JP4899228B2 - Manufacturing method and product of vanadium dioxide thin film - Google Patents

Manufacturing method and product of vanadium dioxide thin film Download PDF

Info

Publication number
JP4899228B2
JP4899228B2 JP2006275814A JP2006275814A JP4899228B2 JP 4899228 B2 JP4899228 B2 JP 4899228B2 JP 2006275814 A JP2006275814 A JP 2006275814A JP 2006275814 A JP2006275814 A JP 2006275814A JP 4899228 B2 JP4899228 B2 JP 4899228B2
Authority
JP
Japan
Prior art keywords
thin film
vanadium dioxide
transparent conductive
heat
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006275814A
Other languages
Japanese (ja)
Other versions
JP2008094642A (en
Inventor
平 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006275814A priority Critical patent/JP4899228B2/en
Priority to PCT/JP2007/069225 priority patent/WO2008044531A1/en
Publication of JP2008094642A publication Critical patent/JP2008094642A/en
Application granted granted Critical
Publication of JP4899228B2 publication Critical patent/JP4899228B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3435Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3429Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
    • C03C17/3447Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide
    • C03C17/3452Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide comprising a fluoride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3621Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a fluoride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • C03C2217/948Layers comprising indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/31Pre-treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/34Masking

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)
  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、二酸化バナジウム系薄膜の製法及び該二酸化バナジウム系薄膜の形成に使用するための透明導電膜を設けた通電加熱基板に関するものであり、更に詳しくは、住宅、ビルなど建築物及び自動車など移動体の窓に、健康快適、省エネルギー、環境浄化など多機能的な機能を付与した調光ガラスやフィルムに用いられる二酸化バナジウム系薄膜の形成を効率良く行うことが可能な、透明導電膜を設けた通電加熱基板に関するものである。   The present invention relates to a method for producing a vanadium dioxide-based thin film and an electrically heated substrate provided with a transparent conductive film for use in forming the vanadium dioxide-based thin film. A transparent conductive film that can efficiently form vanadium dioxide-based thin films used for light control glass and films with multifunctional functions such as health and comfort, energy saving, and environmental purification is provided on the windows of moving bodies. The present invention relates to an electrically heated substrate.

従来の調光可能な省エネルギー窓ガラスとして、エレクトロクロミック(EC:電圧の印加により可逆的に着色と消色で調光する)やガソクロミック(GC:水素ガスの導入により着色消色)ガラスが研究されている。しかし、それらの窓ガラスでは、構造が複雑で、また、調光するためには、追加の設備(電圧印加系やガス導入系)が必要であるため、コストが高くなる欠点がある。   Electrochromic (EC: reversibly dimmed by applying voltage and decoloring) and gasochromic (GC: colored and decolored by introducing hydrogen gas) glass are being studied as conventional dimmable energy-saving window glass. Has been. However, these window glasses have a complicated structure, and additional facilities (a voltage application system and a gas introduction system) are necessary for dimming.

また、可視光が透過するが、赤外線(日射の一部や輻射熱)を反射する低放射ガラス(Low−Eガラス)、あるいは主に日射熱を遮断する熱線反射ガラスなどがある(非特許文献1)。これらは、優れた光学特性と比較的低コストであり、普及が広がっているが、いずれも、固定した光学特性で、熱線を反射するのみで、冬夏など、季節や環境の温度変化に応じて日射や熱輻射を調節する機能、すなわち、環境温度に応じて自動的に調光遮熱する機能がない。   Further, there is a low radiation glass (Low-E glass) that transmits visible light but reflects infrared rays (part of solar radiation and radiant heat), or a heat ray reflective glass that mainly blocks solar heat (Non-Patent Document 1). ). These have excellent optical properties and relatively low cost, and are spreading widely, but they all have fixed optical properties and only reflect heat rays, depending on seasonal and environmental temperature changes such as winter and summer. There is no function for adjusting solar radiation or heat radiation, that is, a function for automatically adjusting and blocking light according to the environmental temperature.

他にも熱によって調光する窓コーティング材料がある。例えば、特殊ハイドロゲルを使った自律応答型熱調光ガラスなどがある(非特許文献2)。これは、優れた調光性を示す一方、熱で調光を行うとガラスが白濁となり、外が見えなくなる欠点がある。この材料は、クリアな視界が常に要求される建築物や、特に自動車のような移動体の窓材料には適応されにくい。   There are other window coating materials that are dimmed by heat. For example, there is an autonomous response type thermal light control glass using a special hydrogel (Non-Patent Document 2). While this exhibits excellent dimming properties, there is a drawback in that when dimming with heat, the glass becomes cloudy and the outside cannot be seen. This material is difficult to adapt to buildings that always require a clear view, and particularly to window materials for moving objects such as automobiles.

また、有機可逆感熱層を通電加熱することによって、光学特性を自由に制御できる調光体及びその制御方法が提案されている(特許文献1)が、調光時に調光材料となる有機結晶粒子及びポリマーマトリックスが白濁となり、窓本来の透明性が失ってしまう欠点がある。   In addition, there has been proposed a light control body capable of freely controlling optical characteristics by energizing and heating the organic reversible thermosensitive layer (Patent Document 1), and organic crystal particles that serve as a light control material during light control. In addition, the polymer matrix becomes cloudy and the transparency inherent in the window is lost.

一方、二酸化バナジウム(VO)結晶は、68℃で半導体・金属相転移によりサーモクロミック(温度による光特性の可逆的な変化)特性を示し、また、タングステン(W)など、金属元素の添加で転移温度を室温好適まで下げることができるので、環境温度によって太陽光を自動的に調節できる窓コーティング材料として研究されている(非特許文献3)。二酸化バナジウム系調光ガラスについては、構造が非常に簡単な上、環境温度の変化によって自然に且つ自動的に調光を行うため、余分な設備を必要としない。 On the other hand, the vanadium dioxide (VO 2 ) crystal exhibits thermochromic characteristics (reversible change in optical characteristics depending on temperature) due to the semiconductor-metal phase transition at 68 ° C., and the addition of metallic elements such as tungsten (W). Since the transition temperature can be lowered to room temperature, it has been studied as a window coating material capable of automatically adjusting sunlight according to the environmental temperature (Non-patent Document 3). The vanadium dioxide light control glass has a very simple structure and adjusts light naturally and automatically according to changes in environmental temperature, so that no extra equipment is required.

しかし、従来型の二酸化バナジウム系サーモクロミック調光材料では、1)もともと可視光を含め短波長での強い吸収により可視光透過率が小さいこと、2)常温輻射熱に対する赤外反射率が小さく、断熱性に乏しいこと、3)二酸化バナジウム単一相薄膜の形成が非常に難しいため、スパッタなどで作製する時に、通常、基板温度を400℃以上の高温にする必要があることに加え、作製パラメーターを細かく制御しなければならないこと、また、4)単一相調光膜の形成条件が厳しいため、大面積且つ光学的均一被膜の形成が極めて困難であること、などの問題があった。   However, with conventional vanadium dioxide thermochromic light-modulating materials, 1) the visible light transmittance is low due to strong absorption at short wavelengths including visible light, and 2) the infrared reflectance for room temperature radiant heat is low, and heat insulation 3) Since it is very difficult to form a vanadium dioxide single-phase thin film, it is usually necessary to set the substrate temperature to a high temperature of 400 ° C. or higher when manufacturing by sputtering or the like. There are problems such as the fact that it must be finely controlled, and 4) the formation conditions of the single-phase light control film are severe, so that it is extremely difficult to form a large area and optically uniform film.

本発明者の研究や従来の技術の向上により、以上の問題点は解決されつつあるが、二酸化バナジウム薄膜形成時に基板加熱がまだ必要不可欠であり、その温度は、数100℃、基本的には300℃以上でなければならない。生産側における大面積薄膜形成装置においては、基板加熱、特に、200℃以上の基板加熱は、成膜設備の肥大化につながりやすく、また、現在の薄膜コーティング設備、例えば、Low−Eガラス被膜の設備などを大きな改造なしでは使えない。   Although the above problems are being solved by the inventor's research and improvement of conventional techniques, substrate heating is still indispensable when forming a vanadium dioxide thin film, and its temperature is several hundreds of degrees Celsius, basically Must be above 300 ° C. In a large-area thin film forming apparatus on the production side, substrate heating, particularly substrate heating at 200 ° C. or higher, tends to lead to enlargement of film forming equipment, and current thin film coating equipment such as Low-E glass coating Equipment cannot be used without major modifications.

これらのことから、従来法では、結果としては、コストの増加と効率の低下になってしまう。すなわち、二酸化バナジウム形成時に、より効率的で確実な薄膜形成法、特に、そのキーポイントとなる有効な基板加熱の方法の開発が待たれる。そこで、本発明者は、研究を積み重ねることはもとより、他分野での技術開発の状況をも注目した。   As a result, the conventional method results in an increase in cost and a decrease in efficiency. That is, the development of a more efficient and reliable thin film formation method, particularly an effective substrate heating method as a key point, is awaited when forming vanadium dioxide. Therefore, the present inventor not only accumulated research, but also focused on the state of technological development in other fields.

他分野で、従来の技術として、例えば、車の窓ガラスに冬季霜取りや凍結防止のために、透明導電体薄膜や金属薄膜などを使った通電加熱透明ガラスや透明加熱器具などが開発されている(特許文献2、3、4)。すなわち、透明導電体材料の可視光透明特性と導電性(通電発熱特性)を利用することにより、いつでも車ガラスとしての透明性を満足している。   In other fields, as conventional technologies, for example, electrically heated transparent glass and transparent heating appliances that use transparent conductive film or metal thin film have been developed for winter window frost removal and anti-freezing. (Patent Documents 2, 3, and 4). In other words, the transparency as a vehicle glass is always satisfied by utilizing the visible light transparency and conductivity (conducting heat generation characteristics) of the transparent conductor material.

しかし、これらの通電加熱ガラスや薄膜体では、製品に電気を流せば発熱して、霜取りや凍結防止に機能するが、従来、機能性薄膜体の形成時、特に、二酸化バナジウム系薄膜制作時における基板加熱手段として使われる技術が全く見当たらないのが実情であった。
特開平6−273807号公報 特開2003−176154号公報 特開2004−306025号公報 特開2005−202414号公報 ガラス工学ハンドブック、朝倉書店、p.449−452、1999年 渡辺晴男:太陽エネルギー、1997年、23巻、49頁 S.M. Babulanam, T.S. Eriksson, G.A. Niklasson and C.G. Granqvist: Solar Energy Matrials 16 (1987) 347
However, these energized heated glass and thin film bodies generate heat when electricity is applied to the product, and function to defrost and prevent freezing. Conventionally, when functional thin film bodies are formed, especially when vanadium dioxide thin films are produced. The actual situation is that no technology used as a substrate heating means is found.
JP-A-6-273807 JP 2003-176154 A Japanese Patent Application Laid-Open No. 2004-306025 JP 2005-202414 A Glass Engineering Handbook, Asakura Shoten, p. 449-452, 1999 Haruo Watanabe: Solar Energy, 1997, 23, 49 SM Babulanam, TS Eriksson, GA Niklasson and CG Granqvist: Solar Energy Matrials 16 (1987) 347

このような状況の中で、本発明者は、上記従来技術に鑑みて、二酸化バナジウムサーモクロミック薄膜及びその機能性製品の一連の発明を基礎として更に精力的に研究を積み重ねた結果、薄膜体形成プロセスに幾つかの重要ポイントを見出した。すなわち、1)二酸化バナジウム系薄膜及びその機能性製品に、透明導電膜を使用することが製品の機能向上に有効である、2)透明導電膜が、二酸化バナジウム薄膜の下地膜として好適である、3)透明導電体薄膜自身を通電加熱により発熱体とすることで、基板加熱に、他に余分な基板加熱設備が基本的に必要とされない、4)透明導電体は、現状の板ガラス被膜設備、例えば、Low−Eスパッタ薄膜形成のための大型成膜設備において、加熱スペースの増加などの大きな改造をせずに利用できる、5)透明導電体薄膜自身が発熱し、その上に二酸化バナジウム薄膜が形成されるので、表面加熱のみで加熱時間の短縮や加熱電力の節約に効率的である、等の新規知見を見出し、本発明を完成するに至った。   Under such circumstances, the present inventor, in view of the above prior art, as a result of further vigorous research based on a series of inventions of vanadium dioxide thermochromic thin films and functional products thereof, formed a thin film body. I found some important points in the process. That is, 1) Use of a transparent conductive film for the vanadium dioxide thin film and its functional product is effective in improving the function of the product. 2) The transparent conductive film is suitable as a base film for the vanadium dioxide thin film. 3) By making the transparent conductor thin film itself a heating element by energization heating, no extra substrate heating equipment is basically required for heating the substrate. 4) The transparent conductor is the current plate glass coating equipment, For example, in a large film forming facility for forming a Low-E sputtered thin film, it can be used without major modification such as an increase in heating space. 5) The transparent conductor thin film itself generates heat, and a vanadium dioxide thin film is formed thereon. Therefore, the present invention has been completed by finding new findings such as shortening the heating time and saving heating power only by surface heating.

すなわち、本発明は、二酸化バナジウムサーモクロミック薄膜及びその機能性製品を効率良く形成できる基板加熱方法及びその基板を提供することを目的とするものである。   That is, an object of the present invention is to provide a substrate heating method and a substrate thereof capable of efficiently forming a vanadium dioxide thermochromic thin film and a functional product thereof.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)二酸化バナジウム系薄膜及び/又は二酸化バナジウム系薄膜を含む機能性製品を製造する方法において、1)耐熱基板に透明導電性薄膜を配設した、透明導電性薄膜付きの耐熱基板を使用する、2)二酸化バナジウム系薄膜形成時に、基板の加熱を上記透明導電性薄膜の通電加熱によって行う、ことを特徴とする二酸化バナジウム系薄膜及び/又は二酸化バナジウム系薄膜を含む機能性製品の製造方法。
(2)透明導電性薄膜を含む耐熱基板部と、電源及び温度制御装置を含む加熱部との間に、通電線により電気的接続を行って基板加熱を行う、前記(1)記載の方法。
(3)上記基板部と加熱部との電気的接続が、脱着可能である、前記(1)記載の方法。
(4)透明導電性薄膜が、1)酸化物系(In、SnO、ZnO、CdO、TiO、CdIn、CdSnO、ZnSnO、又はIn−ZnO)、2)窒化物系(TiN、ZrN、又はHfN)、3)ホウ化物(LaB)、4)金属系(Au、Ag、Pt、Cu、Rh、Pd、Al、又はCr)、の中から選択される少なくとも1種類以上からなる、前記(1)記載の方法。
(5)透明導電性薄膜の発熱を均一に制御するために、電極及び/又は導電性金属が、線状又は条状に配置される、前記(1)記載の方法。
(6)透明導電性薄膜が、通電加熱機能と、二酸化バナジウム系薄膜の形成を助ける構造テンプレート機能、二酸化バナジウム系薄膜を含む機能性製品の薄膜系の光学特性を調節する機能、又は赤外線反射による断熱機能の、複数的な機能を有する、前記(1)記載の方法。
(7)透明導電性薄膜の通電加熱による基板表面温度が、50〜700℃の間に制御される、前記(1)記載の方法。
(8)透明導電性薄膜と耐熱基板との間、及び/又は透明導電性薄膜と二酸化バナジウム薄膜との間に、電気的、光学的、結晶学的、又は機械的特性を調節又は機能追加するために、中間層を設ける、前記(1)記載の方法。
(9)二酸化バナジウム系薄膜の上に、特性調節又は機能追加のために、更に被膜を形成する、前記(1)記載の方法。
(10)二酸化バナジウム系薄膜を含む機能性製品の薄膜系の光学的特性を、透明導電性薄膜の自然の温度変化又は通電加熱によって制御する、前記(1)記載の方法。
(11)二酸化バナジウム系薄膜が大きな熱ヒステリシス幅を持ち、その幅が少なくとも10℃以上である、前記(10)記載の方法。
(12)自然の温度変化又は通電加熱により、二酸化バナジウム系薄膜を転移温度以上に加熱して金属特性を持たせて、熱が除去されても大きなヒステリシス幅により金属特性が保たれるようにする、前記(10)記載の方法。
(13)自然の温度変化又は強制冷却により、二酸化バナジウム系薄膜を転移温度以下に冷やして半導体特性を持たせて、熱が加えられても大きなヒステリシス幅により半導体特性が保たれるようにする、前記(10)記載の方法。
(14)二酸化バナジウム系薄膜及び/又は二酸化バナジウム系薄膜を含む機能性製品の二酸化バナジウム系薄膜を形成するための耐熱基板であって、耐熱基板に透明導電性薄膜を配設した、透明導電性薄膜付きの耐熱基板と、上記透明導電性薄膜に通電して電気的に加熱する加熱手段が内設又は外設されていることを特徴とする耐熱基板。
(15)基板表面に均一な表面抵抗の透明導電膜を設けて、発熱分布を均一に制御できるようにした、前記(14)記載の耐熱基板。
The present invention for solving the above-described problems comprises the following technical means.
(1) In a method of manufacturing a functional product including a vanadium dioxide thin film and / or a vanadium dioxide thin film, 1) a heat resistant substrate with a transparent conductive thin film provided with a transparent conductive thin film on the heat resistant substrate is used. 2) A method for producing a functional product including a vanadium dioxide thin film and / or a vanadium dioxide thin film, wherein the substrate is heated by energization heating of the transparent conductive thin film when the vanadium dioxide thin film is formed.
(2) The method according to (1) above, wherein the substrate is heated by making an electrical connection between the heat-resistant substrate portion including the transparent conductive thin film and the heating portion including the power source and the temperature control device using a conductive wire.
(3) The method according to (1), wherein the electrical connection between the substrate unit and the heating unit is detachable.
(4) The transparent conductive thin film is 1) oxide-based (In 2 O 3 , SnO 2 , ZnO, CdO, TiO 2 , CdIn 2 O 4 , Cd 2 SnO 2 , Zn 2 SnO 4 , or In 2 O 3 -ZnO), 2) nitride (TiN, ZrN, or HfN), 3) borides (LaB 6), 4) a metal-based (Au, Ag, Pt, Cu , Rh, Pd, Al, or Cr), The method according to (1), comprising at least one selected from the group consisting of:
(5) The method according to (1) above, wherein the electrodes and / or the conductive metal are arranged in a linear or strip shape in order to uniformly control the heat generation of the transparent conductive thin film.
(6) The transparent conductive thin film has a current heating function, a structural template function that helps to form a vanadium dioxide thin film, a function that adjusts optical characteristics of a thin film system of a functional product including a vanadium dioxide thin film, or by infrared reflection. The method according to the above (1), which has a plurality of functions of the heat insulation function.
(7) The method according to (1) above, wherein the substrate surface temperature by energization heating of the transparent conductive thin film is controlled between 50 and 700 ° C.
(8) Adjust or add electrical, optical, crystallographic, or mechanical properties between the transparent conductive thin film and the heat-resistant substrate and / or between the transparent conductive thin film and the vanadium dioxide thin film. Therefore, the method according to (1) above, wherein an intermediate layer is provided.
(9) The method according to (1), wherein a film is further formed on the vanadium dioxide-based thin film for property adjustment or function addition.
(10) The method according to (1), wherein the optical characteristics of the thin film system of the functional product including the vanadium dioxide thin film are controlled by a natural temperature change or current heating of the transparent conductive thin film.
(11) The method according to (10), wherein the vanadium dioxide thin film has a large thermal hysteresis width, and the width is at least 10 ° C. or more.
(12) The vanadium dioxide thin film is heated to a temperature higher than the transition temperature by natural temperature change or electric heating so that the metal characteristics are maintained, and the metal characteristics are maintained with a large hysteresis width even if the heat is removed. The method according to (10) above.
(13) The vanadium dioxide thin film is cooled to a transition temperature or lower by natural temperature change or forced cooling so as to have semiconductor characteristics, so that the semiconductor characteristics are maintained with a large hysteresis width even when heat is applied. The method according to (10) above.
(14) A heat-resistant substrate for forming a vanadium dioxide-based thin film of a functional product including a vanadium dioxide-based thin film and / or a vanadium dioxide-based thin film, the transparent conductive film having a transparent conductive thin film disposed on the heat-resistant substrate A heat-resistant substrate comprising a heat-resistant substrate with a thin film and heating means for energizing and electrically heating the transparent conductive thin film.
(15) The heat-resistant substrate according to (14), wherein a transparent conductive film having a uniform surface resistance is provided on the substrate surface so that the heat generation distribution can be controlled uniformly.

次に、本発明について更に詳細に説明する。
本発明は、二酸化バナジウム系薄膜及び/又は二酸化バナジウム系薄膜を含む機能性製品を製造する方法であって、耐熱基板に透明導電性薄膜を配設した、透明導電性薄膜付きの耐熱基板を使用すること、二酸化バナジウム系薄膜形成時に、基板の加熱を上記透明導電性薄膜の通電加熱によって行うこと、を特徴とするものである。本発明では、透明導電性薄膜を含む耐熱基板部と、電源及び温度制御装置を含む加熱部との間に、通電線により電気的接続を行って基板加熱を行うこと、上記基板部と加熱部との電気的接続が、脱着可能であること、透明導電性薄膜の発熱を均一に制御するために、電極及び/又は導電性金属が、線状又は条状に配置されること、が好適である。
Next, the present invention will be described in more detail.
The present invention is a method for producing a functional product including a vanadium dioxide thin film and / or a vanadium dioxide thin film, and uses a heat resistant substrate with a transparent conductive thin film provided with a transparent conductive thin film on the heat resistant substrate. The substrate is heated by energization heating of the transparent conductive thin film when the vanadium dioxide thin film is formed. In the present invention, between the heat-resistant substrate portion including the transparent conductive thin film and the heating portion including the power source and the temperature control device, the substrate portion and the heating portion are electrically connected by conducting wires to perform substrate heating. In order to uniformly control the heat generation of the transparent conductive thin film, it is preferable that the electrodes and / or the conductive metal are arranged in a linear or strip shape. is there.

ここで、二酸化バナジウム系とは、元素添加のものを含む。また、本発明では、上記透明導電性薄膜が、(1)酸化物系(In、SnO、ZnO、CdO、TiO、CdIn、CdSnO、ZnSnO、又はIn−ZnO)、(2)窒化物系(TiN、ZrN、又はHfN)、(3)ホウ化物(LaB)、(4)金属系(Au、Ag、Pt、Cu、Rh、Pd、Al、又はCr)、の中から選択される少なくとも1種類以上からなること、を好ましい実施の態様としている。ここで、系とは、主成分の物質に、元素添加のもの、又は混合物や混合化合物を含む。 Here, the vanadium dioxide type includes those added with elements. Further, in the present invention, the transparent conductive thin film comprises (1) oxides (In 2 O 3 , SnO 2 , ZnO, CdO, TiO 2 , CdIn 2 O 4 , Cd 2 SnO 2 , Zn 2 SnO 4 , Or In 2 O 3 —ZnO), (2) nitride system (TiN, ZrN, or HfN), (3) boride (LaB 6 ), (4) metal system (Au, Ag, Pt, Cu, Rh, Pd, Al, or Cr) is at least one selected from among the preferred embodiments. Here, the system includes an element-added substance, a mixture, or a mixed compound in the main component substance.

また、本発明は、二酸化バナジウム系薄膜及び/又は二酸化バナジウム系薄膜を含む機能性製品の二酸化バナジウム系薄膜を形成するための耐熱基板であって、耐熱基板に透明導電性薄膜を配設した、透明導電性薄膜付きの耐熱基板と、上記透明導電性薄膜に通電して電気的に加熱する加熱手段が内設又は外設されていること、を特徴とするものである。本発明では、基板表面に均一な表面抵抗の透明導電膜を設けて、発熱分布を均一に制御できるようにしたこと、を好ましい実施の態様としている。   Further, the present invention is a heat-resistant substrate for forming a vanadium dioxide-based thin film of a functional product including a vanadium dioxide-based thin film and / or a vanadium dioxide-based thin film, wherein a transparent conductive thin film is disposed on the heat-resistant substrate. A heat-resistant substrate with a transparent conductive thin film, and a heating means for energizing and electrically heating the transparent conductive thin film are provided inside or outside. In the present invention, it is a preferred embodiment that a transparent conductive film having a uniform surface resistance is provided on the substrate surface so that the heat generation distribution can be controlled uniformly.

また、本発明では、二酸化バナジウム系薄膜及び/又は二酸化バナジウム系薄膜を含む機能性製品において、通電加熱機能と、二酸化バナジウム系薄膜の形成を助ける構造テンプレート機能、二酸化バナジウム系薄膜を含む機能性製品の薄膜系の光学特性を調節する機能(反射防止、透過率等の調節)、又は赤外線反射による断熱機能の、複数的な機能を有する透明導電体薄膜が組み込まれる。本発明では、当該透明導電体薄膜を積極的に活用し、これを基板加熱のために使用する。具体的に述べると、まず、耐熱基板上に透明導電体薄膜を被膜し、その上に二酸化バナジウム調光薄膜を形成する。この場合、透明導電性薄膜の通電加熱による基板表面温度は好適には、50〜700℃の間に制御される。   Moreover, in this invention, in the functional product containing a vanadium dioxide type thin film and / or a vanadium dioxide type thin film, a functional template function which assists formation of an electric heating function and a vanadium dioxide type thin film, and a vanadium dioxide type thin film A transparent conductor thin film having a plurality of functions such as a function of adjusting the optical characteristics of the thin film system (adjustment of antireflection, transmittance, etc.) or a heat insulating function by infrared reflection is incorporated. In the present invention, the transparent conductor thin film is actively utilized and used for substrate heating. Specifically, first, a transparent conductor thin film is coated on a heat resistant substrate, and a vanadium dioxide light control thin film is formed thereon. In this case, the substrate surface temperature by energization heating of the transparent conductive thin film is preferably controlled between 50-700 ° C.

透明導電体薄膜を被膜した耐熱基板を得る手段として、例えば、二酸化バナジウム系機能性製品を作製する成膜プロセスの一環として、透明基板上に汎用成膜方法により透明導電体薄膜を形成する方法と、他の手法(例えば、CVD等)により予め透明導電膜を付与した基板、例えば、NESAガラス等、を利用する方法が例示される。目的の機能性製品に好適な透明導電体薄膜の組成や厚さが要求されるが、その形成方法は、特に制限されるものではない。   As a means for obtaining a heat-resistant substrate coated with a transparent conductor thin film, for example, as a part of a film forming process for producing a vanadium dioxide functional product, a method for forming a transparent conductor thin film on a transparent substrate by a general-purpose film forming method; A method of using a substrate to which a transparent conductive film has been applied in advance by another method (for example, CVD or the like), for example, NESA glass or the like is exemplified. The composition and thickness of the transparent conductor thin film suitable for the intended functional product are required, but the formation method is not particularly limited.

本発明では、透明導電性薄膜と耐熱基板との間、及び/又は透明導電性薄膜と二酸化バナジウム薄膜との間に、電気的、光学的、結晶学的、又は機械的特性を調節又は機能追加するために、中間層を設けること、二酸化バナジウム系薄膜の上に、特性調節又は機能追加のために、更に被膜を形成すること、二酸化バナジウム系薄膜を含む機能性製品の薄膜系の光学的特性を、透明導電性薄膜の自然の温度変化又は通電加熱によって制御すること、が適宜可能である。この場合、二酸化バナジウム系薄膜が大きな熱ヒステリシス幅を持ち、その幅が少なくとも10℃以上であること、自然の温度変化又は通電加熱により、二酸化バナジウム系薄膜を転移温度以上に加熱して金属特性を持たせて、熱が除去されても大きなヒステリシス幅により金属特性が保たれるようにすること、自然の温度変化又は強制冷却により、二酸化バナジウム系薄膜を転移温度以下に冷やして半導体特性を持たせて、熱が加えられても大きなヒステリシス幅により半導体特性が保たれるようにすること、が好適である。   In the present invention, electrical, optical, crystallographic, or mechanical properties are adjusted or added between the transparent conductive thin film and the heat-resistant substrate and / or between the transparent conductive thin film and the vanadium dioxide thin film. In order to provide an intermediate layer, to form a coating on the vanadium dioxide-based thin film for adjusting properties or to add functions, the optical properties of the thin film system of the functional product including the vanadium dioxide-based thin film Can be appropriately controlled by natural temperature change or current heating of the transparent conductive thin film. In this case, the vanadium dioxide thin film has a large thermal hysteresis width, the width is at least 10 ° C. or more, and the vanadium dioxide thin film is heated to the transition temperature or higher by natural temperature change or electric heating to improve the metal characteristics. The metal properties are maintained by a large hysteresis width even when heat is removed, and the vanadium dioxide thin film is cooled below the transition temperature by natural temperature change or forced cooling to give semiconductor properties. Thus, it is preferable to maintain the semiconductor characteristics with a large hysteresis width even when heat is applied.

透明導電体膜に更にバスバー電極等の電極を形成し、通電線により温度制御部や電源等と電気的に接続又は簡単に離脱可能な方式により通電加熱し、短期間で耐熱基板表面(透明導電体膜面)を所定の温度に設定・制御する。所定の基板温度に達した透明導電体膜の表面に汎用薄膜形成法(例えば、スパッタや真空蒸着法等)により二酸化バナジウム系薄膜を形成する。二酸化バナジウム系薄膜を形成した後、耐熱基板と通電加熱装置との電気的な接続を離脱し、基板を次の成膜プロセスへの移動ができるようにする。必要に応じて、適宜、次の成膜プロセスへ移動する。   An electrode such as a bus bar electrode is further formed on the transparent conductor film, and it is energized and heated by means of a method that can be electrically connected to the temperature control unit or the power source with an energizing wire, or can be easily detached, and the surface of the heat-resistant substrate (transparent conductive material) The body surface is set and controlled at a predetermined temperature. A vanadium dioxide-based thin film is formed on the surface of the transparent conductor film that has reached a predetermined substrate temperature by a general-purpose thin film forming method (for example, sputtering or vacuum deposition). After the vanadium dioxide-based thin film is formed, the electrical connection between the heat-resistant substrate and the energization heating device is disconnected so that the substrate can be moved to the next film formation process. If necessary, the process proceeds to the next film forming process as appropriate.

本発明では、例えば、基板のガラス表面の透明導電性薄膜に電気的に導通するだけで基板表面が加熱されるので、従来法のような間接的加熱法、例えば、ヒーター加熱やランプ加熱よりは肥大化した基板加熱設備が必要とされない。尚、本発明では、ガラス表面の透明導電膜自身からの発熱により二酸化バナジウム系薄膜を形成するための熱エネルギーが提供されるので、効率良く局所加熱を行うことが可能であり、ガラス基板全体を加熱する必要がなく、迅速で効率の良い基板加熱ができる。   In the present invention, for example, since the substrate surface is heated only by electrical conduction to the transparent conductive thin film on the glass surface of the substrate, the indirect heating method such as the conventional method, for example, heater heating or lamp heating There is no need for enlarged substrate heating equipment. In the present invention, since heat energy for forming the vanadium dioxide thin film is provided by the heat generated from the transparent conductive film itself on the glass surface, local heating can be performed efficiently, and the entire glass substrate can be formed. There is no need to heat, and the substrate can be heated quickly and efficiently.

本発明により、二酸化バナジウムサーモクロミック関連の自動調光調熱ガラスの生産に、間接的加熱法により基板加熱を実施しなければならないという大きな障害が取り除かれるので、本発明は、新しい省エネ的に大型の快適窓ガラスを製造することを可能とする調光ガラスの新しい生産技術として直ちに応用できる可能性が大である。また、本発明では、通電加熱のための透明導電性薄膜を、耐熱基板のどちら側、すなわち、二酸化バナジウム系薄膜と同じ側、又はその反対側、に配置しても良い。反対側に配置する場合、例えば、通電によって下から耐熱基板が加熱され、その上に機能性薄膜が堆積される。   The present invention eliminates a major obstacle to the production of vanadium dioxide thermochromic-related automatic light control glass by indirect heating, so that the present invention is a new and energy-saving large-scale. There is a great possibility that it can be immediately applied as a new production technology of light control glass that makes it possible to manufacture comfortable window glass. Moreover, in this invention, you may arrange | position the transparent conductive thin film for electric heating on either side of a heat-resistant board | substrate, ie, the same side as a vanadium dioxide type thin film, or the other side. When arrange | positioning on the opposite side, a heat-resistant board | substrate is heated from the bottom by electricity supply, for example, and a functional thin film is deposited on it.

続いて、本発明について図面に基づいて更に詳細に説明する。図1に、本発明の概略を示す。図中、1は透明導電体ターゲット、2は耐熱基板、3は透明導電体膜、4は金属電極ターゲット、5は金属電極膜、6は導電線、7は電源・温度制御部、8は酸化バナジウム成膜ターゲット、9は酸化バナジウム膜、10は酸化チタン成膜ターゲット、11は酸化チタン膜、を各々示す。   Next, the present invention will be described in more detail based on the drawings. FIG. 1 shows an outline of the present invention. In the figure, 1 is a transparent conductor target, 2 is a heat resistant substrate, 3 is a transparent conductor film, 4 is a metal electrode target, 5 is a metal electrode film, 6 is a conductive wire, 7 is a power source / temperature control unit, and 8 is an oxidation. A vanadium film formation target, 9 is a vanadium oxide film, 10 is a titanium oxide film formation target, and 11 is a titanium oxide film.

図1の1〜5の工程について説明すると、まず、耐熱基板2上に透明導電性膜(透明導電体膜3)を被膜する(工程1)。それは、例えば、二酸化バナジウム系機能性薄膜製品を形成するための成膜プロセスの一環として、耐熱基板2上に透明導電体膜3を汎用薄膜形成法により被膜することができるが、必要に応じて、予め適宜特性のある市販透明導電性基板等を直接使用することも可能である。   1 will be described. First, a transparent conductive film (transparent conductor film 3) is coated on the heat-resistant substrate 2 (step 1). For example, as a part of a film forming process for forming a vanadium dioxide functional thin film product, the transparent conductor film 3 can be coated on the heat resistant substrate 2 by a general-purpose thin film forming method. It is also possible to directly use a commercially available transparent conductive substrate having appropriate characteristics in advance.

次に、通電をスムースにするために、透明導電性膜の上にバスバー電極等として金属電極膜(金属電極膜5)を作製する(工程2)。この場合、抵抗値調節や均一発熱のために、線状や条状の導電性金属膜等を適宜設けることができる。電極を通電線により外部電源及び温度制御部と電気的に接続する(工程3)。尚、その電気的接続が、成膜が終わる段階で離脱できるもの(脱着式)とし、次のプロセスへ基板の移動ができるものとする。   Next, in order to make energization smooth, a metal electrode film (metal electrode film 5) is produced as a bus bar electrode or the like on the transparent conductive film (step 2). In this case, a linear or strip-like conductive metal film or the like can be appropriately provided for adjusting the resistance value and uniform heat generation. The electrode is electrically connected to the external power source and the temperature control unit through the electric wire (step 3). It is assumed that the electrical connection can be detached at the stage of film formation (detachable) and the substrate can be moved to the next process.

外部電源・温度制御部により透明導電体膜を通電加熱し、所定基板温度に保持する。所定温度に達した透明導電体下地膜の上に二酸化バナジウム系膜を形成する。電気的接続を離脱し、引き続き、他機能性膜を形成する(工程4)。基板の搬送により連続成膜可能である。更に、本発明のプロセスによって作製される多機能自動調熱ガラスの例を説明すると、耐熱基板上に、まず、スパッタ法によりITO透明導電体膜を形成し、それを通電加熱することにより基板温度を上げ、二酸化バナジウム系薄膜を形成する。引き続き、酸化チタン薄膜を形成し、図1に図示される多機能自動調熱ガラス(工程5)、とする(電極部は省略)。   The transparent conductor film is energized and heated by an external power source / temperature control unit, and maintained at a predetermined substrate temperature. A vanadium dioxide-based film is formed on the transparent conductor base film that has reached a predetermined temperature. The electrical connection is disconnected, and another functional film is subsequently formed (step 4). Continuous film formation is possible by transporting the substrate. Further, an example of a multifunctional automatic heat control glass produced by the process of the present invention will be described. First, an ITO transparent conductor film is formed on a heat-resistant substrate by a sputtering method, and the substrate temperature is determined by energization heating. To form a vanadium dioxide thin film. Then, a titanium oxide thin film is formed, and it is set as the multifunctional automatic heat control glass (process 5) illustrated by FIG. 1 (an electrode part is abbreviate | omitted).

形成された多機能自動調熱ガラスは、以下のように、複数機能的に機能する。例えば、1)紫外線遮断、2)可視光透過、3)太陽熱自動制御(夏遮断、冬透過、気温で自動切り替え又は通電加熱により手動制御)、4)赤外反射で高断熱、5)光触媒性、などが例示される。また、本発明では、通電加熱のための透明導電性薄膜を、耐熱基板の機能性薄膜の反対側に配置しても良い(工程4−a)。すなわち、透明導電性薄膜を通電加熱で発熱させ、加熱された耐熱基板の反対側に二酸化バナジウム系薄膜等を形成する。   The formed multifunctional automatic heat control glass functions in a plurality of functions as follows. For example, 1) UV blocking, 2) Visible light transmission, 3) Solar thermal control (summer blocking, winter transmission, automatic switching by temperature or manual control by current heating), 4) High thermal insulation by infrared reflection, 5) Photocatalytic properties , Etc. are exemplified. Moreover, in this invention, you may arrange | position the transparent conductive thin film for electric heating on the other side of the functional thin film of a heat-resistant board | substrate (process 4-a). That is, the transparent conductive thin film is heated by energization heating, and a vanadium dioxide thin film or the like is formed on the opposite side of the heated heat-resistant substrate.

引き続き、本発明において、二酸化バナジウム系薄膜に基づく多機能自動調熱ガラス及びその新規光学特性制御法について、図2で説明する。その場合、図の左側に示す多機能自動調熱ガラス構造において、二酸化バナジウム系薄膜の熱ヒステリシスが大きいことを特徴とし、図2右側のように、その幅(ΔT)が10℃以上であることが望まれる。図中、2は耐熱基板、3は透明導電体膜、5は金属電極、9は二酸化バナジウム膜、11は酸化チタン膜、6は導電線、13は電源・温度制御部、Tは昇温時金属相になる温度、Tは半導体相に戻る温度、ΔTは温度ヒステリシス、である。 Subsequently, in the present invention, a multifunctional automatic heat control glass based on a vanadium dioxide thin film and a novel optical property control method thereof will be described with reference to FIG. In that case, the multi-function automatic heat control glass structure shown on the left side of the figure is characterized in that the thermal hysteresis of the vanadium dioxide thin film is large, and its width (ΔT) is 10 ° C. or more as shown on the right side of FIG. Is desired. In the figure, 2 is a heat-resistant substrate, 3 is a transparent conductor film, 5 is a metal electrode, 9 is a vanadium dioxide film, 11 is a titanium oxide film, 6 is a conductive wire, 13 is a power source / temperature control unit, and T 1 is a temperature rise. temperature at which when the metal phase, T 2 is the temperature to return to the semiconductor phase, [Delta] T is the temperature hysteresis.

夏の場合、自然熱又は電源・温度制御部13により、透明導電体膜を通電加熱し、二酸化バナジウム系薄膜を金属相への転移温度(T)以上に加熱し、金属特性を持たせる。系の二酸化バナジウム系薄膜に大きな熱ヒステリシスを持たせれば、通電加熱を止めても半導体相への転移温度(T)まで温度が下がらなければ金属特性が保持される。夜に降温しても又は通電を止めても、調熱膜のヒステリシス特性により金属特性を保つ。すなわち、一旦通電加熱して金属特性を持たせたガラスが、通電を止めても(夜など)温度がTまで下がらない場合(例えば、昼間の車窓ガラスや西向きのビルガラス等)、常に過剰の日射や外部の輻射熱を反射することになり、常に通電しなくても、快適さと省エネルギー性が保たれる。 In the summer, the transparent conductor film is energized and heated by natural heat or the power source / temperature control unit 13, and the vanadium dioxide thin film is heated to a temperature higher than the transition temperature (T 1 ) to the metal phase so as to have metallic properties. If the vanadium dioxide thin film of the present invention has a large thermal hysteresis, the metal characteristics are maintained if the temperature does not decrease to the transition temperature (T 2 ) to the semiconductor phase even when the energization heating is stopped. Even if the temperature is lowered at night or the power supply is stopped, the metal characteristics are maintained by the hysteresis characteristics of the heat control film. That is, once the glass which gave a metallic characteristic by energization heating, if even deenergized (such as night) temperature does not drop to T 2 (e.g., daytime car window glass and westward building glass), always excess Therefore, even if it is not always energized, comfort and energy saving are maintained.

冬の場合、温度が概ねTより下回る(Tを超えない)ので、常に半導体特性となり日射熱を透過させる。また、赤外反射特性により断熱性が優れ、室内の暖房熱が保たれる。他の季節は、必要に応じて通電加熱により調節可能である。多機能自動調熱ガラスの光学特性制御法において、通電加熱のための透明導電体薄膜及び通電電極が設けられること、また、二酸化バナジウム系薄膜に熱ヒステリシスの大きいものを使うこと、が重要である。尚、本発明において、基板を加熱する構造は、製品として既設の構造を使用できることは言うまでもない。 In winter, the temperature is generally lower than T 2 (not exceeding T 1 ), so that it always has semiconductor characteristics and allows solar heat to pass through. In addition, the thermal insulation is excellent due to the infrared reflection characteristics, and the indoor heating heat is maintained. Other seasons can be adjusted by electrical heating as needed. In the optical property control method of multifunctional automatic temperature control glass, it is important to provide a transparent conductor thin film and a conductive electrode for current heating, and to use a vanadium dioxide thin film with a large thermal hysteresis. . In the present invention, it goes without saying that an existing structure can be used as a product for heating the substrate.

更に、場合によっては、図2の左の構造にある電源・温度制御部を省略することもできる。すなわち、夏に炎天下の車窓や日当たりのビル窓は、その温度が容易にTを上回り、金属特性により日射を反射する。冬ではその温度が常にTを下回るので、半導体特性を示す。すなわち、本発明では、二酸化バナジウム系薄膜の熱ヒステリシスを大きくすることで、多機能自動調熱ガラスの光学特性を制御することができる。 Further, in some cases, the power supply / temperature control unit in the left structure of FIG. 2 can be omitted. Namely, sun-heated car window and day building windows in summer, the temperature is easily greater than T 1, to reflect solar radiation by the metal properties. Since the temperature in winter is always less than T 2, semiconductor characteristics. That is, in the present invention, the optical characteristics of the multifunctional automatic heat control glass can be controlled by increasing the thermal hysteresis of the vanadium dioxide thin film.

本発明により、次のような効果が奏される。
(1)二酸化バナジウム系サーモクロミック薄膜を効率良く形成することを可能とする透明導電性薄膜を用いた新しい基板加熱方法を提供できる。
(2)透明導電性薄膜を効率良く利用することで基板の余計な構造変化がほとんどない。
(3)透明導電体薄膜自身が発熱体となる直接加熱方式であり、省電力となる。
(4)透明導電性薄膜表面からの発熱で基板の加熱時間が短縮される。
(5)膜の直接通電加熱により余分の基板加熱のスペースを必要せず、既設の成膜設備の利用が可能である。
(6)加熱のための電気的接続が脱着式で簡単であり、連続生産に好適である。
(7)通電加熱の構造はそのまま多機能自動調光ガラス製品の光学特性の制御に使える。
(8)二酸化バナジウム系薄膜の熱ヒステリシスの活用により光学特性の制御方法を確立できる。
The present invention has the following effects.
(1) A new substrate heating method using a transparent conductive thin film capable of efficiently forming a vanadium dioxide thermochromic thin film can be provided.
(2) There is almost no extra structural change of the substrate by efficiently using the transparent conductive thin film.
(3) This is a direct heating method in which the transparent conductor thin film itself becomes a heating element, which saves power.
(4) The heating time of the substrate is shortened by heat generation from the surface of the transparent conductive thin film.
(5) No extra substrate heating space is required by direct current heating of the film, and the existing film forming equipment can be used.
(6) Electrical connection for heating is detachable and simple, and suitable for continuous production.
(7) The structure of the electric heating can be used as it is for controlling the optical characteristics of the multifunctional automatic light control glass product.
(8) A method for controlling the optical characteristics can be established by utilizing the thermal hysteresis of the vanadium dioxide thin film.

次に、本発明を実施例に基づいて具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

酸化バナジウムの薄膜作製に、汎用型マグネトロンスパッタ装置を用いた。当該装置には、カソード3基まで配置でき、それぞれに高周波電源又は直流電源で任意に電力制御ができる。基板が回転でき、基板温度が室温から800℃まで精密に設定できる。   A general-purpose magnetron sputtering apparatus was used to make a thin film of vanadium oxide. In this apparatus, up to three cathodes can be arranged, and power control can be arbitrarily performed with a high-frequency power source or a DC power source, respectively. The substrate can be rotated and the substrate temperature can be precisely set from room temperature to 800 ° C.

本実施例では、真空系を2.5×10−6Pa以下に排気した後、アルゴンガス、又はアルゴンガス及び酸素ガスを導入して成膜を行った。基板温度を室温から600℃までの範囲に設定し、基板として、石英ガラス、シリコン単結晶、サファイア、耐熱ガラスを使用した。ターゲットは直径5センチのものを使い、約15センチ離れた基板に薄膜を堆積した。図3において、1はガラス(10×25mm)、2は透明導電膜(FTO/ITO)、3はAg電極膜、4は熱電対、5は導電線、6は外部電源・温度制御部、である。 In this example, after the vacuum system was evacuated to 2.5 × 10 −6 Pa or less, film formation was performed by introducing argon gas or argon gas and oxygen gas. The substrate temperature was set in the range from room temperature to 600 ° C., and quartz glass, silicon single crystal, sapphire, and heat-resistant glass were used as the substrate. A target having a diameter of 5 cm was used, and a thin film was deposited on a substrate about 15 cm away. In FIG. 3, 1 is glass (10 × 25 mm), 2 is a transparent conductive film (FTO / ITO), 3 is an Ag electrode film, 4 is a thermocouple, 5 is a conductive wire, and 6 is an external power source / temperature control unit. is there.

基板の大きさは1センチ角のものと2.5センチ角のものを使った。実験装置の概略を図3に示す。ターゲットにITO、酸化バナジウム及び銀を使った。市販NESAガラス(10×25×1mm、透明導電膜としてFTOをCVDで約400nm被膜)を基板とした。まず、Agをスパッタ法によりマスクされた基板の両端に、図3右のように、Ag電極膜を作製した。両電極間の抵抗値が約30Ωと測定された。   The size of the substrate used was 1 cm square and 2.5 cm square. An outline of the experimental apparatus is shown in FIG. ITO, vanadium oxide and silver were used as targets. A commercially available NESA glass (10 × 25 × 1 mm, FTO as a transparent conductive film with a thickness of about 400 nm by CVD) was used as a substrate. First, an Ag electrode film was formed on both ends of a substrate masked with Ag by sputtering as shown in the right of FIG. The resistance value between both electrodes was measured to be about 30Ω.

次に、電極を通電端子により真空外部にある電源及び温度制御部と接続し、通電加熱により基板加熱を行った。基板表面に熱電対を接触させ、温度測定及び制御を行った。外部の直流電源からの電力を20V/0.65A(13W)印加し、約1分間で基板温度が350℃まで上昇した。温度自動制御装置により基板温度を350℃に保持し、スパッタ法により二酸化バナジウム薄膜を約70nm作製した。FTO導電膜は、基板加熱に使用される他、二酸化バナジウムと同じ構造を持つことにより構造テンプレートとして、VO薄膜が350℃の基板温度で再現良く作製できた。 Next, the electrode was connected to a power source and a temperature control unit outside the vacuum through an energization terminal, and the substrate was heated by energization heating. A thermocouple was brought into contact with the substrate surface, and temperature measurement and control were performed. Electric power from an external DC power source was applied at 20 V / 0.65 A (13 W), and the substrate temperature rose to 350 ° C. in about 1 minute. The substrate temperature was maintained at 350 ° C. by an automatic temperature controller, and a vanadium dioxide thin film was formed to a thickness of about 70 nm by sputtering. In addition to being used for substrate heating, the FTO conductive film had the same structure as vanadium dioxide, and as a structural template, a VO 2 thin film could be produced with good reproducibility at a substrate temperature of 350 ° C.

図3の装置を用いて、市販石英ガラス(10×10×0.5mm)を基板として酸化バナジウムの薄膜の形成を行った。透明導電体薄膜として、ITOターゲットを使い、基板温度100℃とし、ITO薄膜を約100nm作製した。引き続き、Ag電極膜を作製した。基板の面抵抗値は約260Ω程度と測定された。   Using the apparatus of FIG. 3, a thin film of vanadium oxide was formed using commercially available quartz glass (10 × 10 × 0.5 mm) as a substrate. As the transparent conductor thin film, an ITO target was used, the substrate temperature was set to 100 ° C., and an ITO thin film was formed to about 100 nm. Subsequently, an Ag electrode film was produced. The surface resistance value of the substrate was measured to be about 260Ω.

通電加熱により基板温度を上昇させ、電力を25V/0.25A(6.25W)で印加し、約2分間で基板温度が350℃まで上昇した。ITOの形成温度が100℃と低いため、作製時点の抵抗値が260Ωとやや高いが、加熱通電によりアニール効果でやや抵抗値が下がった。350℃に保持したITO薄膜上にVOを50nm作製し、引き続き酸化チタン薄膜を160nm作製した。 The substrate temperature was raised by energization heating, electric power was applied at 25 V / 0.25 A (6.25 W), and the substrate temperature rose to 350 ° C. in about 2 minutes. Since the formation temperature of ITO is as low as 100 ° C., the resistance value at the time of production is slightly high as 260Ω, but the resistance value is slightly lowered due to the annealing effect due to heating energization. 50 nm of VO 2 was produced on the ITO thin film maintained at 350 ° C., and then a 160 nm titanium oxide thin film was produced.

実施例1及び2で作製されたサンプルの光学特性及び転移特性を測定するために、サンプルを加熱可能なサンプルステージに載せて、分光光度計により透過率及びその温度変化を測定した。半導体相の透過率を20℃、金属相のそれを80℃において測定した。その結果を図4に示す。図4において、(a)はNESAガラス上の二酸化バナジウム、(b)はITO被膜ガラス上の二酸化バナジウム、の薄膜系光学特性測定値を示す。明らかに両者とも温度による透過率の変化が確認された。尚、図4(a)の分光透過率の赤外部分が金属相及び半導体相ともに低い値を示すのは、FTOで被膜した透明導電性基板が赤外領域に高い反射率を持つことで透過率が低下したためと解釈される。   In order to measure the optical properties and transition properties of the samples prepared in Examples 1 and 2, the sample was placed on a heatable sample stage, and the transmittance and its temperature change were measured with a spectrophotometer. The transmittance of the semiconductor phase was measured at 20 ° C. and that of the metal phase at 80 ° C. The result is shown in FIG. In FIG. 4, (a) shows the measured values of thin film optical properties of vanadium dioxide on NESA glass, and (b) shows vanadium dioxide on ITO-coated glass. Obviously, both showed changes in transmittance with temperature. Note that the infrared portion of the spectral transmittance in FIG. 4A shows a low value for both the metal phase and the semiconductor phase because the transparent conductive substrate coated with FTO has a high reflectance in the infrared region. It is interpreted that the rate has declined.

比較例
実施例1と全く同じ条件で、基板ホルダーに透明導電膜のない石英ガラスを置き、同じスパッタ条件で二酸化バナジウム薄膜を作製した。しかし、それを分光光度計で透過率及びその温度変化を調べたところ、温度による透過率の変化が見られなかった。基板加熱しない場合、VO相の形成が不可能であることが裏付けられたと同時に、本発明の有効性が証明された。
Comparative Example Quartz glass without a transparent conductive film was placed on a substrate holder under exactly the same conditions as in Example 1, and a vanadium dioxide thin film was produced under the same sputtering conditions. However, when the transmittance and its temperature change were examined with a spectrophotometer, no change in transmittance due to temperature was found. In the absence of substrate heating, it was proved that the formation of the VO 2 phase was impossible, and at the same time, the effectiveness of the present invention was proved.

本発明は、二酸化バナジウム系薄膜の製法及び製品に係るものであり、本発明により、住宅や建築物及び移動体の窓に、環境温度の変化だけで自動的に日射を調節し、なお且つ高い熱線反射機能を持つ高断熱自動調熱ガラスの製造方法における、二酸化バナジウム系薄膜の形成に必要とされる基板加熱方法であって、透明導電性薄膜を利用した新しい基板の加熱方法を提供することができる。調熱ガラスの基本構造に透明導電物質を導入することで、熱線反射効果を高め、透明導電物質が二酸化バナジウム薄膜の形成を促進することが可能となる。更に、本発明では、その透明導電性薄膜活用することで、基板加熱を簡単で効率良く行うこと、及び形成された調熱ガラス構造を自動だけでなく手動でも制御すること、ができる。   The present invention relates to a manufacturing method and a product of a vanadium dioxide-based thin film. According to the present invention, solar radiation is automatically adjusted only by a change in environmental temperature in a house, a building, and a moving body window, and is high. To provide a new substrate heating method using a transparent conductive thin film, which is a substrate heating method required for forming a vanadium dioxide-based thin film in a manufacturing method of a highly heat-insulating automatic heat control glass having a heat ray reflection function. Can do. By introducing the transparent conductive material into the basic structure of the heat control glass, the heat ray reflection effect is enhanced, and the transparent conductive material can promote the formation of the vanadium dioxide thin film. Furthermore, in the present invention, by utilizing the transparent conductive thin film, substrate heating can be performed easily and efficiently, and the formed heat-control glass structure can be controlled not only automatically but also manually.

本発明により、画期的な基板加熱方法を提供することが可能となる。二酸化バナジウム系自動調熱ガラスの製法における幾つかの課題が解決され、二酸化バナジウム系自動調熱ガラスの実用化に向けて大きく前進させることができる。本発明は、紫外線遮断機能、自動調光遮熱機能、高断熱機能、可視光透過機能、更に、セルフクリーニングなどの機能に加えて、建築物や自動車など移動体に、省エネルギー、健康快適に最も好適な二酸化バナジウム系薄膜を効率良く形成することが可能な基板加熱技術を提供するものとして、建築産業その他の産業界への適用が大いに期待できる。   According to the present invention, it is possible to provide an epoch-making substrate heating method. Several problems in the manufacturing method of vanadium dioxide-based automatic heat control glass have been solved, and a great progress can be made toward the practical application of vanadium dioxide-based automatic heat control glass. In addition to functions such as UV blocking function, automatic light control and heat blocking function, high heat insulation function, visible light transmission function, and self-cleaning, the present invention is most effective for energy saving and health and comfort in moving objects such as buildings and automobiles. As a substrate heating technology capable of efficiently forming a suitable vanadium dioxide-based thin film, application to the construction industry and other industries can be greatly expected.

本発明の概略を示す説明図である。It is explanatory drawing which shows the outline of this invention. 多機能自動調熱ガラスの光学特性制御法の概略を示す説明図である。It is explanatory drawing which shows the outline of the optical characteristic control method of multifunctional automatic heat control glass. 実験装置及び実施例の概略を示す説明図である。It is explanatory drawing which shows the outline of an experimental apparatus and an Example. 実施例の薄膜系の光学特性の測定値を示す。The measured value of the optical characteristic of the thin film type | system | group of an Example is shown.

Claims (15)

二酸化バナジウム系薄膜及び/又は二酸化バナジウム系薄膜を含む機能性製品を製造する方法において、(1)耐熱基板に透明導電性薄膜を配設した、透明導電性薄膜付きの耐熱基板を使用する、(2)二酸化バナジウム系薄膜形成時に、基板の加熱を上記透明導電性薄膜の通電加熱によって行う、ことを特徴とする二酸化バナジウム系薄膜及び/又は二酸化バナジウム系薄膜を含む機能性製品の製造方法。   In a method for producing a functional product including a vanadium dioxide-based thin film and / or a vanadium dioxide-based thin film, (1) a heat-resistant substrate with a transparent conductive thin film provided with a transparent conductive thin film on a heat-resistant substrate is used ( 2) A method for producing a functional product including a vanadium dioxide thin film and / or a vanadium dioxide thin film, wherein the substrate is heated by energization heating of the transparent conductive thin film when the vanadium dioxide thin film is formed. 透明導電性薄膜を含む耐熱基板部と、電源及び温度制御装置を含む加熱部との間に、通電線により電気的接続を行って基板加熱を行う、請求項1記載の方法。   The method according to claim 1, wherein the substrate is heated by making an electrical connection between the heat-resistant substrate portion including the transparent conductive thin film and the heating portion including the power source and the temperature control device with a conductive wire. 上記基板部と加熱部との電気的接続が、脱着可能である、請求項1記載の方法。   The method according to claim 1, wherein the electrical connection between the substrate portion and the heating portion is detachable. 透明導電性薄膜が、(1)酸化物系(In、SnO、ZnO、CdO、TiO、CdIn、CdSnO、ZnSnO、又はIn−ZnO)、(2)窒化物系(TiN、ZrN、又はHfN)、(3)ホウ化物(LaB)、(4)金属系(Au、Ag、Pt、Cu、Rh、Pd、Al、又はCr)、の中から選択される少なくとも1種類以上からなる、請求項1記載の方法。 The transparent conductive thin film is (1) oxide-based (In 2 O 3 , SnO 2 , ZnO, CdO, TiO 2 , CdIn 2 O 4 , Cd 2 SnO 2 , Zn 2 SnO 4 , or In 2 O 3 —ZnO ), (2) Nitride (TiN, ZrN, or HfN), (3) Boride (LaB 6 ), (4) Metal (Au, Ag, Pt, Cu, Rh, Pd, Al, or Cr) The method according to claim 1, comprising at least one selected from the group consisting of: 透明導電性薄膜の発熱を均一に制御するために、電極及び/又は導電性金属が、線状又は条状に配置される、請求項1記載の方法。   The method according to claim 1, wherein the electrodes and / or the conductive metal are arranged in a line shape or a strip shape in order to uniformly control the heat generation of the transparent conductive thin film. 透明導電性薄膜が、通電加熱機能と、二酸化バナジウム系薄膜の形成を助ける構造テンプレート機能、二酸化バナジウム系薄膜を含む機能性製品の薄膜系の光学特性を調節する機能、又は赤外線反射による断熱機能の、複数的な機能を有する、請求項1記載の方法。   The transparent conductive thin film has a heating function, a structural template function that helps to form a vanadium dioxide thin film, a function to adjust the optical properties of thin film systems of functional products including vanadium dioxide thin films, or a heat insulation function by infrared reflection. The method of claim 1, having multiple functions. 透明導電性薄膜の通電加熱による基板表面温度が、50〜700℃の間に制御される、請求項1記載の方法。   The method according to claim 1, wherein the substrate surface temperature by energization heating of the transparent conductive thin film is controlled between 50 and 700 ° C. 透明導電性薄膜と耐熱基板との間、及び/又は透明導電性薄膜と二酸化バナジウム薄膜との間に、電気的、光学的、結晶学的、又は機械的特性を調節又は機能追加するために、中間層を設ける、請求項1記載の方法。   To adjust or add electrical, optical, crystallographic, or mechanical properties between the transparent conductive thin film and the heat-resistant substrate and / or between the transparent conductive thin film and the vanadium dioxide thin film, The method of claim 1, wherein an intermediate layer is provided. 二酸化バナジウム系薄膜の上に、特性調節又は機能追加のために、更に被膜を形成する、請求項1記載の方法。   The method according to claim 1, wherein a film is further formed on the vanadium dioxide-based thin film for property adjustment or function addition. 二酸化バナジウム系薄膜を含む機能性製品の薄膜系の光学的特性を、透明導電性薄膜の自然の温度変化又は通電加熱によって制御する、請求項1記載の方法。   The method according to claim 1, wherein the optical properties of the thin film system of the functional product including the vanadium dioxide thin film are controlled by a natural temperature change of the transparent conductive thin film or current heating. 二酸化バナジウム系薄膜が大きな熱ヒステリシス幅を持ち、その幅が少なくとも10℃以上である、請求項10記載の方法。   The method according to claim 10, wherein the vanadium dioxide-based thin film has a large thermal hysteresis width, and the width is at least 10 ° C. or more. 自然の温度変化又は通電加熱により、二酸化バナジウム系薄膜を転移温度以上に加熱して金属特性を持たせて、熱が除去されても大きなヒステリシス幅により金属特性が保たれるようにする、請求項10記載の方法。   The vanadium dioxide thin film is heated to a temperature higher than the transition temperature by a natural temperature change or current heating so as to have a metal characteristic, and the metal characteristic is maintained by a large hysteresis width even when heat is removed. 10. The method according to 10. 自然の温度変化又は強制冷却により、二酸化バナジウム系薄膜を転移温度以下に冷やして半導体特性を持たせて、熱が加えられても大きなヒステリシス幅により半導体特性が保たれるようにする、請求項10記載の方法。   11. The vanadium dioxide thin film is cooled to a transition temperature or lower by natural temperature change or forced cooling so as to have semiconductor characteristics, so that the semiconductor characteristics are maintained with a large hysteresis width even when heat is applied. The method described. 二酸化バナジウム系薄膜及び/又は二酸化バナジウム系薄膜を含む機能性製品の二酸化バナジウム系薄膜を形成するための耐熱基板であって、耐熱基板に透明導電性薄膜を配設した、透明導電性薄膜付きの耐熱基板と、上記透明導電性薄膜に通電して電気的に加熱する加熱手段が内設又は外設されていることを特徴とする耐熱基板。   A heat resistant substrate for forming a vanadium dioxide thin film of a functional product including a vanadium dioxide thin film and / or a vanadium dioxide thin film, wherein the transparent conductive thin film is provided on the heat resistant substrate. A heat-resistant substrate comprising a heat-resistant substrate and a heating means for electrically heating the transparent conductive thin film by energizing the transparent conductive thin film. 基板表面に均一な表面抵抗の透明導電膜を設けて、発熱分布を均一に制御できるようにした、請求項14記載の耐熱基板。   The heat resistant substrate according to claim 14, wherein a transparent conductive film having a uniform surface resistance is provided on the substrate surface so that the heat generation distribution can be controlled uniformly.
JP2006275814A 2006-10-06 2006-10-06 Manufacturing method and product of vanadium dioxide thin film Expired - Fee Related JP4899228B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006275814A JP4899228B2 (en) 2006-10-06 2006-10-06 Manufacturing method and product of vanadium dioxide thin film
PCT/JP2007/069225 WO2008044531A1 (en) 2006-10-06 2007-10-01 Process for producing vanadium dioxide thin film and product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006275814A JP4899228B2 (en) 2006-10-06 2006-10-06 Manufacturing method and product of vanadium dioxide thin film

Publications (2)

Publication Number Publication Date
JP2008094642A JP2008094642A (en) 2008-04-24
JP4899228B2 true JP4899228B2 (en) 2012-03-21

Family

ID=39282740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006275814A Expired - Fee Related JP4899228B2 (en) 2006-10-06 2006-10-06 Manufacturing method and product of vanadium dioxide thin film

Country Status (2)

Country Link
JP (1) JP4899228B2 (en)
WO (1) WO2008044531A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101127607B1 (en) 2009-11-20 2012-03-22 삼성에스디아이 주식회사 glass coated thermochromic layer with electric conductive layer
KR101202335B1 (en) 2010-07-27 2012-11-16 삼성에스디아이 주식회사 Thermochromic Smart Window and Method of Manufacturing the Same
CN102351431B (en) * 2011-06-22 2013-03-13 哈尔滨工业大学 Self-assembly method for air-water interface vanadium oxide nano film
JP2013077508A (en) * 2011-09-30 2013-04-25 Covalent Materials Corp Planar heater
KR20140001541A (en) * 2012-06-27 2014-01-07 삼성코닝정밀소재 주식회사 Manufacturing method of thermochromic window
KR101367828B1 (en) 2012-07-16 2014-02-27 삼성코닝정밀소재 주식회사 Method for manufacturing thermochromic window
CN102785415A (en) * 2012-07-26 2012-11-21 中国科学技术大学 Vanadium-dioxide-based composite film, transparent structure comprising same and application of transparent structure
KR101417957B1 (en) 2013-05-13 2014-07-09 코닝정밀소재 주식회사 Thermochromic window and manufacturing method thereof
JP6948052B2 (en) * 2016-11-25 2021-10-13 国立研究開発法人宇宙航空研究開発機構 Spacecraft
KR102559753B1 (en) * 2018-11-01 2023-07-27 삼성전자주식회사 Cooking apparatus
CN115064679B (en) * 2022-07-04 2024-04-23 佛山科学技术学院 Vanadium oxide micron rod cluster and preparation method and application thereof
WO2024040429A1 (en) * 2022-08-23 2024-02-29 中国科学院深圳先进技术研究院 Electromagnetic shielding composite material with temperature response characteristic, and preparation method therefor and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2965430B2 (en) * 1993-03-23 1999-10-18 松下電器産業株式会社 Light control body and control method thereof
AU4505899A (en) * 1998-06-03 1999-12-20 Bruno K. Meyer Thermochromic coating
JP3947835B2 (en) * 1999-03-26 2007-07-25 旭硝子株式会社 Thin film manufacturing method
JP2003176154A (en) * 2001-12-06 2003-06-24 Asahi Glass Co Ltd Electric-heating glass
JP4370396B2 (en) * 2002-04-22 2009-11-25 独立行政法人産業技術総合研究所 Multifunctional automatic light control insulation glass and air conditioning method
JP2004306025A (en) * 2003-03-25 2004-11-04 Asahi Glass Co Ltd Resin window for vehicle
JP4098781B2 (en) * 2005-01-24 2008-06-11 株式会社北里サプライ Transparent heating device
JP5147034B2 (en) * 2005-03-17 2013-02-20 独立行政法人産業技術総合研究所 Automatic thermal color-harmonic shading glass and manufacturing method

Also Published As

Publication number Publication date
JP2008094642A (en) 2008-04-24
WO2008044531A1 (en) 2008-04-17

Similar Documents

Publication Publication Date Title
JP4899228B2 (en) Manufacturing method and product of vanadium dioxide thin film
JP4533996B2 (en) Highly heat insulating automatic light control glass and manufacturing method thereof
JP5147034B2 (en) Automatic thermal color-harmonic shading glass and manufacturing method
US8461495B2 (en) Heated glass panel frame with electronic controller and triac
Kang et al. Thermochromic properties and low emissivity of ZnO: Al/VO2 double-layered films with a lowered phase transition temperature
CN101626990B (en) Method for depositing a thin layer and product thus obtained
US5525430A (en) Electrically activated thermochromic optical shutters
Fallah et al. Substrate temperature effect on transparent heat reflecting nanocrystalline ITO films prepared by electron beam evaporation
JP2004004795A (en) Multifunctional automatic light control and heat insulating glass, and air conditioning method
JP6923671B2 (en) Pain with heatable TCO coating
Yang et al. Transmittance change with thickness for polycrystalline VO2 films deposited at room temperature
Raaif et al. The effect of Cu on the properties of CdO/Cu/CdO multilayer films for transparent conductive electrode applications
JP2023126975A (en) Energy control coating structures, devices, and methods of fabrication thereof
Warwick et al. Thermochromic vanadium dioxide thin films prepared by electric field assisted atmospheric pressure chemical vapour deposition for intelligent glazing application and their energy demand reduction properties
CN104602375A (en) Thermal sensitive ceramic electrically heated glass and preparation method thereof
Lee et al. Highly thermostable ultrathin planar Ag transparent heaters
Li et al. Enhancing overall performances of Cu/Ag/AZO multilayer films for transparent heaters via laser/furnace step-by-step annealing mode
KR20200037547A (en) Planar-type heating film and manufacturing method thereof
Semenova et al. Improvement of parameters and conditions for magnetron sputtering of WO3 layers to enhance their electrochromic performances
Kim et al. Characteristics of ITO/Ag/ITO hybrid layers prepared by magnetron sputtering for transparent film heaters
KR102477761B1 (en) Transparent heating element having high flexibility and heating heater including the same
KR20220088543A (en) Transparent Heater using Solar Cell, and Manufacturing Method Thereof
Haacke Materials for transparent heat mirror coatings
CN204408653U (en) Thermal sensitive ceramics electrically heated glass structure
KR20240083387A (en) electrochromic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111217

R150 Certificate of patent or registration of utility model

Ref document number: 4899228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees