JP4898005B2 - Reactor control rod - Google Patents

Reactor control rod Download PDF

Info

Publication number
JP4898005B2
JP4898005B2 JP2001006142A JP2001006142A JP4898005B2 JP 4898005 B2 JP4898005 B2 JP 4898005B2 JP 2001006142 A JP2001006142 A JP 2001006142A JP 2001006142 A JP2001006142 A JP 2001006142A JP 4898005 B2 JP4898005 B2 JP 4898005B2
Authority
JP
Japan
Prior art keywords
control rod
cladding tube
end plug
sleeve
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001006142A
Other languages
Japanese (ja)
Other versions
JP2002214378A (en
Inventor
敏弘 押部
博美 栗山
澄夫 藤井
省三 村上
実 室田
考文 内藤
博人 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Electric Power Co Inc
Kansai Electric Power Co Inc
Kyushu Electric Power Co Inc
Japan Atomic Power Co Ltd
Shikoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Hokkaido Electric Power Co Inc
Kansai Electric Power Co Inc
Kyushu Electric Power Co Inc
Japan Atomic Power Co Ltd
Shikoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Electric Power Co Inc, Kansai Electric Power Co Inc, Kyushu Electric Power Co Inc, Japan Atomic Power Co Ltd, Shikoku Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Hokkaido Electric Power Co Inc
Priority to JP2001006142A priority Critical patent/JP4898005B2/en
Publication of JP2002214378A publication Critical patent/JP2002214378A/en
Application granted granted Critical
Publication of JP4898005B2 publication Critical patent/JP4898005B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は原子炉制御棒に関し、特に加圧水型原子炉の制御棒の構造に関する。
【0002】
【従来の技術】
現在、広く使用されている加圧水型原子炉において、原子炉の炉内核反応を制御するために使用されている制御棒集合体乃至制御棒クラスタの代表的構造は、図7に示すようになっている。これを概説すると、制御棒クラスタ1は、主としてスパイダ構造体3と複数の制御棒5とから構成されている。スパイダ構造体3のハブ部材7から複数のベーン部材9が放射状に延出している。このベーン部材9の先端部又は中間部にフィンガ部11が一体的に形成されていて、これに制御棒5の上端が個別に連結されている。このような複数の制御棒5は互いに平行に垂下されており、原子炉炉心を構成する燃料集合体(図8)の制御棒案内シンブルの中に挿入される。
【0003】
図8に一般的な燃料集合体の上部の構造が示されている。図8を参照して燃料集合体13の構造を概説すると、複数の互いに平行に配置された制御棒案内シンブル15の上端に、上部ノズル17が固定されている。通常3乃至5メートル程度の長い案内シンブル15の下端には、図示しない下部ノズルが連結されている。このような案内シンブル15には、複数の支持格子19(1個のみ図示)が長手方向に間隔を置いて取り付けられ、その多数の格子開口に多数の燃料棒21が個別に挿通され支持されている。上部ノズル17は箱形の構造物であり、上端面にホールドダウンばね23が取り付けられると共に、図示しない底板部分には冷却材用流れ孔と、案内シンブル取付穴が所定の配置で複数設けられている。
【0004】
図9に従来の制御棒5の代表的な構造が示されている。図示するように、制御棒5は、前述のベーン部材9のフィンガ部11への連結部(図示しない)を持つ上部端栓25、下部端栓27、これらに両端が密封溶接されたステンレス鋼製長尺被覆管29、その中に挿入された中性子吸収材としての銀・インジュウム・カドミウム(Ag−In−Cd)合金棒31、33及び押さえばね35を有している。そして、図示はしていないが、被覆管29の先端部以外の外面には、耐摩性を向上するためクロムメッキが施されている。
【0005】
而して、最近二酸化ウラン燃料に代えて混合酸化物燃料所謂MOX燃料の使用が提唱されている。そして、これに適する制御棒が図10に示すハイブリッド型制御棒40として提案されている。ハイブリッド型制御棒40も全体的な構造は制御棒5と同様であり、同様な構造の上部端栓41、下部端栓43、ステンレス鋼製で相対的に厚肉の長尺被覆管45及び押さえばね47を有している。その被覆管45の中には、下側に銀・インジュウム・カドミウム合金棒48及び上側に炭化硼素ペレットの積重体49が中性子吸収体として入れられている。このようなハイブリッド型制御棒40は、炉心にMOX燃料が大量に装荷された時の必要な停止余裕を確保できると共に、1本当たりの制御棒価値が大きくなって通常型炉心においては必要な制御棒の本数又は制御棒クラスタの体数を削減できるなどのメリットがある。尚、被覆管45の外面のクロム鍍金も適宜行われている。
【0006】
【発明が解決しようとする課題】
前述した制御棒5を使用した従来の原子炉の運転管理においても、又提案中のハイブリッド型制御棒40を使用する場合においても、制御棒被覆管の摩耗損傷は定期的、或いは必要に応じて行われる検査・点検においてその有無が検査される。損傷が無ければその信頼性は確保されるのであるが、確率的にその破損損傷を零にすることには無理がある。そして、もし仮に被覆管45に損傷が発生して銀・インジウム・カドミウム合金棒あるいは炭化硼素ペレットを減損(削り取る或いは溶出)させると、制御棒の機能低下を招来する虞がある。更には、制御棒被覆管の検査は、その数が多く、且つ前述のように長いものであるので、検査に要する手数、費用も膨大なものとなっている。
従って、本発明の課題は、中性子吸収材として炭化硼素を使用しても、制御棒被覆管の損傷によってその機能低下が生じず、且つ検査を容易に且つ効率的にできるハイブリット型制御棒のような制御棒を提供するにある。
【0007】
【課題を解決するための手段】
如上の課題を解決するため、本発明によれば、原子炉制御棒は、両端が第1の上部端栓及び第1の下部端栓により密封された外側被覆管、該外側被覆管内の下部に設けられた上蓋付きスリーブ、前記外側被覆管内で前記スリーブに載設され、両端が第2の上部端栓及び第2の下部端栓により密封された内側被覆管、該内側被覆管の中に収容された炭化硼素ペレットの積重体と第1の銀・インジウム・カドミウム合金棒、これらの押さえばね、前記スリーブの中に収容された第2の銀・インジウム・カドミウム合金棒、及び、前記内側被覆管と前記第1の上部端栓との間に設けられた押さえばねを有し、外側被覆管の貫通摩耗損傷を容易に且つ効率的に検出できるよう前記第2の下部端栓の下面外周部と前記スリーブの上蓋の上面外周部とで円周溝が形成されていることを特徴とする。又、外側被覆管の全長に亘って外面にクロムメッキを施すのが耐摩耗性を向上するために好適であり、加えて、内側被覆管の外面にクロムメッキを施すのも、制御棒の外部(上部炉内構造物の制御棒案内管カード部等)からの摩耗軸方向に対して2重の防護となり、全体的な信頼性を更に向上する点で有効である。また、スリーブについても同様である。外側被覆管と円周溝とによって形成される空間内の水の有無は、超音波検査により検知されるが、この空間内に銀等の微粒子などを予め封入しておいて、原子炉冷却材中での存否をモニタリングしても早期損傷検出に有効である。
【0008】
【発明の実施の形態】
以下添付の図面を参照して本発明の実施形態を説明する。尚、全図に亙り、同一部分には同一符号を付すこととする。
図1乃至図3は、本発明に係る制御棒50を示している。これらの図において、制御棒50のステンレス鋼製被覆管51は、従来のものと同様な形状の上部端栓53及び下部端栓55と両端とが円周溶接37により接合されて閉じている。被覆管51の外表面には、適当なクロムメッキが施されている。なお、上部端栓53のスパイダ部材との連結部の図示は省略されている。一方、被覆管51と下部端栓55との連結部の構造が、特に図2に拡大されて明確に示されている。又、別の方法として、下部端栓55の上部の被覆管内挿入部に円周溝56を形成すると、後述するように漏洩検査を行う際により便となる。被覆管51の内部において、下部端栓55の上面に中性子吸収材である銀・インジウム・カドミウム合金棒(以下合金棒と略称する。)59が載って配置されている。そして、合金棒59は上蓋61付きのスリーブ63で囲まれ、スリーブ63と被覆管51とは間に空間65を画成している。
【0009】
スリーブ63の上蓋61の上にカプセル構造体67が載設され、更にはカプセル構造体67と上部端栓53の間にコイル状の押さえばね69が介装されており、これによりカプセル構造体67を下方のスリーブ63に押し付けている。カプセル構造体67は、被覆管51と同様な内側被覆管71及びこれの両端に円周溶接73によって密封接合された内側上部端栓75及び内側下部端栓77とから構成されており、その中に複数の炭化硼素(B4C)ペレット79と合金棒81が入れられている。図示するように、合金棒81が内側下部端栓77に載り、その上に炭化硼素ペレット79の積重体が載っている。そして最上の炭化硼素ペレット79と内側上部端栓75の間に螺旋状の内側押さえばね83が設けられ、これにより炭化硼素ペレット79の積重体と合金棒81とは下向きに押し付けられ、安定的に保持される。図示していないが、内側押さえばね83及び前述の押さえばね69は、C型クリップ等に代えることも可能である。下方のスリーブ63とカプセル構造体67の内側下部端栓77の隣接部分が図3に拡大して示されているが、本図でも明らかなように、前述の空間65は外側被覆管51と内側被覆管71との間にも延びている。尚、図4の(a)に示すように、スリーブ63の上蓋61の上面外周部及び内側下部端栓77の下面外周部にそれぞれテーパ部を形成して上蓋61a及び内側下部端栓77aとなし、円周溝85aを形成すると、濾水収容空間が大きくなって濾水有無確認の検査を行う際により便となる。また、テーパ形状でなく、溝形状として図4の(b)のように円周溝85bを形成してもよい。この円周溝の形状はこれにこだわらない。尚、被覆管51の下方先端部に摩耗やクラックの発生が懸念される場合は、特開平11−153685号公報及び特開平11−281784号公報記載の発明を適宜適用しても良い。
【0010】
上述の構成の制御棒50も制御棒クラスタに組み立てられて、従来のものと同様に原子炉容器の上蓋に設けられた制御棒駆動装置に連結されて使用される。制御棒クラスタは多数使用され、概念的には負荷調整用と非常時落下用(停止用)に分けられるが、制御棒50はいずれにも使用できる。現在の原子炉運転においては定格出力運転が大部分であるが、この場合には負荷調整用制御棒クラスタも炉心上方に引き上げられ、その下端部は炉心内に延びている。即ち、図1において、2点鎖線の横線X付近は、定格出力運転時の有効燃料部の上端付近を示し、又、2点鎖線の横線Y付近は負荷調整のために炉心内に入る、所謂調整範囲の上端を示しており、これより下方に合金棒59、81が位置することになる。これは、専ら炭化硼素ペレット79が、停止時に炉心内に入って機能することを示している。この炭化硼素ペレット79の積重体の長さと、合金棒59、81の合計長さの比の一例は、6対4である。
【0011】
原子炉運転の停止時に制御棒50は、炉心内に全挿入状態で使用されるが、炭化硼素ペレット79の中性子吸収能は大きいから、炉心が高燃焼度燃料(炉心寿命の初期において余剰反応度が大きい。)で構成されていても、中性子を十分吸収して炉内反応を安全に停止できる。又、内側押さえばね83の収容空間は、炭化硼素ペレット79から発生するヘリウムガスを収容して内圧上昇を緩和する。
一方、定格運転時の制御棒は、前述のように燃料集合体からある程度引き抜かれた位置にあり、1次冷却水の流体励振力により、制御棒と上部炉内構造物の制御棒案内管カード部等と干渉する。燃料集合体内に挿入されている制御棒先端付近も同様である。
【0012】
従って、上部炉内構造物の制御棒案内管カード部などと干渉する軸方向範囲を2重被覆管構造(カプセル構造)としている。一方で、制御棒の先端付近については照射を受けやすいので、先端付近の銀・インジウム・カドミウム合金棒のスェリングによる被覆管損傷モードもあるため、カプセル構造の中にカプセル構造の中にこの先端付近の合金棒を装填せず、スリーブで覆うこととしている。
そして、原子炉の運転に長らく使用されて、被覆管51に摩耗による貫通損傷が仮に発生して外部の水が侵入しても、炭化硼素ペレット51は健全なカプセル構造体67により囲繞されているから、水との接触反応及び溶出が防止される。また、前述の被覆管51の損傷による浸水乃至濾水は、被覆管51と内側被覆管71及びスリーブ63との間の空間65内を通って空間の大きい内側下部端栓77aとスリーブ上蓋61aとの円周溝85に溜まるから、この浸水の存在をこの軸方向位置に絞った超音波検査で検知することにより、外側の被覆管51の貫通摩耗損傷を容易に且つ効率的に検出することができる。従って、従来行われていた被覆管51の全面走査による損傷検査(摩耗深さの定量検査)に比し、本制御棒構造では検査時間を大幅に短縮し、検査効率を向上することができる。尚、空間65内に銀等の微粒子などを予め封入しておいて、原子炉冷却材中での存否をモニタリングしても早期損傷検出が可能となる。
【0013】
次に図5乃至図9を参照して本発明の改変実施形態を説明する。前述したように、図1の実施形態において、外側被覆管51の損傷は容易に検出されるのであるが、後述のように耐摩耗性を向上すれば、損傷の発生時期を遅らせることができる。図5及び図6において、制御棒90の機械的構造は前述の制御棒50とほぼ同じであり、被覆管51、カプセル構造体67の内側被覆管71及びスリーブ63の外面にそれぞれクロムメッキ91、93、95が施されている部分が異なる。クロムメッキ95は場合により省略しても良い。このように被覆管51、71などの外面に耐摩耗性を向上するクロムメッキを施すことにより、それらの摩耗損傷の進行を抑制することができる。クロムメッキの厚さは、コスト的には軸方向に一様にするのがよい。一方で、従来の使用経験などを考慮して、軸方向に一様な厚さとせず、外側被覆管51の下端(先端)付近から上方のメッキ厚さを適切に厚くすることで、制御棒の外側被覆管51の貫通損傷発生位置を制御棒先端に絞り、この部分の損傷検査を実施するだけでよいようにすれば、この方法でも検査は容易で且つ効率的となる。尚、この時の制御棒先端(下部端栓)の構造は図2のようなものが効果的である。
【0014】
【発明の効果】
以上説明したように、本発明によれば、炭化硼素ペレットなどの中性子吸収材は、被覆管の内側にあるカプセル構造体やスリーブの中に収容されているので、被覆管が摩耗損傷を生じても、これらの中性子吸収材は減損する(削り取られる或いは溶出する)ことがないのは勿論、先端の銀・インジウム・カドミウム合金棒のスェリングによる被覆管の損傷(クラック)による炭化硼素ペレットの溶出に配慮し、先端の吸収材はカプセル構造体内に装填せず、別のスリーブ内に装填させているので、摩耗以外の劣化モードに対しても配慮した構造である。そのような観点から、カプセル構造体とスリーブの軸方向長さは適切に設定(カプセル構造体の長さは上部炉内構造物の制御棒案内管カード部等との干渉位置をカバーし、且つ、照射は受けにくい)しているので、摩耗或いはスェリングの劣化モードに対して、信頼性の高い構造である。又、前述のように(カプセル構造体の長さは上部炉内構造物の制御棒案内管カード部等との干渉位置をカバーし、且つ、照射は受けにくい)被覆管検査の貫通摩耗有無の検査について、容易で且つ効率化が図れるような構造としている。
【図面の簡単な説明】
【図1】本発明の実施形態を示す短縮立断面図である。
【図2】図1中のII部を示す拡大部分立断面図である。
【図3】図1中のIII部を示す拡大部分立断面図である。
【図4】図1中のIII部に示す構造を部分的に改変した改変実施形態の部分立断面である。
【図5】図1の実施形態の一部を改変した別の改変実施形態の短縮立断面図である。
【図6】図5中のVI-VI線に沿う拡大平断面図である。
【図7】従来の制御棒から構成される制御棒クラスタを示す短縮立面図である。
【図8】制御棒が使用される原子炉炉心を形成する燃料集合体の部分図である。
【図9】従来の制御棒の構造を示す短縮立面図である。
【図10】従来の制御棒の別の構造を示す短縮立面図である。
【符号の説明】
50 制御棒
51 被覆管
53 上部端栓
55 下部端栓
56 円周溝
57 円周溶接
59 銀・インジウム・カドミウム合金棒
61、61a 上蓋
63 スリーブ
65 空間
67 カプセル構造体
69 押えばね
71 内側被覆管
73 円周溶接
75 内側上部端栓
77、77a 内側下部端栓
79 炭化硼素ペレット
81 銀・インジウム・カドミウム合金棒
83 内側押えばね
85a、85b 円周溝
91、93、95 クロムメッキ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reactor control rod, and more particularly to the structure of a control rod for a pressurized water reactor.
[0002]
[Prior art]
FIG. 7 shows a typical structure of a control rod assembly or a control rod cluster that is used to control the nuclear reaction in a reactor of a pressurized water reactor that is currently widely used. Yes. In summary, the control rod cluster 1 is mainly composed of a spider structure 3 and a plurality of control rods 5. A plurality of vane members 9 extend radially from the hub member 7 of the spider structure 3. A finger portion 11 is integrally formed at the tip or intermediate portion of the vane member 9, and the upper ends of the control rods 5 are individually connected thereto. A plurality of such control rods 5 hang down in parallel with each other and are inserted into the control rod guide thimble of the fuel assembly (FIG. 8) constituting the nuclear reactor core.
[0003]
FIG. 8 shows an upper structure of a general fuel assembly. Referring to FIG. 8, the structure of the fuel assembly 13 will be outlined. An upper nozzle 17 is fixed to the upper ends of a plurality of control rod guide thimbles 15 arranged in parallel to each other. A lower nozzle (not shown) is connected to the lower end of the long guide thimble 15 which is usually about 3 to 5 meters. A plurality of support grids 19 (only one is shown) are attached to such a guide thimble 15 at intervals in the longitudinal direction, and a number of fuel rods 21 are individually inserted into and supported by the plurality of grid openings. Yes. The upper nozzle 17 is a box-shaped structure. A hold-down spring 23 is attached to the upper end surface, and a plurality of flow holes for coolant and guide thimble attachment holes are provided in a predetermined arrangement on a bottom plate portion (not shown). Yes.
[0004]
FIG. 9 shows a typical structure of a conventional control rod 5. As shown in the figure, the control rod 5 is made of an upper end plug 25 having a connecting portion (not shown) to the finger portion 11 of the vane member 9 and a lower end plug 27, and stainless steel having both ends sealed and welded thereto. It has a long cladding tube 29, silver / indium / cadmium (Ag—In—Cd) alloy rods 31 and 33, and a presser spring 35 as neutron absorbers inserted therein. Although not shown, the outer surface of the cladding tube 29 other than the tip is chrome-plated to improve wear resistance.
[0005]
Thus, recently, it has been proposed to use a mixed oxide fuel, so-called MOX fuel, instead of uranium dioxide fuel. A control rod suitable for this is proposed as a hybrid control rod 40 shown in FIG. The overall structure of the hybrid control rod 40 is the same as that of the control rod 5, and the upper end plug 41, the lower end plug 43, the stainless steel relatively thick long cladding tube 45 and the presser having the same structure. A spring 47 is provided. In the cladding tube 45, a silver / indium / cadmium alloy rod 48 on the lower side and a stack 49 of boron carbide pellets on the upper side are placed as neutron absorbers. Such a hybrid type control rod 40 can secure a necessary stop margin when a large amount of MOX fuel is loaded into the core, and the value of one control rod is increased so that the control required in the normal type core is achieved. There is an advantage that the number of rods or the number of control rod clusters can be reduced. In addition, the chrome plating of the outer surface of the cladding tube 45 is also performed suitably.
[0006]
[Problems to be solved by the invention]
Even in the conventional nuclear reactor operation management using the control rod 5 described above and when the proposed hybrid control rod 40 is used, the wear damage of the control rod cladding tube is periodically or as required. The presence / absence is inspected in the inspection / inspection to be performed. If there is no damage, the reliability is ensured, but it is impossible to make the breakage damage stochastically zero. If the cladding tube 45 is damaged and the silver / indium / cadmium alloy rod or boron carbide pellet is depleted (scraped or eluted), the function of the control rod may be deteriorated. Furthermore, since the number of inspections of the control rod cladding tube is large and long as described above, the labor and cost required for the inspection are enormous.
Therefore, the problem of the present invention is to provide a hybrid control rod that can easily and efficiently be inspected even when boron carbide is used as a neutron absorber, and its function is not deteriorated due to damage to the control rod cladding tube. Is in providing a control rod.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, according to the present invention, a nuclear reactor control rod includes an outer cladding tube whose both ends are sealed by a first upper end plug and a first lower end plug, and a lower portion in the outer cladding tube. A sleeve with an upper cover provided, an inner covering tube mounted on the sleeve in the outer covering tube and sealed at both ends by a second upper end plug and a second lower end plug, and accommodated in the inner covering tube Stacked boron carbide pellets and first silver / indium / cadmium alloy rods, presser springs, second silver / indium / cadmium alloy rods housed in the sleeve, and the inner cladding tube And a pressing spring provided between the first upper end plug and the outer peripheral portion of the lower surface of the second lower end plug so that penetration wear damage of the outer cladding tube can be detected easily and efficiently. circle with the upper surface outer peripheral portion of the upper cover of the sleeve Wherein the groove is formed. In addition, it is preferable to apply chrome plating to the outer surface over the entire length of the outer cladding tube in order to improve wear resistance. In addition, chrome plating to the outer surface of the inner cladding tube can be performed on the outside of the control rod. This is double protection against the wear axis direction from the control rod guide tube card portion of the upper furnace internal structure, and is effective in further improving the overall reliability. The same applies to the sleeve. The presence or absence of water in the space formed by the outer cladding tube and the circumferential groove is detected by ultrasonic inspection. In this space, fine particles such as silver are encapsulated in advance, and the reactor coolant Even if the presence or absence is monitored, it is effective for early damage detection.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. In all the drawings, the same parts are denoted by the same reference numerals.
1 to 3 show a control rod 50 according to the present invention. In these drawings, the stainless steel cladding tube 51 of the control rod 50 is closed by joining the upper end plug 53 and the lower end plug 55 having the same shape as the conventional one and both ends by the circumferential weld 37. Appropriate chrome plating is applied to the outer surface of the cladding tube 51. In addition, illustration of the connection part with the spider member of the upper end plug 53 is abbreviate | omitted. On the other hand, the structure of the connecting portion between the cladding tube 51 and the lower end plug 55 is particularly clearly shown enlarged in FIG. As another method, if the circumferential groove 56 is formed in the insertion part in the cladding tube above the lower end plug 55, it becomes more convenient when performing a leak test as will be described later. Inside the cladding tube 51, a silver / indium / cadmium alloy rod (hereinafter abbreviated as an alloy rod) 59, which is a neutron absorber, is placed on the upper surface of the lower end plug 55. The alloy bar 59 is surrounded by a sleeve 63 with an upper lid 61, and a space 65 is defined between the sleeve 63 and the cladding tube 51.
[0009]
A capsule structure 67 is mounted on the upper cover 61 of the sleeve 63, and a coil-shaped holding spring 69 is interposed between the capsule structure 67 and the upper end plug 53, thereby the capsule structure 67. Is pressed against the lower sleeve 63. The capsule structure 67 is composed of an inner cladding tube 71 similar to the cladding tube 51, and an inner upper end plug 75 and an inner lower end plug 77 that are hermetically joined to both ends thereof by circumferential welding 73. A plurality of boron carbide (B 4 C) pellets 79 and alloy rods 81 are placed in the container. As shown in the figure, an alloy bar 81 is placed on the inner lower end plug 77, and a stack of boron carbide pellets 79 is placed thereon. A spiral inner pressure spring 83 is provided between the uppermost boron carbide pellet 79 and the inner upper end plug 75, whereby the stack of boron carbide pellets 79 and the alloy rod 81 are pressed downward and stably. Retained. Although not shown, the inner pressing spring 83 and the pressing spring 69 described above can be replaced with a C-type clip or the like. The adjacent portion of the lower sleeve 63 and the inner lower end plug 77 of the capsule structure 67 is shown in an enlarged manner in FIG. It also extends between the cladding tube 71. As shown in FIG. 4 (a), a taper portion is formed on the outer periphery of the upper surface of the upper cover 61 of the sleeve 63 and the outer surface of the lower surface of the inner lower end plug 77 to form the upper cover 61a and the inner lower end plug 77a. When the circumferential groove 85a is formed, the drainage storage space becomes larger, which is more convenient when performing a check for the presence or absence of drainage. Moreover, you may form the circumferential groove | channel 85b not as a taper shape but as a groove shape like FIG.4 (b). The shape of this circumferential groove is not particular. In the case where there is a concern about the occurrence of wear or cracks at the lower tip of the cladding tube 51, the inventions described in Japanese Patent Laid-Open Nos. 11-15385 and 11-281784 may be applied as appropriate.
[0010]
The control rod 50 having the above-described configuration is also assembled into a control rod cluster, and is used by being connected to a control rod driving device provided on the upper lid of the reactor vessel in the same manner as the conventional one. Many control rod clusters are used, which are conceptually divided into load adjustment and emergency drop (stop), but the control rod 50 can be used for both. In the current nuclear reactor operation, the rated power operation is the most, but in this case, the load adjustment control rod cluster is also pulled up above the core, and its lower end extends into the core. That is, in FIG. 1, the vicinity of the two-dot chain line horizontal line X indicates the vicinity of the upper end of the active fuel portion during rated output operation, and the two-dot chain line horizontal line Y vicinity enters the core for load adjustment. The upper end of the adjustment range is shown, and the alloy rods 59 and 81 are positioned below this. This indicates that the boron carbide pellets 79 function exclusively by entering the core when stopped. An example of the ratio of the stack length of the boron carbide pellets 79 to the total length of the alloy rods 59 and 81 is 6: 4.
[0011]
When the reactor operation is stopped, the control rod 50 is used in a state where it is fully inserted into the core. However, since the boron carbide pellets 79 have a large neutron absorption capacity, the core has high burnup fuel (excess reactivity at the early stage of the core life). Even if it is configured, it is possible to safely absorb the neutron and stop the reactor reaction safely. The accommodation space of the inner presser spring 83 accommodates helium gas generated from the boron carbide pellets 79 to mitigate the increase in internal pressure.
On the other hand, the control rod during rated operation is in a position pulled out from the fuel assembly to some extent as described above, and the control rod guide tube card for the control rod and the upper in-furnace structure by the fluid excitation force of the primary cooling water. Interfere with other parts. The same applies to the vicinity of the tip of the control rod inserted into the fuel assembly.
[0012]
Therefore, the axial range that interferes with the control rod guide tube card portion of the upper furnace structure is a double cladding tube structure (capsule structure). On the other hand, because the vicinity of the tip of the control rod is susceptible to irradiation, there is also a cladding damage mode due to swelling of the silver / indium / cadmium alloy rod near the tip, so there is a capsule structure in the capsule structure near this tip. The alloy rod is not loaded and is covered with a sleeve.
The boron carbide pellets 51 are surrounded by a healthy capsule structure 67 even if they are used for a long time in the operation of the nuclear reactor and even if penetration damage due to wear occurs in the cladding tube 51 and external water enters. Therefore, contact reaction and elution with water are prevented. In addition, water or filtered water due to damage of the above-described cladding tube 51 passes through the space 65 between the cladding tube 51, the inner cladding tube 71 and the sleeve 63, and the inner lower end plug 77a and the sleeve upper lid 61a having a large space. Therefore, it is possible to easily and efficiently detect penetration wear damage of the outer cladding tube 51 by detecting the presence of this water immersion by ultrasonic inspection focused on this axial position. it can. Therefore, compared with the conventional damage inspection (quantitative inspection of wear depth) by scanning the entire surface of the cladding tube 51, the present control rod structure can greatly reduce the inspection time and improve the inspection efficiency. Even if particles such as silver are enclosed in advance in the space 65 and the presence or absence in the reactor coolant is monitored, early damage detection is possible.
[0013]
Next, a modified embodiment of the present invention will be described with reference to FIGS. As described above, in the embodiment of FIG. 1, damage to the outer cladding tube 51 is easily detected. However, if the wear resistance is improved as will be described later, the time of occurrence of damage can be delayed. 5 and 6, the mechanical structure of the control rod 90 is substantially the same as that of the control rod 50 described above, and the cladding tube 51, the inner cladding tube 71 of the capsule structure 67, and the outer surface of the sleeve 63 are respectively chrome plated 91, The portions to which 93 and 95 are applied are different. The chrome plating 95 may be omitted depending on circumstances. In this way, by applying chromium plating for improving the wear resistance on the outer surfaces of the cladding tubes 51 and 71 and the like, the progress of the wear damage can be suppressed. The thickness of the chrome plating is preferably uniform in the axial direction in terms of cost. On the other hand, in consideration of the conventional use experience, the control rod is not made uniform in the axial direction but appropriately thickened from the vicinity of the lower end (tip) of the outer cladding tube 51 to the upper plating thickness. If the through-damage occurrence position of the outer cladding tube 51 is narrowed down to the tip of the control rod and the damage inspection of this portion only needs to be carried out, this method can be easily and efficiently inspected. The structure of the tip of the control rod (lower end plug) at this time is effective as shown in FIG.
[0014]
【Effect of the invention】
As described above, according to the present invention, since the neutron absorbing material such as boron carbide pellets is accommodated in the capsule structure or the sleeve inside the cladding tube, the cladding tube causes wear damage. However, these neutron absorbers are not depleted (scraped or eluted), and of course, boron carbide pellets are dissolved due to damage (cracks) of the cladding tube due to swelling of the silver / indium / cadmium alloy rod at the tip. In consideration, since the absorbent material at the tip is not loaded in the capsule structure but is loaded in another sleeve, it is a structure that takes into account deterioration modes other than wear. From such a viewpoint, the axial lengths of the capsule structure and the sleeve are appropriately set (the length of the capsule structure covers the position of interference with the control rod guide tube card portion of the upper furnace structure, and Therefore, the structure is highly reliable against wear or swelling deterioration modes. In addition, as described above (the length of the capsule structure covers the position of interference with the control rod guide tube card portion of the upper furnace structure, and is difficult to receive irradiation). The inspection is structured to be easy and efficient.
[Brief description of the drawings]
FIG. 1 is a shortened sectional elevation showing an embodiment of the present invention.
FIG. 2 is an enlarged partial sectional view showing a part II in FIG.
FIG. 3 is an enlarged partial sectional view showing a part III in FIG. 1;
FIG. 4 is a partial elevational view of a modified embodiment in which the structure shown in part III in FIG. 1 is partially modified.
FIG. 5 is a shortened sectional elevation view of another modified embodiment in which a portion of the embodiment of FIG. 1 is modified.
6 is an enlarged plan sectional view taken along line VI-VI in FIG.
FIG. 7 is a shortened elevation view showing a control rod cluster composed of conventional control rods.
FIG. 8 is a partial view of a fuel assembly forming a nuclear reactor core in which control rods are used.
FIG. 9 is a shortened elevation view showing the structure of a conventional control rod.
FIG. 10 is a shortened elevation view showing another structure of a conventional control rod.
[Explanation of symbols]
50 Control rod 51 Cover tube 53 Upper end plug 55 Lower end plug 56 Circumferential groove 57 Circumferential welding 59 Silver / indium / cadmium alloy rod 61, 61a Upper lid 63 Sleeve 65 Space 67 Capsule structure 69 Presser spring 71 Inner cover tube 73 Circumferential welding 75 Inner upper end plugs 77, 77a Inner lower end plug 79 Boron carbide pellet 81 Silver / indium / cadmium alloy rod 83 Inner presser springs 85a, 85b Circumferential grooves 91, 93, 95 Chrome plating

Claims (3)

両端が第1の上部端栓及び第1の下部端栓により密封された外側被覆管、該外側被覆管内の下部に設けられた上蓋付きスリーブ、
前記外側被覆管内で前記スリーブに載設され、両端が第2の上部端栓及び第2の下部端栓により密封された内側被覆管、
該内側被覆管の中に収容された炭化硼素ペレットの積重体と第1の銀・インジウム・カドミウム合金棒、これらの押さえばね、
前記スリーブの中に収容された第2の銀・インジウム・カドミウム合金棒、及び、前記内側被覆管と前記第1の上部端栓との間に設けられた押さえばね
を有し、外側被覆管の貫通摩耗損傷を容易に且つ効率的に検出できるよう前記第2の下部端栓の下面外周部と前記スリーブの上蓋の上面外周部とで円周溝が形成されていることを特徴とする原子炉制御棒。
An outer covering tube sealed at both ends by a first upper end plug and a first lower end plug; a sleeve with an upper cover provided at a lower portion in the outer covering tube;
An inner cladding tube mounted on the sleeve in the outer cladding tube and sealed at both ends by a second upper end plug and a second lower end plug;
A stack of boron carbide pellets housed in the inner cladding tube and a first silver / indium / cadmium alloy rod, and these holding springs,
A second silver / indium / cadmium alloy rod housed in the sleeve, and a holding spring provided between the inner cladding tube and the first upper end plug, A nuclear reactor in which a circumferential groove is formed in the lower surface outer peripheral portion of the second lower end plug and the upper surface outer peripheral portion of the upper cover of the sleeve so that penetration wear damage can be detected easily and efficiently Control rod.
前記外側被覆管が全長に亘って外面にクロムメッキが施されていることを特徴とする請求項1記載の原子炉制御棒。  The nuclear reactor control rod according to claim 1, wherein the outer cladding tube is chrome-plated on the outer surface over its entire length. 前記外側被覆管と前記円周溝とによって形成される空間内に銀等の微粒子が封入されていることを特徴とする請求項1又は請求項2記載の原子炉制御棒。  The nuclear reactor control rod according to claim 1 or 2, wherein fine particles such as silver are enclosed in a space formed by the outer cladding tube and the circumferential groove.
JP2001006142A 2001-01-15 2001-01-15 Reactor control rod Expired - Fee Related JP4898005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001006142A JP4898005B2 (en) 2001-01-15 2001-01-15 Reactor control rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001006142A JP4898005B2 (en) 2001-01-15 2001-01-15 Reactor control rod

Publications (2)

Publication Number Publication Date
JP2002214378A JP2002214378A (en) 2002-07-31
JP4898005B2 true JP4898005B2 (en) 2012-03-14

Family

ID=18874076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001006142A Expired - Fee Related JP4898005B2 (en) 2001-01-15 2001-01-15 Reactor control rod

Country Status (1)

Country Link
JP (1) JP4898005B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7412021B2 (en) * 2005-07-26 2008-08-12 Westinghouse Electric Co Llc Advanced gray rod control assembly
DE102005037966A1 (en) * 2005-07-29 2007-02-01 Areva Np Gmbh Control rod for pressurized water nuclear reactor has absorber rod in cover tube that has recesses in its lower section as round or linear grooves
WO2022135725A1 (en) * 2020-12-23 2022-06-30 Framatome Gmbh Device for use in a fuel assembly of nuclear power plant, method for manufacturing a device and method for activating a material in a nuclear power plant

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125481A (en) * 1979-03-22 1980-09-27 Tokyo Shibaura Electric Co Neutron absorbing rod
JPH077118B2 (en) * 1987-11-19 1995-01-30 コニカ株式会社 Radiation image conversion panel having protective layer via low refractive index layer
JP2000028775A (en) * 1998-07-15 2000-01-28 Mitsubishi Heavy Ind Ltd Control rod for reactor
JP2000039491A (en) * 1998-07-22 2000-02-08 Mitsubishi Heavy Ind Ltd Nuclear reactor control rod
JP2000046979A (en) * 1998-07-24 2000-02-18 Mitsubishi Heavy Ind Ltd Control rod for reactor
JP2000046980A (en) * 1998-07-27 2000-02-18 Mitsubishi Heavy Ind Ltd Control rod for reactor
JP2000121769A (en) * 1998-10-15 2000-04-28 Mitsubishi Heavy Ind Ltd Control rod for reactor

Also Published As

Publication number Publication date
JP2002214378A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
JPS6290594A (en) Splinter capture device in fuel aggregate
US20080084957A1 (en) Nuclear reactor fuel assemblies
KR930005576B1 (en) Fuel rod for a nuclear reactor having animproved end plug assembly
KR100981668B1 (en) Perforated plate supports for supporting the dual-cooled segmented fuel rod
US2984613A (en) Fuel element for nuclear reactors
JPS63285490A (en) Fragment filter lower nozzle in fuel aggregate
JP4559957B2 (en) Reactor with fuel assembly and core loaded with this fuel assembly
JP4898005B2 (en) Reactor control rod
EP0817203B1 (en) Fuel assembly and fuel assembly channel box manufacturing method
KR910004194B1 (en) Recontituting a nuclear reactor fuel assembly
KR20110095189A (en) Split spring anti-fretting fuel rod support structure
US5859887A (en) Nuclear fuel assembly support grid
JPH0631750B2 (en) Fuel assembly upper nozzle mounting structure
US9136025B2 (en) Dual-cooled fuel rod's spacer grids with upper and lower cross-wavy-shape dimple
US6823035B1 (en) Control rod
KR101640942B1 (en) Nuclear reactor fuel assembly
US4687627A (en) Water displacer rod with hollow annular support pellets having sealed internal voids
US5610959A (en) Hafnium doped replacement rod for nuclear fuel reconstitution
US8666018B2 (en) Nuclear fuel rod plenum spring assembly
JP2000046980A (en) Control rod for reactor
JP2000046979A (en) Control rod for reactor
JPS646422B2 (en)
KR20110004696A (en) Internal structure of wire spring type spacer grid
RU2806814C1 (en) Fuel assembly of nuclear reactor (variants)
JP5324318B2 (en) Control rod

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060615

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070606

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070607

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

R150 Certificate of patent or registration of utility model

Ref document number: 4898005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees