JP4899416B2 - ネットワーク接続装置 - Google Patents

ネットワーク接続装置 Download PDF

Info

Publication number
JP4899416B2
JP4899416B2 JP2005312755A JP2005312755A JP4899416B2 JP 4899416 B2 JP4899416 B2 JP 4899416B2 JP 2005312755 A JP2005312755 A JP 2005312755A JP 2005312755 A JP2005312755 A JP 2005312755A JP 4899416 B2 JP4899416 B2 JP 4899416B2
Authority
JP
Japan
Prior art keywords
window
component
address information
spectrum
acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005312755A
Other languages
English (en)
Other versions
JP2007121626A (ja
Inventor
敏雄 茂出木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2005312755A priority Critical patent/JP4899416B2/ja
Publication of JP2007121626A publication Critical patent/JP2007121626A/ja
Application granted granted Critical
Publication of JP4899416B2 publication Critical patent/JP4899416B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Telephonic Communication Services (AREA)
  • Information Transfer Between Computers (AREA)
  • Telephone Function (AREA)

Description

本発明は、放送番組やCD・DVDパッケージの音声信号からURLなどの情報を抽出し、携帯電話を用いて所定のコンテンツに関連するwebサイトにアクセスして詳細情報を抽出したり、アンケートに回答したりする非接触なインターネットへの接続技術に関する。
従来より、PCや携帯電話にURLを入力し、webサイトにアクセスすることが行われている。近年では、URLの入力を直接行わずに、印刷物上のQRコードや画像電子透かしでURLを埋め込んだり、TV動画像のフレームにQRコードを静止画として埋め込み、携帯電話のカメラでURLを抽出し、指定のwebサイトに誘導する技術が実現されている(例えば、特許文献1〜3参照)。
特開2000−267966号公報 特開2004−94398号公報 特開2005−176287号公報
しかしながら、上記従来の手法では、携帯電話で画像上のQRコードや電子透かしを抽出する場合、カメラのファインダーをコードが埋め込まれている領域に手作業で合わせる必要があり、操作に手間がかかるという問題がある。また、荘がメディアの場合、読み取り準備で手間取ると、コードが表示されている画面が切り替わってしまい、読み取りチャンスを逃してしまい易いという問題がある。また、QRコードの場合、レイアウト上目立ち易く、特に動画メディアの場合、画面サイズの割合に比べコードが占める面積が大きく、レイアウト上邪魔になるという問題がある。
そこで、本発明は、URL等のアドレス情報をコンテンツ本体の邪魔にならないように設けることが可能であると共に、携帯電話機等の端末装置でのアドレス情報の取得を簡易に行うことが可能なネットワーク接続装置を提供することを課題とする。
上記課題を解決するため、本発明では、スピーカから発せられた音声を音響信号として取得し、当該音響信号から予め聴取不能な状態で埋め込まれた情報を抽出し、当該抽出した情報を用いてネットワーク上の所定のサイトにアクセスする装置であって、前記音響信号の所定の区間をデジタル化して、所定数のサンプルで構成される音響フレームを獲得する音響フレーム獲得手段と、前記音響フレームに対して、周波数変換を行って各音響フレームについてのスペクトルを得る周波数変換手段と、前記生成されたスペクトルを利用して、少なくとも2セットのスペクトル集合を抽出し、各スペクトル集合ごとにスペクトル強度の総和値を算出し、その総和値のスペクトル集合間の割合に基づいて、所定の符号を出力する符号化手段と、前記出力された符号に対応する情報配列を、所定の規則により変換してアドレス情報を抽出するアドレス情報抽出手段と、当該アドレス情報を用いてネットワーク上の所定のサイトにアクセスするネットワークアクセス手段と、前記アクセスしたサイトから、音響信号を含むコンテンツを取得するコンテンツ取得手段と、を有し、前記アドレス情報抽出手段が、前記取得したコンテンツに含まれる音響信号から第2のアドレス情報を抽出し、前記ネットワークアクセス手段が、前記第2のアドレス情報を用いてネットワーク上の第2のサイトにアクセスすることを特徴とする音響信号を用いたネットワーク接続装置を提供する。
本発明によれば、音響信号に埋め込まれたアドレス情報を抽出し、抽出したアドレス情報を利用して、ネットワーク上のサイトにアクセスするようにしたので、URLをコンテンツ本体の邪魔にならないように設けることが可能であると共に、携帯電話機等の端末装置でのアドレス情報の取得を簡易に行うことが可能となるという効果を奏する。
以下、本発明の実施形態について図面を参照して詳細に説明する。
(1.第1の実施形態)
まず、本発明第1の実施形態について説明する。図1は、本発明第1の実施形態に係るネットワーク接続装置の構成図である。図1において、300はネットワーク接続装置、310はマイクロフォン、320はアドレス情報抽出部、321は埋込情報抽出部、322はアドレス情報変換部、330はネットワークアクセス部、400は音響信号再生装置、500はネットワーク、601はサイトである。
本発明に係るネットワーク接続装置300は、マイクロフォン310、アドレス情報抽出部320、ネットワークアクセス部330を有しており、音響信号再生装置400により再生され、発せられた音を音響信号として取得し、この音響信号から抽出したアドレス情報を用いて、ネットワーク500上のサイト601にアクセスする機能を有している。ネットワーク接続装置300は、ネットワーク接続機能を有する携帯電話機に、本発明に特有の処理を実行するソフトウェアを搭載することにより実現される。
マイクロフォン310は、低周波成分が検出可能なマイクロフォンである。低周波成分が検出可能なものであれば、モノラル無指向性のものであっても、ステレオ指向性のものであっても良い。ステレオ指向性のものであっても一方のチャンネルだけ利用すれば良い。特に、後述する埋込装置で情報の埋め込みを行った音響信号を利用する場合には、特別精度の高いものでなく、一般的な精度のマイクロフォンを用いても情報の抽出が可能となる。
アドレス情報抽出部320は、埋込情報抽出部321とアドレス情報変換部322を有しており、マイクロフォン310が取得した音響信号からアドレス情報を抽出する機能を有している。埋込情報抽出部321は、音響信号に埋め込まれている情報を抽出する機能を有している。アドレス情報変換部322は、自身が保有しているアドレステーブルを参照することにより、抽出された情報をアドレス情報に変換する機能を有している。
ネットワークアクセス部330は、アドレス情報抽出部320が抽出したアドレス情報を用いて、そのアドレス情報に対応するサイト601に、ネットワーク500を介してアクセスする機能を有している。ネットワークアクセス部330は、アドレス情報を取得してネットワーク上のサイトにアクセスするWebブラウザにより実現される。
音響信号再生装置400は、情報が不可聴な状態で埋め込まれた音響信号を再生して、スピーカから音として発する機能を有しており、いわゆる汎用のテレビ受像機、ラジオ受信機、オーディオプレーヤ等で実現できる。ネットワーク500は、所定のプロトコルに従ってデータ通信を行うインターネット等のコンピュータネットワークである。サイト601は、ネットワーク500を介してPC、携帯電話機等からアクセス可能なコンピュータ上のWebサイトである。
続いて、図1に示した装置の処理動作について説明する。図2は、本発明第1の実施形態に係るネットワーク接続装置の処理動作を示すフローチャートである。まず、利用者が流れている音楽内に、アドレス情報が埋め込まれていることを知った場合、ネットワーク接続装置に対して起動の指示を行う。これは、例えば、ネットワーク接続装置を携帯電話機等の携帯端末で実現している場合は、所定のボタンを操作することにより実行できる。ネットワーク接続装置は、指示が入力されると、マイクロフォン310から流れている音楽を取り込み、アドレス情報抽出部320が録音してデジタル音響信号として入力する(S801)。具体的には、無指向性マイクロフォン(または指向性マイクロフォンの一方のチャンネル)であるマイクロフォン310から入力される音声を、A/D変換器によりデジタル化する処理を行うことになる。
続いて、埋込情報抽出部321が、取得した音響信号から、埋め込まれている付加情報を抽出する(S802)。この埋込情報抽出部321における抽出処理の詳細については、後述する。
次に、アドレス情報変換部322が、抽出された付加情報をアドレス情報に変換する(S803)。アドレス情報変換部322は、付加情報とアドレス情報を対応付けた変換テーブルを備えており、抽出した付加情報で変換テーブルを参照し、アドレス情報に変換する処理を行う。
続いて、ネットワークアクセス部330が、変換により得られたアドレス情報を利用して、対応するサイトへアクセスする(S804)。例えば、得られたアドレス情報がサイト601を示すものである場合、サイト601にアクセスし、サイト601が保有している情報を取得できることになる。
(2.第2の実施形態)
次に、本発明第2の実施形態について説明する。図3は、本発明第2の実施形態に係るネットワーク接続装置の構成図である。図3中、第1の実施形態と同一機能を有するものについては、同一符号を付して説明を省略する。図3において、340はコンテンツ取得部、602は第2のサイトである。
コンテンツ取得部340は、アクセス先のサイトが、ダウンロード可能なコンテンツを保有する場合に、コンテンツを取得する機能を有している。そして、コンテンツ取得部340は、取得したコンテンツに音響信号が含まれている場合は、その音響信号を埋込情報抽出部321に渡す機能を有している。
続いて、図3に示した装置の処理動作について説明する。図4は、本発明第2の実施形態に係るネットワーク接続装置の処理動作を示すフローチャートである。図4においても、第1の実施形態と同一処理については、同一符号を付して説明を省略する。したがって、S801〜S804までは、第1の実施形態と同様の処理を行うことになる。第2の実施形態においては、サイト601にアクセスした後、サイト601にダウンロード可能なコンテンツが存在すれば、コンテンツ取得部340が、そのコンテンツを取得する(S805)。
コンテンツ取得部340は、取得したコンテンツに音響信号が含まれるかどうかを判断する(S806)。取得したコンテンツに音響信号が含まれる場合は、コンテンツ取得部340は、その音響信号を埋込情報抽出部321に渡す。埋込情報抽出部321は、コンテンツ取得部340から音響信号を受け取ると、マイクロフォン310を通して取得した音響信号と同様にして、埋め込まれている付加情報を抽出する(S802)。そして、アドレス情報変換部322が、アドレス情報に変換した後(S803)、ネットワークアクセス部330が、そのアドレス情報を利用して、対応するサイトへアクセスする(S804)。例えば、得られたアドレス情報が第2のサイト602を示すものである場合、第2のサイト602にアクセスし、第2のサイト602が保有している情報を取得できることになる。
このようにして、ダウンロードしたコンテンツに音響信号が含まれ、音響信号からアクセス情報が抽出される限り、S802〜S806の処理が繰り返され、次々に異なるサイトにアクセスすることになる。S806において、ダウンロードしたコンテンツに音響信号が含まれない場合は、新たな処理を行わず、ネットワーク接続装置の画面には、接続先のサイトの情報が表示されたままの状態となる。
(3.第3の実施形態)
次に、本発明第3の実施形態に係るネットワーク接続システムについて説明する。図5は、本発明第3の実施形態に係るネットワーク接続システムの構成図である。図5中、上記第1、第2の実施形態に係るネットワーク接続装置と同一機能を有するものについては、同一符号を付して説明を省略する。図5において、301は端末装置、320aはアドレス情報抽出サーバ、350は音響信号取得部である。
図5に示すネットワーク接続システムは、基本的には、図3に示した第1の実施形態に係るネットワーク接続装置300の機能を、端末装置301とアドレス情報抽出サーバ320aに分散して備えたものとなっている。したがって、アドレス情報抽出サーバ320aは、図3に示したアドレス情報抽出部320と同様、埋込情報抽出部321とアドレス情報変換部322を有しており、ネットワーク500を介して、端末装置301から受信した音響信号からアドレス情報を抽出する機能を有している。ただし、アドレス情報抽出サーバ320aは、端末装置301と通信を行うため、ネットワークアクセス機能を有している。
音響信号取得部350は、マイクロフォン310が取得した音響信号をデジタル化する機能を有している。図3に示した第1の実施形態においては、アドレス情報抽出部320が行う機能である。
続いて、図5に示したシステムの処理動作について説明する。図6は、本発明第3の実施形態に係るネットワーク接続システムの処理動作を示すフローチャートである。図6においても、第1の実施形態と同一処理については、同一符号を付して説明を省略する。したがって、S801、S802、S803、〜S804の各処理は、第1の実施形態と同様の処理を行うことになる。第3の実施形態においては、端末装置350が音響信号を取得した後(S801)、ネットワークアクセス部が、アドレス情報抽出サーバ320aに音響信号を送信する(S807)。アドレス情報抽出サーバ320aが音響信号を受信すると、埋込情報抽出部321が、取得した音響信号から、埋め込まれている付加情報を抽出する(S802)。次に、アドレス情報変換部322が、抽出された付加情報をアドレス情報に変換する(S803)。
続いて、アドレス情報抽出サーバ320aが、変換により得られたアドレス情報を、送信元の端末装置301へ送信する(S808)。端末装置301がアドレス情報を受信すると、ネットワークアクセス部330は、受信したアドレス情報を利用して、対応するサイトへアクセスする(S804)。
なお、上記第1〜第3の実施形態においては、アドレス情報抽出部320が、埋込情報抽出部321とアドレス情報変換部322を有する構成とし、音響信号に埋め込まれた付加情報を抽出した後、付加情報をアドレス情報に変換する構成としたが、音響信号にアドレス情報を埋め込んでおき、アドレス情報抽出部320が、埋込情報抽出部321と同等の機能を有し、直接アドレス情報を抽出するようにしても良い。ただし、URL等のアドレス情報は、比較的文字数が多いため、録音時間をより短くするために、より短い情報を付加情報として埋め込んでおき、アドレス情報変換部322がアドレス情報に変換する方が好ましい。例えば、URLだと数十バイトを要するが、付加情報として4〜5バイトの文字を埋め込んでおけば、わずかな時間で付加情報が埋め込まれた部分の音響信号の録音が可能となる。
(4.音響信号への付加情報の埋め込み)
次に、音響信号への付加情報の埋め込みについて説明する。この付加情報が埋め込まれた音響信号は、音響信号再生装置400により再生される。図7は、音響信号に対する情報の埋込装置の構成を示す機能ブロック図である。図7において、10は音響フレーム読込手段、20は周波数変換手段、30は低周波成分変更手段、40は周波数逆変換手段、50は改変音響フレーム出力手段、60は記憶手段、61は音響信号記憶部、62は付加情報記憶部、63は改変音響信号記憶部、70は付加情報読込手段である。なお、図7に示す装置は、ステレオ音響信号、モノラル音響信号の両方に対応可能であるが、ここでは、ステレオ音響信号に対して処理を行う場合について説明していく。
音響フレーム読込手段10は、付加情報の埋め込み対象とする元のステレオ音響信号の各チャンネルから所定数のサンプルを1フレームとして読み込む機能を有している。周波数変換手段20は、音響フレーム読込手段10が読み込んだ音響信号のフレームをフーリエ変換等により周波数変換してフレームスペクトルを生成する機能を有している。低周波成分変更手段30は、Aタイプの音響フレームについては、生成されたフレームスペクトルから3つの所定周波数範囲に相当するスペクトル集合を3セット抽出し、付加情報記憶部62から抽出した付加情報に基づいて、低周波強度データのスペクトル集合間の割合(比率)を変更し、Bタイプの音響フレームについては、生成されたフレームスペクトルの所定周波数範囲の低周波強度データを“0”にする機能を有している。周波数逆変換手段40は、変更された低周波強度データを含む複数のフレームスペクトルに対して周波数逆変換を行うことにより、改変音響フレームを生成する機能を有している。改変音響フレーム出力手段50は、生成された改変音響フレームを順次出力する機能を有している。記憶手段60は、付加情報を埋め込む対象とするステレオ音響信号を記憶した音響信号記憶部61と、ビット配列として構成され、ステレオ音響信号に埋め込まれる付加情報を記憶した付加情報記憶部62と、付加情報埋め込み後の改変音響信号を記憶する改変音響信号記憶部63を有しており、その他処理に必要な各種情報を記憶するものである。付加情報読込手段70は、付加情報記憶部62から付加情報を抽出する機能を有している。なお、付加情報とは、音響信号に付加するものとして埋め込む音響信号そのもの以外の情報であり、その内容は、IPアドレスやURL等の、ネットワーク上のコンピュータにアクセスするためのアドレス情報であるか、またはアドレス情報に変換するためのIDである。本実施形態では、IDを用いた場合について説明する。図7に示した各構成手段は、現実にはコンピュータおよびその周辺機器等のハードウェアに専用のプログラムを搭載することにより実現される。すなわち、コンピュータが、専用のプログラムに従って各手段の内容を実行することになる。
次に、図7に示した音響信号に対する情報の埋込装置の処理動作について図8のフローチャートに従って説明する。ここでは、音響信号として、L(左)、R(右)の2チャンネルを有するステレオ音響信号に対して処理を行う場合について説明していく。図8は、付加情報1ワード分の処理に対応したものとなっている。1ワードとしては、任意のビット数に設定することができるが、通常1バイトに設定する。まず、付加情報読込手段70は、付加情報記憶部62から付加情報を1ワード単位で読み込む(S101)。具体的には、音響信号に対する情報の埋め込み装置として用いられるコンピュータ内のレジスタに1ワード読み込むことになる。続いて、モードを区切りモードに設定する(S102)。モードは区切りモードと、ビットモード、継続識別モードの3種類が存在する。区切りモードは1ワード単位の区切りにおける処理を行うモードを示し、ビットモードは1ワードの各ビットの値に基づいた処理を行うモードを示している。付加情報記憶部62から1ワード読み込んだ場合には、その直後に必ず区切りモードに設定されることになる。継続識別モードは、低周波成分の信号レベルが小さい音響フレームが出現した場合に、区切り情報が埋め込まれた場合、次のビットが先頭から始まる新規なものか、中断されたために継続されたものであるかを識別するための情報を記録するモードを示している。
続いて、音響フレーム読込手段10が、音響信号記憶部61に記憶されたステレオ音響信号の左右の各チャンネルから、それぞれ所定数のサンプルを1音響フレームとして読み込む(S104)。音響フレーム読込手段10が読み込む1音響フレームのサンプル数は、適宜設定することができるが、サンプリング周波数が44.1kHzの場合、4096サンプル程度とすることが望ましい。したがって、音響フレーム読込手段10は、左チャンネル、右チャンネルについてそれぞれ4096サンプルずつ、順次音響フレームとして読み込んでいくことになる。本発明においては、音響フレームとしてAタイプとBタイプが存在する。Aタイプの音響フレーム、Bタイプの音響フレームは、それぞれ同タイプの先行する音響フレームの最後のサンプルの次のサンプルを先頭サンプルとして設定される。そして、AタイプとBタイプの音響フレームは互いに所定数(本実施形態では2048)のサンプルを重複して設定される。例えば、Aタイプの音響フレームを先頭からA1、A2、A3…とし、Bタイプの音響フレームを先頭からB1、B2、B3…とすると、A1はサンプル1〜4096、A2はサンプル4097〜8192、A3はサンプル8193〜12288、B1はサンプル2049〜6144、B2はサンプル6145〜10240、B3はサンプル10241〜14336となる。なお、AタイプとBタイプは相対的なものであるので、どちらが先であっても良い。すなわち、上記とは逆にA1がサンプル2049〜6144、A2がサンプル6145〜10240、A3がサンプル10241〜14336、B1がサンプル1〜4096、B2がサンプル4097〜8192、B3がサンプル8193〜12288であっても良い。図8の例では、Bタイプ音響フレームを先に設定した場合を示している。
続いて、周波数変換手段20は、読み込んだBタイプの音響フレームに対して、周波数変換を行って、その音響フレームのスペクトルであるフレームスペクトルを得る(S105)。具体的には、S104で読み込んだBタイプの音響フレームについて、窓関数を利用して周波数変換を行う。周波数変換としては、フーリエ変換、ウェーブレット変換その他公知の種々の手法を用いることができる。本実施形態では、フーリエ変換を用いた場合を例にとって説明する。なお、後述するS109においては、同様にして、S108で読み込んだAタイプの音響フレームについて、窓関数を利用して周波数変換を行う。
ここで、本実施形態においてフーリエ変換に利用する窓関数について説明しておく。一般に、所定の信号に対してフーリエ変換を行う場合、信号を所定の長さに区切って行う必要があるが、この場合、所定長さの信号に対してそのままフーリエ変換を行うと、区切り部分が不連続になる。そこで、一般にフーリエ変換を行う場合には、ハニング窓と呼ばれる窓関数を用いて、信号の値を変化させた後、変化後の値に対してフーリエ変換を実行する。本実施形態においては、Aタイプの音響フレームに対しては、ハニング窓関数に代えて図9(b)〜(d)に示したような窓関数W(1,i)、W(2,i)、W(3,i)を用いてフーリエ変換を行う。これにより、埋め込まれた情報が抽出側でより認識し易くなる。窓関数W(1,i)は、音響フレームの前部を抽出するためのものであり、図9(b)に示すように前部の所定のサンプル番号iの位置において、最大値1をとり、後部においては、最小値0をとるように設定されている。どのサンプル番号の場合に最大値をとるかについては、窓関数W(1,i)の設計によって異なってくるが、本実施形態では、後述する〔数式1〕で定義される。窓関数W(1,i)を乗じることにより、図9(a)に示すような音響フレームの信号波形は、図9(f)に示すように、前部に信号成分が残り、後部の信号成分が削除されたものとなり、これがフーリエ変換対象となる。
また、窓関数W(2,i)は、音響フレームの中央部を抽出するためのものであり、図9(c)に示すように、中央部の所定のサンプル番号iの位置において、最大値1をとり、前部、後部においては、最小値0をとるように設定されている。どのサンプル番号の場合に最大値をとるかについては、窓関数W(2,i)の設計によって異なってくるが、本実施形態では、後述する〔数式2〕で定義される。窓関数W(2,i)を乗じることにより、図9(a)に示すような音響フレームの信号波形は、図9(g)に示すように、中央部に信号成分が残り、前部と後部の信号成分が除去されたものとなり、これがフーリエ変換対象となる。
また、窓関数W(3,i)は、音響フレームの後部を抽出するためのものであり、図9(d)に示すように、前部においては最小値0をとり、後部の所定のサンプル番号iの位置において、最大値1をとるように設定されている。どのサンプル番号の場合に最大値をとるかについては、窓関数W(3,i)の設計によって異なってくるが、本実施形態では、後述する〔数式3〕で定義される。窓関数W(3,i)を乗じることにより、図9(a)に示すような音響フレームの信号波形は、図9(h)に示すように、前部の信号成分が除去され、後部に信号成分が残ったものとなり、これがフーリエ変換対象となる。このように前部、中央部、後部を抽出した後、フーリエ変換を実行するため、前部、中央部、後部に対応したスペクトルが得られることになる。1つの音響フレームにビット値を埋め込むためには、本来、前部と後部の2つに分けられれば良いのであるが、抽出側においては、必ずしも、信号を同期して読み込むことができるとは限らず、したがって、前部と後部をはっきりと区別するため、本実施形態では、埋め込み時に中央部の信号成分を常に削除し、前部と後部を時間的に分離することとしている(ただし、抽出時は前部と後部だけを解析すればよく、中央部は無視してよい)。本実施形態において用いる窓関数の最大の特徴は、窓関数W(1,i)と窓関数W(3,i)が左右非対称である点である。このため、特に、ビット反転が起こりにくくなる。
また、本実施形態では、音響フレームを重複させて読み込み、奇数フレーム(または偶数フレーム)については、窓関数W(1,i)、W(2,i)、W(3,i)を用い、偶数フレーム(または奇数フレーム)については、図9(e)に示したような窓関数W(4,i)を用いるようにした。
なお、本実施形態においては、音響フレームは重複して読み込まれる。すなわち、奇数番目の音響フレームと偶数番目の音響フレームは、所定数のサンプルを重複して読み込む。上記のように、奇数フレームと偶数フレームでは、用いられる窓関数が異なるが、奇数フレームと偶数フレームは単に奇数か偶数かの違いだけであるため、どちらに対して処理をどちらの処理を行っても良い。したがって、本明細書では、奇数フレーム、偶数フレームの一方をAタイプフレーム、他方をBタイプフレームと呼ぶことにする。図8の例に従うと、奇数フレームをBタイプフレーム、偶数フレームをAタイプフレームとなるが、逆に偶数フレームをBタイプフレーム、奇数フレームをAタイプフレームとしても良い。
本実施形態では、窓関数W(1,i)〜W(4,i)は、以下の〔数式1〕〜〔数式4〕で定義される。なお、図9において、横軸は時間軸(i)である。iは、後述するように、各音響フレーム内のN個のサンプルに付した通し番号であるため時刻tに比例している。また、図9(a)(f)(g)(h)(i)において縦軸は信号の振幅値(レベル)を示す。図9(b)〜(e)において縦軸は窓関数W(1,i)、W(2,i)、W(3,i)、W(4,i)の値を示しており、W(1,i)、W(2,i)、W(3,i)、W(4,i)の最大値はいずれも1である。
〔数式1〕
i≦3N/8のとき、W(1,i)=0.5−0.5cos(8πi/(3N))
3N/8<i≦N/2のとき、W(1,i)=0.5−0.5cos(8π(i−N/4)/N)
i>N/2のとき、W(1,i)=0.0
〔数式2〕
i≦3N/8のとき、W(2,i)=0.0
3N/8<i≦N/2のとき、W(2,i)=0.5−0.5cos(4π(i−N/4)/N)
i>3N/4のとき、W(2,i)=0.0
〔数式3〕
i≦N/2のとき、W(3,i)=0.0
i>N/2のとき、W(3,i)=0.5−0.5cos(4π(i−N/2)/N)
〔数式4〕
i≦N/4のとき、W(4,i)=0.0
N/4<i≦N/2のとき、W(4,i)=0.5−0.5cos(4π(i−N/4)/N)
N/2<i≦7N/8のとき、W(4,i)=0.5−0.5cos(8π(i−N/8)/(3N))
i>7N/8のとき、W(4,i)=0.0
なお、図14および上記〔数式1〕〜〔数式4〕から明らかなように、窓関数W(1,i)とW(3,i)は、互いに非対称な形状である。これは、後述する抽出側において、両者の識別を容易にするためである。また、窓関数W(1,i)、W(2,i)、W(3,i)は、iが所定の値のときに最大値1をとり、iがその他の値をとる場合には、iの値に応じて単調増加、または単調減少する窓関数を分割したものであるため、窓関数W(1,i)とW(3,i)が定まると、窓関数W(2,i)も必然的に定まる。このため、窓関数W(2,i)は左右非対称の形状となっている。
本実施形態においては、奇数フレームと偶数フレームを、所定サンプルずつ重複して読み込むため、情報の埋め込みを行った後、音響信号に復元する際に、窓関数を乗じた奇数フレームと、窓関数を乗じた偶数フレームの重複サンプルを加算した場合に、ほぼ元の値に戻るようにしなければならない。このため、窓関数W(4,i)の形状は、窓関数W(1,i)、W(2,i)、W(3,i)の値に応じて必然的に定まる。すなわち、奇数フレームと偶数フレームの重複部分において、窓関数W(1,i)、W(2,i)、W(3,i)、W(4,i)を加算すると、全区間固定値1になるように定義されている。以上が、本実施形態で用いる窓関数の概要である。
S105に戻って説明する。S105おいてフーリエ変換を行う場合、具体的には、左チャンネル信号Xl(i)、右チャンネル信号Xr(i)(i=0,…,N−1)に対して、窓関数W(4,i)を用いて、以下の〔数式5〕に従った処理を行い、左チャンネルに対応する変換データの実部Al(4,j)、虚部Bl(4,j)、右チャンネルに対応する変換データの実部Ar(4,j)、虚部Br(4,j)を得る。
〔数式5〕
Al(4,j)=Σi=0,…,N-1W(4,i)・Xl(i)・cos(2πij/N)
Bl(4,j)=Σi=0,…,N-1W(4,i)・Xl(i)・sin(2πij/N)
Ar(4,j)=Σi=0,…,N-1W(4,i)・Xr(i)・cos(2πij/N)
Br(4,j)=Σi=0,…,N-1W(4,i)・Xr(i)・sin(2πij/N)
〔数式5〕において、iは、各音響フレーム内のN個のサンプルに付した通し番号であり、i=0,1,2,…N−1の整数値をとる。また、jは周波数の値について、値の小さなものから順に付した通し番号であり、iと同様にj=0,1,2,…N−1の整数値をとる。サンプリング周波数が44.1kHz、N=4096の場合、jの値が1つ異なると、周波数が10.8Hz異なることになる。次に、低周波成分変更手段30は、窓4成分(第4窓関数による低周波スペクトルの各成分)の除去を行う(S106)。具体的には、窓4成分に対して、以下の〔数式6〕に従った処理を実行することになる。
上記〔数式5〕に従った処理を実行することにより、各音響フレームの信号成分を周波数に対応した成分であるスペクトルで表現されたフレームスペクトルが得られる。続いて、低周波成分変更手段30が、生成されたフレームスペクトルから3つの所定周波数範囲のスペクトル集合を抽出する。人間の聴覚は、200〜300Hz程度までの低周波成分については、方向性を感知しにくくなっていることが知られている(コロナ社1990年10月30日発行「音響工学講座1.基礎音響工学、日本音響学会編」p247図9・26参照)。したがって、本実施形態では、低周波成分を200Hz程度以下としている。周波数200Hz付近は、上記jが20に相当するので、上記〔数式5〕により算出された実部Al(4,j)、虚部Bl(4,j)、実部Ar(4,j)、虚部Br(4,j)、のうち、j≦20(=M)のものを抽出することになる。
〔数式6〕
j=1〜Mの各成分に対して
Al´(4,j)=0
Bl´(4,j)=0
ステレオの場合、右信号に対応した以下も算出
E(4,j)={Al(4,j)2+Bl(4,j)2+Ar(4,j)2+Br(4,j)21/2
Ar´(4,j)=Ar(4,j)・E(4,j)/{Ar(4,j)2+Br(4,j)21/2
Br´(4,j)=Br(4,j)・E(4,j)/{Ar(4,j)2+Br(4,j)21/2
次に、周波数逆変換手段40が、上記S106の処理により窓4成分が除去されたフレームスペクトルを周波数逆変換して改変音響フレームを得る処理を行う(S107)。この周波数逆変換は、当然のことながら、周波数変換手段20がS105において実行した手法に対応していることが必要となる。本実施形態では、周波数変換手段20において、フーリエ変換を施しているため、周波数逆変換手段40は、フーリエ逆変換を実行することになる。具体的には、上記〔数式6〕のいずれかにより得られたスペクトルの左チャンネルの実部Al´(4,j)、虚部Bl´(4,j)、右チャンネルの実部Ar´(4,j)、虚部Br´(4,j)を用いて、以下の〔数式7〕に従った処理を行い、Xl´(i)、Xr´(i)を算出する。なお、上記〔数式6〕において改変されていない周波数成分については、以下の〔数式7〕においてはAl´(4,j)、Bl´(4,j)、Ar´(4,j)、Br´(4,j)として、元の値であるAl(4,j)、Bl(4,j)、Ar(4,j)、Br(4,j)を用いる。
〔数式7〕
Xl´(i)=1/N・{ΣjAl´(4,j)・cos(2πij/N)−ΣjBl´(4,j)・sin(2πij/N)}+Xlp(i+N/2)
Xr´(i)=1/N・{ΣjAr´(4,j)・cos(2πij/N)−ΣjBr´(4,j)・sin(2πij/N)}+Xrp(i+N/2)
上記〔数式7〕によりAタイプの改変音響フレームの左チャンネルの各サンプルXl´(i)、右チャンネルの各サンプルXr´(i)、が得られることになる。改変音響フレーム出力手段50は、得られた改変音響フレームを順次出力ファイルに出力する。続いて、音響フレーム読込手段10が、音響信号記憶部61に記憶されたステレオ音響信号の左右の各チャンネルから、それぞれ所定数のサンプルをAタイプの音響フレームとして読み込む(S108)。上述のように、Bタイプの音響フレームとAタイプの音響フレームは、2048サンプル重複したものとなっている。したがって、音響フレーム読込手段10は、S108においては、S104でBタイプ音響フレームを読み込んだ位置から2048サンプル分移動させて、音響フレームを読み込むことになる。
続いて、周波数変換手段20は、読み込んだAタイプの音響フレームに対して、周波数変換を行って、その音響フレームのスペクトルであるフレームスペクトルを得る(S109)。具体的には、各音響フレームについて、窓関数W(1,i)、W(2,i)、W(3,i)の3つの窓関数を用いて行う。周波数変換としては、フーリエ変換、ウェーブレット変換その他公知の種々の手法を用いることができるが、上記S105の場合と同様、本実施形態では、フーリエ変換を用いる。
S109においてフーリエ変換を行う場合、具体的には、左チャンネル信号Xl(i)、右チャンネル信号Xr(i)(i=0,…,N−1)に対して、3つの窓関数W(1,i)、W(2,i)、W(3,i)を用いて、以下の〔数式8〕に従った処理を行い、左チャンネルに対応する変換データの実部Al(1,j)、Al(2,j)、Al(3,j)、虚部Bl(1,j)、Bl(2,j)、Bl(3,j)、右チャンネルに対応する変換データの実部Ar(1,j)、Ar(2,j)、Ar(3,j)、虚部Br(1,j)、Br(2,j)、Br(3,j)を得る。なお、窓関数W(1,i)、W(2,i)、W(3,i)は、それぞれ音響フレームの前部(先頭)付近、中央付近、後部付近において値が大きくなる関数となっている。
〔数式8〕
Al(1,j)=Σi=0,…,N-1W(1,i)・Xl(i)・cos(2πij/N)
Bl(1,j)=Σi=0,…,N-1W(1,i)・Xl(i)・sin(2πij/N)
Al(2,j)=Σi=0,…,N-1W(2,i)・Xl(i)・cos(2πij/N)
Bl(2,j)=Σi=0,…,N-1W(2,i)・Xl(i)・sin(2πij/N)
Al(3,j)=Σi=0,…,N-1W(3,i)・Xl(i)・cos(2πij/N)
Bl(3,j)=Σi=0,…,N-1W(3,i)・Xl(i)・sin(2πij/N)
Ar(1,j)=Σi=0,…,N-1W(1,i)・Xr(i)・cos(2πij/N)
Br(1,j)=Σi=0,…,N-1W(1,i)・Xr(i)・sin(2πij/N)
Ar(2,j)=Σi=0,…,N-1W(2,i)・Xr(i)・cos(2πij/N)
Br(2,j)=Σi=0,…,N-1W(2,i)・Xr(i)・sin(2πij/N)
Ar(3,j)=Σi=0,…,N-1W(3,i)・Xr(i)・cos(2πij/N)
Br(3,j)=Σi=0,…,N-1W(3,i)・Xr(i)・sin(2πij/N)
上記〔数式5〕と同様に、〔数式8〕において、iは、各音響フレーム内のN個のサンプルに付した通し番号であり、i=0,1,2,…N−1の整数値をとる。また、jは周波数の値について、値の小さなものから順に付した通し番号であり、iと同様にj=0,1,2,…N−1の整数値をとる。サンプリング周波数が44.1kHz、N=4096の場合、jの値が1つ異なると、周波数が10.8Hz異なることになる。
上記〔数式8〕に従った処理を実行することにより、各音響フレームの信号成分を周波数に対応した成分であるスペクトルで表現されたフレームスペクトルが得られる。続いて、低周波成分変更手段30が、生成されたフレームスペクトルから3つの所定周波数範囲のスペクトル集合を抽出する。上述のように、人間の聴覚は、200〜300Hz程度までの低周波成分については、方向性を感知しにくくなっているため、ここでも、低周波成分を200Hz程度以下としている。周波数200Hz付近は、上記jが20に相当するので、上記〔数式8〕により算出された実部Al(1,j)、Al(2,j)、Al(3,j)、虚部Bl(1,j)、Bl(2,j)、Bl(3,j)、実部Ar(1,j)、Ar(2,j)、Ar(3,j)、虚部Br(1,j)、Br(2,j)、Br(3,j)のうち、j≦20(=M)のものを抽出することになる。
続いて、低周波成分変更手段30は、抽出した左チャンネルの実部Al(1,j)、Al(3,j)、虚部Bl(1,j)、Bl(3,j)、右チャンネルの実部Ar(1,j)、Ar(3,j)、虚部Br(1,j)、Br(3,j)を利用して、以下の〔数式9〕により、合算値E1、合算値E2を算出する。
〔数式9〕
1=Σj=1,…,M-3{Al(1,j)2+Bl(1,j)2+Ar(1,j)2+Br(1,j)2
2=Σj=1,…,M-3{Al(3,j)2+Bl(3,j)2+Ar(3,j)2+Br(3,j)2
上記〔数式9〕により算出されたE1は音響フレーム前部付近のスペクトル集合の成分強度の合算値、E2は音響フレーム後部付近のスペクトル集合の成分強度の合算値を示すことになる。続いて、この合算値E1、E2がレベル下限値Lev以上であるかどうかの判定を行う。レベル下限値Levは、音響信号Xl(i)、Xr(i)の振幅最大値が1に正規化されており、M=20に設定されている場合、0.5に設定する。このLev=0.5という値は、経験的にアナログ変換への耐性が維持できるレベルであり、低周波成分が少ない場合は適宜下げることになるが、その場合は、アナログ変換により検出精度も低下することになる。
合算値E1、E2がレベル下限値Lev以上であるかどうかを判断するのは、信号の強度が小さいと、信号を変化させても、その変化を抽出側で検出することができないためである。また、本実施形態では、第1の値(例えば“1”)と第2の値(例えば“0”)をとり得るビット値が“1”の場合、窓3成分(第3窓関数による低周波スペクトルの各成分)に、ビット値が“0”の場合、窓1成分(第1窓関数による低周波スペクトルの各成分)に、埋め込むこととしている。したがって、埋め込むビット値が“1”の場合は、合算値E1が下限値Lev未満であるとき、埋め込むビット値が“0”の場合は、合算値E2がレベル下限値Lev未満であるとき、アクセス情報のビット値に応じた記録をせず、先頭ビットから再度処理するため、読み込み位置を先頭ビットに戻し、モードを区切りモードに設定する(S110)。一方、埋め込むビット値が“1”で合算値E1がレベル下限値Lev以上であるか、埋め込むビット値が“0”で合算値E2がレベル下限値Lev以上であるときには、モードを判断することになる。
低周波成分変更手段30は、モードが区切りモードである場合、左(L)チャンネル信号において、窓1成分と窓3成分の低周波成分を均等(全て0となる場合も含む)とする処理を行う(S112)。具体的には、以下の〔数式10〕に従って、L側の双方を0に設定する処理を実行することになる。この場合、右(R)チャンネル信号の窓1成分と窓3成分は必ずしも均等ではない。
〔数式10〕
j=1〜Mに対して、
Al´(1,j)=0
Bl´(1,j)=0
Al´(3,j)=0
Bl´(3,j)=0
ステレオの場合、右信号に対応した以下も算出
E(1,j)={Al(1,j)2+Bl(1,j)2+Ar(1,j)2+Br(1,j)21/2
Ar´(1,j)=Ar(1,j)・E(1,j)/{Ar(1,j)2+Br(1,j)21/2
Br´(1,j)=Br(1,j)・E(1,j)/{Ar(1,j)2+Br(1,j)21/2
E(3,j)={Al(3,j)2+Bl(3,j)2+Ar(3,j)2+Br(3,j)21/2
Ar´(3,j)=Ar(3,j)・E(3,j)/{Ar(3,j)2+Br(3,j)21/2
Br´(3,j)=Br(3,j)・E(3,j)/{Ar(3,j)2+Br(1,j)21/2
上記〔数式10〕に従った処理を実行することにより、左チャンネルのフレームスペクトルの低周波数成分は、窓1成分と窓3成分共に“0” で同一となる。この窓1成分と窓3成分が均等のパターンは、付加情報の先頭位置(区切り)を示す情報となる。なお、上記〔数式10〕においては、窓1成分と窓3成分ともにAl´(j)=Bl´(j)=0としているが、抽出側で区切りであることが認識可能とすることを目的としているため、十分小さな値であれば、必ずしも0とする必要はない。また、必ずしも窓1成分と窓3成分において同一である必要はなく、差が小さければ良い。この意味で、ここでは「均等」という言葉を用いている。
一方、低周波成分変更手段30は、モードがビットモード又は継続識別モードである場合、付加情報記憶部62から抽出した付加情報のビット配列のビット値に応じて、左チャンネル信号の窓1成分と窓3成分のスペクトル強度の割合を窓1成分が優位か、窓3成分が優位かのいずれかの状態に変更する処理を行う(S111)。ここで、「優位」とは、一方の窓成分のスペクトル集合におけるスペクトル強度が、他方の窓成分のスペクトル集合におけるスペクトル強度よりも大きいことを示す。そこで、S111においては、第1の値と第2の値をとり得るビット値に応じて以下の〔数式11〕、〔数式12〕のいずれかに従った処理を実行することにより、窓1成分のスペクトル強度と、窓3成分のスペクトル強度の大小関係を変更し、窓1成分が優位か、窓3成分が優位かのいずれかに変更する処理を行う。例えば、第1の値を1、第2の値を0とした場合、ビット値が1のとき、窓1成分に対して、以下の〔数式11〕に従った処理を実行する。
〔数式11〕
j=1〜Mに対して
Al´(1,j)=0
Bl´(1,j)=0
ステレオの場合、右信号に対応した以下も算出
E(1,j)={Al(1,j)2+Bl(1,j)2+Ar(1,j)2+Br(1,j)21/2
Ar´(1,j)=Ar(1,j)・E(1,j)/{Ar(1,j)2+Br(1,j)21/2
Br´(1,j)=Br(1,j)・E(1,j)/{Ar(1,j)2+Br(1,j)21/2
なお、この場合、窓3成分に対しては、以下の〔数式12〕に従った処理を実行する。
〔数式12〕
j=M−2、M−1、Mの3成分に対して
Al´(3,j)=0
Bl´(3,j)=0
ステレオの場合、右信号に対応した以下も算出
E(3,j)={Al(3,j)2+Bl(3,j)2+Ar(3,j)2+Br(3,j)21/2
Ar´(3,j)=Ar(3,j)・E(3,j)/{Ar(3,j)2+Br(3,j)21/2
Br´(3,j)=Br(3,j)・E(3,j)/{Ar(3,j)2+Br(3,j)21/2
更にステレオの場合、残存成分を強調させるため、次のように右チャンネル成分を左チャンネル成分に移動させる処理を行う。j=1〜M−3に対して
Ar´(3,j)=0
Br´(3,j)=0
Al´(3,j)=Al(3,j)・E(3,j)/{Al(3,j)2+Bl(3,j)21/2
Bl´(3,j)=Bl(3,j)・E(3,j)/{Al(3,j)2+Bl(3,j)21/2
上記〔数式11〕〔数式12〕による処理を行った結果、窓3成分のj=M−2、M−1、Mにおいては、値が“0”となるが、他は所定値以上の信号成分が存在することになる。したがって、この場合、窓3成分が優位な状態にスペクトル強度の割合が変更されたことになる。続いて、ビット値が0のとき、窓3成分に対して、以下の〔数式13〕に従った処理を実行する。
〔数式13〕
j=1〜Mの各成分に対して
Al´(3,j)=0
Bl´(3,j)=0
ステレオの場合、右信号に対応した以下も算出
E(3,j)={Al(3,j)2+Bl(3,j)2+Ar(3,j)2+Br(3,j)21/2
Ar´(3,j)=Ar(3,j)・E(3,j)/{Ar(3,j)2+Br(3,j)21/2
Br´(3,j)=Br(3,j)・E(3,j)/{Ar(3,j)2+Br(3,j)21/2
なお、この場合、窓1成分に対しては、以下の〔数式14〕に従った処理を実行する。
〔数式14〕
j=M−2、M−1、Mの3成分に対して
Al´(1,j)=0
Bl´(1,j)=0
ステレオの場合、右信号に対応した以下も算出
E(1,j)={Al(1,j)2+Bl(1,j)2+Ar(1,j)2+Br(1,j)21/2
Ar´(1,j)=Ar(1,j)・E(1,j)/{Ar(1,j)2+Br(1,j)21/2
Br´(1,j)=Br(1,j)・E(1,j)/{Ar(1,j)2+Br(1,j)21/2
更にステレオの場合、残存成分を強調させるため、次のように右チャンネル成分を左チャンネル成分に移動させる処理を行う。j=1〜M−3に対して
Ar´(1,j)=0
Br´(1,j)=0
Al´(1,j)=Al(1,j)・E(1,j)/{Al(1,j)2+Bl(1,j)21/2
Bl´(1,j)=Bl(1,j)・E(1,j)/{Al(1,j)2+Bl(1,j)21/2
上記〔数式13〕〔数式14〕による処理を行った結果、窓1成分のj=M−2、M−1、Mにおいては、値が“0”となるが、他は所定値以上の信号成分が存在することになる。したがって、この場合、窓1成分が優位な状態にスペクトル強度の割合が変更されたことになる。
上記〔数式11〕および〔数式12〕、又は〔数式13〕および〔数式14〕のいずれかに従った処理を実行することにより、付加情報のビット配列の各ビット値に応じて、左チャンネル信号の窓1成分が優位か、窓3成分が優位かのどちらかのパターンに変更されることになる。なお、S111においては、継続識別モードの場合は、新規であるときは〔数式11〕に従って低周波成分の窓1成分、窓3成分間の分布を窓3成分が優位な状態に変更し、継続であるときは〔数式12〕に従って低周波成分の窓1成分、窓3成分間の分布を窓1成分が優位な状態に変更することになる。
この場合、高周波帯と低周波数帯の間には、必ず信号成分が“0”の部分が存在し、これにより、高周波帯と低周波数帯の信号成分が混在することを防いでいる。結局、低周波成分変更手段30は、区切りモードの場合に〔数式10〕に基づく処理をS112において行い、ビットモード又は継続識別モードの場合に〔数式11〕〔数式12〕又は〔数式13〕〔数式14〕に基づく処理をS111において行うことになる。
上記S111、S112いずれの場合であっても、次に、低周波成分変更手段30は、窓2成分(第2窓関数による低周波スペクトルの各成分)の削除を行う(S113)。具体的には、窓2成分に対して、以下の〔数式15〕に従った処理を実行することになる。
〔数式15〕
j=1〜Mの各成分に対して
Al´(2,j)=0
Bl´(2,j)=0
ステレオの場合、右信号に対応した以下も算出
E(2,j)={Al(2,j)2+Bl(2,j)2+Ar(2,j)2+Br(2,j)21/2
Ar´(2,j)=Ar(2,j)・E(2,j)/{Ar(2,j)2+Br(2,j)21/2
Br´(2,j)=Br(2,j)・E(2,j)/{Ar(2,j)2+Br(2,j)21/2
次に、周波数逆変換手段40が、上記S111〜S113の処理により各窓成分のスペクトル集合間の割合が変更されたフレームスペクトルを周波数逆変換して改変音響フレームを得る処理を行う(S114)。この周波数逆変換は、当然のことながら、周波数変換手段20がS105において実行した手法に対応していることが必要となる。本実施形態では、周波数変換手段20において、フーリエ逆変換を施しているため、周波数逆変換手段40は、フーリエ逆変換を実行することになる。具体的には、上記〔数式10〕〜〔数式15〕のいずれかにより得られたスペクトルの左チャンネルの実部Al´(1,j)等、虚部Bl´(1,j)等、右チャンネルの実部Ar´(1,j)等、虚部Br´(1,j)等を用いて、以下の〔数式16〕に従った処理を行い、Xl´(i)、Xr´(i)を算出する。なお、上記〔数式10〕〜〔数式15〕において改変されていない周波数成分については、Al´(1,j)等として、元の周波数成分であるAl(1,j)等を用いる。
〔数式16〕
Xl´(i)=1/N・{ΣjAl´(1,j)・cos(2πij/N)−ΣjBl´(1,j)・sin(2πij/N)}+1/N・{ΣjAl´(2,j)・cos(2πij/N)−ΣjBl´(2,j)・sin(2πij/N)}+1/N・{ΣjAl´(3,j)・cos(2πij/N)−ΣjBl´(3,j)・sin(2πij/N)}+Xlp(i+N/2)
Xr´(i)=1/N・{ΣjAr´(1,j)・cos(2πij/N)−ΣjBr´(1,j)・sin(2πij/N)}+1/N・{ΣjAr´(2,j)・cos(2πij/N)−ΣjBr´(2,j)・sin(2πij/N)}+1/N・{ΣjAr´(3,j)・cos(2πij/N)−ΣjBr´(3,j)・sin(2πij/N)}+Xrp(i+N/2)
上記〔数式16〕においては、式が繁雑になるのを防ぐため、Σj=0,,N-1をΣjとして示している。上記〔数式16〕における第1式の“+Xlp(i+N/2)”、第2式の“+Xrp(i+N/2)”の項は、直前に改変された改変音響フレームのデータXlp(i)、Xrp(i)が存在する場合に、時間軸上N/2サンプル分重複することを考慮して加算するためのものである。上記〔数式16〕によりAタイプの改変音響フレームの左チャンネルの各サンプルXl´(i)、右チャンネルの各サンプルXr´(i)、が得られることになる。改変音響フレーム出力手段50は、得られた改変音響フレームを順次出力ファイルに出力する。こうして1つの音響フレームに対する処理を終えたら、モードの判定を行い(S116)、モードが区切りモードである場合は、モードを継続識別モードに設定した後(S117)、音響フレーム読込手段10が、Bタイプ音響フレームを読み込む(S104)。一方、モードがビットモード又は継続識別モードである場合は、モードをビットモードに設定した後(S118)、低周波成分変更手段30がアクセス情報のビット配列中の次のビットを読み込む(S103)。以上のような処理を音響信号の両チャンネルの全サンプルに渡って実行していく。すなわち、所定数のサンプルを音響フレームとして読み込み、音響信号から読み込むべき音響フレームがなくなったら(S104)、処理を終了する。なお、S101において読み込んだ1ワードのデータの各ビットに対応する処理を終えた場合、S103からS101に戻り、アクセス情報の次のワードを読み込み処理をすることになる。アクセス情報の全ワードに対して処理が終了した場合は、アクセス情報の先頭ワードに戻って処理を行う。この結果、全ての音響フレームに対して処理を行った全ての改変音響フレームが出力ファイルに記録されて、改変音響信号として得られる。得られた改変音響信号は、記憶手段60内の改変音響信号記憶部63に出力され、記憶される。
以上の処理による左チャンネル信号の変化の様子を図10を用いて説明する。図10において、図面左右方向は、時間軸であり、サンプル数に比例する。また、図中多数存在する矩形は、改変音響フレームの窓1成分、窓3成分を示している。窓成分を示す矩形の横幅はサンプル数、縦幅は強度を示しているが、図10においては、横幅、縦幅とも正確に示したものではなく、窓1成分に対応する先頭部分に強い信号成分があるか、窓3成分に対応する後部部分に強い信号成分があるかということを示すものである。図10(a)は、上記〔数式9〕により算出された合算値E1、E2がレベル下限値Lev未満となる音響フレームが存在しない場合、すなわち、付加情報を埋め込むには、良好な信号である場合を示している。図10(b)は、上記〔数式9〕により算出された合算値E1、E2がレベル下限値Lev未満となる音響フレームが存在する場合、すなわち、付加情報を埋め込むには、良好でない信号である場合を示している。
例えば、付加情報として、1ワード目が「11011100」、2ワード目が「11000001」の2ワードのビット配列を埋め込むとする。まず、各ワードの先頭には、区切りを示す情報として、窓1成分、窓3成分が均等な状態に設定されることになる。これは、S102により区切りモードに設定され、S112において、上記〔数式10〕に従った処理を実行した結果得られる。続いて、付加情報の各ビットに対応した処理を行う前に、新規であるか継続であるかを示す情報を記録することになる。
本実施形態では、レベル下限値Lev未満となる音響フレームが存在した場合であっても、その時点で処理したビットは有効とし、そこから継続して行うため、そのビットが新規であるか継続であるかの情報を記録しておく必要がある。そこで、区切りを示す情報を記録した後には、新規であるか継続であるかを示す情報を記録する。具体的には、区切りモードの状態で、モード判断を行うことにより(S116)、継続識別モードに設定され(S117)、付加情報のビットを読み込むことなく、Bタイプ音響フレームの抽出に戻る(S104)。そして、周波数変換後(S109)、新規である場合には、〔数式11〕に従った処理により、低周波成分である窓1成分、窓3成分間の分布を窓3成分が優位な状態に変更する(S111)。
このようにして、新規か継続かを示す情報を記録した後は、継続識別モードの状態でモード判断を行うため(S116)、ビットモードに設定され(S118)、レジスタから先頭のビットを読み込み(S103)、Bタイプ音響フレームの抽出を行う(S104)。図10(a)の例では、レベル下限値Lev未満となる音響フレームが存在しないため、1ワードが連続してS111により処理されることになる。これは、S103からS118を経由するループが8回(1ワード=1バイトの場合)連続して繰り返され、その間レベル下限値Lev未満であるとしてS110およびS112、S117を経由することがなかったことを示している。図10に示すように、付加情報のビット値が1の場合は、窓3成分に低周波成分が存在し、付加情報のビット値が0の場合は、窓1成分に低周波成分が存在する。上記〔数式11〕〜〔数式14〕からもわかるように、この場合は他方の窓成分の低周波成分は0となる。
図10(b)の例では、上記〔数式9〕に従った処理の結果、レベル下限値Lev未満となる音響フレームが存在するので、この場合S110およびS112を経由して、上記〔数式10〕に従った処理を実行した結果、窓1成分と窓3成分が均等な状態に設定される。この場合、S110において、区切りモードに設定されるため、S117を経由して、新規か継続かを示す情報を記録することになる。図10(b)の例では、1ワード目の「11011100」を埋め込む場合に、最初は第1ビット目の「1」の1ビット処理した時点でレベル下限値Lev未満の音響フレームが出現しているため、区切りを示す情報を記録した後、継続を示す情報を記録し、継続して第2ビット目の「1」から処理をしている。そして、第2ビット目から第5ビット目の「1011」を処理した時点でレベル下限値Lev未満の音響フレームが出現しているため、区切りを示す情報を記録した後、継続を示す情報を記録し、継続して第6ビット目の「1」から処理をしている。
なお、図10の例では、付加情報の1ワードを1バイトとした場合について説明したが、新規か継続かを示す情報を記録するため、付加情報の1ワードを任意のビット数単位で記録することが可能である。
上記のようにして得られた改変音響信号の左チャンネルのうち、付加情報が埋め込まれている部分については、低周波成分は、窓1成分と窓3成分が均等となっているか、あるいは窓1成分が優位か、窓3成分が優位かの3通りの分布しかないことになる。しかし、高周波成分については、元の音響信号のままであるので、制作者の設定に基づいた種々な分布になる。また、上記の例で示したように、ステレオ音響信号を利用した場合には、左チャンネルにおいて変化させられた低周波成分は、上記〔数式10〕〜〔数式15〕の処理からも明らかなように、必ず右チャンネルの低周波成分に付加されている。したがって、右チャンネルが左チャンネルにおいて削除された成分を補っているため、両チャンネル全体として見ると、信号の劣化がない。人間の聴覚は、高周波成分については、方向性を感知し易いが、低周波成分については、方向性を感知しにくくなっている。したがって、低周波成分が一方に偏っていても、聴いている人にとっては、通常の音響信号と変わりなく聴こえることになる。
したがって、上記のようにして付加情報が埋め込まれた音響信号を音響信号再生装置400において再生して、スピーカから音として発した音は、通常の音響信号と変わりなく聴こえるが、その音を取得したネットワーク接続装置300においては、付加情報の抽出が可能となる。
(5.埋込情報抽出部321の詳細)
次に、ネットワーク接続装置300、アドレス情報抽出サーバ320aが有する埋込情報抽出部321の詳細について説明する。図11は、埋込情報抽出部321の詳細を示す図である。図11において、110は基準フレーム獲得手段、120は位相変更フレーム設定手段、130は周波数変換手段、140は符号判定パラメータ算出手段、150は符号出力手段、160は付加情報抽出手段、170は音響フレーム保持手段である。
基準フレーム獲得手段110は、入力されたデジタルのモノラル音響信号(あるいはステレオ音響信号の1チャンネル)から所定数のサンプルで構成される音響フレームを基準フレームとして読み込む機能を有している。位相変更フレーム設定手段120は、基準フレームと所定サンプルずつ移動させることにより位相を変更した音響フレームを位相変更フレームとして設定する機能を有している。周波数変換手段130は、図7に示した周波数変換手段20と同様の機能を有している。符号判定パラメータ算出手段140は、生成されたフレームスペクトルから所定の周波数以下に相当する各低周波強度データを抽出し、窓1成分、窓3成分ごとに各低周波強度データの合算値EC1、EC2を以下の〔数式17〕に基づいて算出し、この合算値EC1、EC2を符号判定パラメータとし、この符号判定パラメータEC1、EC2の比率に基づいて、所定の状態であると判断する機能を有している。以下の〔数式17〕は上記〔数式9〕において右チャンネル成分を削除したもので、抽出時には右チャンネル成分を参照しないためである。
〔数式17〕
C1=Σj=1,…,M-3{Al(1,j)2+Bl(1,j)2
C2=Σj=1,…,M-3{Al(3,j)2+Bl(3,j)2
符号出力手段150は、1つの基準フレームに対応する音響フレーム(基準フレームおよび位相変更フレーム)の中から最適な位相であると判断されるものを判断し、その音響フレームの状態に対応する符号を出力する機能を有している。付加情報抽出手段160は、符号出力手段150により出力された符号の集合である3値配列を、所定の規則により変換して意味のある付加情報として抽出する機能を有している。音響フレーム保持手段170は、連続する2個の基準フレームを保持可能なバッファメモリである。
次に、図11に示した埋込情報抽出部321の処理動作について図12のフローチャートに従って説明する。まず、本装置では、平均符号レベルHL1、HL2、位相判定テーブルが初期化される。これらについて説明する。平均符号レベルHL1、HL2は、ビット値に対応する2値が埋め込まれていたと判断される音響フレーム(以下、有効フレームと呼ぶことにする)についての、上記〔数式17〕で算出される低周波成分の合算値EC1、EC2の平均値、すなわち、過去の有効フレームにおける合算値EC1、EC2の平均値で与えられるものであり、初期値は、上記埋め込み装置においても用いられるレベル下限値Levに設定されている。位相判定テーブルS(p)は、位相を判定するためのテーブルであり、pは0〜5の整数値をとる。初期値はS(p)=0に設定されている。
このように、初期値が設定されている状態で、基準フレーム獲得手段110が、アドレス情報抽出部320がデジタル化した音響信号から、所定数のサンプルで構成される音響フレームを基準フレームとして抽出する(S201)。具体的には、基準フレームを抽出して音響フレーム保持手段170に読み込むことになる。基準フレーム獲得手段110が基準フレームとして読み込む1音響フレームのサンプル数は、図7に示した音響フレーム読込手段10で設定されたものと同一にする必要がある。したがって、本実施形態の場合、基準フレーム獲得手段110は、4096サンプルずつ、順次基準フレームとして読み込んでいくことになる。音響フレーム保持手段170には、上述のように2個の基準フレームが格納可能となっており、新しい基準フレームが読み込まれると、古い基準フレームを破棄するようになっている。したがって、音響フレーム保持手段170には、常に基準フレーム2個分(連続する8192サンプル)が格納されていることになる。
埋込情報抽出部321で処理する音響フレームは、先頭から途切れることなく隣接して設定される基準フレームと、この基準フレームと位相を変更した位相変更フレームとに分けることができる。基準フレームについては、最初の基準フレームをサンプル番号1からサンプル番号4096までを設定したら、次の基準フレームは、サンプル番号4097からサンプル番号8192、さらに次の基準フレームは、サンプル番号8193からサンプル番号12288、というように途切れることなく設定される。そして、各基準フレームについて、1/6フレーム(約683サンプル)ずつ移動した5個の位相変更フレームを設定する。例えば、最初の基準フレームについては、サンプル番号683、1366、2049、2732、3413から始まる4096のサンプルで構成される5個の位相変更フレームが設定されることになる。
続いて、周波数変換手段130、符号判定パラメータ算出手段140が、読み込んだ各音響フレームから、埋め込まれている情報を判定し、対応する符号を出力する(S202)。出力される情報の形式は、埋め込み側のビット値に対応する2値、および区切りとして入力された値の3値の形式となる。
ここで、ステップS202の符号判定処理の詳細を図13のフローチャートに従って説明する。まず、周波数変換手段130が、読み込んだ各音響フレームに対して、周波数変換を行ってフレームスペクトルを得る(S401)。この処理は、図7に示した周波数変換手段20における処理と同様である。ただし、抽出に用いるのは、左チャンネルだけであるので、上記〔数式8〕に従った処理を行い、左チャンネルに対応する変換データの実部Al(1,j)等、虚部Bl(1,j)等を得る。
上記周波数変換手段130における処理により、周波数に対応した成分であるスペクトルで表現されたフレームスペクトルが得られる。続いて、符号判定パラメータ算出手段140は、平均符号レベルHL1、HL2の算出を行う(S402)。具体的には、過去窓1成分が優位な状態と判断された音響フレームについての合算値EC1の積算値であるv1を、過去窓1成分が優位な状態と判断された音響フレームの数であるn1で除算することによりHL1を算出し、過去窓3成分が優位な状態と判断された音響フレームについての合算値EC2の積算値であるv2を、過去窓3成分が優位な状態と判断された音響フレームの数であるn2で除算することによりHL2を算出する。したがって、平均符号レベルHL1、HL2は、過去対応する窓成分が優位な状態と判断された音響フレームの低周波強度データの合算値の平均値となる。
さらに、符号判定パラメータ算出手段140は、生成されたフレームスペクトルから所定の周波数範囲の各低周波強度データを抽出する。抽出すべき周波数範囲は、埋め込み装置と対応させる必要がある。したがって、ここでは、周波数が200Hz程度以下の低周波強度データを抽出することになり、埋め込み装置の場合と同様、上記〔数式8〕により算出された左チャンネルの実部Al(j)、虚部Bl(j)のうち、j≦20のものを抽出する。そして、符号判定パラメータ算出手段140は、上記〔数式17〕に従った処理を実行することにより、窓1成分の合算値EC1、窓3成分の合算値EC2を算出する。埋込情報抽出部321においては、これを符号判定パラメータとして用いる。
続いて、符号判定パラメータ算出手段140は、候補符号テーブルの初期化を行う(S403)。候補符号テーブルは、1つの基準フレームおよび5個の位相変更フレームを特定する0〜5の位相番号および、この6個の音響フレームの状態から得られる3値の符号を記録するものである。
続いて、符号判定パラメータ算出手段140は、窓1成分の合算値EC1、窓3成分の合算値EC2がそれぞれ所定値以下であるかどうかの判定を行う(S404)。具体的には、所定値としてそれぞれ平均符号レベルHL1、HL2の20分の1を設定する。合算値EC1が平均符号レベルHL1の20分の1以下であり、かつ、合算値EC2が平均符号レベルHL2の20分の1以下である場合、符号判定パラメータ算出手段140は、区切り情報であると判定する(S408)。
一方、符号判定パラメータ算出手段140は、上記算出された符号判定パラメータEC1、EC2の所定値との比較判定および相互の比較判定を以下の〔数式18〕に従って行い(S405)、比較結果に対応する符号を出力する。
〔数式18〕
C2>(所定値)かつEC2/EC1>2の場合、窓3成分が優位な状態
C1>(所定値)かつEC1/EC2>2の場合、窓1成分が優位な状態
上記以外の場合、両窓成分が均等
符号判定パラメータ算出手段140は、各音響フレーム単位で、上記判定結果に応じて3値の符号を出力する。すなわち、窓3成分が優位な状態と判定した場合には、第1のビット値(例えば“1”)を出力し(S406)、窓1成分が優位な状態と判定した場合には、第2のビット値(例えば“0”)を出力し(S407)、両窓成分が均等と判定した場合には、区切り情報を示す符号を出力する(S408)。なお、S405において、窓3成分が優位な状態と判定した場合は、EC1がHL1以上であるか、また、窓1成分が優位な状態と判定した場合は、EC2がHL2以上であるかを判定し、これらの条件を満たしていない場合は、区切り情報を示す符号を出力する(S408)。
窓3成分が優位な状態と判定して、第1のビット値を出力した場合(S406)、又は窓1成分が優位な状態と判定して、第2のビット値を出力した場合(S407)は、さらに、以下の〔数式19〕に従って位相判定テーブルS(p)の更新を行う(S409)。
〔数式19〕
窓3成分が優位な状態の場合、S(p)←S(p)+EC1/EC2
窓1成分が優位な状態の場合、S(p)←S(p)+EC2/EC1
続いて、符号判定パラメータ算出手段140は、候補符号テーブルに、最適位相となる候補を保存する(S410)。具体的には、位相判定テーブルに記録されているS(p)の値が最大となる位相番号pの値、前記S406〜S408により判定された3値のいずれかの符号、その音響フレームについての上記〔数式9〕に従った処理を実行することにより算出した、低周波数成分に対応する各EC1、EC2の値を最適位相の候補として候補符号テーブルに保存する。
続いて、全ての位相番号pに対応する処理を終えたかどうかを判定する(S411)。これは、ある基準フレームに対して全ての位相変更フレームの処理を行ったかどうかを判定している。本実施形態では、pが0〜5までの値をとるので、6回分処理していない場合は、処理していた音響フレームから所定サンプル数ずらして、位相の異なる音響フレームを設定し、S404に戻って処理を繰り返す。なお、p=0の場合が基準フレームであり、p=1〜5の場合が位相変更フレームである。全ての位相番号pに対応する処理を終えた場合は、候補保存テーブルに記録されている位相番号pに対応する位相が最適位相であると判定し、候補保存テーブルに記録されている符号を出力する(S412)。
再び図12のフローチャートに戻って説明する。S202による処理の結果、ビット値に相当する符号が出力された場合には、平均符号レベルのパラメータの更新を行う(S203)。具体的には、平均符号レベルHL1、HL2算出の際の分子となる積算値v1、v2にそれぞれ合算値EC1、EC2を加算して積算値v1、v2を更新し、分母となるフレーム数n1、n2にそれぞれ1を加算してフレーム数n1、n2を更新する。続いて、モードの判定を行う(S204)。モードは、区切りモードとビット出力モードの2つが用意されている。ビット出力モードである場合は、そのビット値をバッファに保存する(S209)。続いて、ビットカウンタをカウントアップする(S210)。一方、S204による判定の結果、区切りモードである場合には、さらに抽出された符号が、新規を意味するものか継続を意味するものかを判定する(S205)。この結果、新規である場合には、その直前で1ワードが終了していることを意味するので、バッファに記録された1ワード分のデータを、付加情報抽出手段160が出力する(S206)。そして、ビットカウンタを0に初期化する(S207)。さらに、モードをビット出力モードに設定する(S208)。S205において、継続と判定された場合には、バッファ内のビットに値を出力すべきであるので、ビット出力モードに設定する処理のみを行う。また、S202において、区切り情報に相当する符号が抽出された場合には、次の音響フレームから新規か継続かの情報を抽出するため、モードを区切りモードに設定する(S211)。図12に示す処理を各基準フレームに対して実行することにより、付加情報が抽出されることになる。S201において全ての基準フレームが抽出されたと判断された場合には、処理を終了する。
上記S206の処理において、付加情報抽出手段160は、まず、符号判定パラメータ算出手段140により出力された3値の符号のうち、窓3成分と窓1成分が均等であることを示す符号を区切り位置として、その次の符号を先頭とし、窓3成分が優位な状態、窓1成分が優位な状態であることを示す符号をビット値に対応させて、ビット配列を作成する。続いて、このビット配列を、所定の規則により変換して意味のある付加情報として抽出する。所定の規則としては、情報を埋め込む者が意図した情報が受け取った者に認識可能な状態とできるものであれば、さまざまな規則が適用できるが、本実施形態では、文字情報として認識するための規則としている。すなわち、アクセス情報抽出手段160は、符号判定パラメータ算出手段140が判定し、符号出力手段150から出力される符号を1バイト(8ビット)単位で認識し、これを設定されたコード体系に従って文字情報であるアクセス情報を認識する。本実施形態ではURLを認識することになる。
従って、埋め込み装置により音響信号に、その楽曲の曲名やアーチスト等に関連するwebサイトのURLを文字情報として埋め込んでおけば、利用者は、その音楽が流れているのを聞いて、その曲名やアーチストに関連する詳細な情報を知りたいと思ったときに、抽出装置として機能する自身の携帯端末に所定の操作を行えば、自身の携帯端末で、その楽曲やアーチストに関連するwebサイトのURLが取得できることになる。
ここで本実施形態に示すような窓関数窓関数W(1,i)、W(2,i)、W(3,i)、W(4,i)を用いることの利点について説明する。図14は、本実施形態の特徴を有しない窓関数を利用した場合の埋め込み直前と埋め込み後の低周波成分の状態を示す図であり、図15は、本発明による埋め込み直前と埋め込み後の低周波成分の状態を示す図である。埋め込み後の低周波成分の状態である図14(b)と図15(b)を比較すると、本実施形態では、そうでない場合と比べてAタイプ音響フレームにおいて広い範囲で値を有していることがわかる。そのため、S402において〔数式17〕を用いて算出される合算値EC1、EC2の値が大きくなり、S406、S407においてビット値が抽出される確率が高まる。
以上の処理においては、埋込情報抽出部321において正確に付加情報を抽出するために、位相を補正する処理、窓3成分と窓1成分の強度のバランスを補正する処理、無効フレームであることを判断するための下限閾値を補正する処理を行っている。次に、これら3つの補正処理について補足説明を行う。
(5.2.位相補正処理について)
上記のように、抽出時には、埋め込み時に埋め込んだ音響フレームに対応して、音響信号を読み込むことができるとは限らない。そこで、音響フレームの位相をずらして複数通り(本実施形態では6通り)で読み込み、その中で最適な位相を決定し、その位相で特定される音響フレームに対応する符号を出力することにしている。例えば、6通りで読み込む場合、先頭の音響フレームは、本来サンプル番号1〜4096のサンプルであるが、サンプル番号1、683、1366、2049、2732、3413から始まる4096のサンプルで構成される6個の各音響フレームに対して処理を行い、最適な音響フレームに対応する符号を出力することになる。この位相補正処理は、S403、S409、S410、S411、S412における処理を中心として行われることになる。
(5.3.下限閾値補正処理について)
信号レベルが小さい場合には、窓成分の強度の大小が判定できず、抽出側で誤判断することが多くなる。そこで、合算値EC1およびEC2が所定の閾値以下のフレームについては、無効なフレームであると判断するようにしているが、この際の閾値を過去の有効フレームについての低周波強度の積算値を利用して補正する処理を行っている。このように閾値を変動させることにより、信号レベルが変動しても無効なフレームであるか、有効なフレームであるかを正確に判断することが可能となる。この下限閾値補正処理は、S402、S203における処理を中心として行われることになる。
(6.モノラル音響信号の場合)
上記実施形態においては、埋め込み装置、埋込情報抽出部321のいずれにおいても、左右のチャンネルを有するステレオ音響信号の左チャンネル信号に付加情報を埋め込む場合を例にとって説明したが、逆に右チャンネル信号に付加情報を埋め込むようにしても良い。本発明は、左右の特性には無関係だからである。また、1つのチャンネルしかないモノラル音響信号に対して処理を行う場合は、上記実施形態において、左チャンネル信号に対して行った処理を行うことになる。本発明は、1つのチャンネル信号に対して付加情報を埋め込み、また抽出を行うので、モノラル音響信号であってもステレオ音響信号であっても同様に行うことができる。
図16にステレオ音響信号とモノラル音響信号に対して、本発明により付加情報を埋め込む場合の概念図を示す。図16(a)はステレオ音響信号の場合、図16(b)はモノラル音響信号の場合である。なお、図16の例では、音響フレーム1つ分の低周波成分を波形で表現しており、ビット値“0”を埋め込む場合を例に示している。
ステレオ音響信号の場合、埋め込みは左チャンネル(L−ch)信号に対して行われる。図16(a)に示すように、周波数変換後、信号分離し、さらに、ビット埋め込み処理を行う。具体的には、〔数式10〕〜〔数式15〕の処理の結果、ビット埋め込みがなされることになる。ここで、上述のように、“0”を埋め込む場合は〔数式13〕および〔数式14〕を用いる。したがって、ビット埋め込み処理後は、音響フレームの中央付近(窓2に相当)と後部付近(窓3に相当)は、低周波数帯の信号成分は0(図中、波形がないことで表現)となる。この際、〔数式13〕および〔数式14〕の内容から明らかなように、左チャンネル信号の削除された信号成分は、右チャンネル(R−ch)信号に加算される。したがって、図16(a)の下段に示すように、右チャンネル信号の低周波成分は大きくなる。ビット埋め込み処理後は、高周波成分を含めて信号合成された後、周波数逆変換され、改変音響信号が得られることになる。一方、上記〔数式11〕の最後の3つの式から明らかなように、左チャンネル信号の残っている信号成分に対応する右チャンネル(R−ch)信号の成分は、左チャンネル信号に加算される。したがって、図16(a)の上段に示すように、左チャンネル信号の窓1に相当する低周波成分は大きくなる。
モノラル音響信号の場合、図16(b)に示すように処理が行われるが、図16(a)の上段と比較するとわかるように、ステレオ音響信号の左チャンネルと同様の処理が行われることになる。
(7.信号成分が小さくても情報の埋め込みを可能とする手法)
ここまで、説明してきた処理においては、窓1成分、窓3成分に所定の大きさ以上の信号成分が存在していることが必要となり、窓1成分、窓3成分が共に所定の大きさ以下の場合には、情報の埋め込みを行うことができない。そこで、以下、窓1成分、窓3成分が共に所定の大きさ以下であっても、信号の埋め込みを可能とする手法について説明する。
この場合、図7に示した埋め込み装置における情報の埋め込み処理は、図17のフローチャートに従って行われる。図17のフローチャートにおいて、図8のフローチャートと異なる点は、S709における周波数変換処理において低周波成分変更手段30がレベルの判定を行わず、さらに、S110に相当する区切りモードへの設定処理が存在しない点である。これは、図17に従った処理では、信号レベルが小さくても強制的に情報を埋め込むこととしているため、情報の埋め込みが不可能な信号レベルが小さい部分が存在するかどうかを判断し、区切りモードに設定する必要がないからである。
したがって、S710における窓1成分、窓3成分のいずれかを優位な状態に設定する処理としては、まず、以下の〔数式20〕に従って算出される固定値Vを、低周波成分の強度として、上記合算値E1、E2に代えて設定する。
〔数式20〕
V={0.5・Lev/(M−3)}1/2
そして、第1の値を1、第2の値を0とした場合、ビット値が1のとき、上記〔数式11〕および〔数式12〕に従った処理を実行した後、以下の〔数式21〕に従った処理を実行する。
〔数式21〕
窓3成分に対して
Al´(3,j)=Al(3,j)・V/{Ar(3,j)2+Br(3,j)21/2
Bl´(3,j)=Bl(3,j)・V/{Ar(3,j)2+Br(3,j)21/2
ビット値が0の場合、上記〔数式13〕および〔数式14〕に従った処理を実行した後、以下の〔数式22〕に従った処理を実行する。
〔数式22〕
窓1成分に対して
Al´(1,j)=Al(1,j)・V/{Ar(1,j)2+Br(1,j)21/2
Bl´(1,j)=Bl(1,j)・V/{Ar(1,j)2+Br(1,j)21/2
S710における上記処理を行った後、窓2成分削除処理(S712)以降の処理は、図8に示したS113以降の処理と同様にして行われる。
上記のように、周波数成分が小さい場合に情報を埋め込んだ場合であっても、抽出側の、音響信号からの情報の抽出装置の構成は図11と同一であり、処理動作は図12のフローチャートに従ったものと同一である。
図18にステレオ音響信号とモノラル音響信号に対して、信号成分が小さい場合に、付加情報を埋め込む場合の概念図を示す。図18(a)はステレオ音響信号の場合、図18(b)はモノラル音響信号の場合である。なお、図18の例では、図16の場合と同様に、音響フレーム1つ分の低周波成分を波形で表現しており、ビット値“0”を埋め込む場合を例に示している。
図18において、図16の場合と異なるのは、元の信号成分が小さい点である。図18(a)に示す例のように、信号分離後の段階では、窓1成分、窓3成分の値が小さい場合であっても、上記〔数式20〕〜〔数式22〕の処理に従ってビット埋め込みを行うことにより、図16と同様な信号成分を有することとなる。
モノラル音響信号の場合、図18(b)に示すように処理が行われるが、図18(a)の上段と比較するとわかるように、ステレオ音響信号の左チャンネルと同様の処理が行われることになる。
本発明第1の実施形態に係るネットワーク接続装置の構成図である。 本発明第1の実施形態に係るネットワーク接続装置の処理動作を示すフローチャートである。 本発明第2の実施形態に係るネットワーク接続装置の構成図である。 本発明第2の実施形態に係るネットワーク接続装置の処理動作を示すフローチャートである。 本発明第3の実施形態に係るに係るネットワーク接続システムの構成図である。 本発明第3の実施形態に係るネットワーク接続システムの処理動作を示すフローチャートである。 音響信号に対する情報の埋込装置の機能ブロック図である。 図7に示した装置の処理概要を示すフローチャートである。 本発明で用いる窓関数を示す図である。 図8に従った処理による低周波成分の変化の様子を示すである。 埋込情報抽出部321の詳細を示す機能ブロック図である。 図4に示した装置の処理概要を示すフローチャートである。 図12のS202の符号判定処理の詳細を示すフローチャートである。 本実施形態の窓関数を用いない場合の、埋め込み前後の、音響信号の低周波部分を示す概念図である。 本実施形態による埋め込み前後の、音響信号の低周波部分を示す概念図である。 本発明による付加情報の埋め込み処理の概念図である。 図7に示した装置において、元の信号成分が小さくても情報の埋め込みを可能とする場合の処理概要を示すフローチャートである。 元の信号成分が小さい場合の、付加情報の埋め込み処理の概念図である。
符号の説明
10・・・音響フレーム読込手段
20・・・周波数変換手段
30・・・低周波成分変更手段
40・・・周波数逆変換手段
50・・・改変音響フレーム出力手段
60・・・記憶手段
61・・・音響信号記憶部
62・・・付加情報記憶部
63・・・改変音響信号記憶部
70・・・付加情報読込手段
110・・・基準フレーム獲得手段
120・・・位相変更フレーム設定手段
130・・・周波数変換手段
140・・・符号判定パラメータ算出手段
150・・・符号出力手段
160・・・付加情報抽出手段
170・・・音響フレーム保持手段
300・・・ネットワーク接続装置
310・・・マイクロフォン
320・・・アドレス情報抽出部
320a・・・アドレス情報サーバ
321・・・埋込情報抽出部
322・・・アドレス情報変換部
330・・・ネットワークアクセス部
340・・・コンテンツ取得部
350・・・音響信号取得部
400・・・音響信号再生装置
500・・・ネットワーク
601・・・サイト
602・・・第2のサイト


Claims (4)

  1. スピーカから発せられた音声を音響信号として取得し、当該音響信号から予め聴取不能な状態で埋め込まれた情報を抽出し、当該抽出した情報を用いてネットワーク上の所定のサイトにアクセスする装置であって、
    前記音響信号の所定の区間をデジタル化して、所定数のサンプルで構成される音響フレームを獲得する音響フレーム獲得手段と、
    前記音響フレームに対して、周波数変換を行って各音響フレームについてのスペクトルを得る周波数変換手段と、
    前記生成されたスペクトルを利用して、少なくとも2セットのスペクトル集合を抽出し、各スペクトル集合ごとにスペクトル強度の総和値を算出し、その総和値のスペクトル集合間の割合に基づいて、所定の符号を出力する符号化手段と、
    前記出力された符号に対応する情報配列を、所定の規則により変換してアドレス情報を抽出するアドレス情報抽出手段と、
    当該アドレス情報を用いてネットワーク上の所定のサイトにアクセスするネットワークアクセス手段と、
    前記アクセスしたサイトから、音響信号を含むコンテンツを取得するコンテンツ取得手段と、を有し、
    前記アドレス情報抽出手段が、前記取得したコンテンツに含まれる音響信号から第2のアドレス情報を抽出し、
    前記ネットワークアクセス手段が、前記第2のアドレス情報を用いてネットワーク上の第2のサイトにアクセスすることを特徴とする音響信号を用いたネットワーク接続装置。
  2. 請求項1において、前記アドレス情報抽出手段は、出力された符号に対応する情報配列を付加情報として抽出した後、変換テーブルを利用してアドレス情報に変換することにより、アドレス情報を得るものであることを特徴とするネットワーク接続装置。
  3. 請求項1または請求項2において、
    前記周波数変換手段は、前記音響フレームに対して第1窓関数、第3窓関数を用いてそれぞれ周波数変換を行い、前記第1窓関数に対応するスペクトルである第1窓スペクトル、前記第3窓関数に対応するスペクトルである第3窓スペクトルを生成するものであり、
    前記符号化手段は、生成された各窓スペクトルから、所定の低周波数帯に対応するスペクトル集合をそれぞれ抽出し、各スペクトル集合ごとにスペクトル強度の総和値を算出し、その総和値のスペクトル集合間の割合に基づいて、所定の符号を出力するものであることを特徴とする音響信号を用いたネットワーク接続装置。
  4. 請求項1から請求項3のいずれか一項において、
    前記音響フレーム獲得手段、前記周波数変換手段、前記符号化手段、前記アドレス情報抽出手段、前記ネットワークアクセス手段は、単一の携帯電話機の内部に備えられていることを特徴とするネットワーク接続装置。
JP2005312755A 2005-10-27 2005-10-27 ネットワーク接続装置 Expired - Fee Related JP4899416B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005312755A JP4899416B2 (ja) 2005-10-27 2005-10-27 ネットワーク接続装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005312755A JP4899416B2 (ja) 2005-10-27 2005-10-27 ネットワーク接続装置

Publications (2)

Publication Number Publication Date
JP2007121626A JP2007121626A (ja) 2007-05-17
JP4899416B2 true JP4899416B2 (ja) 2012-03-21

Family

ID=38145544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005312755A Expired - Fee Related JP4899416B2 (ja) 2005-10-27 2005-10-27 ネットワーク接続装置

Country Status (1)

Country Link
JP (1) JP4899416B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8989883B2 (en) 2010-03-25 2015-03-24 Verisign, Inc. Systems and methods for providing access to resources through enhanced audio signals

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4910921B2 (ja) * 2007-07-17 2012-04-04 大日本印刷株式会社 音響信号に対する情報の埋め込み装置および音響信号からの情報の抽出装置
JP4973417B2 (ja) * 2007-09-26 2012-07-11 大日本印刷株式会社 音響信号に対する情報の埋め込み装置および音響信号からの情報の抽出装置
JP5104200B2 (ja) * 2007-10-23 2012-12-19 大日本印刷株式会社 ネットワーク接続装置
US8972496B2 (en) * 2008-12-10 2015-03-03 Amazon Technologies, Inc. Content sharing
JP5479223B2 (ja) * 2010-05-27 2014-04-23 秀彦 坂井 音響通信方法を用いたホームページ誘導方法およびシステム
US10360278B2 (en) 2010-06-15 2019-07-23 Nintendo Of America Inc. System and method for accessing online content
GB2484140B (en) 2010-10-01 2017-07-12 Asio Ltd Data communication system
JP2012227631A (ja) * 2011-04-18 2012-11-15 Yamaha Corp 情報提供システムおよび携帯端末装置
JP2013005377A (ja) * 2011-06-21 2013-01-07 Yamaha Corp 携帯端末装置および情報提供システム
JP2013009053A (ja) * 2011-06-22 2013-01-10 Yamaha Corp 音響測位システム、携帯端末装置および音響測位プログラム
JP5966288B2 (ja) * 2011-09-15 2016-08-10 株式会社リコー 情報通信システム、クライアント装置、ホスト装置、接続情報受信プログラム、及び接続情報送信プログラム
US9635108B2 (en) 2014-01-25 2017-04-25 Q Technologies Inc. Systems and methods for content sharing using uniquely generated idenifiers
JP5871088B1 (ja) 2014-07-29 2016-03-01 ヤマハ株式会社 端末装置、情報提供システム、情報提供方法およびプログラム
JP5887446B1 (ja) 2014-07-29 2016-03-16 ヤマハ株式会社 情報管理システム、情報管理方法およびプログラム
JP6484958B2 (ja) 2014-08-26 2019-03-20 ヤマハ株式会社 音響処理装置、音響処理方法およびプログラム
GB201617408D0 (en) 2016-10-13 2016-11-30 Asio Ltd A method and system for acoustic communication of data
GB201617409D0 (en) 2016-10-13 2016-11-30 Asio Ltd A method and system for acoustic communication of data
GB201704636D0 (en) 2017-03-23 2017-05-10 Asio Ltd A method and system for authenticating a device
GB2565751B (en) 2017-06-15 2022-05-04 Sonos Experience Ltd A method and system for triggering events
JP6231244B1 (ja) * 2017-08-04 2017-11-15 ヤマハ株式会社 再生システム、端末装置、情報提供方法、端末装置の動作方法およびプログラム
US20190242986A1 (en) * 2017-12-08 2019-08-08 Sonarax Technologies Ltd. Sound based authentication and distance measurement
GB2570634A (en) 2017-12-20 2019-08-07 Asio Ltd A method and system for improved acoustic transmission of data
US11988784B2 (en) 2020-08-31 2024-05-21 Sonos, Inc. Detecting an audio signal with a microphone to determine presence of a playback device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6871180B1 (en) * 1999-05-25 2005-03-22 Arbitron Inc. Decoding of information in audio signals
JP2001320337A (ja) * 2000-05-10 2001-11-16 Nippon Telegr & Teleph Corp <Ntt> 音響信号伝達方法および音響信号伝達装置および記憶媒体
JP2002183779A (ja) * 2000-12-08 2002-06-28 Dainippon Printing Co Ltd 入場管理システムおよび入場管理方法
JP2002314980A (ja) * 2001-04-10 2002-10-25 Mitsubishi Electric Corp コンテンツ販売システムおよびコンテンツ購入装置
JP4839775B2 (ja) * 2005-10-24 2011-12-21 大日本印刷株式会社 音響信号に対する情報の埋め込み装置、方法、プログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8989883B2 (en) 2010-03-25 2015-03-24 Verisign, Inc. Systems and methods for providing access to resources through enhanced audio signals
US9202513B2 (en) 2010-03-25 2015-12-01 Verisign, Inc. Systems and methods for providing access to resources through enhanced signals
US9299386B2 (en) 2010-03-25 2016-03-29 Verisign, Inc. Systems and methods for providing access to resources through enhanced audio signals

Also Published As

Publication number Publication date
JP2007121626A (ja) 2007-05-17

Similar Documents

Publication Publication Date Title
JP4899416B2 (ja) ネットワーク接続装置
JP4780375B2 (ja) 音響信号への制御コード埋込装置、および音響信号を用いた時系列駆動装置の制御システム
JP4839775B2 (ja) 音響信号に対する情報の埋め込み装置、方法、プログラム
JP4660275B2 (ja) 音響信号に対する情報の埋め込み装置および方法
JP4629495B2 (ja) 音響信号に対する情報の埋め込み装置および方法
JP2007292827A (ja) 音響信号検索装置
JP4770194B2 (ja) 音響信号に対する情報の埋め込み装置および方法
JP5011849B2 (ja) 音響信号に対する情報の埋め込み装置および音響信号からの情報の抽出装置
JP5082257B2 (ja) 音響信号検索装置
JP4531653B2 (ja) 音響信号からの情報の抽出装置
JP2006195061A (ja) 音響信号に対する情報の埋め込み装置、音響信号からの情報の抽出装置および音響信号再生装置
JP4839721B2 (ja) 音響信号に対する情報の埋め込み装置
JP2006201527A (ja) 音響信号に対する情報の埋め込み装置、音響信号からの情報の抽出装置、音響信号再生装置および方法
JP4713181B2 (ja) 音響信号に対する情報の埋め込み装置、音響信号からの情報の抽出装置、および音響信号再生装置
JP5011855B2 (ja) 音響信号に対する情報の埋め込み装置および音響信号からの情報の抽出装置
JP2006235359A (ja) 音響信号からの情報の抽出装置
JP4831333B2 (ja) 音響信号に対する情報の埋め込み装置および音響信号からの情報の抽出装置
JP5104200B2 (ja) ネットワーク接続装置
JP4760539B2 (ja) 音響信号に対する情報の埋め込み装置
JP4831334B2 (ja) 音響信号に対する情報の埋め込み装置および音響信号からの情報の抽出装置
JP2008065052A (ja) 音響信号に対する情報の埋め込み装置および音響信号からの情報の抽出装置
JP4760540B2 (ja) 音響信号に対する情報の埋め込み装置
JP5003164B2 (ja) 音響信号からの情報の抽出装置
JP5011872B2 (ja) 音響信号に対する情報の埋め込み装置および音響信号からの情報の抽出装置
JP4876978B2 (ja) 音響信号に対する情報の埋め込み装置および音響信号からの情報の抽出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4899416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees