JP4899433B2 - Phosphor, and light emitting device, image display device, and illumination device using the same - Google Patents

Phosphor, and light emitting device, image display device, and illumination device using the same Download PDF

Info

Publication number
JP4899433B2
JP4899433B2 JP2005330426A JP2005330426A JP4899433B2 JP 4899433 B2 JP4899433 B2 JP 4899433B2 JP 2005330426 A JP2005330426 A JP 2005330426A JP 2005330426 A JP2005330426 A JP 2005330426A JP 4899433 B2 JP4899433 B2 JP 4899433B2
Authority
JP
Japan
Prior art keywords
phosphor
light
emitting device
wavelength
excitation light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005330426A
Other languages
Japanese (ja)
Other versions
JP2007137946A (en
Inventor
孝俊 瀬戸
直人 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2005330426A priority Critical patent/JP4899433B2/en
Publication of JP2007137946A publication Critical patent/JP2007137946A/en
Application granted granted Critical
Publication of JP4899433B2 publication Critical patent/JP4899433B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Description

本発明は励起光源と該励起光源からの光の少なくとも一部を波長変換する蛍光体とを有する発光装置に好適に使用される蛍光体と、この該蛍光体を使用した発光装置に関する。詳しくは、発光効率が高く、発光ダイオード(LED)やレーザーダイオード(LD)等の半導体発光素子等の励起光源からの励起光の波長が多少変動しても、発光強度が変動しにくい蛍光体と、この蛍光体を用いてなる、発光特性の安定した発光装置に関する。
本発明はまた、この発光装置を光源とする画像表示装置及び照明装置に関する。
The present invention relates to a phosphor suitably used for a light-emitting device having an excitation light source and a phosphor that converts the wavelength of at least part of light from the excitation light source, and a light-emitting device using the phosphor. Specifically, the phosphor has high luminous efficiency and the light emission intensity does not easily fluctuate even if the wavelength of the excitation light from the excitation light source such as a light emitting diode (LED) or a laser diode (LD) or the like is slightly varied. The present invention relates to a light emitting device using this phosphor and having stable light emission characteristics.
The present invention also relates to an image display device and an illumination device using the light emitting device as a light source.

水銀の放電による紫外光で青、緑、赤の3色の蛍光体を励起して白色光を発生させることは、蛍光ランプにおいて実現された技術である。これに対して、近年、発光効率の高い、青色発光のGaN系の半導体発光素子が開発され、この青色光によって黄色に発光する蛍光体を励起し、青と黄色の補色関係を利用して白色光を得る方法が開示された。しかしながら、この方式では白色光に赤色成分が存在せず、演色性が劣ることが指摘されている。このため、近紫外発光の半導体発光素子により、蛍光ランプと同様の原理で青、緑、赤3色の蛍光体を励起する方法が提案された。このものは、蛍光ランプに比べ未だ効率、演色性が劣るが、半導体発光素子並びに蛍光体の改善が進めば、蛍光ランプの性能凌駕は達成可能な目標とされている。   Exciting phosphors of three colors of blue, green and red with ultraviolet light generated by mercury discharge to generate white light is a technology realized in a fluorescent lamp. In contrast, in recent years, a blue-emitting GaN-based semiconductor light-emitting device with high luminous efficiency has been developed, and this blue light is used to excite a phosphor that emits yellow light. A method for obtaining light has been disclosed. However, it has been pointed out that in this method, there is no red component in white light and color rendering is inferior. For this reason, a method has been proposed in which blue, green and red phosphors are excited by a semiconductor light emitting element emitting near ultraviolet light on the same principle as a fluorescent lamp. This is still inferior in efficiency and color rendering to fluorescent lamps, but if the semiconductor light emitting device and the phosphor are improved, the performance of fluorescent lamps will be surpassed.

ところで、近紫外ないしは青色の励起光により発光する蛍光体の一例として、アルカリ土類金属ケイ酸塩を母体とし、各種の発光中心元素をドープした蛍光体が知られている。中でもEu2+により橙色ないし赤色を発光する蛍光体が、特許文献1に開示されている。しかしながら、これらの発光体の発光効率は未だ充分なものではない。 By the way, as an example of a phosphor that emits light by near-ultraviolet or blue excitation light, a phosphor having an alkaline earth metal silicate as a base material and doped with various emission center elements is known. Among them, Patent Document 1 discloses a phosphor that emits orange or red light by Eu 2+ . However, the luminous efficiency of these light emitters is not yet sufficient.

また、公知の蛍光体の多くは近紫外光より短波の励起光に対しては効率よく発光するものが多いが、近紫外ないし青色光の領域の励起光源に対して効率の高い蛍光体は種類が限定される。また、これらの蛍光体はさらに励起光が長波長になると急激に効率が低下するものが多い。そのため、励起光源と該励起光源からの光の少なくとも一部を波長変換する蛍光体とを有する発光装置において、このような蛍光体を用いたものは、わずかな外的要因の変化、例えば温度などの影響で励起光の波長が変動すると、発光強度が急速に低下する結果となっていた。即ち、励起される蛍光体の発光効率が励起波長により大きく影響を受ける特性である場合は、当該発光装置は安定性に乏しいものとならざるを得ない。このことから、励起波長が変動しても蛍光体が安定な発光特性を示し、発光効率が一定である発光装置が求められている。
特開2004−516688号公報
In addition, many of the known phosphors emit light more efficiently for short-wave excitation light than near-ultraviolet light, but there are many types of phosphors that are highly efficient for excitation light sources in the near-ultraviolet or blue light region. Is limited. In addition, many of these phosphors rapidly decrease in efficiency when the excitation light has a longer wavelength. Therefore, in a light emitting device having an excitation light source and a phosphor that converts the wavelength of at least a part of the light from the excitation light source, those using such a phosphor have a slight change in external factors such as temperature. When the wavelength of the excitation light fluctuates due to the influence of the above, the emission intensity rapidly decreases. That is, when the emission efficiency of the phosphor to be excited is a characteristic that is greatly affected by the excitation wavelength, the light-emitting device has to be poor in stability. For this reason, there is a demand for a light emitting device in which the phosphor exhibits stable light emission characteristics even when the excitation wavelength varies, and the light emission efficiency is constant.
JP 2004-516688 A

このように、演色性の高い白色発光装置を得るために、橙色ないし赤色の発光効率の高い蛍光体が求められている。また、半導体発光素子等の励起光源からの励起光により蛍光体が励起される発光装置の場合、励起光の波長が多少変動しても発光強度が変動しにくい蛍光体が求められている。   As described above, in order to obtain a white light emitting device having high color rendering properties, a phosphor having high emission efficiency of orange to red is required. Further, in the case of a light emitting device in which a phosphor is excited by excitation light from an excitation light source such as a semiconductor light emitting element, there is a demand for a phosphor whose emission intensity does not vary easily even if the wavelength of excitation light varies somewhat.

本発明者らは鋭意検討した結果、アルカリ土類金属ケイ酸塩を母体結晶とする蛍光体に一部窒素原子を導入することにより発光効率が大幅に高まること、そして、この蛍光体は、励起光源である半導体発光素子等の発光波長が変動しても発光強度の変動が少ないことを見出し、本発明を完成した。
即ち、本発明の要旨は、以下に存する。
As a result of intensive studies, the present inventors have found that luminous efficiency is greatly increased by introducing a part of nitrogen atoms into a phosphor having an alkaline earth metal silicate as a base crystal. It has been found that even when the emission wavelength of a semiconductor light-emitting element as a light source varies, the variation in emission intensity is small, and the present invention has been completed.
That is, the gist of the present invention is as follows.

(1) 下記一般式[1]で表される化学組成を有する結晶相を含有することを特徴とする蛍光体。
EuII 2−x−yIII IV4−x [1]
(一般式[1]中、MII、Mg,Ca,Sr,Ba及びZnよりなる群から選ばれる1種以上の2価の金属元素を示し、MIIIはBi,Sc,Al,及びaよりなる群から選ばれる1種以上の3価の金属元素を示し、MIVSiを示し、x0.135≦x≦1.08を満足する数であり、yは0<y≦0.4を満足する数である。)
(1) A phosphor containing a crystal phase having a chemical composition represented by the following general formula [1].
Eu y M II 2-xy M III x M IV O 4-x N x [1]
(In the general formula [1], M II represents one or more divalent metal elements selected from the group consisting of Mg, Ca, Sr, Ba and Zn , and M III represents Bi, Sc, Al, and L represents one or more trivalent metallic element selected from a O Li Cheng group, M IV represents a Si, x is a number satisfying 0.135 ≦ x ≦ 1.08, y is 0 <y ≦ 0.4.)

(2) 波長440nmの励起光を照射した時の発光強度をI440、波長465nmの励起光を照射した時の発光強度をI465とした場合に、下記式[2]を満足することを特徴とする(1)に記載の蛍光体。
100|I465−I440|/(I440×Δλ)≦0.4 [2]
(式[2]中、Δλ=465−440=25である。)
(2) When the emission intensity when irradiated with excitation light having a wavelength of 440 nm is I 440 and the emission intensity when irradiation with excitation light having a wavelength of 465 nm is I 465 , the following equation [2] is satisfied: The phosphor according to (1).
100 | I 465 −I 440 | / (I 440 × Δλ) ≦ 0.4 [2]
(In the formula [2], Δλ = 465-440 = 25.)

(3) 励起光源と、該励起光源からの光の少なくとも一部を波長変換する蛍光体とを有する発光装置において、該蛍光体が(1)又は(2)に記載の蛍光体を含むことを特徴とする発光装置。 (3) In a light-emitting device having an excitation light source and a phosphor that converts the wavelength of at least part of light from the excitation light source, the phosphor includes the phosphor according to (1) or (2). A light emitting device characterized.

(4) (3)に記載の発光装置を含むことを特徴とする画像表示装置。 (4) An image display device comprising the light-emitting device according to (3).

(5) (3)に記載の発光装置を含むことを特徴とする照明装置。 (5) A lighting device comprising the light emitting device according to (3).

本発明の蛍光体は近紫外あるいは青色の励起光で、青緑色ないし赤色、特に橙色ないし赤色に発光する高効率の蛍光体であり、半導体発光素子等の励起光源と組み合わせることにより高効率の発光装置を構成することが出来、照明、画像表示装置などに広く応用できる。   The phosphor of the present invention is a high-efficiency phosphor that emits blue-green to red, particularly orange to red, with near-ultraviolet or blue excitation light, and emits light with high efficiency when combined with an excitation light source such as a semiconductor light-emitting element. The device can be configured and can be widely applied to lighting, image display devices, and the like.

しかも、本発明の蛍光体は、励起光源である半導体発光素子等の発光波長が変動しても発光強度の変動が少ない安定な発光特性を示すものであるため、この蛍光体を用いた本発明の発光装置によれば、発光効率が安定な発光装置により、性能が安定した画像表示装置及び照明装置が提供される。   Moreover, since the phosphor of the present invention exhibits stable emission characteristics with little variation in emission intensity even when the emission wavelength of a semiconductor light emitting device or the like that is an excitation light source varies, the present invention using this phosphor. According to this light emitting device, an image display device and a lighting device with stable performance are provided by the light emitting device with stable light emission efficiency.

以下、本発明の実施の形態について詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the gist of the present invention.

[蛍光体]
本発明の蛍光体は、下記一般式[1]で表される化学組成を有する結晶相を含有することを特徴とする。
EuII 2−x−yIII IV4−x [1]
(一般式[1]中、MIIは2価の金属元素を示し、MIIIはBi,Sc,Al,La,Y,B,Gd,Lu,In及びSbよりなる群から選ばれる1種以上の3価の金属元素を示し、MIVは4価の金属元素を示し、MIIの90モル%以上がMg,Ca,Sr,Ba及びZnよりなる群から選ばれる1種以上の金属元素であり、MIVの90モル%以上がSiであり、xは0.002≦x≦1.5を満足する数であり、yは0<y≦0.4を満足する数である。)
[Phosphor]
The phosphor of the present invention is characterized by containing a crystal phase having a chemical composition represented by the following general formula [1].
Eu y M II 2-xy M III x M IV O 4-x N x [1]
(In general formula [1], M II represents a divalent metal element, and M III is one or more selected from the group consisting of Bi, Sc, Al, La, Y, B, Gd, Lu, In, and Sb. a trivalent metal element, M IV represents a tetravalent metal element, at least 90 mol% of M II is Mg, Ca, Sr, at least one metal element selected from the group consisting of Ba, and Zn 90% by mole or more of M IV is Si, x is a number that satisfies 0.002 ≦ x ≦ 1.5, and y is a number that satisfies 0 <y ≦ 0.4.)

〈構成元素〉
まず、一般式[1]における金属元素MII,MIII,MIVについて説明する。
一般式[1]において、MIIの2価の金属元素としては特に限定されないが、MIIの90モル%以上はMg,Ca,Sr,Ba及びZnよりなる群から選ばれる1種以上の金属元素である。MIIとしては、Mg,Ca,Sr,Ba,Znが好ましいが、これ以外の金属元素としては、Mn,Pb,Sn等が挙げられる。特に、輝度の点から、MIIは、Ca及びSrを含むものであることが好ましい。この場合、Ca及びSrの合計がMIIの80モル%以上であることが好ましく、90モル%以上であることがより好ましく、100モル%であることが最も好ましい。さらに、CaとSrの合計に対するSrの割合は40モル%を超えることが好ましい。
<Constituent elements>
First, the metal elements M II , M III and M IV in the general formula [1] will be described.
In the general formula [1] is not particularly restricted but includes divalent metal elements M II, 90 mol% or more of Mg of M II, Ca, Sr, 1 or more metals selected from the group consisting of Ba, and Zn It is an element. M II is preferably Mg, Ca, Sr, Ba, or Zn. Examples of other metal elements include Mn, Pb, and Sn. In particular, from the viewpoint of luminance, M II preferably contains Ca and Sr. In this case, it is preferable that the sum of Ca and Sr is 80 mol% or more of M II, more preferably 90 mol% or more, and most preferably 100 mol%. Furthermore, it is preferable that the ratio of Sr with respect to the sum total of Ca and Sr exceeds 40 mol%.

また、MIIとして、Euとともに共付活できる元素、例えばMn2+のような元素が含まれていてもよい。特に、Mn2+は、窒素置換量が少ない領域でEuを共付活して、発光色の変換に寄与しうるため好ましい。 Further, as M II , an element that can be co-activated with Eu, for example, an element such as Mn 2+ may be included. In particular, Mn 2+ is preferable because it can co-activate Eu in a region where the amount of nitrogen substitution is small and contribute to the conversion of the emission color.

IIIは3価の金属元素であるが、輝度の点から、Bi,Sc,Al,La,Y,B,Gd,Lu,In及びSbよりなる群から選ばれる1種以上の金属元素である。この中でも、Bi,Sc,Al,La,Y,B,Gd及びLuよりなる群から選ばれる1種以上が好ましく、Bi,Sc,Al及びLaよりなる群から選ばれる1種以上がより好ましい。輝度の点から、MIIIとして、Tb3+のような、一般に付活元素になりうる元素が極少量含まれていてもよい。 M III is a trivalent metal element, but is one or more metal elements selected from the group consisting of Bi, Sc, Al, La, Y, B, Gd, Lu, In, and Sb from the viewpoint of luminance. . Among these, one or more selected from the group consisting of Bi, Sc, Al, La, Y, B, Gd and Lu is preferable, and one or more selected from the group consisting of Bi, Sc, Al and La is more preferable. From the viewpoint of luminance, M III may contain an extremely small amount of an element that can generally be an activator, such as Tb 3+ .

IVは4価の金属元素を示し、MIVの90モル%以上がSiである。Si以外の4価の金属元素は特に限定されないが、輝度の点から、Ge,Sn,Zr,Hf等の1種又は2種以上が挙げられ、この中でもGeが好ましい。輝度の点から、MIVはSiのみからなることが最も好ましい。 M IV represents a tetravalent metal element, and 90 mol% or more of M IV is Si. Although tetravalent metal elements other than Si are not particularly limited, one or more of Ge, Sn, Zr, Hf, and the like can be mentioned from the viewpoint of luminance, and among these, Ge is preferable. From the viewpoint of luminance, it is most preferable that MIV is composed only of Si.

〈パラメーター〉
次に、一般式[1]の各パラメーターx,yについて説明する。
パラメーターxは、MII−O結合がMIII−N結合に置換されるモル数を表す。本発明の蛍光体では、MIIIとともに母体結晶中に導入された窒素により、400nmや465nmといった長波長の光の励起による発光強度が顕著に高まり、また、青色LED励起では重要な、440乃至465nmの波長領域の強度変化が抑制され、発光が安定化する。
発光強度の点から、xは、0.002≦x≦1.5を満足する数が好ましく、より好ましくは0.03≦x≦1であり、更に好ましくは0.03≦x≦0.5であり、最も好ましいのは0.04≦x≦0.35である。
<parameter>
Next, the parameters x and y of the general formula [1] will be described.
The parameter x represents the number of moles in which the M II -O bond is replaced with the M III -N bond. In the phosphor of the present invention, nitrogen introduced into the host crystal together with M III significantly increases the emission intensity due to excitation of light having a long wavelength such as 400 nm or 465 nm, and is also important for blue LED excitation, 440 to 465 nm. Intensity change in the wavelength region is suppressed, and light emission is stabilized.
From the viewpoint of light emission intensity, x is preferably a number satisfying 0.002 ≦ x ≦ 1.5, more preferably 0.03 ≦ x ≦ 1, and further preferably 0.03 ≦ x ≦ 0.5. Most preferred is 0.04 ≦ x ≦ 0.35.

なお、MII−O、MIII−N、MII−N、MIII−Oの結合力の違いや、MIIとMIIIのイオン半径の違い等により、MIIIとNが母体の結晶相に等モル置換できない場合がある。この場合でもMIIIとN両方の母体結晶相中の共存が発光強度の増大をもたらす。MIIIとNのモル数の差は、酸素モル数の増減により結晶相の総電荷が相殺される。結晶相中へのMIII、Nの置換モル数をそれぞれa,bとした場合、前記一般式[1]は、EuII 2−a−yIII IV(8+a−3b)/2となるが、母体結晶の安定性及び輝度の点から、aとbは、0.2≦a/b≦2がより好ましく、0.2≦a/b≦1が更に好ましく、0.5≦a/b≦1が更により好ましく、a=bが最も好ましい。 It should be noted that M III and N are based on the crystalline phase due to differences in the binding forces of M II -O, M III -N, M II -N, and M III -O, and differences in the ionic radii of M II and M III. In some cases, equimolar substitution cannot be performed. Even in this case, the coexistence of both M III and N in the host crystal phase results in an increase in emission intensity. The difference in the number of moles of M III and N offsets the total charge of the crystal phase by increasing or decreasing the number of moles of oxygen. When the number of substitution moles of M III and N in the crystal phase is a and b, respectively, the general formula [1] is expressed as Eu y M II 2-ay M III a M IV O (8 + a-3b) / 2Nb , but a and b are more preferably 0.2 ≦ a / b ≦ 2, more preferably 0.2 ≦ a / b ≦ 1, from the viewpoint of the stability and luminance of the host crystal. 0.5 ≦ a / b ≦ 1 is even more preferable, and a = b is most preferable.

パラメーターyはEuの量(モル比)を表し、0<y≦0.4を満足する数である。yが0.4を超えると濃度消光を起こす。yが0.003を下回ると発光が不十分となる傾向があることから、0.003≦y≦0.4であることが好ましく、輝度の点から、0.02≦y≦0.3がより好ましい。   The parameter y represents the amount (molar ratio) of Eu and is a number satisfying 0 <y ≦ 0.4. When y exceeds 0.4, concentration quenching occurs. Since y tends to be insufficient when y is less than 0.003, 0.003 ≦ y ≦ 0.4 is preferable. From the viewpoint of luminance, 0.02 ≦ y ≦ 0.3 is satisfied. More preferred.

〈結晶構造〉
アルカリ土類金属ケイ酸塩を母体結晶とする蛍光体に一部窒素原子を導入した本発明の蛍光体の結晶構造は、以下のような理由で実現されるものと推定される。
<Crystal structure>
The crystal structure of the phosphor of the present invention in which a nitrogen atom is partially introduced into a phosphor having an alkaline earth metal silicate as a base crystal is presumed to be realized for the following reason.

既に公知であるアルカリ土類金属ケイ酸塩蛍光体、例えば(Sr、Ca)SiO:EuをそのままN雰囲気下で加熱しても、窒素原子を結晶中に導入することは出来ない。本発明の蛍光体では、ケイ酸塩結晶の+2価のアルカリ土類金属元素と−2価の酸素の結合であるSr2+−O2−結合を+3価の金属元素、例えばBi3+と−3価の窒素元素との結合Bi3+−N3−で置換えることにより部分的に窒素原子を当該結晶中に導入することができる。 Even when an already known alkaline earth metal silicate phosphor, for example, (Sr, Ca) 2 SiO 4 : Eu is heated as it is in an N 2 atmosphere, nitrogen atoms cannot be introduced into the crystal. In the phosphor of the present invention, a Sr 2+ -O 2− bond, which is a bond between a +2 alkaline earth metal element of a silicate crystal and a −2 oxygen, is replaced with a +3 valent metal element such as Bi 3+ and −3. A nitrogen atom can be partially introduced into the crystal by substitution with a bond Bi 3+ -N 3- with a valent nitrogen element.

図2に、理論組成Eu0.1Sr1.33Ca0.57SiO蛍光体と理論組成Eu0.1Sr1.24Ca0.53Bi0.135SiN0.143.87蛍光体のX線回折結果を示す。この結果からわかるように理論組成Eu0.1Sr1.24Ca0.53Bi0.135SiN0.143.87蛍光体の結晶構造は理論組成Eu0.1Sr1.33Ca0.57SiO蛍光体の結晶構造とほとんど変わりない。 FIG. 2 shows the theoretical composition Eu 0.1 Sr 1.33 Ca 0.57 SiO 4 phosphor and the theoretical composition Eu 0.1 Sr 1.24 Ca 0.53 Bi 0.135 SiN 0.14 O 3.87 fluorescence. The X-ray diffraction result of the body is shown. Theoretical composition Eu As can be seen from the results 0.1 Sr 1.24 Ca 0.53 Bi 0.135 SiN 0.14 O crystal structure of 3.87 phosphor theoretical composition Eu 0.1 Sr 1.33 Ca 0 .57 Almost the same as the crystal structure of the SiO 4 phosphor.

また、図3に理論組成Eu0.1Sr1.33Ca0.57SiO蛍光体に対してBiとNの置換量を理論量変化させたときの斜方晶のa,b,c軸格子定数の値を示す。理論組成Eu0.1Sr1.33Ca0.57SiO蛍光体はSrCaSiOがとる空間群Pna2の結晶構造をとり、Bi,Nを置換した蛍光体はSr1.5Ca0.5SiOがとる空間群Pnmbの結晶構造をとり、両者の間に極端に大きな結晶構造的違いがない。図3において、Bi,N理論置換量xが0から0.135にかけてa,b,c軸格子定数が小さくなっているが、SrCaSiO型からSr1.5Ca0.5SiO型への変化のためであり、理論置換量xが0.135から0.54にかけてはa,b,c軸格子定数に連続的な変化がみられている。このように、結晶相内サイトが置換されていることが実証される。この方法による部分窒化法はほとんど全てのアルカリ土類金属ケイ酸塩蛍光体に適用できる画期的な方法である。窒素原子の導入に必要な3価金属MIIIとしては、Bi,Sc,Al,La,Y,B,Gd,Lu,In,Sbなどの金属元素が使用できる。 FIG. 3 shows the a, b, and c axes of orthorhombic crystals when the theoretical amount of substitution of Bi and N is changed with respect to the theoretical composition Eu 0.1 Sr 1.33 Ca 0.57 SiO 4 phosphor. Indicates the value of the lattice constant. Theoretical composition Eu 0.1 Sr 1.33 Ca 0.57 SiO 4 phosphor has the crystal structure of the space group Pna2 1 taken by SrCaSiO 4 , and the phosphor substituted with Bi and N has Sr 1.5 Ca 0.5. The crystal structure of the space group Pnmb taken by SiO 4 is taken, and there is no extremely large crystal structure difference between the two. In FIG. 3, the a, b, c axis lattice constant decreases from Bi, N theoretical substitution amount x from 0 to 0.135, but from SrCaSiO 4 type to Sr 1.5 Ca 0.5 SiO 4 type. This is because of the change. When the theoretical substitution amount x is 0.135 to 0.54, a continuous change is observed in the a, b, and c axis lattice constants. Thus, it is demonstrated that the site in the crystal phase is replaced. The partial nitriding method by this method is an epoch-making method applicable to almost all alkaline earth metal silicate phosphors. As the trivalent metal M III necessary for introducing nitrogen atoms, metal elements such as Bi, Sc, Al, La, Y, B, Gd, Lu, In, and Sb can be used.

〈特性〉
本発明の蛍光体は、通常の酸化物蛍光体や既存の窒化物又は酸窒化物蛍光体と比べて、電子線やX線、及び紫外線から可視光の、幅広い励起範囲を持つこと、波長490nm以上の青緑色、橙色、又は赤色の発光をすることが特徴である。即ち、本発明の蛍光体は特定の結晶母体と付活元素の組み合わせにより青緑色から赤色まで発光させることができる。また、発光装置に使用する場合に、黄色、緑色、青色などの他の色との混合が必要な場合は、必要に応じてこれらの色を発光する蛍光体と混合して使用することができる。
<Characteristic>
The phosphor of the present invention has a broad excitation range of electron beam, X-ray, and ultraviolet to visible light, and a wavelength of 490 nm, as compared with normal oxide phosphors and existing nitride or oxynitride phosphors. It is characterized by emitting blue-green, orange or red light. That is, the phosphor of the present invention can emit light from blue green to red by a combination of a specific crystal matrix and an activating element. In addition, when used in a light-emitting device, if it is necessary to mix with other colors such as yellow, green, and blue, it can be used by mixing with phosphors that emit these colors as necessary. .

しかも、本発明の蛍光体は耐熱性に優れ、高温にさらしても劣化せず、酸化雰囲気及び水分環境下での長期間の安定性にも優れている。   Moreover, the phosphor of the present invention is excellent in heat resistance, does not deteriorate even when exposed to high temperatures, and is excellent in long-term stability in an oxidizing atmosphere and moisture environment.

本発明の蛍光体は、このような発光特性等により、照明器具、画像表示装置、顔料、紫外線吸収剤に好適である。   The phosphor of the present invention is suitable for lighting fixtures, image display devices, pigments, and ultraviolet absorbers due to such light emission characteristics.

〈製造方法〉
本発明の蛍光体を製造する方法としては、上述した部分窒化が可能な方法であれば特に限定されないが、例えば、金属化合物の混合物であって、焼成することによりEuII 2−x−yIII IV4−xで示される組成物を構成しうる原料混合物を、窒素、窒素/水素混合ガス、アンモニア又はこれらの混合ガスを含有する不活性雰囲気中において、1100℃以上2200℃以下の温度範囲で焼成することにより、高輝度蛍光体として得ることができる。
<Production method>
The method for producing the phosphor of the present invention is not particularly limited as long as it is a method capable of partial nitridation as described above. For example, it is a mixture of metal compounds, and Eu y M II 2-x- the y M III x M IV O 4 -x N x raw material mixture capable of constituting a composition represented by, nitrogen, nitrogen / hydrogen mixed gas, the ammonia or in an inert atmosphere containing a mixed gas, 1100 ° C. By baking at a temperature range of 2200 ° C. or lower, a high-luminance phosphor can be obtained.

特に、原料としてSiOを使用する場合、高輝度蛍光体を得るためには、常圧以上の加圧雰囲気下では、1100℃以上1650℃以下の焼成条件が好ましく、常圧の場合は、1100℃以上1500℃以下の温度範囲で焼成することが好ましい。 In particular, when SiO 2 is used as a raw material, in order to obtain a high-luminance phosphor, firing conditions of 1100 ° C. or higher and 1650 ° C. or lower are preferable in a pressurized atmosphere of normal pressure or higher. Baking is preferably performed in a temperature range of from ℃ to 1500 ℃.

以下に、本発明の蛍光体のうち、特にEuSr2−x−yBiSiO4−x組成の蛍光体を合成する場合を例示して、本発明の蛍光体の製造方法の一例を示す。 Hereinafter, the present invention of the phosphor, in particular illustrates the case of synthesizing Eu y Sr 2-x-y Bi x phosphor SiO 4-x N x composition, the manufacturing method of the phosphor of the present invention An example is shown.

この場合には、酸化ユーロピウム、炭酸ストロンチウム、酸化ビスマス、二酸化ケイ素及び窒化珪素粉末の混合物を出発原料とするのが好ましいが、ユーロピウム源、ストロンチウム源、ビスマス源、珪素源としては、酸化物、水酸化物、炭酸塩、硝酸塩、蓚酸塩、カルボン酸塩等の化合物中のどれを使用してもよく、適宜選択すればよい。窒素源としては、窒化珪素以外に、窒化ユーロピウム、窒化ストロンチウム等も使用することができる。原料化合物を選択したら、目的物質のEu,Sr,Bi,Si,Nモル数が達成できるよう、それぞれの化合物の仕込量を決定すればよい。   In this case, it is preferable to use a mixture of europium oxide, strontium carbonate, bismuth oxide, silicon dioxide and silicon nitride powder as the starting material, but as the europium source, strontium source, bismuth source, silicon source, oxide, water Any of compounds such as oxides, carbonates, nitrates, oxalates, and carboxylates may be used, and may be appropriately selected. As the nitrogen source, europium nitride, strontium nitride, or the like can be used in addition to silicon nitride. Once the raw material compounds are selected, the charged amounts of the respective compounds may be determined so that the number of moles of the target substance Eu, Sr, Bi, Si, and N can be achieved.

次に、得られた金属化合物の混合物を常圧以上、例えば0.1MPa以上180MPa以下で、1100℃以上2200℃以下、通常は1100℃以上1650℃以下の温度範囲で焼成することにより本発明の蛍光体を合成することができる。焼成は、窒素、アルゴン、一酸化炭素、二酸化炭素、水素等の気体の単独或いは混合雰囲気下、10分〜24時間、加熱することによりなされるが、焼成雰囲気は窒素含有不活性雰囲気、特に、窒素、又は水素含有窒素が好ましく、例えば、爆発限界があることから4体積%以下水素含有窒素がより好ましい。   Next, the obtained mixture of metal compounds is fired in a temperature range of not less than normal pressure, for example, not less than 0.1 MPa and not more than 180 MPa, and not less than 1100 ° C. and not more than 2200 ° C., usually not less than 1100 ° C. and not more than 1650 ° C. A phosphor can be synthesized. Firing is performed by heating for 10 minutes to 24 hours in a single or mixed atmosphere of a gas such as nitrogen, argon, carbon monoxide, carbon dioxide, and hydrogen. The firing atmosphere is a nitrogen-containing inert atmosphere, particularly, Nitrogen or hydrogen-containing nitrogen is preferable. For example, 4% by volume or less of hydrogen-containing nitrogen is more preferable because of its explosion limit.

焼成容器としては種々の耐熱性材料が使用しうるが、原料として使用する金属窒化物に対する材質劣化の悪影響が低いことから、窒化ホウ素焼結体、窒化ホウ素をコートした坩堝が好ましい。学術雑誌Journal of the American Ceramic Society 2002年85巻5号1229ページ〜1234ページに、α−サイアロンの合成に窒化ホウ素をコートしたグラファイト坩堝が示されているように、窒化ホウ素は金属窒化物に対する材質劣化の悪影響が低いことため好ましい。また、アルミナ坩堝、石英坩堝、タングステン坩堝、白金坩堝等も使用しうる。   Various heat-resistant materials can be used as the firing container, but a boron nitride sintered body and a crucible coated with boron nitride are preferable because the adverse effect of material deterioration on the metal nitride used as a raw material is low. Boron nitride is a material for metal nitrides, as shown in the Journal of the American Ceramic Society 2002 vol. 85, No. 5, pages 1229 to 1234, which shows a graphite crucible coated with boron nitride for the synthesis of α-sialon. This is preferable because the adverse effect of deterioration is low. An alumina crucible, a quartz crucible, a tungsten crucible, a platinum crucible, or the like can also be used.

焼成に用いる炉は、1600℃以上の高温焼成の場合は、炉の高温部の材料として炭素を用いた黒鉛抵抗加熱炉が好適であり、黒鉛炉のほかにアルミナ焼成炉やモリブデン炉等の一般炉が使用されうる。   In the case of high-temperature baking at 1600 ° C. or higher, a graphite resistance heating furnace using carbon as a material for the high-temperature part of the furnace is suitable for the furnace used for firing. A furnace can be used.

焼成により得られた粉体凝集体が固く固着している場合は、例えばボールミル、ジェットミル等の工業的に通常用いられる粉砕機により粉砕する。粉砕は、粉体の平均粒径が20μm以下、好ましくは平均粒径0.1μm以上5μm以下となるように施すことが好ましい。この平均粒径が20μmを超えると粉体の流動性と樹脂への分散性が悪くなり、励起光源と組み合わせて発光装置を形成する際に、部位により発光強度が不均一になる。平均粒径0.1μm以下となるまで粉砕すると、蛍光体粉体表面の欠陥量が多くなるため、蛍光体の組成によっては発光強度が低下する。   When the powder aggregate obtained by firing is firmly fixed, it is pulverized by a pulverizer generally used industrially, such as a ball mill or a jet mill. The pulverization is preferably performed so that the average particle diameter of the powder is 20 μm or less, preferably 0.1 μm or more and 5 μm or less. When the average particle diameter exceeds 20 μm, the fluidity of the powder and the dispersibility in the resin are deteriorated, and when the light emitting device is formed in combination with the excitation light source, the emission intensity becomes uneven depending on the part. When pulverized to an average particle size of 0.1 μm or less, the amount of defects on the surface of the phosphor powder increases, and the emission intensity decreases depending on the phosphor composition.

得られた蛍光体は必要に応じて公知の表面処理、例えば燐酸カルシウム処理を行ってもよい。   The obtained phosphor may be subjected to a known surface treatment such as calcium phosphate treatment as necessary.

〈発光強度の安定性〉
本発明による蛍光体の別の優位性を下記に記述する。
本発明の蛍光体を使用した発光装置の励起光源としては、半導体発光素子が挙げられるが、半導体発光素子は様々な要因によって発光波長が変化することが知られている。この発光波長変化の要因としては、例えば、注入電流量、素子温度などが挙げられる。このような発光波長変化に対しても安定な発光装置を得るためには、励起光源である半導体発光素子の発光波長が外部要因によって変動しても、発光装置の発光強度の変動が少ないことが要求される。
<Stability of emission intensity>
Another advantage of the phosphor according to the present invention is described below.
Examples of the excitation light source of the light emitting device using the phosphor of the present invention include a semiconductor light emitting element, and it is known that the emission wavelength of the semiconductor light emitting element changes due to various factors. As a factor of this emission wavelength change, for example, an injection current amount, an element temperature and the like can be cited. In order to obtain a light-emitting device that is stable against such a change in light emission wavelength, even if the light emission wavelength of the semiconductor light-emitting element that is the excitation light source fluctuates due to external factors, the light emission intensity fluctuation of the light-emitting device is small. Required.

本発明者らは本発明の蛍光体は、励起波長が変動しても発光強度の変化が少ないことを見出し、これにより安定性の高い発光装置を実現させた。
すなわち本発明の蛍光体は、波長440nmの励起光を照射した時の発光強度をI440、波長465nmの励起光を照射した時の発光強度をI465とした場合に、下記式[2]を満足する。
100|I465−I440|/(I440×Δλ)≦0.4 [2]
ここで、Δλ=465−440=25である。
440nm〜465nmの波長範囲はGaN系LEDの発光波長として通常用いられる領域である。
The present inventors have found that the phosphor of the present invention has little change in emission intensity even when the excitation wavelength varies, and thereby realized a highly stable light-emitting device.
That is, the phosphor of the present invention is expressed by the following formula [2] when the emission intensity when irradiated with excitation light with a wavelength of 440 nm is I 440 and the emission intensity when irradiated with excitation light with a wavelength of 465 nm is I 465 . Satisfied.
100 | I 465 −I 440 | / (I 440 × Δλ) ≦ 0.4 [2]
Here, Δλ = 465-440 = 25.
The wavelength range of 440 nm to 465 nm is a region usually used as the emission wavelength of the GaN-based LED.

上記式[2]の左辺は、この波長領域で発光強度に変化がなければゼロとなるが、通常0.4以下であり、0.3以下が好ましく、0.2以下であることが更に好ましい。   The left side of the formula [2] is zero if there is no change in emission intensity in this wavelength region, but is usually 0.4 or less, preferably 0.3 or less, and more preferably 0.2 or less. .

〈用途〉
以上説明したように、本発明の蛍光体は、高い輝度を示し、励起源に曝された場合における蛍光体の輝度の低下が少ないので、VFD、FED、PDP、CRT、白色LEDなどに好適な蛍光体である。
<Application>
As described above, the phosphor of the present invention exhibits a high luminance, and since the luminance of the phosphor is not significantly lowered when exposed to an excitation source, it is suitable for VFD, FED, PDP, CRT, white LED, etc. It is a phosphor.

また、本発明の蛍光体は、赤色の物体色を持つことから赤色顔料又は赤色蛍光顔料として使用することもできる。例えば、本発明の蛍光体に太陽光や蛍光灯などの照明を照射すると赤色の物体色が観察され、色みがよいこと及び長期間に渡り劣化しないため、無機顔料に好適である。このため、塗料、インキ、絵の具、釉薬、プラスチック製品に添加する着色剤などに用いると長期間に亘って色味が変化しない利点がある。   Moreover, since the phosphor of the present invention has a red object color, it can also be used as a red pigment or a red fluorescent pigment. For example, when the phosphor of the present invention is irradiated with illumination such as sunlight or a fluorescent lamp, a red object color is observed, and it is suitable for inorganic pigments because it has good color and does not deteriorate over a long period of time. For this reason, when used for paints, inks, paints, glazes, colorants added to plastic products, etc., there is an advantage that the color does not change over a long period of time.

本発明の蛍光体はまた紫外線を吸収するため紫外線吸収剤としても好適である。このため、塗料として用いたり、プラスチック製品の表面に塗布したり内部に練り込んだりすると、紫外線の遮断効果が高く、製品を紫外線劣化から保護する効果が高い。   Since the phosphor of the present invention absorbs ultraviolet rays, it is also suitable as an ultraviolet absorber. For this reason, when used as a paint, applied to the surface of a plastic product, or kneaded into a plastic product, the effect of blocking ultraviolet rays is high, and the effect of protecting the product from ultraviolet degradation is high.

[発光装置]
次に、本発明の発光装置について説明する。
本発明の発光装置は、励起光源と、該励起光源からの光の少なくとも一部を波長変換する蛍光体とを有する発光装置において、波長変換材料としての蛍光体として上述の本発明の蛍光体を用いたものであり、下記のような励起光源と組み合わせて、白色、又は、任意の色調の発光装置を構成することができる。
[Light emitting device]
Next, the light emitting device of the present invention will be described.
The light-emitting device of the present invention is a light-emitting device having an excitation light source and a phosphor that converts the wavelength of at least part of the light from the excitation light source. The light-emitting device having a white color or an arbitrary color tone can be configured in combination with an excitation light source as described below.

本発明の発光装置において、本発明の蛍光体に光を照射する励起光源は、波長470nmより短波の光を発生するものであることが好ましい。励起光源の具体例としては、発光ダイオード(LED)又はレーザーダイオード(LD)等を挙げることができる。消費電力が少ない点でより好ましくはレーザーダイオードである。その中で、GaN系化合物半導体を使用した、GaN系LEDやLDが好ましい。なぜなら、GaN系LEDやLDは、この領域の光を発するSiC系LED等に比し、発光出力や外部量子効率が格段に大きく、本発明の蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。例えば、20mAの電流負荷に対し、通常GaN系LEDやLDはSiC系LEDの100倍以上の発光強度を有する。GaN系LEDやLDにおいては、AlGaN発光層、GaN発光層、又はInGaN発光層を有しているものが好ましい。GaN系LEDにおいては、それらの中でInGaN発光層を有するものが発光強度が非常に強いので、特に好ましく、GaN系LDにおいては、InGaN層とGaN層の多重量子井戸構造のものが発光強度が非常に強いので、特に好ましい。なお、上記においてX+Yの値は通常0.8〜1.2の範囲の値である。GaN系LEDにおいて、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節する上で好ましいものである。GaN系LEDはこれら発光層、p層、n層、電極、及び基板を基本構成要素としたものであり、発光層をn型とp型のAlGaN層、GaN層、又はInGaN層などでサンドイッチにしたヘテロ構造を有しているものが発光効率が高く、好ましく、さらにヘテロ構造を量子井戸構造にしたものが発光効率がさらに高く、より好ましい。 In the light emitting device of the present invention, the excitation light source for irradiating the phosphor of the present invention with light preferably generates light having a wavelength shorter than 470 nm. Specific examples of the excitation light source include a light emitting diode (LED) or a laser diode (LD). A laser diode is more preferable in terms of low power consumption. Of these, GaN LEDs and LDs using GaN compound semiconductors are preferred. This is because GaN-based LEDs and LDs have significantly higher light output and external quantum efficiency than SiC-based LEDs that emit light in this region, and are extremely low power and extremely low power when combined with the phosphor of the present invention. This is because bright light emission can be obtained. For example, for a current load of 20 mA, GaN LEDs and LDs usually have a light emission intensity that is 100 times or more that of SiC LEDs. GaN-based LEDs and LDs preferably have an Al X Ga Y N light emitting layer, a GaN light emitting layer, or an In X Ga Y N light emitting layer. Among the GaN-based LEDs, those having an In X Ga Y N light-emitting layer are particularly preferable because the emission intensity is very strong, and in the GaN-based LD, the multiple quantum of the In X Ga Y N layer and the GaN layer A well structure is particularly preferable because the emission intensity is very strong. In the above, the value of X + Y is usually a value in the range of 0.8 to 1.2. In the GaN-based LED, those in which the light emitting layer is doped with Zn or Si or those without a dopant are preferable for adjusting the light emission characteristics. A GaN-based LED has these light-emitting layer, p-layer, n-layer, electrode, and substrate as basic components, and the light-emitting layer is an n-type and p-type Al X Ga Y N layer, GaN layer, or In X Those having a heterostructure sandwiched between Ga Y N layers and the like have high luminous efficiency, and those having a heterostructure in a quantum well structure have higher luminous efficiency and are more preferable.

本発明の発光装置においては、波長変換材料として本発明の蛍光体を単独で使用する方法の他に、他の発光特性を持つ蛍光体と併用することによって、所望の色を発する発光装置を構成することができる。この一例として、波長330nm〜420nmの紫外LED発光素子とこの波長で励起され420nm以上480nm以下の波長に発光ピークを持つ青色系蛍光体と、500nm以上550nm以下の波長に発光ピークを持つ緑色系蛍光体と、本発明の橙色ないし赤色系蛍光体、さらに、必要に応じて他の橙色ないし赤色系蛍光体とを有する発光装置が挙げられる。この場合、青色蛍光体としてはBaMgAl1017:Eu、(Ba,Sr,Ca,Mg)SiO:Euを、緑色蛍光体としてはBaMgAl1017:Eu、Mn、BaSiO:Euを挙げることができる。 In the light emitting device of the present invention, in addition to the method of using the phosphor of the present invention alone as a wavelength conversion material, a light emitting device that emits a desired color is formed by using in combination with a phosphor having other light emission characteristics. can do. As an example of this, an ultraviolet LED light emitting device having a wavelength of 330 nm to 420 nm, a blue phosphor having an emission peak at a wavelength of 420 nm or more and 480 nm or less excited at this wavelength, and a green fluorescence having an emission peak at a wavelength of 500 nm or more and 550 nm or less. And a light emitting device having an orange or red phosphor of the present invention and, if necessary, another orange or red phosphor. In this case, BaMgAl 10 O 17 : Eu, (Ba, Sr, Ca, Mg) 2 SiO 4 : Eu is used as the blue phosphor, and BaMgAl 10 O 17 : Eu, Mn, Ba 2 SiO 4 : is used as the green phosphor. Eu can be mentioned.

波長変換材料として、本発明の橙色ないし赤色系蛍光体と、上述のような青色系蛍光体や緑色系蛍光体、必要に応じて他の橙色ないし赤色系蛍光体を組み合わせて用いることにより、励起光源としてのLEDが発する紫外線が蛍光体に照射されると、赤、緑、青の3色の光が発せられ、これらの混合により白色の発光装置を実現することができる。   As a wavelength conversion material, excitation is achieved by using the orange or red phosphor of the present invention in combination with the above-described blue or green phosphor and, if necessary, another orange or red phosphor. When ultraviolet light emitted from an LED as a light source is irradiated onto a phosphor, light of three colors of red, green, and blue is emitted, and a white light emitting device can be realized by mixing these.

別の手法として、波長420nm〜500nmの青色LED発光素子とこの波長で励起されて500nm以上570nm以下の波長に発光ピークを持つ緑色蛍光体及び本発明の橙色ないし赤色蛍光体とを有する発光装置が挙げられる。この構成では、LEDが発する青色光が蛍光体に照射されると、赤、緑の2色の光が発せられ、これらとLED自身の青色光が混合されて白色の発光装置となる。蛍光体としては上記緑色蛍光体が使用できる。   As another method, a light emitting device having a blue LED light emitting element having a wavelength of 420 nm to 500 nm, a green phosphor excited at this wavelength and having a light emission peak at a wavelength of 500 nm to 570 nm and the orange or red phosphor of the present invention. Can be mentioned. In this configuration, when the phosphor emits blue light emitted from the LED, red and green light is emitted, and the blue light of the LED itself is mixed to form a white light emitting device. The green phosphor can be used as the phosphor.

以下に、このような励起光源及び蛍光体を備える本発明の発光装置について、図面を参照して詳細に説明する。   Hereinafter, a light-emitting device of the present invention including such an excitation light source and a phosphor will be described in detail with reference to the drawings.

図5は、励起光源(470nmより短波長の光を発生する半導体発光素子等)と蛍光体とを有する本発明の発光装置の一実施例を示す模式的断面図であり、図6は、図5に示す発光装置を組み込んだ面発光照明装置の一実施例を示す模式的断面図である。図5及び図6において、1は発光装置、2はマウントリード、3はインナーリード、4は励起光源、5は蛍光体含有樹脂部、6は導電性ワイヤー、7はモールド部材、8は面発光照明装置、9は拡散板、10は保持ケースである。   FIG. 5 is a schematic cross-sectional view showing an embodiment of the light-emitting device of the present invention having an excitation light source (such as a semiconductor light-emitting element that generates light having a wavelength shorter than 470 nm) and a phosphor. FIG. 6 is a schematic cross-sectional view showing an embodiment of a surface emitting illumination device incorporating the light emitting device shown in FIG. 5 and 6, 1 is a light emitting device, 2 is a mount lead, 3 is an inner lead, 4 is an excitation light source, 5 is a phosphor-containing resin part, 6 is a conductive wire, 7 is a molding member, and 8 is a surface emitting light. An illuminating device, 9 is a diffusion plate, and 10 is a holding case.

この発光装置1は、図5に示されるように、一般的な砲弾型の形態をなし、マウントリード2の上部カップ内には、GaN系発光ダイオード等からなる励起光源(350nm〜470nm励起光源)4が、その上に、蛍光体をシリコン樹脂、エポキシ樹脂やアクリル樹脂等のバインダーに混合、分散させ、カップ内に流し込むことにより形成された蛍光体含有樹脂部5で被覆されることにより固定されている。一方、励起光源4とマウントリード2、及び励起光源4とインナーリード3は、それぞれ導電性ワイヤー6で導通されており、これら全体がエポキシ樹脂等によるモールド部材7で被覆、保護されてなる。   As shown in FIG. 5, the light emitting device 1 has a general shell shape, and an excitation light source (350 nm to 470 nm excitation light source) made of a GaN-based light emitting diode or the like is placed in the upper cup of the mount lead 2. 4 is fixed by being coated with a phosphor-containing resin portion 5 formed by mixing and dispersing the phosphor in a binder such as silicon resin, epoxy resin or acrylic resin, and pouring it into the cup. ing. On the other hand, the excitation light source 4 and the mount lead 2, and the excitation light source 4 and the inner lead 3 are respectively connected by a conductive wire 6, and these are entirely covered and protected by a mold member 7 made of epoxy resin or the like.

また、この発光装置1を組み込んだ面発光照明装置8は、図6に示されるように、内面を白色の平滑面等の光不透過性とした方形の保持ケース10の底面に、多数の発光装置1を、その外側に発光装置1の駆動のための電源及び回路等(図示せず。)を設けて配置し、保持ケース10の蓋部に相当する箇所に、乳白色としたアクリル板等の拡散板9を発光の均一化のために固定してなる。   Further, as shown in FIG. 6, the surface emitting illumination device 8 incorporating the light emitting device 1 has a large number of light emission on the bottom surface of the rectangular holding case 10 whose inner surface is light-impermeable such as a white smooth surface. The device 1 is arranged with a power source and a circuit (not shown) for driving the light emitting device 1 provided outside thereof, and a milky white acrylic plate or the like is provided at a position corresponding to the lid portion of the holding case 10. The diffusion plate 9 is fixed for uniform light emission.

そして、面発光照明装置8を駆動して、発光装置1の励起光源4に電圧を印加することにより波長470nmより短波の光を発光させ、その発光の一部を、蛍光体含有樹脂部5における前記蛍光体が吸収して、より長波長(波長490nm〜700nm)の可視光を発光し、一方、蛍光体に吸収されなかった青色光等との混色により演色性の高い発光が得られ、この光が拡散板9を透過して、図面上方に出射され、保持ケース10の拡散板9面内において均一な明るさの照明光が得られることとなる。   Then, by driving the surface emitting illumination device 8 and applying a voltage to the excitation light source 4 of the light emitting device 1, light having a wavelength shorter than 470 nm is emitted, and part of the emitted light is emitted from the phosphor-containing resin portion 5. The phosphor absorbs and emits visible light having a longer wavelength (wavelength of 490 nm to 700 nm). On the other hand, light emission with high color rendering properties is obtained by mixing with blue light or the like that is not absorbed by the phosphor. Light passes through the diffusion plate 9 and is emitted upward in the drawing, so that illumination light with uniform brightness can be obtained within the surface of the diffusion plate 9 of the holding case 10.

なお、上記発光装置1における蛍光体含有樹脂部5は、次のような効果を有する。即ち、励起光源からの光や蛍光体からの光は通常四方八方に向いているが、蛍光体粉を樹脂中に分散させると、光が樹脂の外に出る時にその一部が反射されるので、ある程度光の向きを変えることができるため、光の混合が行われ、配光が均一化される傾向にある。従って、効率の良い向きに光をある程度誘導できるので、前記蛍光体の粉を樹脂中へ分散して使用するのが好ましい。また、蛍光体を樹脂中に分散させると、励起光源からの光の蛍光体への全照射面積が大きくなるので、蛍光体からの発光強度を大きくすることができるという利点も有する。   The phosphor-containing resin portion 5 in the light emitting device 1 has the following effects. That is, the light from the excitation light source and the light from the phosphor are usually directed in all directions, but when the phosphor powder is dispersed in the resin, a part of the light is reflected when it goes out of the resin. Since the direction of the light can be changed to some extent, the light is mixed and the light distribution tends to be made uniform. Therefore, since the light can be guided to an efficient direction to some extent, it is preferable to use the phosphor powder dispersed in a resin. Further, when the phosphor is dispersed in the resin, since the total irradiation area of the light from the excitation light source to the phosphor is increased, there is an advantage that the emission intensity from the phosphor can be increased.

この蛍光体含有樹脂部に使用できる樹脂としては、シリコーン樹脂、エポキシ樹脂、ポリビニル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂等各種のものを1種を単独で又は2種以上を混合して用いることができるが、蛍光体粉の分散性が良い点で好ましくはシリコーン樹脂、エポキシ樹脂である。蛍光体の粉を樹脂中に分散させる場合、当該蛍光体粉と樹脂との合計に対するその蛍光体粉の重量割合は、通常0.1〜20重量%、好ましくは0.3〜15重量%、さらに好ましくは0.5〜10重量%である。この範囲よりも蛍光体が多すぎると蛍光体粉の凝集により発光効率が低下することがあり、少なすぎると今度は樹脂による光の吸収や散乱のため発光効率が低下することがある。この樹脂中には、色斑(ムラ)を防止するために、増量剤又は拡散剤を添加してもよい。   As a resin that can be used for the phosphor-containing resin part, various kinds such as silicone resin, epoxy resin, polyvinyl resin, polyethylene resin, polypropylene resin, polyester resin, etc. are used alone or in combination of two or more. In view of good dispersibility of the phosphor powder, silicone resins and epoxy resins are preferable. When the phosphor powder is dispersed in the resin, the weight ratio of the phosphor powder to the total of the phosphor powder and the resin is usually 0.1 to 20% by weight, preferably 0.3 to 15% by weight, More preferably, it is 0.5 to 10% by weight. If there is too much phosphor within this range, the luminous efficiency may decrease due to aggregation of the phosphor powder, and if it is too small, the luminous efficiency may decrease due to light absorption or scattering by the resin. In this resin, an extender or a diffusing agent may be added in order to prevent color spots (unevenness).

なお、前述の如く、蛍光体は必要に応じて公知の表面処理を行ってから樹脂中に分散することが好ましい。   As described above, the phosphor is preferably dispersed in the resin after performing a known surface treatment if necessary.

本発明においては、面発光型の発光体、特に面発光型GaN系レーザーダイオードを励起光源として使用することは、発光装置全体の発光効率を高めることになるので、特に好ましい。面発光型の発光体とは、膜の面方向に強い発光を有する発光体であり、面発光型GaN系レーザーダイオードにおいては、発光層等の結晶成長を制御し、かつ、反射層等をうまく工夫することにより、発光層の縁方向よりも面方向の発光を強くすることができる。面発光型のものを使用することによって、発光層の縁から発光するタイプに比べ、単位発光量あたりの発光断面積が大きくとれる結果、波長変換材料としての蛍光体にその光を照射する場合、同じ光量で照射面積を非常に大きくすることができ、照射効率を良くすることができるので、波長変換材料である蛍光体からより強い発光を得ることができる。   In the present invention, it is particularly preferable to use a surface-emitting type illuminant, particularly a surface-emitting type GaN-based laser diode, as an excitation light source, since it increases the luminous efficiency of the entire light-emitting device. A surface-emitting type illuminant is an illuminant that emits strong light in the surface direction of a film. In a surface-emitting GaN-based laser diode, the crystal growth of a light-emitting layer or the like is controlled, and a reflective layer or the like is successfully performed. By devising, the light emission in the surface direction can be made stronger than the edge direction of the light emitting layer. Compared to the type that emits light from the edge of the light emitting layer by using a surface emitting type, as a result of taking a large emission cross-sectional area per unit light emission amount, when irradiating the phosphor as a wavelength conversion material, Since the irradiation area can be made very large with the same amount of light and the irradiation efficiency can be improved, stronger light emission can be obtained from the phosphor as the wavelength conversion material.

このように励起光源として面発光型のものを使用する場合、波長変換材料としての蛍光体を膜状に形成するのが好ましい。面発光型の励起光源からの光は断面積が十分大きいので、蛍光体をその断面の方向に膜状に形成すると、励起光源からの蛍光体単位量あたりの照射断面積が大きくなるので、蛍光体からの発光の強度をより大きくすることができる。   Thus, when using a surface emitting type as an excitation light source, it is preferable to form the phosphor as the wavelength conversion material in a film shape. Since the cross-sectional area of the light from the surface-emitting type excitation light source is sufficiently large, if the phosphor is formed in a film shape in the direction of the cross-section, the irradiation cross-sectional area per unit amount of the phosphor from the excitation light source increases. The intensity of light emitted from the body can be further increased.

また、励起光源として面発光型のものを使用し、蛍光体を膜状に形成したものを用いる場合、励起光源の発光面に、直接膜状の蛍光体を接触させた形状とするのが好ましい。ここでいう接触とは、励起光源と蛍光体とが空気や気体を介さないで密着している状態をつくることを言う。その結果、励起光源からの光が蛍光体の膜面で反射されて外にしみ出るという光量損失を避けることができるので、装置全体の発光効率を良くすることができる。   In addition, when a surface emitting type light source is used as the excitation light source and a phosphor is formed in a film shape, it is preferable to have a shape in which the film-shaped phosphor is directly in contact with the light emission surface of the excitation light source. . Contact here means creating a state in which the excitation light source and the phosphor are in close contact with each other without air or gas. As a result, it is possible to avoid a light amount loss in which light from the excitation light source is reflected by the phosphor film surface and oozes out, so that the light emission efficiency of the entire apparatus can be improved.

本発明の画像表示装置及び照明装置は、少なくも励起光源と本発明の蛍光体で構成され、蛍光表示管(VFD)、フィールドエミッションディスプレイ(FED)、プラズマディスプレイパネル(PDP)、陰極線管(CRT)などがある。本発明の蛍光体は、100nm〜190nmの真空紫外線、190nm〜380nmの紫外線、電子線などの励起で発光することが確認されており、これらの励起光源と本発明の蛍光体との組み合わせで、上記のような画像表示装置及び照明装置を構成することができる。   The image display device and illumination device of the present invention are composed of at least an excitation light source and the phosphor of the present invention, and include a fluorescent display tube (VFD), a field emission display (FED), a plasma display panel (PDP), and a cathode ray tube (CRT). )and so on. It has been confirmed that the phosphor of the present invention emits light by excitation of vacuum ultraviolet rays of 100 nm to 190 nm, ultraviolet rays of 190 nm to 380 nm, electron beams, etc., and in combination of these excitation light sources and the phosphor of the present invention, The image display device and the illumination device as described above can be configured.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を越えない限り以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

実施例1〜15、比較例1〜5
表1に示す各原料の仕込み重量(g)で、得られる物質の理論化学式が表2に示すような組成となるように原料を調合した。
Examples 1-15, Comparative Examples 1-5
The raw materials were prepared so that the theoretical chemical formula of the obtained substance had a composition as shown in Table 2 at the charged weight (g) of each raw material shown in Table 1.

Figure 0004899433
Figure 0004899433

Figure 0004899433
Figure 0004899433

窒素用グローブボックス内で各原料を粉混ぜして得られた試料1.5gを内径2mm,高さ2mmの窒化ホウ素(BN)坩堝に導入し、これを更に約6倍の大きさのBN坩堝中に設置した。この二重坩堝を内径10mmのアルミナ管状炉に導入後、0.5L/分の水素4体積%含有窒素気流下で、0.1MPa、1200℃で2時間焼成した。
ただし、Srの代わりにBaを、Biの代わりにLaを使用した実施例12〜15及び比較例5では、表1に示す原料を用いて粉混ぜ後の試料を加圧型カーボン炉に導入した後、2L/分の窒素気流下、0.2MPa(2kg/cm)の圧力下で1600℃で2時間焼成したこと以外は、上記と同様に行った。
1.5 g of a sample obtained by mixing each raw material in a nitrogen glove box is introduced into a boron nitride (BN) crucible having an inner diameter of 2 mm and a height of 2 mm, and this is further about 6 times as large as a BN crucible. Installed inside. The double crucible was introduced into an alumina tubular furnace having an inner diameter of 10 mm, and then fired at 0.1 MPa and 1200 ° C. for 2 hours under a nitrogen stream containing 4% by volume of hydrogen at 0.5 L / min.
However, in Examples 12 to 15 and Comparative Example 5 in which Ba was used instead of Sr and La was used instead of Bi, after the mixed sample was introduced into the pressurized carbon furnace using the raw materials shown in Table 1 It was carried out in the same manner as above except that it was calcined at 1600 ° C. for 2 hours under a pressure of 0.2 MPa (2 kg / cm 2 ) under a nitrogen stream of 2 L / min.

なお、実施例6で得られた蛍光体についてLECO社TC−600により窒素含有量を測定したところ、理論窒素濃度2.37重量%に対し2.33重量%の測定結果を得た。従って、実測値は理論値との実験誤差範囲内にある。   In addition, when the nitrogen content of the phosphor obtained in Example 6 was measured by LECO TC-600, a measurement result of 2.33% by weight was obtained with respect to the theoretical nitrogen concentration of 2.37% by weight. Therefore, the actual measurement value is within the experimental error range from the theoretical value.

表3及び表4に、得られた蛍光体の発光特性を示す。なお、式[2]の100|I465−I440|/(I440×Δλ)の値は、波長465nm及び440nmにおけるスペクトル強度から求めた。また、発光スペクトルの輝度及び強度は、比較例1の蛍光体のものを100として、それぞれ相対値で求めた。 Tables 3 and 4 show the light emission characteristics of the obtained phosphors. In addition, the value of 100 | I 465 −I 440 | / (I 440 × Δλ) of the formula [2] was obtained from the spectral intensities at wavelengths of 465 nm and 440 nm. Further, the luminance and intensity of the emission spectrum were obtained as relative values, with the phosphor of Comparative Example 1 as 100.

Figure 0004899433
Figure 0004899433

Figure 0004899433
Figure 0004899433

また、得られた蛍光体のうち代表的なもの(実施例1,7,比較例1及び4)について、励起光源465nmによる発光スペクトルを図1に示す。また、実施例4の蛍光体と比較例1の蛍光体のX線回折のチャートを図2に示す。
また、励起スペクトルの代表例(実施例1及び比較例1)を図4に示す。なお、励起スペクトルは465nm励起源で取得した発光スペクトルにおける各発光ピーク波長にエミッションを固定し、1nm間隔でスキャンして測定した。
Moreover, about the typical thing (Examples 1 and 7, Comparative Examples 1 and 4) among the obtained fluorescent substance, the emission spectrum by excitation light source 465nm is shown in FIG. FIG. 2 shows an X-ray diffraction chart of the phosphor of Example 4 and the phosphor of Comparative Example 1.
Moreover, the representative example (Example 1 and Comparative Example 1) of an excitation spectrum is shown in FIG. The excitation spectrum was measured by scanning at 1 nm intervals with the emission fixed at each emission peak wavelength in the emission spectrum obtained with a 465 nm excitation source.

実施例1と比較例1、実施例7と比較例4はいずれも同じSr/(Sr+Ca)(以後w値という)を持つ組成について窒化後と窒化前を比較したものであり、いずれも前者の相対強度及び相対輝度が高く、本発明による蛍光体の優位性を示している。   Example 1 and Comparative Example 1, Example 7 and Comparative Example 4 are all compositions having the same Sr / (Sr + Ca) (hereinafter referred to as w value) after nitriding and before nitriding, both of which are the former. The relative intensity and relative brightness are high, indicating the superiority of the phosphor according to the present invention.

実施例1と比較例1の式[2]の値は0.17と0.49であり、実施例1の蛍光体は比較例1の蛍光体に比べ、励起光源の波長変化に対し、発光強度の変化が少ないことを示している。この事実もまた本発明による蛍光体の優位性を示す例である。   The values of the expression [2] in Example 1 and Comparative Example 1 are 0.17 and 0.49, and the phosphor of Example 1 emits light with respect to the wavelength change of the excitation light source as compared with the phosphor of Comparative Example 1. It shows that there is little change in intensity. This fact is also an example showing the superiority of the phosphor according to the present invention.

Biの代りにLaを用いた場合も、Biの場合と同様の部分窒化効果が示された。すなわち比較例5で得られた酸化物蛍光体は波長465nmの励起光では発光が実質的に観測されなかったが、実施例12〜15ではLa、N置換量を0.27から1.08に変化させるにつれてオレンジ色、赤色、深紅色の発光が得られた。   When La was used instead of Bi, the same partial nitriding effect as Bi was shown. That is, in the oxide phosphor obtained in Comparative Example 5, substantially no emission was observed with excitation light having a wavelength of 465 nm, but in Examples 12 to 15, the La and N substitution amounts were changed from 0.27 to 1.08. Orange, red and crimson luminescence was obtained as the change was made.

これらの結果から、本発明による蛍光体が波長465nmの青色光によっても十分励起されることがわかる。   From these results, it can be seen that the phosphor according to the present invention is sufficiently excited by blue light having a wavelength of 465 nm.

本発明の蛍光体の発光スペクトルを示す図である。It is a figure which shows the emission spectrum of the fluorescent substance of this invention. 実施例4の蛍光体と比較例1の蛍光体のX線回折のチャートを示す図である。It is a figure which shows the chart of the X-ray diffraction of the fluorescent substance of Example 4, and the fluorescent substance of the comparative example 1. 理論組成Eu0.1Sr1.33Ca0.57SiO蛍光体に対してBiとNを理論組成量導入したときの斜方晶のa,b,c軸格子定数の値を示す。The values of orthorhombic a, b, c axis lattice constants when Bi and N are introduced into the theoretical composition Eu 0.1 Sr 1.33 Ca 0.57 SiO 4 phosphor are shown. 本発明の蛍光体の励起スペクトルを示す図である。It is a figure which shows the excitation spectrum of the fluorescent substance of this invention. 本発明の発光装置の実施の形態を示す模式的断面図である。It is typical sectional drawing which shows embodiment of the light-emitting device of this invention. 本発明の発光装置を用いた面発光照明装置の一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the surface emitting illumination apparatus using the light-emitting device of this invention.

符号の説明Explanation of symbols

1:発光装置
2:マウントリード
3:インナーリード
4:励起光源
5:蛍光体含有樹脂部
6:導電性ワイヤー
7:モールド部材
8:面発光照明装置
9:拡散板
10:保持ケース
DESCRIPTION OF SYMBOLS 1: Light-emitting device 2: Mount lead 3: Inner lead 4: Excitation light source 5: Phosphor containing resin part 6: Conductive wire 7: Mold member 8: Surface emitting illuminating device 9: Diffusion plate 10: Holding case

Claims (5)

下記一般式[1]で表される化学組成を有する結晶相を含有することを特徴とする蛍光体。
EuII 2−x−yIII IV4−x [1]
(一般式[1]中、MII、Mg,Ca,Sr,Ba及びZnよりなる群から選ばれる1種以上の2価の金属元素を示し、MIIIはBi,Sc,Al,及びaよりなる群から選ばれる1種以上の3価の金属元素を示し、MIVSiを示し、x0.135≦x≦1.08を満足する数であり、yは0<y≦0.4を満足する数である。)
A phosphor comprising a crystal phase having a chemical composition represented by the following general formula [1].
Eu y M II 2-xy M III x M IV O 4-x N x [1]
(In the general formula [1], M II represents one or more divalent metal elements selected from the group consisting of Mg, Ca, Sr, Ba and Zn , and M III represents Bi, Sc, Al, and L represents one or more trivalent metallic element selected from a O Li Cheng group, M IV represents a Si, x is a number satisfying 0.135 ≦ x ≦ 1.08, y is 0 <y ≦ 0.4.)
波長440nmの励起光を照射した時の発光強度をI440、波長465nmの励起光を照射した時の発光強度をI465とした場合に、下記式[2]を満足することを特徴とする請求項1に記載の蛍光体。
100|I465−I440|/(I440×Δλ)≦0.4 [2]
(式[2]中、Δλ=465−440=25である。)
The following equation [2] is satisfied, where the emission intensity when irradiated with excitation light with a wavelength of 440 nm is I 440 , and the emission intensity when irradiation with excitation light with a wavelength of 465 nm is I 465 : Item 6. The phosphor according to Item 1.
100 | I 465 −I 440 | / (I 440 × Δλ) ≦ 0.4 [2]
(In the formula [2], Δλ = 465-440 = 25.)
励起光源と、該励起光源からの光の少なくとも一部を波長変換する蛍光体とを有する発光装置において、該蛍光体が請求項1又は2に記載の蛍光体を含むことを特徴とする発光装置。   A light emitting device having an excitation light source and a phosphor that converts the wavelength of at least part of light from the excitation light source, wherein the phosphor includes the phosphor according to claim 1 or 2. . 請求項3に記載の発光装置を含むことを特徴とする画像表示装置。   An image display device comprising the light-emitting device according to claim 3. 請求項3に記載の発光装置を含むことを特徴とする照明装置。   An illumination device comprising the light-emitting device according to claim 3.
JP2005330426A 2005-11-15 2005-11-15 Phosphor, and light emitting device, image display device, and illumination device using the same Expired - Fee Related JP4899433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005330426A JP4899433B2 (en) 2005-11-15 2005-11-15 Phosphor, and light emitting device, image display device, and illumination device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005330426A JP4899433B2 (en) 2005-11-15 2005-11-15 Phosphor, and light emitting device, image display device, and illumination device using the same

Publications (2)

Publication Number Publication Date
JP2007137946A JP2007137946A (en) 2007-06-07
JP4899433B2 true JP4899433B2 (en) 2012-03-21

Family

ID=38201228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005330426A Expired - Fee Related JP4899433B2 (en) 2005-11-15 2005-11-15 Phosphor, and light emitting device, image display device, and illumination device using the same

Country Status (1)

Country Link
JP (1) JP4899433B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040944A (en) * 2007-08-10 2009-02-26 Mitsubishi Chemicals Corp Phosphor, phosphor-containing composition, light emitter, lighting apparatus, and image display device
KR20110050206A (en) 2009-11-06 2011-05-13 삼성전자주식회사 Oxynitride phosphor, method for preparing the same, and white light emitting device using the same
KR101215300B1 (en) * 2011-03-29 2012-12-26 순천대학교 산학협력단 Oxynitride phospor
JP2013213191A (en) * 2012-01-17 2013-10-17 Mitsubishi Chemicals Corp Oxynitride based phosphor and light-emitting device using the same
DE202011106052U1 (en) * 2011-09-23 2011-11-09 Osram Ag Light source with phosphor and associated lighting unit.
JP2014167086A (en) * 2013-02-01 2014-09-11 Shoei Chem Ind Co Silicate-based fluophor and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT410266B (en) * 2000-12-28 2003-03-25 Tridonic Optoelectronics Gmbh LIGHT SOURCE WITH A LIGHT-EMITTING ELEMENT
US7489073B2 (en) * 2005-04-15 2009-02-10 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Blue to yellow-orange emitting phosphor, and light source having such a phosphor

Also Published As

Publication number Publication date
JP2007137946A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
US11674081B2 (en) Phosphor composition
JP4975269B2 (en) Phosphor and method for producing the same, and light emitting device using the phosphor
TWI443854B (en) Illumination system comprising a yellow green-emitting luminescent material
JP4207489B2 (en) α-sialon phosphor
JP5245411B2 (en) Phosphor, method for producing the same, and light emitting device using the phosphor
US7274045B2 (en) Borate phosphor materials for use in lighting applications
JP5367218B2 (en) Method for manufacturing phosphor and method for manufacturing light emitting device
JP4511885B2 (en) Phosphor, LED and light source
US7329371B2 (en) Red phosphor for LED based lighting
US9331253B2 (en) Light emitting diode (LED) component comprising a phosphor with improved excitation properties
JP5227503B2 (en) Phosphor, phosphor sheet, phosphor production method, and light emitting device using the phosphor
US20060049414A1 (en) Novel oxynitride phosphors
US20110279017A1 (en) Oxycarbonitride Phosphors and Light Emitting Devices Using the Same
US7439668B2 (en) Oxynitride phosphors for use in lighting applications having improved color quality
JP5885175B2 (en) Phosphor and production method thereof, light emitting device using phosphor, image display device, pigment, and ultraviolet absorber
JP2008163259A (en) Nitride fluorescent material and light emitting apparatus using the same
JP2006257385A (en) Oxynitride phosphor and method for producing the same
JP2013045896A (en) Light-emitting device
US20070040502A1 (en) High CRI LED lamps utilizing single phosphor
Wu et al. Synthesis and luminescence characteristics of nitride Ca 1.4 Al 2.8 Si 9.2 N 16: Ce 3+, Li+ for light-emitting devices and field emission displays
JP4899433B2 (en) Phosphor, and light emitting device, image display device, and illumination device using the same
US20110089817A1 (en) Kimzeyite garnet phosphors
US9437788B2 (en) Light emitting diode (LED) component comprising a phosphor with improved excitation properties
JP2006348070A (en) Oxynitride-based phosphor and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees