1 to T-3. Therefore, the Mn content is in the range of 0.1% to 0.8%.

Al:0.01〜0.10%
Al量が0.01%未満では脱酸効果が十分に得られない。また、NとAlNを形成することにより、鋼中の固溶Nを減少させる効果が得られず、鋼板が硬質化することで、本発明の対象とする調質度がT−1からT−3の鋼板を得ることが困難となる。一方、0.10%を超えるとこれらの効果が飽和するのに加え、アルミナ等の介在物を生じやすくなる。よって、Alの含有量は0.01%以上0.10%以下の範囲とする。
Al: 0.01-0.10%
If the Al content is less than 0.01%, a sufficient deoxidation effect cannot be obtained. Moreover, by forming N and AlN, the effect of reducing the solid solution N in the steel cannot be obtained, and the steel sheet is hardened, so that the tempering degree targeted by the present invention is T-1 to T-. It becomes difficult to obtain the steel plate 3. On the other hand, if it exceeds 0.10%, these effects are saturated, and inclusions such as alumina tend to be generated. Therefore, the Al content is in the range of 0.01% to 0.10%.

N:0.0010〜0.0070%
Nを0.0010%未満にすると、Nを除去する工程での処理時間の増大をまねき、鋼板の製造コストが上昇する。一方、0.0070%を超えると、固溶Nによって鋼板の硬質化がもたらされ、本発明の対象とする調質度がT−1からT−3の鋼板を得ることが困難となる。よって、Nの含有量は0.0010%以上0.0070%以下の範囲とする。
N: 0.0010 to 0.0070%
When N is less than 0.0010%, the processing time in the step of removing N is increased, and the manufacturing cost of the steel sheet is increased. On the other hand, if it exceeds 0.0070%, the solid solution N hardens the steel sheet, and it becomes difficult to obtain a steel sheet having a tempering degree of T-1 to T-3. Therefore, the N content is in the range of 0.0010% to 0.0070%.

Nb:0.002〜0.05%、Ti:0.002〜0.05%、B:0.0005〜0.0030%のいずれか一種以上を含有
Nb:0.002〜0.05%
Nbは鋼中のC、Nと析出物を形成し、鋼中の固溶C、Nを低減することで鋼板を有効に軟質化することができる元素である。この効果が得られる下限として、含有量は0.002%以上であることが必要である。一方、0.05%以上含有すると上記効果が飽和することに加え、固溶したNbが再結晶の遅延をもたらし、焼鈍温度の上昇を招く。よってNbの含有量は0.002%以上0.05%未満の範囲とする。
Ti:0.002〜0.05%
TiはNbと同様に鋼中のC、Nと析出物を形成し、鋼中の固溶C、Nを低減することで鋼板を有効に軟質化することができる元素である。この効果が得られる下限として、含有量は0.002%以上であることが必要である。一方、0.05%以上含有すると上記効果が飽和することに加え、鋼板表面にTi酸化物が生じ、耐食性の劣化をもたらす。よってTiの含有量は0.002%以上0.05%未満の範囲とする。
B:0.0005〜0.0030%
Bは鋼中のNと析出物を形成し、鋼中の固溶Nを低減することで鋼板を有効に軟質化することができる元素である。この効果が得られる下限として、含有量は0.0005%以上であることが必要である。一方、0.0030%以上含有すると上記効果が飽和することに加え、粒界に偏析し易いBが再結晶の遅延をもたらし、焼鈍温度の上昇を招く。よってBの含有量は0.0005%以上0.0030%未満の範囲とする。
これらの元素は単独あるいは複合して添加することができる。
Nb: 0.002 to 0.05%, Ti: 0.002 to 0.05%, B: 0.0005 to 0.0030% Nb: 0.002 to 0.05%
Nb is an element that forms precipitates with C and N in steel, and can effectively soften the steel sheet by reducing solid solution C and N in the steel. As a lower limit for obtaining this effect, the content needs to be 0.002% or more. On the other hand, when the content is 0.05% or more, in addition to saturation of the above effect, the solid solution Nb brings about a delay in recrystallization and raises the annealing temperature. Therefore, the Nb content is in the range of 0.002% or more and less than 0.05%.
Ti: 0.002 to 0.05%
Ti is an element capable of effectively softening the steel sheet by forming precipitates with C and N in the steel, as with Nb, and reducing solid solution C and N in the steel. As a lower limit for obtaining this effect, the content needs to be 0.002% or more. On the other hand, when the content is 0.05% or more, in addition to saturation of the above effect, Ti oxide is generated on the surface of the steel sheet, resulting in deterioration of corrosion resistance. Therefore, the Ti content is in the range of 0.002% or more and less than 0.05%.
B: 0.0005 to 0.0030%
B is an element that forms precipitates with N in the steel and can effectively soften the steel sheet by reducing the solid solution N in the steel. As a lower limit for obtaining this effect, the content needs to be 0.0005% or more. On the other hand, when the content is 0.0030% or more, in addition to saturation of the above effect, B which is easily segregated at the grain boundary causes recrystallization delay and increases the annealing temperature. Therefore, the B content is in the range of 0.0005% or more and less than 0.0030%.
These elements can be added alone or in combination.

なお、上記以外の残部はFe及び不可避的不純物からなる。上記成分の他に、鋼には原料や製造工程に由来する不可避的不純物が含まれる。その代表的なものにSi、P、Sがある。通常、これらの成分は熔銑、熔鋼の段階で不純物としての許容レベルまで除去され、缶用鋼板ではSi:0.02%以下、P:0.02%以下、S:0.02%以下に制御されている。これらの成分は不純物レベルの含有量であれば特に本発明に特段の影響を及ぼすことがないため、適宜含有することができる。ただし、意図的に含有量を調整する場合には、以下のとおりとすることが望ましい。   The remainder other than the above consists of Fe and inevitable impurities. In addition to the above components, steel contains inevitable impurities derived from raw materials and manufacturing processes. Typical examples include Si, P, and S. Normally, these components are removed to an acceptable level as impurities at the stage of molten metal and molten steel. For steel plates for cans, Si: 0.02% or less, P: 0.02% or less, S: 0.02% or less Is controlled. Since these components do not particularly affect the present invention as long as they are contained at an impurity level, they can be appropriately contained. However, when the content is intentionally adjusted, it is desirable to do as follows.

Si:
脱酸補助剤として、含有量の調整を行う場合がある。ただし、本発明の対象とする缶用鋼板では、鋼の耐食性が高いことが要求されるため、Siの含有量が多い場合に耐食性が損なわれる可能性がある。よって、含有する場合は0.05%以下とすることが望ましい。
Si:
The content may be adjusted as a deoxidation aid. However, since the steel plate for cans which is the subject of the present invention is required to have high corrosion resistance, the corrosion resistance may be impaired when the Si content is high. Therefore, when it contains, it is desirable to set it as 0.05% or less.

P:
調質度の調整を目的として含有量の調整を行う場合がある。ただし、過剰な添加は硬質化ばかりでなく鋼板の耐食性の劣化をもたらす。よって、含有する場合は0.05%以下とすることが望ましい。
P:
The content may be adjusted for the purpose of adjusting the tempering degree. However, excessive addition causes not only hardening but also deterioration of the corrosion resistance of the steel sheet. Therefore, when it contains, it is desirable to set it as 0.05% or less.

S:
熱間脆性の劣化防止のため含有量の調整を行う場合がある。過剰な添加は熱間脆性が劣化するため、含有する場合は0.05%以下とすることが望ましい。熱間延性を特に向上させる必要がある場合には、含有量の上限を0.01%とすることが望ましい。
S:
The content may be adjusted to prevent hot brittle deterioration. Excessive addition deteriorates hot brittleness, so when it is contained, the content is desirably 0.05% or less. When the hot ductility needs to be particularly improved, the upper limit of the content is preferably 0.01%.

次に、本発明の缶用鋼板原板の製造方法について述べる。
本発明の缶用鋼板原板は、上記化学成分範囲に調整された鋼を鋼片とし、熱間圧延、酸洗した後、冷間圧延を行い、次いで、連続焼鈍法により以下に示す条件にて加熱、均熱を行い、次いで、冷却し、調質圧延を行うことにより得られる。加熱、均熱を行うに際しては、320〜680℃の温度にて、加熱速度を変更する加熱方式で行う。そして、320〜680℃の温度までの前半の加熱速度を10〜30℃/sで、均熱温度までの平均加熱速度を、20〜35℃/sで、かつ、前記前半加熱速度よりも高速として加熱を行い、730〜780℃の均熱温度、5秒以上の均熱時間で均熱を行う。
これらについて以下に詳細に説明する。
Next, the manufacturing method of the steel plate original plate for cans of this invention is described.
The steel plate for can of the present invention is a steel slab adjusted to the above chemical composition range, hot rolled, pickled, then cold rolled, and then subjected to the following conditions by continuous annealing method It is obtained by heating and soaking, then cooling and temper rolling. When performing heating and soaking, the heating is performed at a temperature of 320 to 680 ° C. by changing the heating rate. And the heating rate of the first half to the temperature of 320 to 680 ° C. is 10 to 30 ° C./s, the average heating rate to the soaking temperature is 20 to 35 ° C./s, and higher than the heating rate of the first half. And soaking is performed at a soaking temperature of 730 to 780 ° C. for a soaking time of 5 seconds or more.
These will be described in detail below.

まず、製鋼条件は、本発明に規定する鋼成分が得られる方法であれば如何なる方法でもよく、特に限定的に規定されるものではない。ただし、鋳片の製造は鋳片の均一性の優れる連続鋳造で行なうことが望ましい。   First, the steelmaking conditions may be any method as long as the steel components specified in the present invention are obtained, and are not particularly limited. However, it is desirable to manufacture the slab by continuous casting with excellent slab uniformity.

鋳片の再加熱条件も特に限定的に規定されるものではないが、温度が高すぎると表面欠陥やエネルギーコストの面で不利であり、温度が低すぎると熱延仕上温度の確保が難しくなることから、1050〜1300℃の温度範囲とすることが望ましい。   The reheating condition of the slab is not particularly limited, but if the temperature is too high, it is disadvantageous in terms of surface defects and energy costs, and if the temperature is too low, it is difficult to ensure the hot rolling finish temperature. Therefore, it is desirable that the temperature range is 1050 to 1300 ° C.

熱延条件も特に限定的に規定されるものではない。熱延鋼板の均一性、表面性状、機械特性、及び生産コストの観点から、仕上温度は860〜950℃とすることが望ましい。また、コイル巻取温度は同様の理由から550〜750℃が望ましい。   The hot rolling conditions are not particularly limited. From the viewpoint of the uniformity, surface properties, mechanical properties, and production cost of the hot-rolled steel sheet, the finishing temperature is preferably 860 to 950 ° C. The coil winding temperature is preferably 550 to 750 ° C. for the same reason.

酸洗については、表面のスケールが除去されればよく、特に方法を規定しない。   As for pickling, it is only necessary to remove the scale of the surface, and no particular method is specified.

冷間圧延については、本発明には特に影響しないため限定しない。本発明の対象とする缶用鋼板の板厚が0.14から0.4mm程度の範囲であることから、熱延鋼板の板厚、冷間圧延機の圧延延能力との関係を踏まえて冷間圧延率を80%以上とすることが望ましい。   The cold rolling is not particularly limited because it does not particularly affect the present invention. Since the plate thickness of the steel plate for cans which is the subject of the present invention is in the range of about 0.14 to 0.4 mm, the thickness of the steel plate for hot rolling is set in consideration of the relationship between the plate thickness of the hot rolled steel plate and the rolling capability of the cold rolling mill. It is desirable that the hot rolling rate is 80% or more.

次いで、連続焼鈍法により、加熱、均熱する。この加熱、均熱を行う際の条件は本発明において、最も重要な要件である。   Next, heating and soaking are performed by a continuous annealing method. The conditions for performing this heating and soaking are the most important requirements in the present invention.

まず、本発明では、加熱、均熱を、加熱前半段階と加熱後半段階とで加熱速度を変更する加熱方式を採用する。その理由は、図2に関する実験結果として前述したとおりである。
そして、加熱速度の変更温度は320〜680℃とし、加熱前半段階の加熱速度(以降、前半加熱速度と称する)を10〜30℃/s、均熱温度までの平均加熱速度を20〜35℃/sで、かつ前半加熱速度よりも高速とする。また、均熱温度は730〜780℃、均熱時間は5秒以上とする。このような条件で加熱、均熱を行うことにより、軟質で延性に優れた缶用鋼板原板が得られることになる。
これらは本発明に至る検討過程で実験的に決定した値であるが、前期の推定機構からその作用は以下のとおりである。
First, in the present invention, a heating method is adopted in which heating and soaking are performed by changing the heating rate between the first half stage of heating and the second half stage of heating. The reason is as described above as the experimental result regarding FIG.
And the change temperature of a heating rate shall be 320-680 degreeC, the heating rate (henceforth the first half heating rate) of the first half stage of heating is 10-30 degreeC / s, and the average heating rate to soaking temperature is 20-35 degreeC. / S and higher than the first half heating rate. The soaking temperature is 730 to 780 ° C., and the soaking time is 5 seconds or more. By performing heating and soaking under such conditions, a steel plate for cans that is soft and excellent in ductility can be obtained.
These are experimentally determined values in the study process leading to the present invention, and the action is as follows from the presumed mechanism of the previous period.

加熱速度の変更温度:320〜680℃
320℃以下であると再結晶核が十分に確保できない。一方、680℃以上であると、再結晶核が多数発生し、結果として結晶粒の粗大化を阻害する。よって、加熱速度の変更温度は320℃超え680℃未満とする。
Change temperature of heating rate: 320-680 ° C
If the temperature is 320 ° C. or lower, sufficient recrystallization nuclei cannot be secured. On the other hand, when the temperature is 680 ° C. or higher, many recrystallization nuclei are generated, and as a result, coarsening of crystal grains is hindered. Therefore, the heating temperature change temperature is set to be higher than 320 ° C. and lower than 680 ° C.

前半加熱速度:10〜30℃/s
10℃/s以下であると、比較的低温の状態で長時間停滞することになるため、再結晶の駆動力となる歪エネルギーが再結晶核を十分に成長させる前の段階で消費され、加熱後半段階で成長させる再結晶核が確保できない。一方、30℃/s以上であると、再結晶核が多くなり、結果として結晶粒の粗大化を阻害する。よって、加熱前半段階の加熱速度は10℃/s超え30℃/s未満とする。
First half heating rate: 10-30 ° C./s
If it is 10 ° C./s or less, it stays at a relatively low temperature for a long time, so that the strain energy, which is the driving force for recrystallization, is consumed at the stage before the recrystallization nuclei are sufficiently grown and heated. Recrystallization nuclei to be grown in the second half cannot be secured. On the other hand, when it is 30 ° C./s or more, recrystallization nuclei increase, and as a result, coarsening of crystal grains is hindered. Therefore, the heating rate in the first half of the heating is set to exceed 10 ° C./s and less than 30 ° C./s.

均熱温度までの平均加熱速度:20〜35℃/sかつ前半加熱速度よりも高速である
20℃/s以下だと加熱前半段階で限定的に成形した再結晶核を優先的に成長させることができない。一方、35℃/s以上だと再結晶核の数を過剰増加させ、結果として結晶粒の粗大化を阻害する。同時に、平均加熱速度が前半加熱速度よりも低速であると、限定的に形成した再結晶核を優先的に成長させるエネルギーが得られず、結果として結晶粒の粗大化を阻害する。よって、均熱温度までの平均加熱速度は、25℃/s超え35℃/s未満であり、かつ、前半加熱速度よりも高速とする。
Average heating rate up to soaking temperature: 20-35 ° C / s and less than 20 ° C / s, which is faster than the first half heating rate, preferentially grow recrystallized nuclei limitedly formed in the first half of heating I can't. On the other hand, when it is 35 ° C./s or more, the number of recrystallized nuclei is excessively increased, and as a result, coarsening of crystal grains is hindered. At the same time, if the average heating rate is lower than the first half heating rate, energy for preferentially growing the recrystallized nuclei formed in a limited manner cannot be obtained, and as a result, coarsening of crystal grains is hindered. Therefore, the average heating rate up to the soaking temperature is more than 25 ° C./s and less than 35 ° C./s, and is higher than the first half heating rate.

尚、加熱後半段階の加熱速度は、前半加熱速度、加熱速度の変更温度、平均加熱速度の相互の関係から一定の条件に決まり、概ね70〜300℃/s程度である。   The heating rate in the latter half of the heating is determined to be a fixed condition from the relationship among the first half heating rate, the heating temperature changing temperature, and the average heating rate, and is approximately 70 to 300 ° C./s.

前半加熱速度は比較的低速であるので、それを得る加熱手段としては従来の連続焼鈍炉で主流である輻射管法式が適している。また、通常は比較的高速な加熱速度を得るために用いる通電加熱法式、誘導過熱法式なども、その出力を調整することで比較的低速な加熱速度を得ることができ、これらを用いることも可能である。   Since the first half heating rate is relatively low, a radiant tube method, which is the mainstream in conventional continuous annealing furnaces, is suitable as a heating means for obtaining it. In addition, it is possible to obtain a relatively slow heating rate by adjusting the output of the current heating method, induction heating method, etc. that are usually used to obtain a relatively high heating rate, and these can also be used. It is.

加熱後半段階での加熱速度は比較的高速であるので、それを得るための加熱手段としては通電加熱法式、誘導過熱法式などが適している。   Since the heating rate in the latter half of the heating is relatively high, an electric heating method, an induction heating method, or the like is suitable as a heating means for obtaining the heating rate.

均熱温度:730〜780℃、均熱時間:5秒以上
均熱温度が730℃以下であると再結晶が十分に達成されず、あるいは再結晶に要する時間が過大となる。一方、780℃以上では絞りが発生して連続焼鈍での通板が困難になる。また、均熱時間が5秒未満では本発明で規定した成分、加熱速度条件、均熱温度での再結晶が完了しない。
Soaking temperature: 730 to 780 ° C., Soaking time: 5 seconds or more If the soaking temperature is 730 ° C. or less, recrystallization is not sufficiently achieved, or the time required for recrystallization becomes excessive. On the other hand, when the temperature is 780 ° C. or higher, drawing occurs, making it difficult to pass through the plate by continuous annealing. If the soaking time is less than 5 seconds, recrystallization at the components, heating rate conditions, and soaking temperature specified in the present invention is not completed.

よって、均熱温度は730℃超え780℃未満、均熱時間は5秒以上とする。尚、均熱時間の上限は本発明では特に影響しないが、均熱帯の規模を過大にしないためにも60秒以内であることが望ましい。   Therefore, the soaking temperature is over 730 ° C. and less than 780 ° C., and the soaking time is 5 seconds or more. The upper limit of the soaking time is not particularly affected in the present invention, but is preferably within 60 seconds so as not to make the soaking zone excessive.

連続焼鈍後、次いで、冷却する。この時の冷却条件は本発明に対して影響を及ぼさないため、特に限定しない。ただし、過剰に遅い冷却速度は連続焼鈍設備における冷却帯の規模が大きくなるため好ましくなく、また過剰に速い冷却速度は冷却機構の規模が大きくなるため好ましくない。そのため、−8〜−100℃/sであることが望ましい。   After continuous annealing, it is then cooled. The cooling conditions at this time are not particularly limited because they do not affect the present invention. However, an excessively slow cooling rate is not preferable because the size of the cooling zone in the continuous annealing facility becomes large, and an excessively high cooling rate is not preferable because the size of the cooling mechanism becomes large. Therefore, it is desirable that it is −8 to −100 ° C./s.

次いで調質圧延を行う。調質圧延は調質度の調整、鋼板表面粗さの調整、形状の確保のために行われるが、伸長質が0.8以下であると粗さ、形状の調整が困難となる場合がある。一方、伸長質が3.0%を超えると過剰に硬質化する場合がある。よって、伸長率の範囲は0.8%超え3.0%以下とすることが望ましい。   Next, temper rolling is performed. Temper rolling is performed to adjust the degree of tempering, to adjust the surface roughness of the steel sheet, and to ensure the shape, but if the elongation is 0.8 or less, it may be difficult to adjust the roughness and shape. . On the other hand, if the extensibility exceeds 3.0%, it may be excessively hardened. Therefore, it is desirable that the range of elongation rate is 0.8% to 3.0%.

なお、本発明の鋼板には、缶用鋼板としても用途に応じて各種表面処理を施すことができる。その種類は特に限定されない。代表的なものとしてSnやNiの単独または複合層、あるいはティンフリースチールに代表される金属クロム、クロム酸化物層、さらにはTi、Zr酸化物層を形成する表面処理がある。また、これらに加えて有機樹脂被覆を行う処理がある。   The steel sheet of the present invention can be subjected to various surface treatments as a steel sheet for cans depending on the application. The kind is not particularly limited. Typical examples include a surface treatment for forming a single or composite layer of Sn or Ni, or a metal chromium, chromium oxide layer typified by tin-free steel, and further a Ti or Zr oxide layer. In addition to these, there is a process of coating with an organic resin.

表1に示す鋼(a)の成分を含有する鋼を熔製し、連続鋳造により鋳片とし、常温まで冷却した。次いで、加熱温度1250℃で鋳片を再加熱し、粗圧延、仕上圧延による熱間圧延を、仕上温度900℃、巻き取り温度680℃で行い、板厚2.3mmの熱延鋼板を得た。得られた熱延鋼板に対し酸洗した後、圧延率86%の冷間圧延を行った。次いで、連続焼鈍法により、表2に示す条件にて焼鈍を行った。次いで、冷却し、伸長率0.9%で調質圧延を行い、板厚0.32mmの缶用鋼板原板を得た。   Steel containing the components of steel (a) shown in Table 1 was melted, made into a slab by continuous casting, and cooled to room temperature. Next, the slab was reheated at a heating temperature of 1250 ° C., and hot rolling by rough rolling and finish rolling was performed at a finishing temperature of 900 ° C. and a winding temperature of 680 ° C. to obtain a hot-rolled steel sheet having a thickness of 2.3 mm. . The obtained hot-rolled steel sheet was pickled and then cold rolled at a rolling rate of 86%. Subsequently, it annealed on the conditions shown in Table 2 by the continuous annealing method. Next, it was cooled and subjected to temper rolling at an elongation rate of 0.9% to obtain a steel plate for a can having a plate thickness of 0.32 mm.

Figure 0004900179
Figure 0004900179

以上により得られた缶用鋼板原板に対し、ロックウェルT硬さ(HR30T)を測定した。測定方法はJIS Z2245に準拠した。
得られた結果を表2に示す。なお、表2において、ヒートサイクルの欄での(A)は、図1(A)に概要を示した従来技術のヒートサイクルを示す、(B)は図1(B)に概要を示した本発明のヒートサイクルを示す。また、表2おける平均加熱速度、加熱前半段階の加熱速度はそれぞれ以下の定義によるものである。
平均加熱速度
焼鈍前の状態から均熱温度までの温度上昇量をその加熱に要する時間で除した値。
前半加熱速度
焼鈍前の状態から加熱速度変更温度までの温度上昇量をその加熱それに要した時間で除した値。
The Rockwell T hardness (HR30T) was measured with respect to the can steel plate obtained as described above. The measuring method was based on JIS Z2245.
The obtained results are shown in Table 2. In Table 2, (A) in the column of heat cycle shows the heat cycle of the prior art outlined in FIG. 1 (A), and (B) shows the book outlined in FIG. 1 (B). 1 shows the heat cycle of the invention. Moreover, the average heating rate in Table 2 and the heating rate in the first half of the heating are as defined below.
The value obtained by dividing the temperature increase from the state before the average heating rate annealing to the soaking temperature by the time required for the heating.
The value obtained by dividing the amount of temperature increase from the state before the first half heating rate annealing to the heating rate change temperature by the time required for the heating.

Figure 0004900179
Figure 0004900179

表2より、本発明範囲内である実施例では、軟質な缶用鋼板原板が得られているのがわかる。例えば、No6の本発明例では、平均加熱温度30℃/sと平均加熱速度が小さいにも拘わらず、硬度が低く軟質で延性に優れた缶用鋼板原板が得られている。
一方、比較例では、硬度が高くなっており、軟質化が十分でない。
From Table 2, it can be seen that in the examples within the scope of the present invention, a soft steel plate blank for cans was obtained. For example, in the present invention example No. 6, a steel plate for cans having a low hardness and a soft and excellent ductility can be obtained although the average heating temperature is 30 ° C./s and the average heating rate is small.
On the other hand, in the comparative example, the hardness is high and the softening is not sufficient.

表1に示す鋼(a)〜(m)の成分を含有する鋼をそれぞれ熔製し、連続鋳造により鋳片とし、常温まで冷却した。次いで、加熱温度1250℃で鋳片を再加熱し、粗圧延、仕上圧延による熱間圧延を、仕上温度900℃、巻き取り温度680℃で行い、板厚2.3mmの熱延鋼板を得た。得られた熱延鋼板に対し酸洗した後、圧延率86%の冷間圧延を行った。次いで、連続焼鈍法により、表3に示す条件にて焼鈍を行った。次いで、冷却し伸長率0.9%で調質圧延を行って板厚0.32mmの缶用鋼板原板を得た。以上により得られた缶用鋼板原板に対し、ロックウェルT硬さ(HR30T)を測定した。測定方法は実施例1と同様である。得られた結果を表2に示す。   Steels containing the components of steels (a) to (m) shown in Table 1 were respectively melted, made into slabs by continuous casting, and cooled to room temperature. Next, the slab was reheated at a heating temperature of 1250 ° C., and hot rolling by rough rolling and finish rolling was performed at a finishing temperature of 900 ° C. and a winding temperature of 680 ° C. to obtain a hot-rolled steel sheet having a thickness of 2.3 mm. . The obtained hot-rolled steel sheet was pickled and then cold rolled at a rolling rate of 86%. Subsequently, it annealed on the conditions shown in Table 3 by the continuous annealing method. Subsequently, it was cooled and subjected to temper rolling at an elongation rate of 0.9% to obtain a steel plate for a can having a plate thickness of 0.32 mm. The Rockwell T hardness (HR30T) was measured with respect to the can steel plate obtained as described above. The measuring method is the same as in Example 1. The obtained results are shown in Table 2.

Figure 0004900179
Figure 0004900179

表3より、本発明範囲内である実施例では、軟質な鋼板が得られているのがわかる。一方、比較例では、硬度が高くなっており、軟質化が十分でない。     From Table 3, it can be seen that soft steel sheets were obtained in the examples within the scope of the present invention. On the other hand, in the comparative example, the hardness is high and the softening is not sufficient.

連続焼鈍時のヒートサイクルを示す図であり、ヒートサイクル(A)は従来技術のヒートサイクル、ヒートサイクル(B)は本発明のヒートサイクルを示す。It is a figure which shows the heat cycle at the time of continuous annealing, a heat cycle (A) shows the heat cycle of a prior art, and a heat cycle (B) shows the heat cycle of this invention. 平均加熱速度とロックウェルT硬さ(HR30T)との関係を示す図である。It is a figure which shows the relationship between an average heating rate and Rockwell T hardness (HR30T).

Claims (1)

質量%で、C:0.0005〜0.005%、Mn:0.1〜0.8%、Al:0.01〜0.10%、N:0.0010〜0.0070%、および、Nb:0.002〜0.05%、Ti:0.002〜0.05%、B:0.0005〜0.0030%のいずれか一種以上を含有し、残部はFeおよび不可避的不純物からなる鋼を鋼片とし、熱間圧延、酸洗した後、冷間圧延を行い、次いで、連続焼鈍法により加熱、均熱を行うに際し、320〜680℃の温度にて、加熱速度を変更する加熱方式で、320〜680℃の温度までの前半の加熱速度を10〜30℃/sで、均熱温度までの平均加熱速度を、20〜35℃/sで、かつ、前記前半加熱速度よりも高速として加熱を行い、730〜780℃の均熱温度、5秒以上の均熱時間で均熱を行い、次いで、冷却し、調質圧延を行うことを特徴とする缶用鋼板原板の製造方法。   % By mass, C: 0.0005-0.005%, Mn: 0.1-0.8%, Al: 0.01-0.10%, N: 0.0010-0.0070%, and Nb: 0.002 to 0.05%, Ti: 0.002 to 0.05%, B: 0.0005 to 0.0030%, and the balance consists of Fe and inevitable impurities Steel is made into a steel slab, hot rolled, pickled, then cold rolled, and then heated and soaked by a continuous annealing method at a temperature of 320 to 680 ° C. to change the heating rate. The heating rate in the first half to a temperature of 320 to 680 ° C. is 10 to 30 ° C./s, the average heating rate to the soaking temperature is 20 to 35 ° C./s, and is higher than the heating rate in the first half. Heating is performed at high speed, soaking temperature is 730 to 780 ° C, soaking time is 5 seconds or more. It was carried out, then cooled and method of manufacturing a steel sheet for cans original substrate and performing temper rolling.
JP2007265442A 2007-10-11 2007-10-11 Manufacturing method of steel plate for can Active JP4900179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007265442A JP4900179B2 (en) 2007-10-11 2007-10-11 Manufacturing method of steel plate for can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007265442A JP4900179B2 (en) 2007-10-11 2007-10-11 Manufacturing method of steel plate for can

Publications (2)

Publication Number Publication Date
JP2009091640A JP2009091640A (en) 2009-04-30
JP4900179B2 true JP4900179B2 (en) 2012-03-21

Family

ID=40663914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007265442A Active JP4900179B2 (en) 2007-10-11 2007-10-11 Manufacturing method of steel plate for can

Country Status (1)

Country Link
JP (1) JP4900179B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101042434B1 (en) * 2007-10-29 2011-06-16 현대제철 주식회사 A cold rolledsteel sheet and method for manufacturing the same
JP5359709B2 (en) * 2009-09-09 2013-12-04 新日鐵住金株式会社 Steel plate for drawn cans and plated steel plate for drawn cans
JP5712479B2 (en) * 2009-10-29 2015-05-07 Jfeスチール株式会社 Steel plate for cans excellent in rough skin resistance and method for producing the same
KR101435704B1 (en) 2011-11-21 2014-09-01 주식회사 포스코 Continuous manufacturing method of ferritic stainless steel and ferritic stainless steel manufactured using the same
JP6145994B2 (en) * 2011-12-09 2017-06-14 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
KR20240027174A (en) * 2022-08-22 2024-03-04 주식회사 포스코 Cold rolled steel sheet for hot press forming and hot press forming part having excellent surface quality and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044376B2 (en) * 1978-10-21 1985-10-03 新日本製鐵株式会社 A method for manufacturing cold rolled steel sheets using continuous heat treatment that is non-aging and has excellent deep drawing workability.
JPH01225727A (en) * 1988-03-04 1989-09-08 Sumitomo Metal Ind Ltd Production of extremely low carbon cold-rolled steel sheet
JP3307715B2 (en) * 1993-04-26 2002-07-24 新日本製鐵株式会社 Surface treated original plate for DI can with excellent necked-in properties
JP3466263B2 (en) * 1994-04-12 2003-11-10 新日本製鐵株式会社 Surface-treated original sheet for DI can with excellent pressure resistance and necked-in property, and manufacturing method

Also Published As

Publication number Publication date
JP2009091640A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
CN110088320B (en) Tempered and coated steel sheet having excellent formability and method of manufacturing the same
CN110088332B (en) Tempered and coated steel sheet having excellent formability and method of manufacturing the same
JP5283504B2 (en) Method for producing high-strength steel sheet having excellent ductility and steel sheet produced thereby
KR101287331B1 (en) Steel sheet with high tensile strength and superior ductility and method for producing same
JP2023065520A (en) Steel sheet excellent in toughness, ductility and strength and manufacturing method thereof
JP6846522B2 (en) High-strength cold-rolled steel sheets with excellent yield strength, ductility, and hole expansion properties, hot-dip galvanized steel sheets, and methods for manufacturing these.
JP5303856B2 (en) Manufacturing method of high-tensile steel with excellent low-temperature toughness and small strength anisotropy
JP5564571B2 (en) Low iron loss high magnetic flux density grain-oriented electrical steel sheet and manufacturing method thereof
JP2005290547A (en) High carbon hot-rolled steel sheet having excellent ductility and stretch-flange formability, and production method therefor
JP7339339B2 (en) Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same
JP4900179B2 (en) Manufacturing method of steel plate for can
JP2008038247A (en) High-strength steel sheet and process for production of the same
JP5076544B2 (en) Manufacturing method of steel sheet for cans
JP4457681B2 (en) High workability ultra-high strength cold-rolled steel sheet and manufacturing method thereof
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
JP5811686B2 (en) Steel plate for high-strength can and manufacturing method thereof
JP6048382B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP2004018911A (en) High-tensile strength cold-rolled steel plate having excellent elongation property and elongation-flanging property, and method for manufacturing the same
JP2004018912A (en) High-tensile strength cold-rolled steel plate excellent in elongation and stretch-flanging property and method for manufacturing the same
JP4848722B2 (en) Method for producing ultra-high-strength cold-rolled steel sheet with excellent workability
JP2012041611A (en) Method for manufacturing high strength steel sheet excellent in stability of mechanical property
JP4333356B2 (en) Cold rolled steel sheet manufacturing method
JP4630221B2 (en) Method for producing soft and slow-aged surface-treated steel sheet or thin steel sheet for containers, and surface-treated steel sheet for containers
KR20180068087A (en) Ferritic stainless steel with improved impact toughness and method of manufacturing the same
JPS59133324A (en) Manufacture of high-tension cold-rolled steel plate with superior formability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4900179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250