JP4894154B2 - Polymer of compound containing fluorosulfonyl group - Google Patents

Polymer of compound containing fluorosulfonyl group Download PDF

Info

Publication number
JP4894154B2
JP4894154B2 JP2005098629A JP2005098629A JP4894154B2 JP 4894154 B2 JP4894154 B2 JP 4894154B2 JP 2005098629 A JP2005098629 A JP 2005098629A JP 2005098629 A JP2005098629 A JP 2005098629A JP 4894154 B2 JP4894154 B2 JP 4894154B2
Authority
JP
Japan
Prior art keywords
compound
polymer
units
formula
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005098629A
Other languages
Japanese (ja)
Other versions
JP2005314388A (en
JP2005314388A5 (en
Inventor
淳 渡壁
浩一 村田
正紀 澤口
泰輝 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2005098629A priority Critical patent/JP4894154B2/en
Publication of JP2005314388A publication Critical patent/JP2005314388A/en
Publication of JP2005314388A5 publication Critical patent/JP2005314388A5/ja
Application granted granted Critical
Publication of JP4894154B2 publication Critical patent/JP4894154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Fuel Cell (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明はイオン交換膜(たとえば、食塩電解用のイオン交換膜や固体高分子型燃料電池用のイオン交換膜など)、固体高分子型燃料電池用電解質等として有用なスルホン酸基またはスルホン酸類縁基を有する重合体およびその製造方法に関する。本発明により提供される重合体は、軟化温度が高く機械的強度の高い重合体となりうる。また本発明は、該重合体の製造等に有用に用いうる新規な化合物およびその製造方法に関する。   The present invention relates to sulfonic acid groups or sulfonic acid analogs useful as ion exchange membranes (for example, ion exchange membranes for salt electrolysis and ion exchange membranes for polymer electrolyte fuel cells), electrolytes for polymer electrolyte fuel cells, and the like. The present invention relates to a polymer having a group and a method for producing the same. The polymer provided by the present invention can be a polymer having a high softening temperature and high mechanical strength. The present invention also relates to a novel compound that can be usefully used for the production of the polymer and a method for producing the same.

イオン交換膜や燃料電池の触媒層に用いる電解質等の材料であるスルホン酸類縁基(たとえば、−SO(OM)基。ここで、Mは水素原子または対イオンを示す。)が結合した重合体には、高イオン交換容量である、機械的強度に優れる、電気抵抗が低い等の物性が求められている。 A sulfonic acid analog group (for example, —SO 2 (OM) group, where M represents a hydrogen atom or a counter ion), which is a material such as an electrolyte used for an ion exchange membrane or a catalyst layer of a fuel cell, is bonded. The coalescence is required to have physical properties such as high ion exchange capacity, excellent mechanical strength, and low electrical resistance.

該重合体としては、下式(z)で表されるモノマー(以下、単にモノマー(z)ともいう。)が知られている(特許文献1参照)。モノマー(z)はテトラフルオロエチレン等と共重合させることにより、−SOF基を含有する重合体とすることができる。 As the polymer, a monomer represented by the following formula (z) (hereinafter also simply referred to as monomer (z)) is known (see Patent Document 1). Monomer (z) is by copolymerizing tetrafluoroethylene and the like, it can be a polymer containing -SO 2 F groups.

Figure 0004894154
Figure 0004894154

ただし、RAFはフッ素化された2価有機基、RBF〜RDFは、それぞれ独立に、フッ素原子またはフッ素化された1価有機基を示す。 However, R AF represents a fluorinated divalent organic group, and R BF to R DF each independently represent a fluorine atom or a fluorinated monovalent organic group.

国際公開第03/037885号パンフレットInternational Publication No. 03/037885 Pamphlet

イオン交換膜や燃料電池は高温条件で使用されることがある。たとえば固体高分子型燃料電池は、除熱を容易にし発電効率を高めるために、高温運転(たとえば、120℃以上の運転温度。)されるのが望ましい。そのため固体高分子型燃料電池用電解質には、高温領域において高い機械的強度を示す重合体が求められる。   Ion exchange membranes and fuel cells are sometimes used under high temperature conditions. For example, a polymer electrolyte fuel cell is desirably operated at a high temperature (for example, an operating temperature of 120 ° C. or higher) in order to facilitate heat removal and increase power generation efficiency. Therefore, a polymer exhibiting high mechanical strength in a high temperature region is required for the polymer electrolyte fuel cell electrolyte.

しかし、前記モノマー(z)のRAFが炭素数7以上のペルフルオロアルキレン基である場合、該モノマー(z)を重合させて得た重合体の軟化温度は低く、高温条件で使用すると膜としての充分な性能を発揮できないと考えられた。 However, R AF of the monomer (z) be a perfluoroalkylene group having 7 or more carbon atoms, the softening temperature of the polymer obtained by polymerizing the monomer (z) is lower, as a membrane when used in high temperature It was thought that sufficient performance could not be demonstrated.

また、前記モノマー(z)のRAFが−CFOCFCF−基等のペルフルオロ(エーテル性酸素原子含有アルキレン)基である場合、該モノマー(z)を重合させて得た重合体は軟化温度が不充分であった。 In addition, when R AF of the monomer (z) is a perfluoro (etheric oxygen atom-containing alkylene) group such as a —CF 2 OCF 2 CF 2 — group, a polymer obtained by polymerizing the monomer (z) is The softening temperature was insufficient.

本発明は、固体高分子型燃料電池用のイオン交換膜等の材料として有用に用いうる重合体であり、軟化温度が高く、高温条件で使用した場合においても機械的強度が保持されうる重合体およびその製造方法の提供を目的とする。また本発明は該重合体の製造に有用な原料の提供およびその製造方法の提供を目的とする。
すなわち本発明は、下記の発明を提供する。
<1>下式(A)で表される単位の1種以上と式(A)で表される単位以外の単位の1種以上からなり、式(A)で表される単位以外の単位が、CF =CF または下記化合物(m2−2)を重合させて得た単位を含むものであり、重合体の全単位に対する式(A)で表される単位の割合が5〜50モル%であり、式(A)で表される単位以外の単位の割合が95〜50モル%である重合体(ただし、nは1〜6の整数を示し、R F3 およびR F4 は、それぞれ独立に、フッ素原子または炭素数1〜3のペルフルオロアルキル基を示し、R F5 はフッ素原子またはトリフルオロメトキシ基を示す。)。
>質量平均分子量が5×10〜5×10である<>に記載の重合体。
>下式(a)で表される化合物の1種以上と下式(a)で表される化合物以外の化合物の1種以上とを重合させて下式(A)で表される単位を含む重合体を製造する方法であって、式(a)で表される化合物以外の化合物が、CF =CF または下記化合物(m2−2)を含むものであり、重合体の全単位に対する式(A)で表される単位の割合が5〜50モル%であり、式(A)で表される単位以外の単位の割合が95〜50モル%であることを特徴とする下式(A)で表される単位を含む重合体の製造方法(ただし、nは1〜6の整数を示し、R F3 およびR F4 は、それぞれ独立に、フッ素原子または炭素数1〜3のペルフルオロアルキル基を示し、R F5 はフッ素原子またはトリフルオロメトキシ基を示す。)。
The present invention is a polymer that can be usefully used as a material such as an ion exchange membrane for a polymer electrolyte fuel cell, and has a high softening temperature and can maintain mechanical strength even when used under high temperature conditions. And it aims at provision of the manufacturing method. Another object of the present invention is to provide a raw material useful for the production of the polymer and a production method thereof.
That is, the present invention provides the following inventions.
<1 > Consists of one or more units represented by the following formula (A) and one or more units other than the units represented by formula (A), and units other than the units represented by formula (A) , CF 2 = CF 2 or a unit obtained by polymerizing the following compound (m2-2), and the ratio of the unit represented by the formula (A) to the total unit of the polymer is 5 to 50 mol% , and the formula of polymer proportion of the units other than the unit represented by (a) is 95 to 50 mol% (where, n is indicates an integer of 1 to 6, R F3 and R F4 are each independently a represents a fluorine atom or perfluoroalkyl group having 1 to 3 carbon atoms, R F5 are shown to a fluorine atom or a trifluoromethoxy group.).
The polymer according to <2> weight-average molecular weight of 5 × 10 3 ~5 × 10 6 <1>.
< 3 > A unit represented by the following formula (A) by polymerizing one or more compounds represented by the following formula (a) and one or more compounds other than the compound represented by the following formula (a). In which the compound other than the compound represented by the formula (a) contains CF 2 = CF 2 or the following compound (m2-2), and the entire unit of the polymer for a proportion from 5 to 50 mol% of units represented by the formula (a), under which the proportion of the unit other than the unit represented by formula (a) is characterized by 95 to 50 mol% der Rukoto wherein the manufacturing method of the polymer containing a unit represented by (a) (where, n is indicates an integer of 1 to 6, R F3 and R F4 are each independently a fluorine atom or having 1 to 3 carbon atoms It shows a perfluoroalkyl group, R F5 are shown to a fluorine atom or a trifluoromethoxy group.).

Figure 0004894154
Figure 0004894154

>下式(B)で表される単位の1種以上と式(B)で表される単位以外の単位の1種以上からなり、式(B)で表される単位以外の単位が、CF =CF または下記化合物(m2−2)を重合させて得た単位を含むものであり、重合体の全単位に対する式(B)で表される単位の割合が5〜50モル%であり、式(B)で表される単位以外の単位の割合が95〜50モル%である重合体(ただし、nは1〜6の整数、Mは水素原子または対イオンを示し、R F3 およびR F4 は、それぞれ独立に、フッ素原子または炭素数1〜3のペルフルオロアルキル基を示し、R F5 はフッ素原子またはトリフルオロメトキシ基を示す。)。 < 4 > Consists of one or more units represented by the following formula (B) and one or more units other than the units represented by formula (B), and units other than the units represented by formula (B) , CF 2 = CF 2 or a unit obtained by polymerizing the following compound (m2-2), and the ratio of the unit represented by the formula (B) to the total unit of the polymer is 5 to 50 mol% , and the polymer proportion of the units other than the unit represented by the formula (B) is 95 to 50 mol% (where, n is an integer from 1 to 6, M represents indicates a hydrogen atom or a counter ion, R F3 and R F4 are each independently a fluorine atom or perfluoroalkyl group having 1 to 3 carbon atoms, R F5 are shown to a fluorine atom or a trifluoromethoxy group.).

Figure 0004894154
Figure 0004894154

>質量平均分子量が5×10〜5×10である<>に記載の重合体 The polymer according to <5> weight-average molecular weight of 5 × 10 3 ~5 × 10 6 <4>.

本発明によれば、ペルフルオロ(2−メチレン−1,3−ジオキソラン)構造を有し、該構造の4位が式−(CFSOFで表される基(ただし、nは1〜6の整数を示す。)に置換された化合物、および該化合物の反応中間体として有用な化合物、その製造方法が提供される。該化合物を重合させて得た重合体は、−SOF基がエーテル性酸素原子を含まない炭素原子−炭素原子結合の連鎖を介して該構造に結合するため、軟化温度が高く機械的強度に優れる。 According to the present invention, a group having a perfluoro (2-methylene-1,3-dioxolane) structure, wherein the 4-position of the structure is represented by the formula — (CF 2 ) n SO 2 F (where n is 1) And a compound useful as a reaction intermediate of the compound, and a process for producing the compound. The polymer obtained by polymerizing the compound has a high softening temperature and a high mechanical strength because the —SO 2 F group is bonded to the structure via a carbon atom-carbon atom bond chain not containing an etheric oxygen atom. Excellent.

本明細書においては、式(a)で表される化合物を化合物(a)と記す。式(A)で表される単位は単位(A)と記す。単位(A)を含む重合体を重合体(A)と記す。他の式で表される化合物、単位、および重合体においても同様に記す。
重合体における単位とは、モノマーが重合することによって形成する該モノマーに由来するモノマー単位(繰り返し単位ともいう。)を意味するが、本発明における単位は重合反応によって直接形成する単位であっても、重合反応後の化学変換によって形成する単位であってもよい。
In the present specification, a compound represented by the formula (a) is referred to as a compound (a). The unit represented by formula (A) is referred to as unit (A). A polymer containing the unit (A) is referred to as a polymer (A). The same applies to compounds, units, and polymers represented by other formulas.
The unit in the polymer means a monomer unit derived from the monomer formed by polymerization of the monomer (also referred to as a repeating unit), but the unit in the present invention may be a unit directly formed by a polymerization reaction. A unit formed by chemical conversion after the polymerization reaction may be used.

本明細書における有機基とは、炭素原子を1以上含む基をいう。有機基としては、炭化水素基、ハロゲン化炭化水素基、ヘテロ原子含有炭化水素基、またはハロゲン化(ヘテロ原子含有炭化水素)基が挙げられる。炭化水素基とは炭素原子と水素原子とからなる基をいう。また、ハロゲン化炭化水素基は、炭素原子に結合した水素原子の1個以上がハロゲン原子によって置換された基をいう。ヘテロ原子含有炭化水素基は、ヘテロ原子(酸素原子、窒素原子、硫黄原子等)および/またはヘテロ原子団(−C−C(=O)−C−、−C−SO−C−等)を含む炭化水素基をいう。また、ハロゲン化(ヘテロ原子含有炭化水素)基は、上記ヘテロ原子含有炭化水素基における炭素原子に結合した水素原子の1個以上が、ハロゲン原子によって置換された基をいう。 The organic group in this specification refers to a group containing one or more carbon atoms. Examples of the organic group include a hydrocarbon group, a halogenated hydrocarbon group, a heteroatom-containing hydrocarbon group, and a halogenated (heteroatom-containing hydrocarbon) group. The hydrocarbon group refers to a group consisting of a carbon atom and a hydrogen atom. The halogenated hydrocarbon group refers to a group in which one or more hydrogen atoms bonded to a carbon atom are substituted with a halogen atom. The heteroatom-containing hydrocarbon group is a heteroatom (oxygen atom, nitrogen atom, sulfur atom, etc.) and / or heteroatom group (—C—C (═O) —C—, —C—SO 2 —C—, etc.). A hydrocarbon group containing The halogenated (hetero atom-containing hydrocarbon) group refers to a group in which one or more hydrogen atoms bonded to the carbon atom in the hetero atom-containing hydrocarbon group are substituted with a halogen atom.

本発明は下記化合物(a)を提供する。   The present invention provides the following compound (a).

Figure 0004894154
Figure 0004894154

化合物(a)におけるnは1〜6の整数を示し、1〜4の整数が好ましい。本発明の化合物(a)は、ジオキソラン骨格と−SOF基とを隔てる基である式−(CF−で表される基のnの数が小さく、かつ、ジオキソラン骨格に結合する式−(CFSOFで表される基以外の基がフッ素原子である点が特徴である。そのため化合物(a)を重合させて得た重合体(A)は高い軟化温度および高い機械的強度等の性能を実現できる。 N in the compound (a) represents an integer of 1 to 6, and an integer of 1 to 4 is preferable. The compound (a) of the present invention has a small number of n in the group represented by the formula — (CF 2 ) n — that separates the dioxolane skeleton and the —SO 2 F group, and binds to the dioxolane skeleton. A feature is that a group other than the group represented by the formula — (CF 2 ) n SO 2 F is a fluorine atom. Therefore, the polymer (A) obtained by polymerizing the compound (a) can realize performances such as a high softening temperature and high mechanical strength.

化合物(a)の具体例としては、下記化合物が挙げられる。   Specific examples of the compound (a) include the following compounds.

Figure 0004894154
Figure 0004894154

本発明の化合物(a)の製造方法としては、下記化合物(d)を液相フッ素化反応させて下記化合物(c)とし、つぎに該化合物(c)をエステル分解反応させて下記化合物(b)とし、つぎに該化合物(b)を熱分解反応させる下記の製造方法が好ましい(ただし、nは前記と同じ意味を示す(以下同様。)。Rは、式−(CH−で表される基または該基の水素原子の1個以上がフッ素原子に置換された基を示す。REFは、含フッ素1価有機基を示す。Mは、ナトリウム原子またはカリウム原子を示す(以下同様。)。 As a method for producing the compound (a) of the present invention, the following compound (d) is subjected to a liquid phase fluorination reaction to give the following compound (c), and then the compound (c) is subjected to an ester decomposition reaction to give the following compound (b). The following production method in which the compound (b) is subjected to a thermal decomposition reaction is preferred (where n represents the same meaning as described above (hereinafter the same shall apply)), and R A represents the formula — (CH 2 ) n —. Or a group in which at least one hydrogen atom of the group is substituted with a fluorine atom, R EF represents a fluorine-containing monovalent organic group, and M 1 represents a sodium atom or a potassium atom. (The same applies hereinafter.)

Figure 0004894154
Figure 0004894154

液相フッ素化反応、エステル分解反応、および熱分解反応は、WO03/37885号に記載される方法にしたがって実施するのが好ましい。また化合物(b)の熱分解反応により化合物(a)を得る反応は、一段の反応で実施しても、中和反応、つぎに熱分解反応を行う方法により実施してもよい。後者の方法による場合の中和反応は、化合物(b)を式MOHで表されるアルカリ金属水酸化物と反応させる方法により実施するのが好ましい。該反応もWO03/37885号公報に記載される方法にしたがって実施するのが好ましい。
前記製造方法において、Rは化合物(d)の入手しやすさの点からは式−(CH−で表される基が好ましい。一方、Rは、液相フッ素化反応の収率や反応のしやすさの点では−(CH−部分の水素原子の1つ以上がフッ素原子で置換された基が好ましく、−SOF基に隣接する炭素原子に結合する水素原子の1または2個がフッ素原子で置換されている基が特に好ましく、該水素原子の2個がフッ素原子で置換されている基がとりわけ好ましい。
The liquid phase fluorination reaction, ester decomposition reaction, and thermal decomposition reaction are preferably carried out according to the method described in WO03 / 37885. Further, the reaction for obtaining the compound (a) by the thermal decomposition reaction of the compound (b) may be carried out by a one-step reaction or by a method of carrying out a neutralization reaction and then a thermal decomposition reaction. The neutralization reaction in the latter method is preferably carried out by a method in which the compound (b) is reacted with an alkali metal hydroxide represented by the formula M 1 OH. This reaction is also preferably carried out according to the method described in WO03 / 37885.
In the production method, R A is preferably a group represented by the formula — (CH 2 ) n — from the viewpoint of availability of the compound (d). On the other hand, R A is preferably a group in which one or more hydrogen atoms in the — (CH 2 ) n — moiety are substituted with fluorine atoms in terms of the yield of the liquid phase fluorination reaction and the ease of reaction, A group in which one or two hydrogen atoms bonded to the carbon atom adjacent to the SO 2 F group are substituted with fluorine atoms is particularly preferred, and a group in which two of the hydrogen atoms are substituted with fluorine atoms is particularly preferred. .

EFは、フルオロアルキル基またはフルオロ(エーテル性酸素原子含有アルキル)基が好ましく、炭素数2〜20のこれらの基が特に好ましい。
EFの具体例としては、下記の基が挙げられる。
−CFCF、−CF(CF、−CF(CF)CFCF、−CF(CF)O(CFF、−CF(CF)OCFCF(CF)O(CFF。
R EF is preferably a fluoroalkyl group or a fluoro (etheric oxygen atom-containing alkyl) group, particularly preferably these groups having 2 to 20 carbon atoms.
Specific examples of R EF include the following groups.
-CF 2 CF 3, -CF (CF 3) 2, -CF (CF 3) CF 2 CF 3, -CF (CF 3) O (CF 2) 3 F, -CF (CF 3) OCF 2 CF (CF 3) O (CF 2) 3 F.

化合物(a)の製造方法の具体例としては、以下の例が挙げられる。   The following examples are mentioned as a specific example of the manufacturing method of a compound (a).

Figure 0004894154
Figure 0004894154

前記の製造方法の出発原料である化合物(d)の製造方法は、特に限定されない。たとえば下記化合物(1)を出発原料に用いて、下記の反応ルート1に記載する経路のいずれかを経由して製造する方法が挙げられる。
[反応ルート1]
The manufacturing method of the compound (d) which is a starting material of the said manufacturing method is not specifically limited. For example, the following compound (1) is used as a starting material, and a method of producing via any of the routes described in the following reaction route 1 can be mentioned.
[Reaction route 1]

Figure 0004894154
Figure 0004894154

ただし、nおよびREFは前記と同じ意味を示し、Ra1はメチル基またはm−クロロフェニル基を示す。 However, n and R EF have the same meaning as described above, and R a1 represents a methyl group or an m-chlorophenyl group.

また反応ルート1に記載される化合物(e)は、式CH(OH)CH(OH)(CHOHで表される化合物を出発原料に用いて、下記反応ルート2に記載する経路のいずれかを経由する方法により製造してもよい(ただし、nは前記と同じ意味を示す。)。
[反応ルート2]
The compound (e) described in the reaction route 1 is a route described in the following reaction route 2 using a compound represented by the formula CH 2 (OH) CH (OH) (CH 2 ) n OH as a starting material. May be produced by a method via any of the above (where n represents the same meaning as described above).
[Reaction route 2]

Figure 0004894154
Figure 0004894154

反応ルート1における出発物質である化合物(1)は、下記化合物(7)を出発原料とする下記反応ルート3に記載する経路のいずれかを経由して製造する方法により製造するのが好ましい(ただし、nは前記と同じ意味を示し、Mはナトリウム原子またはカリウム原子を示し、DMFはジメチルホルムアミドを示す。)。 Compound (1), which is a starting material in Reaction Route 1, is preferably produced by a method of producing via any of the routes described in Reaction Route 3 below using Compound (7) as a starting material (however, provided that , N has the same meaning as described above, M 2 represents a sodium atom or a potassium atom, and DMF represents dimethylformamide.

[反応ルート3]   [Reaction route 3]

Figure 0004894154
Figure 0004894154

化合物(3)から化合物(1)を製造するルートとしては、化合物(3)を、ジメチルホルムアミド(DMF)の存在下にSOClと反応させて、炭素−炭素不飽和二重結合を保持したまま−SO(OM)基を−SOCl基に変換した化合物(2)を得て、該化合物(2)を金属フッ化物と反応させる方法が挙げられる。該反応において塩素化剤としてSOClを用いる方法は、POClやPClなどのリン化合物や2,4,6−トリクロロ−1,3,5−トリアジンを塩素化剤として用いる方法に比較して、取扱の難しい反応副生物が生成しない利点がある。金属フッ化物としてはKF、KHF、NaHF、NaF、CsFが挙げられ、KFが好ましい。 As a route for producing compound (1) from compound (3), compound (3) is reacted with SOCl 2 in the presence of dimethylformamide (DMF) to retain the carbon-carbon unsaturated double bond. A method of obtaining a compound (2) obtained by converting a —SO 2 (OM 2 ) group into a —SO 2 Cl group and reacting the compound (2) with a metal fluoride can be mentioned. The method using SOCl 2 as the chlorinating agent in the reaction is compared with the method using phosphorus compounds such as POCl 3 and PCl 5 and 2,4,6-trichloro-1,3,5-triazine as the chlorinating agent. There is an advantage that reaction by-products which are difficult to handle are not generated. Examples of the metal fluoride include KF, KHF 2 , NaHF 2 , NaF, and CsF, with KF being preferred.

また化合物(1)は化合物(3)にFを発生しうるフッ素化剤を反応させることによって製造してもよい。該反応は水の存在下に行うのが好ましい。該フッ素化剤としては、反応収率の観点から、(XN)(XN)CFまたは(XN)SFが好ましい。
〜Xは、それぞれ独立に、炭素数1〜6のアルキル基であり、XとXが共同して環を形成していてもよい。XおよびXは、それぞれ独立に、炭素数1〜5のアルキル基であり、または共同して炭素数4〜7の環を形成するアルキレン基でもよい。
(XN)(XN)CFとしては、2,2−ジフルオロ−1,3−ジメチルイミダゾリジンが好ましい。
The compound (1) is F Compound (3) - may be prepared by reacting a fluorinating agent capable of generating. The reaction is preferably performed in the presence of water. The fluorinating agent is preferably (X 1 X 2 N) (X 3 X 4 N) CF 2 or (X 5 X 6 N) 2 SF 3 from the viewpoint of reaction yield.
X 1 to X 4 are each independently an alkyl group having 1 to 6 carbon atoms, and X 1 and X 3 may jointly form a ring. X 5 and X 6 are each independently an alkyl group having 1 to 5 carbon atoms, or an alkylene group that jointly forms a ring having 4 to 7 carbon atoms.
(X 1 X 2 N) (X 3 X 4 N) CF 2 is preferably 2,2-difluoro-1,3-dimethylimidazolidine.

化合物(1)の具体例としては、下記化合物が挙げられる。
CH=CHCHSOF、
CH=CHCHCHSOF、
CH=CH(CHSOF。
Specific examples of the compound (1) include the following compounds.
CH 2 = CHCH 2 SO 2 F,
CH 2 = CHCH 2 CH 2 SO 2 F,
CH 2 = CH (CH 2) 4 SO 2 F.

本発明の化合物(1)から化合物(d)を経由して化合物(a)を製造する場合、化合物(1)の純度や異性化等により化合物(a)中に不純物として他の化合物を含む場合がある。   When the compound (a) is produced from the compound (1) of the present invention via the compound (d), the compound (a) contains other compounds as impurities due to the purity or isomerization of the compound (1). There is.

たとえば、化合物(1)において式H(CHCH=CH(CHn−mSOFで表される化合物(ただし、nは前記と同じ意味を示し、mはnより小さい整数を示し、かつ1〜5の整数を示す。以下同様。)(以下、化合物(1i)という。)が含まれる場合があり、この場合、該化合物由来の不純物である下記化合物(ai)が生成しうる。しかし、本発明においては、化合物(1)において化合物(1i)を除去する精製を行ってもよく、反応後に化合物(ai)由来の不純物を除する精製を行ってもよく、該精製を行わずに不純物を含むまま化合物(1)または化合物(a)を用いてもよい。 For example, in the compound (1), a compound represented by the formula H (CH 2 ) m CH═CH (CH 2 ) nm SO 2 F (where n represents the same meaning as described above, and m is an integer smaller than n) And an integer of 1 to 5. The same shall apply hereinafter (hereinafter referred to as compound (1i)). In this case, the following compound (ai) which is an impurity derived from the compound is produced. Yes. However, in the present invention, the compound (1) may be purified to remove the compound (1i), or may be purified after the reaction to remove impurities derived from the compound (ai), and the purification is not performed. Compound (1) or compound (a) may be used while containing impurities.

Figure 0004894154
Figure 0004894154

また本発明の化合物(1)は、本発明の化合物(a)の製造原料としても用いてもよく、他の化合物の有用な中間体として用いてもよい。たとえば、化合物(1)自身を重合させる方法(たとえば下記方法1や下記方法2)または化合物(1)から誘導された化合物(たとえば下記方法3におけるシラン化合物)を重縮合させる方法、により有用な重合体を製造できる。
[方法1]
化合物(1)を配位重合させて重合体を製造する方法。
[方法2]
化合物(1)とテトラフルオロエチレンとをラジカル共重合させて重合体を製造する方法。
[方法3]
化合物(1)と式HSi(R3−p(Y)で表される化合物をヒドロシリル化反応させて式FSO(CHCHCHSi(R3−p(Y)で表されるシラン化合物を得て、該シラン化合物を重縮合反応させて重合体を製造する方法(ただし、nは前記と同じ意味を示し、pは1〜3の整数、Rは炭素数1〜3のアルキル基、およびYは塩素原子または炭素数1〜3のアルコキシ基を示す。)。
In addition, the compound (1) of the present invention may be used as a raw material for producing the compound (a) of the present invention, or may be used as a useful intermediate for other compounds. For example, a more useful polymerization can be achieved by a method of polymerizing the compound (1) itself (for example, the following method 1 or the following method 2) or a method for polycondensing a compound derived from the compound (1) (for example, the silane compound in the following method 3). Combines can be manufactured.
[Method 1]
A method for producing a polymer by coordination polymerization of the compound (1).
[Method 2]
A method for producing a polymer by radical copolymerization of compound (1) and tetrafluoroethylene.
[Method 3]
A compound (1) and a compound represented by the formula HSi (R G ) 3-p (Y) p are subjected to a hydrosilylation reaction to form the formula FSO 2 (CH 2 ) n CH 2 CH 2 Si (R G ) 3-p ( Y) A method for producing a polymer by obtaining a silane compound represented by p and subjecting the silane compound to a polycondensation reaction (where n represents the same meaning as described above, p is an integer of 1 to 3, R G Represents an alkyl group having 1 to 3 carbon atoms, and Y represents a chlorine atom or an alkoxy group having 1 to 3 carbon atoms.

方法1〜3によって製造された重合体は−SOF基が結合した重合体である。重合体中の−SOF基は、常法にしたがって−SO(OM)基(ただし、Mは前記と同じ意味を示す。)に変換して−SO(OM)基を有する重合体を製造できる。化合物(1)から得られた−SO(OM)基を有する重合体もまた、イオン交換樹脂(たとえば、直接メタノール型燃料電池用イオン交換膜等)として有用である。 The polymer produced by methods 1 to 3 is a polymer having —SO 2 F groups bonded thereto. -SO 2 F groups in the polymer in a conventional manner -SO 2 (OM) group (wherein, M is. As defined above) polymer having -SO 2 (OM) groups are converted into Can be manufactured. A polymer having a —SO 2 (OM) group obtained from the compound (1) is also useful as an ion exchange resin (for example, an ion exchange membrane for a direct methanol fuel cell).

本発明においては、化合物(a)を重合させることによって重合体を製造できる。化合物(a)を重合させて得た重合体は、単位(A)を含む重合体である。単位(A)の具体例としては、以下の例が挙げられる。   In the present invention, a polymer can be produced by polymerizing the compound (a). The polymer obtained by polymerizing the compound (a) is a polymer containing the unit (A). Specific examples of the unit (A) include the following examples.

Figure 0004894154
Figure 0004894154

本発明の重合体(A)は、単位(A)の1種以上からなる重合体であってもよく、単位(A)の1種以上と単位(A)以外の単位(以下、他の単位という。)の1種以上からなる重合体であってもよい。後者の重合体(A)としては単位(A)の1種と他の単位の1種以上とからなる重合体であるのが好ましい。他の単位を有する重合体である重合体(A)は、化合物(a)と、化合物(a)と共重合性の他のモノマー(以下、他のモノマーという。)とを共重合させることによって製造するのが好ましい。   The polymer (A) of the present invention may be a polymer comprising one or more units (A), and one or more units (A) and units other than the unit (A) (hereinafter, other units). It may be a polymer composed of one or more of the above. The latter polymer (A) is preferably a polymer comprising one type of unit (A) and one or more types of other units. The polymer (A) which is a polymer having other units is obtained by copolymerizing the compound (a) and the compound (a) and another monomer copolymerizable (hereinafter referred to as other monomer). Preferably it is manufactured.

また重合体(A)が2種以上の単位を含む共重合体の場合、各単位の並び方としては、ブロック状、グラフト状、およびランダム状が挙げられる。このうち重合体(A)の有用性の観点から、各単位の並び方はランダム状であるのが好ましい。また重合体(A)は架橋されていてもよい。   In the case where the polymer (A) is a copolymer containing two or more types of units, examples of how the units are arranged include a block shape, a graft shape, and a random shape. Among these, from the viewpoint of the usefulness of the polymer (A), the arrangement of the units is preferably random. The polymer (A) may be cross-linked.

他の単位としては、下記化合物(m1)、下記化合物(m2)、または下記化合物(m3)を重合させて得た単位が好ましい。   The other unit is preferably a unit obtained by polymerizing the following compound (m1), the following compound (m2), or the following compound (m3).

CHR=CR (m1)
CFR=CR (m2)
CR=CR−Q−CR10=CF (m3)。
CHR 1 = CR 2 R 3 (m1)
CFR 4 = CR 5 R 6 (m2)
CR 7 R 8 = CR 9 -Q 1 -CR 10 = CF 2 (m3).

ただし、R、R、およびRは、それぞれ独立に、水素原子、フッ素原子、1価含フッ素飽和有機基を示す。 However, R 1 , R 2 , and R 3 each independently represent a hydrogen atom, a fluorine atom, or a monovalent fluorine-containing saturated organic group.

、R、およびRは、それぞれ独立に、フッ素原子、塩素原子、またはエーテル性酸素原子を含有していてもよい1価含フッ素飽和有機基を示す。または、R、R、およびRから選ばれる2つの基が共同で2価含フッ素有機基を形成し、かつ残余の1つの基はフッ素原子もしくは1価含フッ素飽和有機基を示す。 R 4 , R 5 , and R 6 each independently represent a monovalent fluorine-containing saturated organic group that may contain a fluorine atom, a chlorine atom, or an etheric oxygen atom. Alternatively, two groups selected from R 4 , R 5 , and R 6 jointly form a divalent fluorine-containing organic group, and the remaining one group represents a fluorine atom or a monovalent fluorine-containing saturated organic group.

、R、R、およびR10は、それぞれ独立に、水素原子、フッ素原子、または1価含フッ素有機基を示し、Qは2価含フッ素有機基を示す。 R 7 , R 8 , R 9 , and R 10 each independently represent a hydrogen atom, a fluorine atom, or a monovalent fluorinated organic group, and Q 1 represents a divalent fluorinated organic group.

化合物(m1)の具体例としては、CHF=CF、CH=CF、CH=CHF、CH=CH、CH=CHCH、CH=CH(CFF、CH=CHCH(CFF等が挙げられる。
化合物(m2)の具体例としては、CF=CF、CFCl=CF、CF=CFCF、下記化合物(m2−1)、下記化合物(m2−2)、下記化合物(m2−3)、CF=CFCFOCF等が挙げられる。
Specific examples of the compound (m1) include CHF = CF 2 , CH 2 = CF 2 , CH 2 = CHF, CH 2 = CH 2 , CH 2 = CHCH 3 , CH 2 = CH (CF 2 ) 4 F, CH 2 = CHCH 2 (CF 2) 8 F , and the like.
Specific examples of the compound (m2) include CF 2 = CF 2 , CFCl = CF 2 , CF 2 = CFCF 3 , the following compound (m2-1), the following compound (m2-2), and the following compound (m2-3). , CF 2 = CFCF 2 OCF 3 and the like.

Figure 0004894154
Figure 0004894154

ただし、tは0〜3の整数、RF1はフッ素原子またはトリフルオロメチル基、RF2は炭素数1〜12のペルフルオロアルキル基を示す。また、RF2は直鎖構造であっても分岐構造であってもよい。RF3およびRF4は、それぞれ独立に、フッ素原子または炭素数1〜3のペルフルオロアルキル基を示し、RF5はフッ素原子またはトリフルオロメトキシ基を示す。RF6およびRF7は、それぞれ独立に、フッ素原子または炭素数1〜7のペルフルオロアルキル基を示す。 However, t is an integer of 0 to 3, R F1 is a fluorine atom or a trifluoromethyl group, and R F2 is a C 1-12 perfluoroalkyl group. R F2 may have a linear structure or a branched structure. R F3 and R F4 each independently represent a fluorine atom or a C 1-3 perfluoroalkyl group, and R F5 represents a fluorine atom or a trifluoromethoxy group. R F6 and R F7 each independently represent a fluorine atom or a C 1-7 perfluoroalkyl group.

化合物(m3)の具体例としては、CF=CFOCFCFCF=CF、CF=CFOCFCF=CF等が挙げられる。 Specific examples of the compound (m3) is, CF 2 = CFOCF 2 CF 2 CF = CF 2, CF 2 = CFOCF 2 CF = CF 2 , and the like.

重合体(A)が架橋されている場合の製造方法としては、化合物(a)と架橋性のモノマーとを重合させる方法によるのが好ましい。架橋性のモノマーとしては、下記化合物(p1)または下記化合物(p2)(ただし、uは3〜10の整数を示し、Qは単結合、酸素原子、またはエーテル性酸素原子を含んでいてもよい炭素数1〜10のペルフルオロアルキレン基を示す。)が例示されうる。 As a production method in the case where the polymer (A) is crosslinked, a method of polymerizing the compound (a) and a crosslinking monomer is preferable. As the crosslinkable monomer, the following compound (p1) or the following compound (p2) (provided that u represents an integer of 3 to 10, and Q 2 may contain a single bond, an oxygen atom, or an etheric oxygen atom) A good C1-C10 perfluoroalkylene group is shown.).

CF=CFO(CFOCF=CF (p1) CF 2 = CFO (CF 2 ) u OCF = CF 2 (p1)

Figure 0004894154
Figure 0004894154

重合体(A)をイオン交換膜の材料として用いる場合には、耐久性の観点から他の単位は実質的に水素原子を含まない単位であるのが好ましい。実質的に水素原子を含まない単位としては、化合物(m2)またはR〜R10がフッ素原子でありQがエーテル性酸素原子を含有していてもよいペルフルオロアルキレン基である化合物(m3)を重合させて得た単位が好ましい。さらにイオン交換膜としての軟化温度が高くなることから、他の単位としては、CF=CFまたは化合物(m2−2)を重合させて得た単位を含むのがより好ましく、CF=CFまたはペルフルオロ(2,2−ジメチル−1,3−ジオキソール)を重合させて得た単位を含むのが特に好ましい。 When the polymer (A) is used as a material for the ion exchange membrane, the other unit is preferably a unit that does not substantially contain a hydrogen atom from the viewpoint of durability. As a unit that does not substantially contain a hydrogen atom, the compound (m2) or the compound (m3) in which R 7 to R 10 are a fluorine atom and Q 1 is a perfluoroalkylene group that may contain an etheric oxygen atom. A unit obtained by polymerizing is preferred. Furthermore, since the softening temperature as an ion exchange membrane becomes high, it is more preferable that the other unit includes a unit obtained by polymerizing CF 2 = CF 2 or the compound (m2-2), and CF 2 = CF It is particularly preferred to contain units obtained by polymerizing 2 or perfluoro (2,2-dimethyl-1,3-dioxole).

本発明の重合体(A)の質量平均分子量は、5×10〜5×10であるのが好ましく、1×10〜3×10であるのが特に好ましい。また重合体(A)のTは、100℃〜400℃が好ましい。ただし、Tの定義は後述する。 The mass average molecular weight of the polymer (A) of the present invention is preferably 5 × 10 3 to 5 × 10 6 , particularly preferably 1 × 10 4 to 3 × 10 6 . The T Q of the polymer (A) is preferably 100 ° C. to 400 ° C.. However, the definition of T Q will be described later.

重合体(A)の製造方法としては、化合物(a)の重合反応による方法、または化合物(a)の重合反応の後に重合反応以外の反応を行う方法が挙げられる。たとえば、化合物(a)の1種以上、該化合物の1種以上と他のモノマーの1種以上を重合させる方法が挙げられる。また、他の単位をさらに別の構造に化学変換する反応を行ってもよい。これらの重合方法は、特に限定されず、WO03/37885号に記載される方法にしたがうのが好ましい。   Examples of the method for producing the polymer (A) include a method by a polymerization reaction of the compound (a) or a method of performing a reaction other than the polymerization reaction after the polymerization reaction of the compound (a). For example, the method of polymerizing 1 or more types of a compound (a), 1 or more types of this compound, and 1 or more types of another monomer is mentioned. Moreover, you may perform the reaction which chemically converts another unit into another structure. These polymerization methods are not particularly limited, and preferably follow the method described in WO03 / 37885.

本発明における重合体(A)の全単位に対する単位(A)の割合は、重合体(A)の用途に応じて適宜変更されうる。通常の場合、重合体(A)中の全単位に対する単位(A)の割合は、0.1〜100モル%であるのが好ましく、他の単位を必須とする場合には5〜90モル%であるのが好ましい。他の単位の割合は、99.9モル%以下であるのが好ましく、10〜95モル%であるのが特に好ましい。   The ratio of the unit (A) to the total unit of the polymer (A) in the present invention can be appropriately changed according to the use of the polymer (A). In a normal case, the ratio of the unit (A) to the whole unit in the polymer (A) is preferably 0.1 to 100 mol%, and 5 to 90 mol% when other units are essential. Is preferred. The proportion of other units is preferably 99.9 mol% or less, and particularly preferably 10 to 95 mol%.

さらに本発明の重合体(A)を後述するイオン交換膜の材料に用いる場合には、重合体(A)の構造または用途により、単位(A)の割合は下記の範囲に調整するのが好ましい。
重合体(A)が架橋されていない重合体である場合には、低抵抗で高い発電効率が得られる観点から、重合体(A)中の全単位に対する単位(A)の割合は、5モル%以上が好ましく、10モル%以上が特に好ましい。また機械的物性の観点から、重合体(A)中の全単位に対する単位(A)の割合は、50モル%以下が好ましく、35モル%以下がより好ましく、30モル%以下が特に好ましい。また重合体(A)がグラフト状である重合体の場合には、グラフト部分は単位(A)のみからなるものがあってもよい。
Further, when the polymer (A) of the present invention is used as a material for an ion exchange membrane to be described later, the proportion of the unit (A) is preferably adjusted to the following range depending on the structure or use of the polymer (A). .
When the polymer (A) is an uncrosslinked polymer, the ratio of the unit (A) to the total units in the polymer (A) is 5 mol from the viewpoint of obtaining high power generation efficiency with low resistance. % Or more is preferable, and 10 mol% or more is particularly preferable. Further, from the viewpoint of mechanical properties, the proportion of the unit (A) with respect to all units in the polymer (A) is preferably 50 mol% or less, more preferably 35 mol% or less, and particularly preferably 30 mol% or less. In the case where the polymer (A) is a graft polymer, the graft portion may be composed of only the unit (A).

重合体(A)が架橋された重合体である場合、イオン交換容量を高く保持して機械的物性を改善する観点から、重合体(A)中の全単位に対する単位(A)の割合は、5〜90モル%が好ましく、10〜75モル%が特に好ましい。   When the polymer (A) is a cross-linked polymer, from the viewpoint of improving the mechanical properties by maintaining a high ion exchange capacity, the ratio of the unit (A) to the total units in the polymer (A) is: 5-90 mol% is preferable and 10-75 mol% is especially preferable.

重合体(A)を半導体装置製造におけるフォトレジスト層の上層に設ける光反射防止層の材料に用いる場合には、水や塩基性水溶液への溶解性、低屈折率性を保持する観点から、重合体(A)中の全単位に対する単位(A)の割合は、30〜100モル%が好ましく、50〜75モル%が特に好ましい。   When the polymer (A) is used as a material for an antireflection layer provided on an upper layer of a photoresist layer in the production of a semiconductor device, it is important to maintain solubility in water or a basic aqueous solution and low refractive index. 30-100 mol% is preferable and, as for the ratio of the unit (A) with respect to all the units in a coalescence (A), 50-75 mol% is especially preferable.

本発明の重合体(A)は、単位(A)に由来する−SOF基を必須とする重合体である。該重合体(A)は、他の基材への密着性に優れ、−SOF基が高い屈折率を発現させうることから光学材料として有用である。 Polymer (A) of the present invention is a polymer essentially containing -SO 2 F group derived from the unit (A). The polymer (A) is useful as an optical material because it has excellent adhesion to other base materials, and the —SO 2 F group can exhibit a high refractive index.

さらに重合体(A)をイオン交換膜用の材料として用いる場合には、該−SOF基の一部ないしは全部(好ましくは全部)を−SO(OM)基(ただし、Mは水素原子または対イオンを示す。)に変換し、下記単位(B)を必須とする重合体(以下、重合体(B)ともいう)を製造するのが好ましい。 Further in the case of using polymer (A) as a material for ion-exchange membrane, the -SO 2 part or all of the F group (preferably all) the -SO 2 (OM) group (wherein, M represents a hydrogen atom Or a counter ion.) To produce a polymer essentially comprising the following unit (B) (hereinafter also referred to as polymer (B)).

重合体(B)の質量平均分子量は5×10〜5×10であるのが好ましい。重合体(B)が他の単位を含む場合には、重合体(B)の全単位に対する他の単位の割合は0.1〜99.9モル%であるのが好ましい。 The mass average molecular weight of the polymer (B) is preferably 5 × 10 3 to 5 × 10 6 . When a polymer (B) contains another unit, it is preferable that the ratio of the other unit with respect to all the units of a polymer (B) is 0.1-99.9 mol%.

−SOF基の変換は、公知の手法にしたがって実施できる。たとえば、アルカリ加水分解して処理する方法、該処理の後にさらに酸処理して−SO(OM)基(ただし、Mは前記と同じ意味を示す。)とする方法が挙げられる。これらの方法は、WO03/37885号に記載される方法にしたがうのが好ましい。 The conversion of the —SO 2 F group can be performed according to a known method. For example, a method of treatment by alkali hydrolysis, a method of further acid treatment after the treatment to form a —SO 2 (OM) group (wherein M has the same meaning as described above) can be mentioned. These methods preferably follow the method described in WO 03/37885.

Figure 0004894154
Figure 0004894154

Mが対イオンである場合には、アルカリ金属イオンまたはN(R11で表されるアンモニウムイオンが挙げられる。ここで4つのR11は同一であっても異なっていてもよく、それぞれ独立に、水素原子または炭素数1〜5のアルキル基を示す。Mが対イオンである場合の具体例としては、Na、K、Li、NH 、N(CH、N(CHCH、N(CHCHCH、N(CHCHCHCH、NH(CHCH、NH(CHCHCHCHが挙げられる。 When M is a counter ion, an alkali metal ion or an ammonium ion represented by N + (R 11 ) 4 can be mentioned. Here, four R 11 may be the same or different, and each independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Specific examples when M is a counter ion include Na + , K + , Li + , NH 4 + , N + (CH 3 ) 4 , N + (CH 2 CH 3 ) 4 , and N + (CH 2 CH 2 CH 3 ) 4 , N + (CH 2 CH 2 CH 2 CH 3 ) 4 , N + H (CH 2 CH 3 ) 3 , and N + H (CH 2 CH 2 CH 2 CH 3 ) 3 .

本発明の重合体(B)は、主鎖を形成する炭素原子の1つがペルフルオロ(1,3−ジオキソラン)骨格を形成する炭素原子でもあり、該骨格の4位の炭素原子が式−(CFSO(OM)で表される基(ただし、nは前記と同じ意味を示す。)に置換された単位(B)を必須とする。該単位(B)は、軟化温度を高くさせ、機械的強度を向上させうる。したがって本発明の重合体(B)は、イオン交換膜(食塩電解用の膜や固体高分子型燃料電池用の膜)や固体高分子型燃料電池用電解質の材料として有用である。 In the polymer (B) of the present invention, one of the carbon atoms forming the main chain is also a carbon atom forming a perfluoro (1,3-dioxolane) skeleton, and the carbon atom at the 4-position of the skeleton is represented by the formula — (CF 2 ) A unit (B) substituted with a group represented by n SO 2 (OM) (where n is as defined above) is essential. The unit (B) can increase the softening temperature and improve the mechanical strength. Therefore, the polymer (B) of the present invention is useful as a material for an ion exchange membrane (a membrane for salt electrolysis or a membrane for a polymer electrolyte fuel cell) or an electrolyte for a polymer electrolyte fuel cell.

また重合体(B)は、各種の電気化学プロセスの材料として種々の固体電解質用の材料として有用である。たとえば、水電解、過酸化水素製造、オゾン製造、廃酸回収等に使用するプロトン選択性の透過膜;脱塩または製塩に使用する電気透析用の陽イオン交換膜;リチウムイオン電池用のポリマー電解質;固体酸触媒;陽イオン交換樹脂;修飾電極を用いたセンサー;空気中の微量イオンを除去するためのイオン交換用フィルター;アクチュエーター;拡散透析用(酸、塩基、および塩類の分離精製用など)の膜;蛋白質分離用の荷電型多孔膜(荷電型逆浸透膜、荷電型限外ろ過膜、荷電型ミクロろ過膜など);除湿膜;加湿膜等として有用である。   The polymer (B) is useful as a material for various solid electrolytes as a material for various electrochemical processes. For example, proton-selective permeable membranes used for water electrolysis, hydrogen peroxide production, ozone production, waste acid recovery, etc .; cation exchange membranes for electrodialysis used for desalting or salt production; polymer electrolytes for lithium ion batteries Solid acid catalyst; cation exchange resin; sensor using modified electrode; filter for ion exchange to remove trace ions in the air; actuator; for diffusion dialysis (for separation and purification of acids, bases and salts, etc.) It is useful as a charged porous membrane for protein separation (charged reverse osmosis membrane, charged ultrafiltration membrane, charged microfiltration membrane, etc.); dehumidifying membrane; humidifying membrane.

以下に本発明を実施例により具体的に説明するが、本発明はこれらに限定されない。
なお、以下において1,1,2−トリクロロトリフルオロエタンをR−113、CClFCFCHClFをR−225cb、CClFCFCClCFCFをR−419、テトラメチルシランをTMS、と記す。
純度はガスクロマトグラフィー分析によるピーク面積比より求めた。含フッ素化合物の反応収率はペルフルオロベンゼンを基準とした19F−NMR分析より求めた。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these.
In the following, 1,1,2-trichlorotrifluoroethane is R-113, CClF 2 CF 2 CHClF is R-225cb, CCl 2 FCF 2 CCl 2 CF 2 CF 3 is R-419, tetramethylsilane is TMS, .
The purity was determined from the peak area ratio by gas chromatography analysis. The reaction yield of the fluorine-containing compound was determined by 19 F-NMR analysis based on perfluorobenzene.

重合体のTは、フローテスター(島津製作所製:CFT−500D(商品名))を用いて測定した。ただしTは、重合体をノズル(長さ1mm、内径1mm)中に30kg/cmの押出圧力で100mm/秒の容量流速で溶融流出させる温度と定義する。 T Q of the polymer, flow tester (manufactured by Shimadzu Corporation: CFT-500D (trade name)) was measured using a. However, T Q is defined as the temperature at which the polymer is melted and flowed into the nozzle (length 1 mm, inner diameter 1 mm) at an extrusion pressure of 30 kg / cm 2 and a capacity flow rate of 100 mm 3 / sec.

膜の軟化温度は、動的粘弾性測定装置(アイティー計測社製:DVA200(商品名))を用い、試料幅0.5cm、つかみ間長2cm、測定周波数1Hz、昇温速度2℃/分にて動的粘弾性測定を行った場合における損失弾性率が極大値を示す温度として求めた。   The softening temperature of the film was measured using a dynamic viscoelasticity measuring device (manufactured by IT Measurement Co., Ltd .: DVA200 (trade name)). Was determined as the temperature at which the loss modulus of elasticity when the dynamic viscoelasticity measurement was performed at.

[例1]化合物(1−4)の製造例   [Example 1] Production Example of Compound (1-4)

Figure 0004894154
Figure 0004894154

[例1−1]化合物(4−4)の製造例
窒素ガス雰囲気下の滴下ロート、温度計、および撹拌機を備えた4つ口丸底フラスコ(内容積2L)に、純度91%の化合物(7−4)(100g)、CHCl(500g)、およびN(CHCH(112g)を仕込んだ。つぎに氷浴で4つ口丸底フラスコの内温を10〜20℃に保持しながら、CHSOCl(115g)を30分かけて滴下しながら撹拌した。さらに4つ口丸底フラスコの内温を25℃に保持しながら、2時間撹拌した。
[Example 1-1] Production Example of Compound (4-4) A compound having a purity of 91% was added to a four-necked round bottom flask (internal volume 2 L) equipped with a dropping funnel, a thermometer, and a stirrer in a nitrogen gas atmosphere. (7-4) (100 g), CH 2 Cl 2 (500 g), and N (CH 2 CH 3 ) 3 (112 g) were charged. Next, stirring was performed while adding CH 3 SO 2 Cl (115 g) dropwise over 30 minutes while maintaining the internal temperature of the four-necked round bottom flask at 10 to 20 ° C. in an ice bath. Furthermore, it stirred for 2 hours, keeping the internal temperature of a 4 necked round bottom flask at 25 degreeC.

つづいて、4つ口丸底フラスコにイオン交換水(500g)を添加して2層分離液を得た。2層分離液の下層を回収し、硫酸マグネシウムで脱水してから、減圧留去して粗生成物(174g)を得た。粗生成物をH−NMRとガスクロマトグラフィーで分析した結果、標記化合物(純度91%)の生成を確認した。 Subsequently, ion-exchanged water (500 g) was added to a four-necked round bottom flask to obtain a two-layer separated liquid. The lower layer of the two-layer separated liquid was collected, dehydrated with magnesium sulfate, and evaporated under reduced pressure to obtain a crude product (174 g). As a result of analyzing the crude product by 1 H-NMR and gas chromatography, it was confirmed that the title compound (purity 91%) was produced.

H−NMR(300.4MHz、溶媒:CDCl)δ(ppm):5.8(m,1H)、5.1−4.9(m,2H)、4.2(t,2H)、3.0(s,3H)、2.1(m,2H)、1.8(m,2H)、1.5(m,2H)。 1 H-NMR (300.4 MHz, solvent: CDCl 3 ) δ (ppm): 5.8 (m, 1H), 5.1-4.9 (m, 2H), 4.2 (t, 2H), 3.0 (s, 3H), 2.1 (m, 2H), 1.8 (m, 2H), 1.5 (m, 2H).

[例1−2]化合物(5−4)の製造例(その1)
窒素ガス雰囲気下のジムロート冷却管、滴下ロート、温度計、および撹拌機を備えた4つ口丸底フラスコ(内容積2L)に、例1−1で得た粗生成物(173g)、およびCHC(O)CH(350g)を仕込んだ。つぎに4つ口丸底フラスコの内温を20℃に保持しながら、LiBr(169g)を少しずつ添加しながら撹拌した。さらにフラスコ内溶液を、1時間、加熱還流した。
[Example 1-2] Production Example of Compound (5-4) (Part 1)
In a 4-neck round bottom flask (internal volume 2 L) equipped with a Dimroth condenser, a dropping funnel, a thermometer, and a stirrer under a nitrogen gas atmosphere, the crude product (173 g) obtained in Example 1-1, and CH 3 C (O) CH 3 (350 g) was charged. Next, it stirred, adding LiBr (169g) little by little, hold | maintaining the internal temperature of a 4-neck round bottom flask at 20 degreeC. Further, the solution in the flask was heated to reflux for 1 hour.

フラスコ内溶液をろ過して得たろ液をフラスコに入れ、大気圧下でフラスコを加熱してろ液の溶媒を留去した。フラスコを冷却すると、結晶が析出したのでフラスコ内溶液をろ過して結晶とろ液を分離した。結晶に水を添加して2層分離液を得た。該ろ液と2層分離液の上層の液を混合し、硫酸マグネシウムで脱水してから、減圧蒸留して71〜73℃/6.7kPa(絶対圧)の留分(101g)を得た。留分をH−NMRとガスクロマトグラフィーで分析した結果、標記化合物(純度91.5%)の生成を確認した。 The filtrate obtained by filtering the solution in the flask was placed in the flask, and the flask was heated under atmospheric pressure to distill off the solvent of the filtrate. When the flask was cooled, crystals were precipitated, and the solution in the flask was filtered to separate the crystals and the filtrate. Water was added to the crystals to obtain a two-layer separated liquid. The filtrate and the upper layer liquid of the two-layer separated liquid were mixed, dehydrated with magnesium sulfate, and distilled under reduced pressure to obtain a fraction (101 g) of 71 to 73 ° C./6.7 kPa (absolute pressure). As a result of analyzing the fraction by 1 H-NMR and gas chromatography, it was confirmed that the title compound (purity 91.5%) was produced.

H−NMR(300.4MHz、溶媒:CDCl)δ(ppm):5.8(m,1H)、5.1−4.9(m,2H)、3.4(t,2H)、2.1(m,2H)、1.9(m,2H)、1.6−1.5(m,2H)。 1 H-NMR (300.4 MHz, solvent: CDCl 3 ) δ (ppm): 5.8 (m, 1H), 5.1-4.9 (m, 2H), 3.4 (t, 2H), 2.1 (m, 2H), 1.9 (m, 2H), 1.6-1.5 (m, 2H).

[例1−3]化合物(5−4)の製造例(その2)
温度計、撹拌子を備えた3つ口丸底フラスコ(内容積50mL)に化合物(6−4)(10.3g)、(C17(CH)NCl(2.0g、商品名:Aliquat336)、およびLiBr(9.6g)を仕込んだ。3つ口丸底フラスコの内温を100℃に保持して、10時間撹拌した。3つ口丸底フラスコの内溶液をH−NMRで分析した結果、標記化合物の生成(収率80%)を確認した。
[Example 1-3] Production Example of Compound (5-4) (Part 2)
A compound (6-4) (10.3 g), (C 8 H 17 ) 3 (CH 3 ) NCl (2.0 g, commercial product) was added to a three-necked round bottom flask (internal volume 50 mL) equipped with a thermometer and a stirring bar. Name: Aliquat 336) and LiBr (9.6 g) were charged. The internal temperature of the three-necked round bottom flask was maintained at 100 ° C. and stirred for 10 hours. As a result of analyzing the inner solution of the three-necked round bottom flask by 1 H-NMR, it was confirmed that the title compound was produced (yield 80%).

[例1−4]化合物(3−4)の製造例(その1)
ジムロート冷却管、温度計、および撹拌機を備えた4つ口丸底フラスコ(内容積1L)に、イオン交換水(283g)およびNaSO(68.6g)を仕込み、溶解するまで撹拌した。つぎに例1−2で得た留分(88.5g)を添加して、フラスコ内溶液を6時間、加熱還流した。
[Example 1-4] Production Example (1) of Compound (3-4)
A four-necked round bottom flask (internal volume 1 L) equipped with a Dimroth condenser, thermometer, and stirrer was charged with ion-exchanged water (283 g) and Na 2 SO 3 (68.6 g) and stirred until dissolved. . Next, the fraction (88.5 g) obtained in Example 1-2 was added, and the solution in the flask was heated to reflux for 6 hours.

エバポレーターで大部分の水を減圧留去してから、トルエンを加え、さらに減圧留去を続けた。さらに12時間、真空乾燥(100℃)して標記化合物とNaBrを主成分とする白色固体(151g)を得た。白色固体をH−NMRで分析した結果、標記化合物の生成を確認した。ただしDOに含まれるHのケミカルシフトは4.65ppmとした。 Most of the water was distilled off under reduced pressure using an evaporator, and then toluene was added. The mixture was further vacuum-dried (100 ° C.) for 12 hours to obtain a white solid (151 g) containing the title compound and NaBr as main components. As a result of analyzing the white solid by 1 H-NMR, the production of the title compound was confirmed. However, the chemical shift of H contained in D 2 O was 4.65 ppm.

H−NMR(300.4MHz、溶媒:DO)δ(ppm):5.8(m,1H)、5.0−4.8(m,2H)、2.8(m,2H)、2.0(m,2H)、1.6(m,2H)、1.4(m,2H)。 1 H-NMR (300.4 MHz, solvent: D 2 O) δ (ppm): 5.8 (m, 1H), 5.0-4.8 (m, 2H), 2.8 (m, 2H) 2.0 (m, 2H), 1.6 (m, 2H), 1.4 (m, 2H).

[例1−5]化合物(3−4)の製造例(その2)
ジムロート冷却管、温度計、撹拌子を備えた3つ口丸底フラスコ(内容積200mL)に、イオン交換水(52g)、およびNaSO(13.3g)を仕込み、溶解するまで撹拌した。つぎに、3つ口丸底フラスコに化合物(6−4)(13.3g)を添加して、20時間、加熱還流した。3つ口丸底フラスコの内溶液をH−NMRで分析した結果、標記化合物の生成(収率68%)を確認した。また化合物(6−4)(4.2g)を未反応のまま回収した。
Example 1-5 Production Example of Compound (3-4) (Part 2)
A three-necked round bottom flask (internal volume 200 mL) equipped with a Dimroth condenser, thermometer, and stir bar was charged with ion-exchanged water (52 g) and Na 2 SO 3 (13.3 g) and stirred until dissolved. . Next, the compound (6-4) (13.3 g) was added to the three-necked round bottom flask and heated to reflux for 20 hours. As a result of analyzing the inner solution of the three-necked round bottom flask by 1 H-NMR, it was confirmed that the title compound was formed (yield 68%). Compound (6-4) (4.2 g) was recovered unreacted.

[例1−6]化合物(2−4)の製造例
窒素ガス雰囲気下のジムロート冷却管、温度計、および撹拌子を備えた4つ口丸底フラスコ(内容積1L)に、CHCl(356g)、例1−4で得た白色固体(70g)、およびジメチルホルムアミド(0.70g)を仕込んだ。4つ口丸底フラスコの内温を19〜22℃に保持しながら、SOCl(144g)を10分かけて滴下しながら撹拌した。さらにフラスコ内溶液を7.5時間、加熱還流した。
[Example 1-6] Production Example of Compound (2-4) To a 4-neck round bottom flask (internal volume 1 L) equipped with a Dimroth condenser, thermometer, and stirrer in a nitrogen gas atmosphere was added CH 2 Cl 2. (356 g), the white solid obtained in Example 1-4 (70 g), and dimethylformamide (0.70 g) were charged. While maintaining the internal temperature of the four-necked round bottom flask at 19 to 22 ° C., the mixture was stirred while SOCl 2 (144 g) was added dropwise over 10 minutes. Further, the solution in the flask was heated to reflux for 7.5 hours.

つぎに4つ口丸底フラスコを氷水(約1.5L)に加えて2層分離液を得た。2層分離液の下層の液、および、上層の液をCHCl(350g)で抽出した抽出液を混合し、硫酸マグネシウムで脱水してから濃縮して濃縮物を得た。さらに濃縮物を25℃にて真空ポンプで溶媒を留去して液体(43g)を得た。液体をH−NMRで分析した結果、標記化合物の生成を確認した。 Next, a four-necked round bottom flask was added to ice water (about 1.5 L) to obtain a two-layer separated liquid. The lower layer of the two-layer separated liquid and the extract obtained by extracting the upper liquid with CH 2 Cl 2 (350 g) were mixed, dehydrated with magnesium sulfate, and concentrated to obtain a concentrate. Furthermore, the solvent was distilled off from the concentrate with a vacuum pump at 25 ° C. to obtain a liquid (43 g). As a result of analyzing the liquid by 1 H-NMR, it was confirmed that the title compound was produced.

H−NMR(300.4MHz:CDCl)δ(ppm):5.8(m,1H)、5.1−5.0(m,2H)、3.7(m,2H)、2.2−2.0(m,4H)、1.6(m,2H)。 1 H-NMR (300.4 MHz: CDCl 3 ) δ (ppm): 5.8 (m, 1H), 5.1-5.0 (m, 2H), 3.7 (m, 2H), 2. 2-2.0 (m, 4H), 1.6 (m, 2H).

[例1−7]化合物(1−4)の製造例(その1)
窒素ガス雰囲気下のジムロート冷却管、温度計、および撹拌子を備えた4つ口丸底フラスコ(内容積300mL)に、例1−6で得た液体(42g)、およびCHCN(100g)を仕込んだ。4つ口丸底フラスコにKF(27g、森田化学社製商品名:クロキャットF)を添加しながら撹拌して、さらに8時間、加熱還流した。
[Example 1-7] Production Example (1) of Compound (1-4)
Into a four-necked round bottom flask (internal volume 300 mL) equipped with a Dimroth condenser, thermometer, and stir bar under a nitrogen gas atmosphere, the liquid obtained in Example 1-6 (42 g) and CH 3 CN (100 g) Was charged. The mixture was stirred while adding KF (27 g, trade name, manufactured by Morita Chemical Co., Ltd .: Crocat F) to a four-necked round bottom flask, and further heated to reflux for 8 hours.

フラスコ内溶液をろ過して得たろ液を濃縮した濃縮物に、イオン交換水(100g)を添加し、さらに撹拌して2層分離液を得た。2層分離液の下層の液を回収し、硫酸マグネシウムで脱水してから、蒸留して75℃/0.86kPa(絶対圧)の留分(24g)を得た。留分をH−NMR、19F−NMR、およびガスクロマトグラフィーで分析した結果、標記化合物(純度96.5%)の生成を確認した。 Ion exchange water (100 g) was added to the concentrate obtained by concentrating the filtrate obtained by filtering the solution in the flask, and further stirred to obtain a two-layer separated solution. The lower layer liquid of the two-layer separated liquid was collected, dehydrated with magnesium sulfate, and distilled to obtain a fraction (24 g) of 75 ° C./0.86 kPa (absolute pressure). As a result of analyzing the fraction by 1 H-NMR, 19 F-NMR, and gas chromatography, it was confirmed that the title compound (purity 96.5%) was produced.

H−NMR(300.4MHz、溶媒:CDCl)δ(ppm):5.8(m,1H)、5.1−5.0(m,2H)、3.4(m,2H)、2.1(m,2H)、2.0(m,2H)、1.6(m,2H).
19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):52.9(1F)。
1 H-NMR (300.4 MHz, solvent: CDCl 3 ) δ (ppm): 5.8 (m, 1H), 5.1-5.0 (m, 2H), 3.4 (m, 2H), 2.1 (m, 2H), 2.0 (m, 2H), 1.6 (m, 2H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): 52.9 (1F).

[例1−8]化合物(1−4)の製造例(その2)
ジムロート冷却管、温度計、撹拌子を備えた3つ口丸底フラスコ(内容積100mL)にCHCN(12.2g)、例1−4で得た白色固体(3.6g)、2,2−ジフルオロ−1,3−ジメチルイミダゾリジン(5.1g)、およびイオン交換水(0.11g)を添加し、つぎに3つ口丸底フラスコの内溶液を加熱還流しながら撹拌した。加熱還流を開始してから、5.5時間後の還流液、8.5時間後の還流液、および17.5時間後の還流液をH−NMRと19F−NMRで分析した結果、反応収率がそれぞれ59%、74%、および86%で標記化合物の生成を確認した。
[Example 1-8] Production Example (2) of Compound (1-4)
A three-necked round bottom flask (internal volume 100 mL) equipped with a Dimroth condenser, thermometer, and stir bar was charged with CH 3 CN (12.2 g), the white solid obtained in Example 1-4 (3.6 g), 2, 2-Difluoro-1,3-dimethylimidazolidine (5.1 g) and ion-exchanged water (0.11 g) were added, and then the inner solution of the three-necked round bottom flask was stirred while being heated to reflux. As a result of 1 H-NMR and 19 F-NMR analysis of the reflux solution after 5.5 hours, the reflux solution after 8.5 hours, and the reflux solution after 17.5 hours after starting the heating reflux, Formation of the title compound was confirmed with reaction yields of 59%, 74% and 86%, respectively.

[例1−9]化合物(1−4)の製造例(その3)
イオン交換水を用いない以外は例1−8と同様の方法で反応を行った。13時間後の還流液をH−NMRと19F−NMRで分析した結果、反応収率22.5%で標記化合物の生成を確認した。
Example 1-9 Production Example of Compound (1-4) (Part 3)
The reaction was performed in the same manner as in Example 1-8 except that ion-exchanged water was not used. As a result of analyzing the reflux liquid after 13 hours by 1 H-NMR and 19 F-NMR, it was confirmed that the title compound was produced in a reaction yield of 22.5%.

[例2]化合物(1−2)の製造例   [Example 2] Production example of compound (1-2)

Figure 0004894154
Figure 0004894154

[例2−1]化合物(4−2)の製造例
窒素ガス雰囲気下の滴下ロート、温度計、および撹拌機を備えた4つ口丸底フラスコ(内容積2L)に、化合物(7−2)(300g)、CHCl(2100g)、およびN(CHCH(464g)を仕込んだ。つぎに氷浴で4つ口丸底フラスコの内温をおよそ20℃に保持しながら、CHSOCl(476g)を35分かけて滴下しながら撹拌した。さらに4つ口丸底フラスコの内温を約20℃に保持しながら、3時間撹拌した。
[Example 2-1] Production Example of Compound (4-2) To a four-necked round bottom flask (internal volume 2 L) equipped with a dropping funnel, a thermometer, and a stirrer under a nitrogen gas atmosphere, compound (7-2) was added. ) (300 g), CH 2 Cl 2 (2100 g), and N (CH 2 CH 3 ) 3 (464 g). Next, stirring was performed while adding CH 3 SO 2 Cl (476 g) dropwise over 35 minutes while maintaining the internal temperature of the four-necked round bottom flask at about 20 ° C. in an ice bath. Furthermore, it stirred for 3 hours, hold | maintaining the internal temperature of a 4-neck round bottom flask at about 20 degreeC.

つづいて、4つ口丸底フラスコにイオン交換水(2100g)を添加して2層分離液を得た。2層分離液の下層の液を回収した。上層の液を再度、CHCl(725g)で抽出した抽出液を先に回収した下層の液と混合して反応粗液を得た。反応粗液を、硫酸マグネシウムで脱水してから、溶媒を減圧留去して生成物(620g)を得た。生成物をNMRとGCで分析した結果、標記化合物の生成を確認した。 Subsequently, ion-exchanged water (2100 g) was added to a four-necked round bottom flask to obtain a two-layer separated liquid. The lower layer liquid of the two-layer separated liquid was collected. The liquid extracted from the upper layer was again extracted with CH 2 Cl 2 (725 g) and mixed with the lower liquid recovered earlier to obtain a reaction crude liquid. The reaction crude liquid was dehydrated with magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain a product (620 g). As a result of analyzing the product by NMR and GC, it was confirmed that the title compound was formed.

H−NMR(300.4MHz、溶媒:CDCl)δ(ppm):5.8(m,1H)、5.2〜5.1(m,2H)、4.3(t,2H)、3.0(s,3H)、2.5(m,2H)。 1 H-NMR (300.4 MHz, solvent: CDCl 3 ) δ (ppm): 5.8 (m, 1H), 5.2-5.1 (m, 2H), 4.3 (t, 2H), 3.0 (s, 3H), 2.5 (m, 2H).

[例2−2]化合物(5−2)の製造例
窒素ガス雰囲気下のジムロート冷却管、温度計、および撹拌機を備えた4つ口丸底フラスコ(内容積5L)に、例2−1で得た生成物(609g)およびCHCOCH(2203g)を仕込んだ。つぎに水浴中で、フラスコ内を撹拌しながら、LiBr(473g)を16分かけて添加した。添加中に内温は22℃から34.5℃に上昇した。添加終了後、そのまま1時間、加熱還流してから、常圧にてアセトンを留去した。
[Example 2-2] Production Example of Compound (5-2) To a 4-neck round bottom flask (internal volume 5 L) equipped with a Dimroth condenser, thermometer, and stirrer under a nitrogen gas atmosphere, Example 2-1 The product obtained in step 609 (609 g) and CH 3 COCH 3 (2203 g) were charged. Next, LiBr (473 g) was added over 16 minutes while stirring in the flask in a water bath. The internal temperature rose from 22 ° C. to 34.5 ° C. during the addition. After completion of the addition, the mixture was heated to reflux for 1 hour as it was, and then acetone was distilled off at normal pressure.

フラスコにイオン交換水(2620g)を添加し、2層分離液を得た。下層の液を回収し、硫酸マグネシウムで乾燥してから減圧蒸留して59℃/26.6kPa(絶対圧)の留分(458g)を得た。留分をNMRとGCで分析した結果、標記化合物の生成を確認した。   Ion exchange water (2620 g) was added to the flask to obtain a two-layer separation. The lower layer liquid was collected, dried over magnesium sulfate, and distilled under reduced pressure to obtain a fraction (458 g) of 59 ° C./26.6 kPa (absolute pressure). As a result of analyzing the fraction by NMR and GC, it was confirmed that the title compound was produced.

H−NMR(300.4MHz、溶媒:CDCl)δ(ppm):5.8(m,1H)、5.2〜5.1(m,2H)、3.4(t,2H)、2.6(m,2H)。 1 H-NMR (300.4 MHz, solvent: CDCl 3 ) δ (ppm): 5.8 (m, 1H), 5.2-5.1 (m, 2H), 3.4 (t, 2H), 2.6 (m, 2H).

[例2−3]化合物(3−2)の製造例
ジムロート冷却管、温度計、および撹拌機を備えた4つ口丸底フラスコ(内容積5L)に、イオン交換水(1833g)およびNaSO(433g)を仕込み、溶解するまで撹拌した。つぎに例2−2で得た留分(464g)を添加して、フラスコ内溶液を約6時間、加熱還流した。
Example 2-3 Production Example of Compound (3-2) A four-necked round bottom flask (internal volume 5 L) equipped with a Dimroth condenser, thermometer, and stirrer was charged with ion-exchanged water (1833 g) and Na 2. SO 3 (433 g) was charged and stirred until dissolved. Next, the fraction (464 g) obtained in Example 2-2 was added, and the solution in the flask was heated to reflux for about 6 hours.

エバポレーターで大部分の水を減圧留去してから、33時間、真空乾燥(100℃)して標記化合物とNaBrを主成分とする白色固体(896g)を得た。白色固体をNMRで分析した結果、標記化合物の生成を確認した。ただし、DOに含まれるHのケミカルシフトは4.65ppmとした。 Most of the water was distilled off under reduced pressure using an evaporator, and then vacuum-dried (100 ° C.) for 33 hours to obtain a white solid (896 g) containing the title compound and NaBr as main components. As a result of analyzing the white solid by NMR, it was confirmed that the title compound was produced. However, the chemical shift of H contained in D 2 O was 4.65 ppm.

H−NMR(300.4MHz、溶媒:DO)δ(ppm):5.9(m,1H)、5.2〜5.1(m,2H)、3.0(m,2H)、2.5(m,2H)。 1 H-NMR (300.4 MHz, solvent: D 2 O) δ (ppm): 5.9 (m, 1H), 5.2-5.1 (m, 2H), 3.0 (m, 2H) 2.5 (m, 2H).

[例2−4]化合物(2−2)の製造例
窒素ガス雰囲気下のジムロート冷却管、温度計、および撹拌機を備えた4つ口丸底フラスコ(内容積2L)に、例2−3で得た白色固体(307g)、CHCl(1033g)およびジメチルホルムアミド(4.41g)を仕込んだ。4つ口丸底フラスコの内温をおよそ20℃に保持しながら、SOCl(370g)を約10分かけて滴下しながら撹拌した。さらにフラスコ内溶液を9時間、加熱還流した。
[Example 2-4] Production Example of Compound (2-2) To a four-necked round bottom flask (internal volume 2 L) equipped with a Dimroth condenser, thermometer, and stirrer in a nitrogen gas atmosphere was added Example 2-3. A white solid (307 g) obtained in step 1, CH 2 Cl 2 (1033 g) and dimethylformamide (4.41 g) were charged. While maintaining the internal temperature of the four-necked round bottom flask at about 20 ° C., the mixture was stirred while SOCl 2 (370 g) was added dropwise over about 10 minutes. Further, the solution in the flask was heated to reflux for 9 hours.

つぎに、4つ口丸底フラスコ内容物を氷水(約1.3L)に加えて2層分離液を得た。上層の液をCHCl(346g)で抽出した抽出液と下層の液を混合し、硫酸マグネシウムで脱水してから濃縮して濃縮物を得た。さらに25℃、真空条件下にて濃縮物の溶媒を留去して反応液(196g)を得た。反応液をH−NMRで分析した結果、標記化合物の生成を確認した。 Next, the contents of the four-necked round bottom flask were added to ice water (about 1.3 L) to obtain a two-layer separated liquid. The extract obtained by extracting the upper liquid with CH 2 Cl 2 (346 g) and the lower liquid were mixed, dehydrated with magnesium sulfate, and concentrated to obtain a concentrate. Furthermore, the solvent of the concentrate was distilled off under vacuum conditions at 25 ° C. to obtain a reaction solution (196 g). As a result of analyzing the reaction solution by 1 H-NMR, it was confirmed that the title compound was produced.

H−NMR(300.4MHz;CDCl)δ(ppm):5.8(m,1H)、5.3〜5.2(m,2H)、3.8〜3.7(m,2H)、2.8(m,2H)。 1 H-NMR (300.4 MHz; CDCl 3 ) δ (ppm): 5.8 (m, 1H), 5.3 to 5.2 (m, 2H), 3.8 to 3.7 (m, 2H) ) 2.8 (m, 2H).

[例2−5]化合物(1−2)の製造例
窒素ガス雰囲気下のジムロート冷却管、温度計、および撹拌機を備えた4つ口丸底フラスコ(内容積2L)に、例2−4と同様にして得た反応液(355g)、およびCHCN(1053g)を仕込んだ。つぎにKF(267g、森田化学社製、商品名:クロキャットF)を添加しながら撹拌して、そのままフラスコ内容液を7時間、加熱還流した。
[Example 2-5] Production Example of Compound (1-2) Example 2-4 was added to a 4-neck round bottom flask (internal volume 2 L) equipped with a Dimroth condenser, thermometer, and stirrer in a nitrogen gas atmosphere. The reaction solution (355 g) obtained in the same manner as above and CH 3 CN (1053 g) were charged. Next, the mixture was stirred while adding KF (267 g, manufactured by Morita Chemical Co., Ltd., trade name: Crocat F), and the flask contents were heated to reflux for 7 hours.

フラスコ内溶液を減圧下で溶媒留去して得た反応粗液と水(2650g)を混合し、2層分離液の下層の液を回収した。回収した液を硫酸マグネシウムで乾燥してから減圧蒸留して53〜54℃/1.33kPa(絶対圧)の留分(222g)を得た。留分をNMRとGCで分析した結果、標記化合物(純度96.5%)の生成を確認した。   The reaction crude liquid obtained by evaporating the solvent in the flask under reduced pressure and water (2650 g) were mixed, and the lower layer liquid of the two-layer separated liquid was recovered. The collected liquid was dried over magnesium sulfate and distilled under reduced pressure to obtain a fraction (222 g) of 53 to 54 ° C./1.33 kPa (absolute pressure). As a result of analyzing the fraction by NMR and GC, it was confirmed that the title compound (purity 96.5%) was produced.

H−NMR(300.4MHz、溶媒:CDCl)δ(ppm):5.8(m,1H)、5.3〜5.2(m,2H)、3.5〜3.4(m,2H)、2.7(m,2H)。
19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):53.4(1F)。
1 H-NMR (300.4 MHz, solvent: CDCl 3 ) δ (ppm): 5.8 (m, 1H), 5.3 to 5.2 (m, 2H), 3.5 to 3.4 (m , 2H), 2.7 (m, 2H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): 53.4 (1F).

[例3]化合物(1−1)の製造例   [Example 3] Production example of compound (1-1)

Figure 0004894154
Figure 0004894154

[例3−1]化合物(3−1)の製造例
ジムロート冷却管、温度計、撹拌機を備えた4つ口丸底フラスコ(内容積2L)に、イオン交換水(940g)およびNaSO(227g)を仕込み、溶解するまで撹拌した。つぎに化合物(5−1)(218g)を添加してから、1時間、加熱還流した。
Example 3-1 Production Example of Compound (3-1) A four-necked round bottom flask (internal volume 2 L) equipped with a Dimroth condenser, thermometer, and stirrer was charged with ion-exchanged water (940 g) and Na 2 SO. 3 (227 g) was charged and stirred until dissolved. Next, after adding the compound (5-1) (218 g), the mixture was heated to reflux for 1 hour.

フラスコ内溶液を減圧留去してから、トルエンを加え、さらに減圧留去を続けて反応粗液を得た。反応粗液を12時間、真空乾燥(100℃)して標記化合物とNaBrを主成分とする白色固体(444g)を得た。白色固体をH−NMRで分析した結果、標記化合物の生成を確認した。ただしDOに含まれるHのケミカルシフトは4.65ppmとした。 After distilling off the solution in the flask under reduced pressure, toluene was added, and distillation under reduced pressure was continued to obtain a reaction crude liquid. The reaction crude liquid was vacuum-dried (100 ° C.) for 12 hours to obtain a white solid (444 g) containing the title compound and NaBr as main components. As a result of analyzing the white solid by 1 H-NMR, the production of the title compound was confirmed. However, the chemical shift of H contained in D 2 O was 4.65 ppm.

H−NMR(300.4MHz、溶媒:DO)δ(ppm):6.0(m,1H)、5.6〜5.4(m,2H)、3.7(d,2H)。 1 H-NMR (300.4 MHz, solvent: D 2 O) δ (ppm): 6.0 (m, 1H), 5.6 to 5.4 (m, 2H), 3.7 (d, 2H) .

[例3−2]化合物(2−1)の製造例
窒素ガス雰囲気下のジムロート冷却管、温度計、撹拌機を備えた4つ口丸底フラスコ(内容積2L)に、CHCl(1100g)、例3−1で得た白色固体(220g)、およびジメチルホルムアミド(2.63g)を仕込んだ。4つ口丸底フラスコの内温を20〜22℃に保持しながら、SOCl(530g)を10分かけて滴下しながら撹拌した。さらにフラスコ内溶液を撹拌しながら、7.5時間、加熱還流した。
[Example 3-2] Production Example of Compound (2-1) To a 4-neck round bottom flask (internal volume: 2 L) equipped with a Dimroth condenser, thermometer, and stirrer in a nitrogen gas atmosphere, CH 2 Cl 2 ( 1100 g), the white solid obtained in Example 3-1 (220 g), and dimethylformamide (2.63 g) were charged. While maintaining the internal temperature of the four-necked round bottom flask at 20 to 22 ° C., the mixture was stirred while SOCl 2 (530 g) was added dropwise over 10 minutes. Further, the solution in the flask was heated to reflux for 7.5 hours while stirring.

つぎに4つ口丸底フラスコ内溶液を氷水(約5.6L)に加えて2層分離液を得た。2層分離液の下層の液、および、上層の液をCHCl(1120g)で抽出した抽出液を混合し、硫酸マグネシウムで脱水してから濃縮して粗生成物(123g)を得た。粗生成物をH−NMRで分析した結果、標記化合物の生成を確認した。 Next, the solution in the four-necked round bottom flask was added to ice water (about 5.6 L) to obtain a two-layer separated liquid. The lower layer of the two-layer separated liquid and the extract obtained by extracting the upper liquid with CH 2 Cl 2 (1120 g) were mixed, dehydrated with magnesium sulfate, and concentrated to obtain a crude product (123 g). . As a result of analyzing the crude product by 1 H-NMR, it was confirmed that the title compound was produced.

H−NMR(300.4MHz、溶媒:CDCl)δ(ppm):6.0(m,1H)、5.8〜5.6(m,2H)、4.3(d,2H)。 1 H-NMR (300.4 MHz, solvent: CDCl 3 ) δ (ppm): 6.0 (m, 1H), 5.8 to 5.6 (m, 2H), 4.3 (d, 2H).

[例3−3]化合物(1−1)の製造例
ポリ容器(内容積3L)に、KHF(136.2g)および水(800mL)を添加し、溶解するまで撹拌した。つぎに例3−2で得た粗生成物(112.4g)とCHCN(800mL)の混合液を添加し、25℃で27時間、撹拌して2層分離液を得た。2層分離液の上層を回収し、硫酸マグネシウムで乾燥してから、NaF(32.7g)を添加して反応粗液を得た。
[Example 3-3] Production Example of Compound (1-1) To a polycontainer (internal volume: 3 L), KHF 2 (136.2 g) and water (800 mL) were added and stirred until dissolved. Next, a mixed solution of the crude product (112.4 g) obtained in Example 3-2 and CH 3 CN (800 mL) was added and stirred at 25 ° C. for 27 hours to obtain a two-layer separated solution. The upper layer of the two-layer separation liquid was collected and dried over magnesium sulfate, and then NaF (32.7 g) was added to obtain a reaction crude liquid.

反応粗液をろ過して得たろ液に含まれる大部分のCHCNを減圧(37〜25(絶対圧))留去してから、さらに減圧蒸留して62〜64℃/5.3kPa(絶対圧)の留分(62g)を得た。留分をNMRとガスクロマトグラフィーで分析した結果、標記化合物の生成を確認した。 Most of the CH 3 CN contained in the filtrate obtained by filtering the reaction crude liquid was distilled off under reduced pressure (37 to 25 (absolute pressure)), and further distilled under reduced pressure to 62 to 64 ° C./5.3 kPa ( (Absolute pressure) fraction (62 g) was obtained. As a result of analyzing the fraction by NMR and gas chromatography, the production of the title compound was confirmed.

H−NMR(300.4MHz、溶媒:CDCl)δ(ppm):5.9(m,1H)、5.7〜5.5(m,2H)、4.1(m,2H)。 1 H-NMR (300.4 MHz, solvent: CDCl 3 ) δ (ppm): 5.9 (m, 1H), 5.7 to 5.5 (m, 2H), 4.1 (m, 2H).

19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):51.5(1F)。 19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): 51.5 (1F).

[例4]化合物(a−4)の製造例   [Example 4] Production example of compound (a-4)

Figure 0004894154
Figure 0004894154

[例4−1]化合物(g−4)の製造例
窒素ガス雰囲気下の、ジムロート冷却管、温度計および撹拌子を備えた四つ口丸底フラスコ(内容積300mL)に、化合物(1−4)(12.7g)とジクロロメタン(150mL)を加えてから、水浴中で撹拌しながらメタクロロ過安息香酸(22g)を添加して12時間撹拌した。フラスコ内容液をろ過して回収したろ液を、飽和炭酸水素ナトリウム水溶液(100mL)で2回洗浄してから飽和食塩水(100mL)で1回洗浄して反応粗液を得た。
[Example 4-1] Production Example of Compound (g-4) In a four-necked round bottom flask (with an internal volume of 300 mL) equipped with a Dimroth condenser, thermometer and stirrer under a nitrogen gas atmosphere, compound (1- 4) (12.7 g) and dichloromethane (150 mL) were added, and then metachloroperbenzoic acid (22 g) was added with stirring in a water bath and stirred for 12 hours. The filtrate collected by filtering the flask contents was washed twice with saturated aqueous sodium hydrogencarbonate (100 mL) and then once with saturated brine (100 mL) to obtain a reaction crude.

反応粗液を硫酸ナトリウムで脱水してから濾過して回収した濾液を濃縮した。さらに蒸留して、89℃/0.70kPa(絶対圧)の留分(12.88g)を得た。留分を分析した結果、化合物(g−4)の生成を確認した(純度95%)。   The reaction crude liquid was dehydrated with sodium sulfate and then filtered to collect the filtrate. Further distillation was performed to obtain a fraction (12.88 g) of 89 ° C./0.70 kPa (absolute pressure). As a result of analyzing the fraction, production of the compound (g-4) was confirmed (purity 95%).

H−NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):3.3〜3.5(m、2H),2.8〜3.0(m、1H),2.8(t、1H),2.5(dd、1H),2.0(m、2H),1.7(m、3H),1.5(m、1H)。
19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):53.1(1F)。
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 3.3 to 3.5 (m, 2H), 2.8 to 3.0 (m, 1H), 2 .8 (t, 1H), 2.5 (dd, 1H), 2.0 (m, 2H), 1.7 (m, 3H), 1.5 (m, 1H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): 53.1 (1F).

[例4−2]化合物(e−4)の製造例
窒素ガス雰囲気下の、ジムロート冷却管、温度計および撹拌子を備えた三つ口フラスコ(内容積100mL)に、化合物(g−4)(14g)とCHCOCH(15mL)を加え、水浴中で撹拌しながらBF・O(CHCH(40mg)を添加して6時間撹拌した。化合物(g−4)の反応率が97%に達した時点で、フラスコにCHC(O)CHOH(10g)を添加し、さらにフラスコ内を加熱減圧(67℃、13kPa(絶対圧))して低沸点成分を抜き出しながら10時間、撹拌を行った。
[Example 4-2] Production Example of Compound (e-4) In a three-necked flask (internal volume of 100 mL) equipped with a Dimroth condenser, thermometer and stirrer under a nitrogen gas atmosphere, compound (g-4) (14 g) and CH 3 COCH 3 (15 mL) were added, and BF 3 .O (CH 2 CH 3 ) 2 (40 mg) was added with stirring in a water bath and stirred for 6 hours. When the reaction rate of the compound (g-4) reached 97%, CH 3 C (O) CH 2 OH (10 g) was added to the flask, and the inside of the flask was further heated under reduced pressure (67 ° C., 13 kPa (absolute pressure)). )) And stirred for 10 hours while extracting low-boiling components.

冷却したフラスコ内容液を飽和炭酸水素ナトリウム水溶液(100mL)で洗浄してから、tert−ブチルメチルエーテル(100mL)で2回抽出して抽出液を得た。抽出液を飽和食塩水(100mL)で洗浄し硫酸ナトリウムで脱水してから濃縮し、さらに真空乾燥して化合物(e−4)(15g)を得た。   The cooled contents of the flask were washed with a saturated aqueous sodium hydrogen carbonate solution (100 mL), and then extracted twice with tert-butyl methyl ether (100 mL) to obtain an extract. The extract was washed with saturated brine (100 mL), dried over sodium sulfate, concentrated, and dried in vacuo to give compound (e-4) (15 g).

H−NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.33 and 1.37(each s,3H),1.50〜1.75(m,4H),2.02(m,2H),2.10(br,1H),3.35〜3.60(m,5H),4.07〜4.20(m,4H)。
19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):53.0。
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 1.33 and 1.37 (each, 3H), 1.50 to 1.75 (m, 4H), 2.02 (m, 2H), 2.10 (br, 1H), 3.35 to 3.60 (m, 5H), 4.07 to 4.20 (m, 4H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): 53.0.

[例4−3]化合物(d−4)の製造例
窒素ガス雰囲気下の、滴下ロート、冷却管、温度計、撹拌子を備えた三つ口フラスコ(内容積100mL)に、NaF(3.3g)と化合物(e−4)(10g)を加え、氷浴中にて5分間撹拌してからF(CFOCF(CF)COF(13g)を滴下した。フラスコ内容液をR−225で希釈してからろ過して得たろ液を濃縮して化合物(d−4)(21g)を得た。
[Example 4-3] Production Example of Compound (d-4) In a three-necked flask (with an internal volume of 100 mL) equipped with a dropping funnel, a condenser, a thermometer, and a stirring bar under a nitrogen gas atmosphere, NaF (3. 3 g) and compound (e-4) (10 g) were added, and the mixture was stirred in an ice bath for 5 minutes, and then F (CF 2 ) 3 OCF (CF 3 ) COF (13 g) was added dropwise. The flask was diluted with R-225 and then filtered to obtain a compound (d-4) (21 g).

H−NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.39 and 1.43(each s,3H),1.55〜1.65(m,4H),2.02(m,2H),3.34〜3.56(m,3H),4.09〜4.37(m,4H)。
19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):53.0(1F),−80.4(1F),−81.8(3F),−82.5(3F),−86.7(1F),−130.2(2F),−132.3(1F)。
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 1.39 and 1.43 (each, 3H), 1.55-1.65 (m, 4H), 2.02 (m, 2H), 3.34 to 3.56 (m, 3H), 4.09 to 4.37 (m, 4H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): 53.0 (1F), −80.4 (1F), −81.8 (3F), −82. 5 (3F), -86.7 (1F), -130.2 (2F), -132.3 (1F).

[例4−4]化合物(c−4)の製造例
オートクレーブ(内容積3000mL、ニッケル製)に、R−113(1700g)を入れ撹拌し、オートクレーブ内の温度を25℃に保った。オートクレーブのガス出口部には、20℃に保持した冷却器、NaFペレット充填層、および−10℃に保持した冷却器を直列に設置した。また−10℃に保持した冷却器からは凝集した液をオートクレーブに戻すための液体返送ラインを設置した。オートクレーブに窒素ガスを25℃で1時間吹き込んだ後、窒素ガスで20%に希釈したフッ素ガス(以下、20%フッ素ガスと記す。)を25℃で流速16.24L/hで1時間さらに吹き込んだ。
[Example 4-4] Production Example of Compound (c-4) R-113 (1700 g) was placed in an autoclave (internal volume 3000 mL, made of nickel) and stirred, and the temperature in the autoclave was kept at 25 ° C. At the gas outlet of the autoclave, a cooler maintained at 20 ° C., a NaF pellet packed bed, and a cooler maintained at −10 ° C. were installed in series. In addition, a liquid return line for returning the agglomerated liquid to the autoclave was installed from the cooler maintained at −10 ° C. After nitrogen gas was blown into the autoclave for 1 hour at 25 ° C., fluorine gas diluted to 20% with nitrogen gas (hereinafter referred to as 20% fluorine gas) was further blown for 1 hour at a flow rate of 16.24 L / h at 25 ° C. It is.

反応ルート1の方法にしたがい、化合物(1−4)とm−クロロ過安息香酸をエポキシ化反応させてエポキシ化合物(化合物(g−4))を得て、つぎに該エポキシ化合物とCHC(O)CHをケタール化反応させて化合物(f−4)を得る。つぎに該化合物(f−4)とCHC(O)CHOHをトランスケターリゼーションさせて化合物(e−4)を得る。つづいて該化合物(e−4)とF(CFOCF(CF)COFをエステル化反応させて化合物(d−4)を得る。 According to the reaction route 1, the compound (1-4) and m-chloroperbenzoic acid are epoxidized to obtain an epoxy compound (compound (g-4)), and then the epoxy compound and CH 3 C (O) Ketalization reaction of CH 3 gives compound (f-4). Next, the compound (e-4) is obtained by transketalizing the compound (f-4) and CH 3 C (O) CH 2 OH. Subsequently, the compound (e-4) and F (CF 2 ) 3 OCF (CF 3 ) COF are esterified to obtain the compound (d-4).

つぎにオートクレーブに20%フッ素ガスを同じ流速で吹き込みながら、化合物(d−4)(45g)をR−113(650g)に溶解させた溶液を、24.1時間かけて注入した。さらに20%フッ素ガスを同じ流速で吹き込みながらオートクレーブ内の圧力を0.15MPaまで昇圧して、ベンゼン濃度が0.01g/mLであるR−113溶液を25℃から40℃まで加熱しながら30mL注入した。つづいて、オートクレーブ内の圧力を0.15MPa、オートクレーブ内の温度を40℃に保ちながら、R−113を20mL送液し、配管内のベンゼン溶液をすべてオートクレーブ内に注入した。ベンゼンの注入総量は0.3g、R−113の注入総量は50mLであった。   Next, a solution in which compound (d-4) (45 g) was dissolved in R-113 (650 g) was injected over 24.1 hours while 20% fluorine gas was blown into the autoclave at the same flow rate. Further, while blowing 20% fluorine gas at the same flow rate, the pressure in the autoclave was increased to 0.15 MPa, and 30 mL injection of an R-113 solution having a benzene concentration of 0.01 g / mL while heating from 25 ° C. to 40 ° C. did. Subsequently, 20 mL of R-113 was fed while maintaining the pressure in the autoclave at 0.15 MPa and the temperature in the autoclave at 40 ° C., and all the benzene solution in the piping was injected into the autoclave. The total amount of benzene injected was 0.3 g, and the total amount of R-113 injected was 50 mL.

さらに、オートクレーブ内に20%フッ素ガスを同じ流速で吹き込みながら1時間撹拌を続けた。つぎに、オートクレーブ内の圧力を0MPa(ゲージ圧)にして、窒素ガスを1時間吹き込んだ。オートクレーブ内の内容物を19F−NMRで分析した結果、下記化合物(c−4)の生成を確認した。反応収率は60%であった。 Further, stirring was continued for 1 hour while 20% fluorine gas was blown into the autoclave at the same flow rate. Next, the pressure in the autoclave was set to 0 MPa (gauge pressure), and nitrogen gas was blown in for 1 hour. As a result of analyzing the contents in the autoclave by 19 F-NMR, it was confirmed that the following compound (c-4) was produced. The reaction yield was 60%.

化合物(c−4)の19F−NMR(282.7MHz、溶媒:CDCl3、基準:CFCl3)δ(ppm):46.2(1F)、−77.0〜−76.5(1F)、−79.6〜−81.0(5F)、−81.9〜−82.3(6F)、−85.8〜−87.7(3F)、−108.2(2F)、−118.9〜−124.2(6F)、−126.6〜−126.9(1F)、−130.0(2F)、−131.7(1F)。 19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): 46.2 (1F), −77.0 to −76.5 (1F) of compound (c-4) -79.6 to -81.0 (5F), -81.9 to -82.3 (6F), -85.8 to -87.7 (3F), -108.2 (2F), -118 .9 to -124.2 (6F), -126.6 to -126.9 (1F), -130.0 (2F), and -131.7 (1F).

[例4−5]化合物(b−4)の製造例
例4−4と同様の方法で得た内容物(72.5gの化合物(c−4)を含む。)を、KF粉末(2.05g)と共にフラスコに仕込み、激しく撹拌しながら、オイルバス中に浸して80℃で1.5時間、90〜95℃で1.5時間加熱した。フラスコを冷却してから減圧蒸留して80〜84℃/4.0kPa(絶対圧)の留分(36.7g)を得た。留分を19F−NMRで分析した結果、化合物(b−4)(反応収率78.5%)および化合物(b−4a)の生成を確認した。またガスクロマトグラフィーで分析した結果、化合物(b−4)の純度は95%であった。
[Example 4-5] Production example of compound (b-4) The content (including 72.5 g of compound (c-4)) obtained in the same manner as in Example 4-4 was mixed with KF powder (2. 05g) and charged in an oil bath with vigorous stirring and heated at 80 ° C for 1.5 hours and 90-95 ° C for 1.5 hours. The flask was cooled and distilled under reduced pressure to obtain a fraction (36.7 g) of 80 to 84 ° C./4.0 kPa (absolute pressure). As a result of analyzing the fraction by 19 F-NMR, it was confirmed that the compound (b-4) (reaction yield: 78.5%) and the compound (b-4a) were produced. As a result of analysis by gas chromatography, the purity of the compound (b-4) was 95%.

化合物(b−4)の19F−NMR(282.7MHz、溶媒:CDCl,基準:CFCl)δ(ppm):46.4(1F)、24.6〜24.2(1F)、−77.4(1F)、−81.7(3F)、−83.4(1F)、−107.5(1F)、−108.7(1F)、−119.0〜−124.0(7F)。 19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm) of compound (b-4): 46.4 (1F), 24.6 to 24.2 (1F), − 77.4 (1F), -81.7 (3F), -83.4 (1F), -107.5 (1F), -108.7 (1F), -119.0 to -124.0 (7F) ).

Figure 0004894154
Figure 0004894154

[例4−6]化合物(a−4)の製造例(その1)
ガラスビーズを充填した流動層型の320℃に加熱した反応管(ステンレス製、内径1.6cm、ガラスビーズ充填高40.5cm)を調整した。つぎに例4−5で得た留分、ペルフルオロヘキサン(3M社製商品名:FC−72)、および窒素ガスを、例4−5で得た留分:パーフルオロヘキサン:窒素ガス=2:3:95の割合(モル比)で混合した混合ガスを、320℃に加熱して2.7cm/sの線速度で反応管に供給した。反応管の出口には冷却器を備えたトラップを設置した。
[Example 4-6] Production Example (1) of Compound (a-4)
A fluidized bed type reaction tube heated to 320 ° C. filled with glass beads (made of stainless steel, inner diameter 1.6 cm, glass bead filling height 40.5 cm) was prepared. Next, the fraction obtained in Example 4-5, perfluorohexane (trade name: FC-72 manufactured by 3M), and nitrogen gas were obtained. The fraction obtained in Example 4-5: perfluorohexane: nitrogen gas = 2: A mixed gas mixed at a ratio (molar ratio) of 3:95 was heated to 320 ° C. and supplied to the reaction tube at a linear velocity of 2.7 cm / s. A trap equipped with a cooler was installed at the outlet of the reaction tube.

例4−5で得た留分として11.0gに相当する量の混合ガスを流通させると、トラップに液体(19.4g)を得た。液体を19F−NMRにより分析した結果、液体は下記化合物(a−4)とペルフルオロヘキサンが主成分であることを確認した。化合物(a−4)の反応収率は、52%であった。 When a mixed gas corresponding to 11.0 g was circulated as the fraction obtained in Example 4-5, a liquid (19.4 g) was obtained in the trap. As a result of analyzing the liquid by 19 F-NMR, it was confirmed that the liquid was mainly composed of the following compound (a-4) and perfluorohexane. The reaction yield of compound (a-4) was 52%.

さらに、該液体と例4−5で得た留分として22.3gに相当する量の混合ガスを同様に反応管に流通させてトラップに得た液体とを混合した混合液(58.2g)にメタノールと水を順に添加して2層分離液を得た。2層分離液の有機層を回収し、モレキュラーシーブ4Aで乾燥してから、蒸留して52〜55℃/1.3kPa(絶対圧)の留分を得た。該留分を19F−NMRにより分析した結果、高純度の標記化合物の生成を確認した。 Further, a mixed liquid (58.2 g) obtained by mixing the liquid and a liquid obtained in a trap by passing a mixed gas corresponding to 22.3 g as the fraction obtained in Example 4-5 through the reaction tube. Methanol and water were added in order to obtain a two-layer separated solution. The organic layer of the two-layer separated liquid was collected, dried with molecular sieve 4A, and then distilled to obtain a fraction of 52 to 55 ° C./1.3 kPa (absolute pressure). As a result of analyzing the fraction by 19 F-NMR, it was confirmed that the title compound had a high purity.

19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):46.3(1F)、−81.1(1F)、−88.1(1F)、−107.5(1F)、−108.6(1F)、−119.2〜−123.7(6F)、−124.8(1F)、−125.3(1F)、−126.1(1F)。 19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): 46.3 (1F), −81.1 (1F), −88.1 (1F), −107. 5 (1F), -108.6 (1F), -119.2 to -123.7 (6F), -124.8 (1F), -125.3 (1F), -126.1 (1F).

[例4−7]化合物(a−4)の製造例(その2)
例4−6の混合ガスにおいて、ペルフルオロヘキサンを使用せずに、例4−5で得た留分と窒素ガスの混合比を5:95(モル比)とする以外は、例4−6と同様の方法を用いて39.2gの化合物(b−4)に相当する混合ガスを流通させてトラップに液体(27.5g)を得た。液体を19F−NMRにより分析した結果、化合物(a−4)の生成を確認した(純度77.6%、反応収率61.3%)。
[Example 4-7] Production Example (2) of Compound (a-4)
Example 4-6 except that perfluorohexane was not used in the mixed gas of Example 4-6, and the mixing ratio of the fraction obtained in Example 4-5 and nitrogen gas was changed to 5:95 (molar ratio). Using the same method, a mixed gas corresponding to 39.2 g of the compound (b-4) was circulated to obtain a liquid (27.5 g) in the trap. As a result of analyzing the liquid by 19 F-NMR, it was confirmed that the compound (a-4) was produced (purity: 77.6%, reaction yield: 61.3%).

[例5]化合物(a−2)の製造例   Example 5 Production Example of Compound (a-2)

Figure 0004894154
Figure 0004894154

[例5−1]化合物(g−2)の製造例
窒素ガス雰囲気下のジムロート冷却管、温度計、および撹拌機を備えた4つ口丸底フラスコ(内容積2L)に、例2で得た化合物(1−2)(68g)とCHCl(1613g)を加え、さらに内温25℃以下に保持しながら103分かけてm−クロロ過安息香酸(176g、純度65%)を添加し、添加終了後、25℃にて66時間、撹拌した。
Example 5-1 Production Example of Compound (g-2) Obtained in Example 2 into a 4-neck round bottom flask (internal volume 2 L) equipped with a Dimroth condenser, thermometer, and stirrer under a nitrogen gas atmosphere. Compound (1-2) (68 g) and CH 2 Cl 2 (1613 g) were added, and m-chloroperbenzoic acid (176 g, purity 65%) was added over 103 minutes while maintaining the internal temperature at 25 ° C. or lower. After the addition, the mixture was stirred at 25 ° C. for 66 hours.

フラスコ内容物をろ過して得たろ液を、飽和炭酸水素ナトリウム水溶液(750g)で2回、5モル/L食塩水(700g)で1回、この順で洗浄した。つぎに硫酸ナトリウムで脱水してから濃縮し、濃縮に伴い析出した白色固体をろ過により除去して反応液(70g)を得た。反応液をNMRとGCで分析した結果、化合物(g−2)の生成を確認した(純度83%)。   The filtrate obtained by filtering the contents of the flask was washed twice with a saturated aqueous sodium hydrogen carbonate solution (750 g) and once with a 5 mol / L saline solution (700 g) in this order. Next, it was dehydrated with sodium sulfate and then concentrated, and the white solid precipitated during the concentration was removed by filtration to obtain a reaction solution (70 g). As a result of analyzing the reaction solution by NMR and GC, it was confirmed that the compound (g-2) was produced (purity 83%).

H−NMR(300.4MHz、溶媒:CDCl)δ(ppm):3.5(m,2H)、3.1(m,1H)、2.9(m,1H)、2.6(m,1H)、2.4(m,1H)、2.0(m,1H)。
19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):53.3(1F)。
1 H-NMR (300.4 MHz, solvent: CDCl 3 ) δ (ppm): 3.5 (m, 2H), 3.1 (m, 1H), 2.9 (m, 1H), 2.6 ( m, 1H), 2.4 (m, 1H), 2.0 (m, 1H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): 53.3 (1F).

[例5−2]化合物(d−2)の製造例
窒素ガス雰囲気下のジムロート冷却管、温度計、滴下ロートおよび撹拌子を備えた4つ口丸底フラスコ(内容積300mL)に、CHCOCH(82ml)とBF・O(CHCH(109mg)を加えた。フラスコ内を25℃にて撹拌しながら、例5−1と同様の方法で得た化合物(g−2)(12.3g、純度88.7%)とCHCOCH(27ml)の混合液を、フラスコ内温を30℃に保持しながら22分かけて滴下した。滴下終了後、25℃にてさらに1時間撹拌して、化合物(f−2)を得た。
[Example 5-2] Production Example of Compound (d-2) To a 4-neck round bottom flask (internal volume 300 mL) equipped with a Dimroth condenser, a thermometer, a dropping funnel and a stirrer in a nitrogen gas atmosphere, CH 3 COCH 3 (82 ml) and BF 3 · O (CH 2 CH 3) was added 2 (109 mg). A mixture of the compound (g-2) (12.3 g, purity 88.7%) obtained in the same manner as in Example 5-1 and CH 3 COCH 3 (27 ml) while stirring the flask at 25 ° C. Was added dropwise over 22 minutes while maintaining the temperature in the flask at 30 ° C. After completion of dropping, the mixture was further stirred at 25 ° C. for 1 hour to obtain a compound (f-2).

つぎに、CHCOCHOHとF(CFOCF(CF)COFをNaFの存在下に反応させて得たCHCOCHOC(O)CF(CF)O(CFF(27.4g)をフラスコに加え、内温を62〜67℃に保持してフラスコ内の溶媒を減圧留去した。フラスコ内溶液をNMRで分析した結果、化合物(d−2)の生成を確認した。化合物(f−2)の化合物(d−2)への転化率は約77%であった。 Then, CH 3 COCH 2 OH and F (CF 2) 3 OCF ( CF 3) CH a COF obtained by reacting in the presence of NaF 3 COCH 2 OC (O) CF (CF 3) O (CF 2) 3 F (27.4 g) was added to the flask, the internal temperature was maintained at 62 to 67 ° C., and the solvent in the flask was distilled off under reduced pressure. As a result of analyzing the solution in the flask by NMR, it was confirmed that the compound (d-2) was produced. The conversion rate of the compound (f-2) to the compound (d-2) was about 77%.

さらにフラスコにBF・O(CHCH(57.4mg)を加えて、内温を62〜67℃に保持してフラスコ内の溶媒を減圧留去した。化合物(f−2)の化合物(d−2)への転化率は約90%であった。さらにBF・O(CHCH(63.3mg)を加えて、内温を60〜68℃に保持してフラスコ内の溶媒を減圧留去した。化合物(f−2)の化合物(d−2)への転化率は約99%であった。 Further, BF 3 .O (CH 2 CH 3 ) 2 (57.4 mg) was added to the flask, the internal temperature was maintained at 62 to 67 ° C., and the solvent in the flask was distilled off under reduced pressure. The conversion rate of the compound (f-2) to the compound (d-2) was about 90%. Further BF 3 · O (CH 2 CH 3) was added to 2 (63.3 mg), and the solvent in the flask holding the internal temperature at 60 to 68 ° C. was distilled off under reduced pressure. The conversion rate of the compound (f-2) to the compound (d-2) was about 99%.

つづいて内温を125℃に保持してフラスコ内の低沸点成分を減圧留去し、内温を25℃にして析出した白色固体をろ過により除去してからR−225cbとヘキサンの1:1(体積比)の混合溶媒に溶解させて、シリカゲルカラムで精製して化合物(d−2)(純度98.5%)を得た。   Subsequently, the internal temperature was maintained at 125 ° C., low-boiling components in the flask were distilled off under reduced pressure, and the precipitated white solid was removed by filtration at an internal temperature of 25 ° C. Then, 1: 1 of R-225cb and hexane. The compound (d-2) (purity 98.5%) was obtained by dissolving in a (volume ratio) mixed solvent and purifying with a silica gel column.

1H−NMR(300.4MHz、溶媒:CDCl)δ(ppm):4.4〜4.1(m,4H)、3.7〜3.4(m,3H)、2.2(m)、2.1(m)、(2.2ppmと2.1ppmを合わせて2H)、1.5(s)、1.4(s)(1.5ppmと1.4ppmを合わせて3H)。
19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):52.8(1F)、−80.3(1F)、−81.7(3F)、−82.4(3F)、−86.8(1F)、−130.2(2F)、−132.5(1F)。
1 H-NMR (300.4 MHz, solvent: CDCl 3 ) δ (ppm): 4.4 to 4.1 (m, 4H), 3.7 to 3.4 (m, 3H), 2.2 (m ), 2.1 (m), (2H combined with 2.2 ppm and 2.1 ppm), 1.5 (s), 1.4 (s) (3 H combined with 1.5 ppm and 1.4 ppm).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , reference: CFCl 3 ) δ (ppm): 52.8 (1F), −80.3 (1F), −81.7 (3F), −82. 4 (3F), -86.8 (1F), -130.2 (2F), -132.5 (1F).

[例5−3]化合物(c−2)の製造例(その1)
オートクレーブ(内容積500mL、ニッケル製)に、R−113(312g)を入れ撹拌し、オートクレーブ内の温度を25℃に保った。オートクレーブのガス出口部には、20℃に保持した冷却器、NaFペレット充填層、および−10℃に保持した冷却器を直列に設置した。また−10℃に保持した冷却器からは凝集した液をオートクレーブに戻すための液体返送ラインを設置した。
[Example 5-3] Production Example (1) of Compound (c-2)
R-113 (312 g) was placed in an autoclave (internal volume 500 mL, made of nickel) and stirred, and the temperature in the autoclave was kept at 25 ° C. At the gas outlet of the autoclave, a cooler maintained at 20 ° C., a NaF pellet packed bed, and a cooler maintained at −10 ° C. were installed in series. In addition, a liquid return line for returning the agglomerated liquid to the autoclave was installed from the cooler maintained at −10 ° C.

25℃にて、オートクレーブに窒素ガスを25℃で1時間吹き込んでから窒素ガスで20%に希釈したフッ素ガス(以下、20%フッ素ガスと記す。)を11.02L/hの流量で30分間、吹き込んだ。さらにオートクレーブ内圧力を0.15MPa(ゲージ圧)まで昇圧してから30分間、吹き込んだ。   At 25 ° C., nitrogen gas was blown into the autoclave at 25 ° C. for 1 hour, and then diluted with nitrogen gas to 20% (hereinafter referred to as 20% fluorine gas) for 30 minutes at a flow rate of 11.02 L / h. Infused. Further, the pressure inside the autoclave was increased to 0.15 MPa (gauge pressure) and then blown for 30 minutes.

つぎにオートクレーブ内圧力を0.15MPa(ゲージ圧)に保持して、20%フッ素ガスを同じ流速で吹き込みながら、例5−2で得た化合物(d−2)(5g)をR−113(100g)に溶解させた溶液を3.3時間かけて注入した。そのまま、20%フッ素ガスを同じ流速で吹き込みながら、ベンゼン濃度が0.01g/mLであるR−113溶液を25℃から40℃まで昇温しながら9mL注入した。さらにオートクレーブ内に20%フッ素ガスを同じ流速で吹き込みながら1時間、撹拌した。   Next, while maintaining the internal pressure of the autoclave at 0.15 MPa (gauge pressure) and blowing 20% fluorine gas at the same flow rate, the compound (d-2) (5 g) obtained in Example 5-2 was R-113 ( The solution dissolved in 100 g) was injected over 3.3 hours. While blowing 20% fluorine gas at the same flow rate, 9 mL of R-113 solution having a benzene concentration of 0.01 g / mL was injected while the temperature was raised from 25 ° C to 40 ° C. Further, stirring was performed for 1 hour while blowing 20% fluorine gas into the autoclave at the same flow rate.

つぎにオートクレーブ内圧力を0MPa(ゲージ圧)にして、窒素ガスを1時間、吹き込んだ。オートクレーブ内の内容物を回収して19F−NMRで分析した結果、化合物(c−2)の生成を確認した(反応収率61%)。 Next, the internal pressure of the autoclave was set to 0 MPa (gauge pressure), and nitrogen gas was blown in for 1 hour. The contents in the autoclave were recovered and analyzed by 19 F-NMR. As a result, the production of compound (c-2) was confirmed (reaction yield 61%).

化合物(c−2)の19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):46.1(1F),−77.0〜−76.0(1F),−79.5〜−81.5(5F),−81.8〜−82.3(6F),−85.8〜−87.8(3F),−107.5(2F),−117.4〜−124.7(3F),−130.2(2F),−132.1(1F)。 19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm) of compound (c-2): 46.1 (1F), −77.0 to −76.0 (1F) -79.5 to -81.5 (5F), -81.8 to -82.3 (6F), -85.8 to -87.8 (3F), -107.5 (2F), -117 .4 to -124.7 (3F), -130.2 (2F), -132.1 (1F).

[例5−4]化合物(c−2)の製造例(その2)
例5−3における20%フッ素ガスの変わりに窒素ガスで8体積%に希釈したフッ素ガス(以下、8%フッ素ガスと記す。)を用いて8%フッ素ガスの流量を18.80L/hとし、例5−2で得た化合物(d−2)の量を4gとし、かつ該化合物をR−113(120g)に溶解した溶液をオートクレーブに注入する時間を4.1時間とする以外は、例5−3と同様の方法を用いて化合物(d−2)のフッ素化反応を行った。反応後のオートクレーブ内の内容物を回収して19F−NMRで分析した結果、化合物(c−2)の生成を確認した(反応収率55%)。
[Example 5-4] Production example of compound (c-2) (part 2)
Instead of 20% fluorine gas in Example 5-3, fluorine gas diluted to 8% by volume with nitrogen gas (hereinafter referred to as 8% fluorine gas) was used, and the flow rate of 8% fluorine gas was 18.80 L / h. The amount of the compound (d-2) obtained in Example 5-2 was 4 g, and the time for injecting the solution obtained by dissolving the compound in R-113 (120 g) into the autoclave was 4.1 hours. The compound (d-2) was fluorinated using the same method as in Example 5-3. The contents in the autoclave after the reaction were recovered and analyzed by 19 F-NMR. As a result, the production of the compound (c-2) was confirmed (reaction yield 55%).

[例5−5]化合物(c−2)の製造例(その3)
オートクレーブ(内容積500mL、ニッケル製)に、R−419(350g)を入れ撹拌し、オートクレーブ内の温度を25℃に保った。オートクレーブのガス出口部には、20℃に保持した冷却器を設置した。25℃にて、オートクレーブに窒素ガスを1時間吹き込んでから、窒素ガスで50体積%に希釈したフッ素ガス(以下、50%フッ素ガスという。)を30.02L/hの流量で30分間、吹き込んだ。さらに、オートクレーブ内圧力を0.10MPa(ゲージ圧)まで昇圧してから、50%フッ素ガスを30分間、吹き込んだ。
[Example 5-5] Production Example (3) of Compound (c-2)
R-419 (350 g) was placed in an autoclave (internal volume 500 mL, made of nickel) and stirred, and the temperature in the autoclave was kept at 25 ° C. A cooler maintained at 20 ° C. was installed at the gas outlet of the autoclave. At 25 ° C., nitrogen gas was blown into the autoclave for 1 hour, and then fluorine gas diluted to 50% by volume with nitrogen gas (hereinafter referred to as 50% fluorine gas) was blown at a flow rate of 30.02 L / h for 30 minutes. It is. Furthermore, after increasing the pressure in the autoclave to 0.10 MPa (gauge pressure), 50% fluorine gas was blown in for 30 minutes.

つぎにオートクレーブ内圧力を0.10MPa(ゲージ圧)に保持して、50%フッ素ガスを同じ流速で吹き込みながら、例5−2で得た化合物(d−2)(16g)をR−419(150g)に溶解させた溶液を、4.3時間かけて注入した。そのまま、オートクレーブ内圧力を0.10MPa(ゲージ圧)に保持して、50%フッ素ガスを同じ流速で吹き込みながら、オートクレーブ内温度を25℃から40℃まで昇温して1時間、撹拌を続けた。   Next, while maintaining the internal pressure of the autoclave at 0.10 MPa (gauge pressure) and blowing 50% fluorine gas at the same flow rate, the compound (d-2) (16 g) obtained in Example 5-2 was R-419 ( 150 g) was injected over 4.3 hours. The autoclave internal pressure was maintained at 0.10 MPa (gauge pressure), and the autoclave internal temperature was raised from 25 ° C. to 40 ° C. while blowing 50% fluorine gas at the same flow rate, and stirring was continued for 1 hour. .

つぎにオートクレーブ内の圧力を0MPa(ゲージ圧)にして、窒素ガスを1時間、吹き込んだ。オートクレーブ内の内容物を回収して19F−NMRで分析した結果、標記化合物(c−2)の生成を確認した(反応収率64%)。 Next, the pressure in the autoclave was set to 0 MPa (gauge pressure), and nitrogen gas was blown in for 1 hour. The contents in the autoclave were collected and analyzed by 19 F-NMR. As a result, it was confirmed that the title compound (c-2) was produced (reaction yield: 64%).

[例5−6]化合物(b−2)の製造例
化合物(c−2)を1257g含むフッ素化反応液を徐々に加温し、減圧度を高めながら、低沸点成分を留去して濃縮した。濃縮終了時の内温は80℃、圧力は1.33kPa(絶対圧)であった。蒸留装置を備えた四つ口フラスコに濃縮液を移し、KF(森田化学製、商品名:クロキャットF)を35.7g添加した。常圧で低沸点成分を抜き出しながら、内温78〜80℃で1時間、次いで90〜93℃で2時間加熱して、化合物(c−2)を化合物(b−2)に変換した。減圧蒸留により化合物(b−2)を636g得た。沸点63.5℃/6.7kPa(絶対圧)。
[Example 5-6] Production Example of Compound (b-2) A fluorination reaction solution containing 1257 g of Compound (c-2) was gradually heated, and the low-boiling components were distilled off and concentrated while increasing the degree of vacuum. did. The internal temperature at the end of the concentration was 80 ° C., and the pressure was 1.33 kPa (absolute pressure). The concentrated solution was transferred to a four-necked flask equipped with a distillation apparatus, and 35.7 g of KF (Morita Chemical Co., Ltd., trade name: Crocat F) was added. The compound (c-2) was converted to the compound (b-2) by heating at an internal temperature of 78 to 80 ° C. for 1 hour and then at 90 to 93 ° C. for 2 hours while extracting low boiling components at normal pressure. 636 g of compound (b-2) was obtained by distillation under reduced pressure. Boiling point 63.5 ° C./6.7 kPa (absolute pressure).

化合物(b−2)の19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):46.3(1F),24.5〜24.0(1F),−77.4(1F),−81.7(3F),−83.1(1F),−106.7(1F),−108.1(1F),−117.8(1F),−120.4〜−123.0(2F)。 19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): 46.3 (1F), 24.5 to 24.0 (1F), − of compound (b-2) 77.4 (1F), -81.7 (3F), -83.1 (1F), -106.7 (1F), -108.1 (1F), -117.8 (1F), -120. 4--123.0 (2F).

[例5−7]化合物(a−2)の製造例
ガラスビーズ(岳南社製、品番#150)を充填した流動層型の反応管(インコネル製、内径2.6cm、ガラスビーズ充填高45cm)を320℃に加熱した。つぎに流量59mmol/hの化合物(b−2)と流量1.12mol/hの窒素ガスを混合して得た原料ガスを200℃にしてから反応管に導入した。原料ガスの線速は反応温度において3.0cm/sであった。反応管の出口にはドライアイス温度に冷却したトラップと液体窒素温度に冷却したトラップを連結して設置し、反応管の出口ガスから生成物を回収した。
[Example 5-7] Production Example of Compound (a-2) Fluidized bed type reaction tube filled with glass beads (manufactured by Gakunansha, product number # 150) (Inconel, 2.6 cm inner diameter, 45 cm glass beads packed height) ) Was heated to 320 ° C. Next, the raw material gas obtained by mixing the compound (b-2) with a flow rate of 59 mmol / h and the nitrogen gas with a flow rate of 1.12 mol / h was brought to 200 ° C. and then introduced into the reaction tube. The linear velocity of the source gas was 3.0 cm / s at the reaction temperature. A trap cooled to dry ice temperature and a trap cooled to liquid nitrogen temperature were connected and installed at the outlet of the reaction tube, and the product was recovered from the outlet gas of the reaction tube.

原料ガスを2時間(50.2g)供給し、さらに窒素ガスのみを2時間供給してから、トラップ中に凝縮された液体(32.6g)を回収した。液体をGC分析した結果、化合物(a−2)の生成を確認した(純度73%、収率56%)。減圧蒸留により高純度の化合物(a−2)を得た。沸点47℃/4.0kPa(絶対圧)。   The source gas was supplied for 2 hours (50.2 g), and only nitrogen gas was supplied for 2 hours, and then the liquid condensed in the trap (32.6 g) was recovered. As a result of GC analysis of the liquid, it was confirmed that the compound (a-2) was produced (purity 73%, yield 56%). A high-purity compound (a-2) was obtained by distillation under reduced pressure. Boiling point 47 ° C./4.0 kPa (absolute pressure).

化合物(a−2)の19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):46.2(1F),−81.0(1F),−87.7(1F),−106.6(1F),−108.0(1F),−118.1(1F),−122.2(1F),−124.2(1F),−124.9(1F),−125.5(1F)。 19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): 46.2 (1F), −81.0 (1F), −87.7 of compound (a-2) (1F), -106.6 (1F), -108.0 (1F), -118.1 (1F), -122.2 (1F), -124.2 (1F), -124.9 (1F ), -125.5 (1F).

[例6]化合物(a−4)の重合例(その1)
オートクレーブ(内容積30mL、ステンレス製)に、化合物(a−4)(1.49g)、CHOH(67mg)、R−225cb(26.8g)およびジイソプロピルペルオキシジカーボネート(1.6mg)を入れ、液体窒素で冷却して脱気した。つぎにオートクレーブにCF=CFを導入し、内温を40℃に保持して6時間重合を行った。つづいてオートクレーブ内を冷却して重合を停止し、雰囲気をパージした。なお重合開始時の内圧は0.6MPa(ゲージ圧)であり、重合停止時の内圧は0.5MPa(ゲージ圧)であった。
Example 6 Polymerization Example of Compound (a-4) (Part 1)
Compound (a-4) (1.49 g), CH 3 OH (67 mg), R-225cb (26.8 g) and diisopropyl peroxydicarbonate (1.6 mg) were placed in an autoclave (internal volume 30 mL, made of stainless steel). The solution was degassed by cooling with liquid nitrogen. Next, CF 2 = CF 2 was introduced into the autoclave, and polymerization was carried out for 6 hours while maintaining the internal temperature at 40 ° C. Subsequently, the inside of the autoclave was cooled to stop the polymerization, and the atmosphere was purged. The internal pressure at the start of polymerization was 0.6 MPa (gauge pressure), and the internal pressure at the time of polymerization termination was 0.5 MPa (gauge pressure).

オートクレーブ内容物をヘキサン中に投入して生成した凝集物を回収し、ヘキサンで洗浄してから100℃にて真空乾燥して白色の重合体(1.7g)(以下、重合体(A4−1)という。)を得た。重合体(A4−1)は、全モノマー単位に対して下記モノマー単位(A4)を19.8モル%含み、CF=CFに基づくモノマー単位を80.2モル%含むことを確認した。重合体(A4−1)の滴定法を用いて求めたイオン交換容量(ミリ当量/g乾燥樹脂)(以下、Aという。)は1.16meq/gであり、重合体(A4−1)のTは333℃であった。 The agglomerates produced by introducing the autoclave contents into hexane are collected, washed with hexane, and then vacuum dried at 100 ° C. to give a white polymer (1.7 g) (hereinafter referred to as polymer (A4-1). )). The polymer (A4-1) was confirmed to contain 19.8 mol% of the following monomer units (A4) and 80.2 mol% of monomer units based on CF 2 = CF 2 with respect to all monomer units. Using titration determined ion exchange capacity of the polymer (A4-1) (meq / g dry resin) (hereinafter, referred to as A R.) Is 1.16Meq / g, the polymer (A4-1) The TQ was 333 ° C.

Figure 0004894154
Figure 0004894154

[例7]化合物(a−4)の重合例(その2)
オートクレーブ(内容積100mL、ステンレス製)に、化合物(a−4)(5.73g)、CHOH(11.4mg)を含有するR−225cb(108g)、ジイソプロピルペルオキシジカーボネート(6.4mg)を入れ、液体窒素で冷却して脱気した。つぎにオートクレーブにCF=CFを導入し、内温を40℃に保持して2時間45分間重合を行った。つづいてオートクレーブ内を冷却して重合を停止し、雰囲気をパージした。なお重合開始時の内圧は0.5MPa(ゲージ圧)であり、重合停止時の内圧は0.4MPa(ゲージ圧)であった。
[Example 7] Polymerization example of compound (a-4) (part 2)
R-225cb (108 g) containing compound (a-4) (5.73 g), CH 3 OH (11.4 mg), diisopropyl peroxydicarbonate (6.4 mg) in an autoclave (internal volume 100 mL, made of stainless steel) And cooled with liquid nitrogen and degassed. Next, CF 2 = CF 2 was introduced into the autoclave, and polymerization was carried out for 2 hours and 45 minutes while maintaining the internal temperature at 40 ° C. Subsequently, the inside of the autoclave was cooled to stop the polymerization, and the atmosphere was purged. The internal pressure at the start of polymerization was 0.5 MPa (gauge pressure), and the internal pressure at the time of polymerization termination was 0.4 MPa (gauge pressure).

オートクレーブを冷却し系内ガスをパージしてから、オートクレーブ内容物を回収してヘキサンに投入して凝集物を得た。凝集物をヘキサンで洗浄してから、100℃にて真空乾燥して白色の重合体(以下、重合体(A4−2)という。)(4.9g)を得た。重合体(A4−2)は、全モノマー単位に対してモノマー単位(A4)を23.0モル%含み、CF=CFに基づくモノマー単位を77.0モル%含むことを確認した。重合体(A4−2)の滴定法を用いて求めたAは1.26meq/gであり、重合体(A4−2)のTは400℃であった。 After the autoclave was cooled and the gas in the system was purged, the autoclave contents were recovered and put into hexane to obtain agglomerates. The aggregate was washed with hexane and then vacuum dried at 100 ° C. to obtain a white polymer (hereinafter referred to as polymer (A4-2)) (4.9 g). Polymer (A4-2) comprises 23.0 mole% of monomer units (A4) based on all monomer units was confirmed to contain a monomer unit based on CF 2 = CF 2 77.0 mol%. A R was determined using the titration method of the polymer (A4-2) is 1.26meq / g, T Q of the polymer (A4-2) was 400 ° C..

[例8]化合物(a−4)の重合例(その3)
オートクレーブ(内容積100mL、ステンレス製)に、化合物(a−4)(2.98g)、CHOH(96.2mg)を含有するR−225cb(88.9g)、ジイソプロピルペルオキシジカーボネート(5.2mg)を入れ、液体窒素で冷却して脱気した。つぎにオートクレーブにCF=CFを導入し、内温を40℃に保持して9時間重合を行った。つづいてオートクレーブ内を冷却して重合を停止し、雰囲気をパージした。なお重合開始時の内圧は0.30MPa(ゲージ圧)であり、重合停止時の内圧は0.24MPa(ゲージ圧)であった。
Example 8 Polymerization Example of Compound (a-4) (Part 3)
R-225cb (88.9 g) containing compound (a-4) (2.98 g), CH 3 OH (96.2 mg), diisopropyl peroxydicarbonate (5. 2 mg) and cooled with liquid nitrogen and degassed. Next, CF 2 = CF 2 was introduced into the autoclave, and polymerization was carried out for 9 hours while maintaining the internal temperature at 40 ° C. Subsequently, the inside of the autoclave was cooled to stop the polymerization, and the atmosphere was purged. The internal pressure at the start of polymerization was 0.30 MPa (gauge pressure), and the internal pressure at the time of polymerization termination was 0.24 MPa (gauge pressure).

オートクレーブを冷却し系内ガスをパージしてから、オートクレーブ内容物を回収してヘキサンに投入して凝集物を得た。凝集物をヘキサンで洗浄してから、100℃にて真空乾燥して白色の重合体(以下、重合体(A4−3)という。)(2.4g)を得た。重合体(A4−3)は、全モノマー単位に対してモノマー単位(A4)を28.9モル%含み、CF=CFに基づくモノマー単位を71.1モル%含むことを確認した。重合体(A4−3)のAは1.42meq/gであった。 After the autoclave was cooled and the gas in the system was purged, the autoclave contents were recovered and put into hexane to obtain agglomerates. The aggregate was washed with hexane and then vacuum dried at 100 ° C. to obtain a white polymer (hereinafter referred to as polymer (A4-3)) (2.4 g). Polymer (A4-3) comprises 28.9 mole% of monomer units (A4) based on all monomer units was confirmed to contain a monomer unit based on CF 2 = CF 2 71.1 mol%. A R of the polymer (A4-3) was 1.42meq / g.

[例9]化合物(a−4)の重合例(その4)
オートクレーブ(内容積100mL、ステンレス製)に、化合物(a−4)(4.82g)、CHOH(11.4mg)を含有するR−225cb(108g)、ジイソプロピルペルオキシジカーボネート(5.9mg)を入れ、液体窒素で冷却して脱気した。つぎにオートクレーブにCF=CFを導入し、内温を40℃に保持して3.5時間重合を行った。つづいてオートクレーブ内を冷却して重合を停止し、雰囲気をパージした。なお重合開始時の内圧は0.29MPa(ゲージ圧)であり、重合停止時の内圧は0.22MPa(ゲージ圧)であった。
[Example 9] Polymerization example of compound (a-4) (part 4)
R-225cb (108 g) containing compound (a-4) (4.82 g), CH 3 OH (11.4 mg), diisopropyl peroxydicarbonate (5.9 mg) in an autoclave (internal volume 100 mL, made of stainless steel) And cooled with liquid nitrogen and degassed. Next, CF 2 = CF 2 was introduced into the autoclave, and polymerization was carried out for 3.5 hours while maintaining the internal temperature at 40 ° C. Subsequently, the inside of the autoclave was cooled to stop the polymerization, and the atmosphere was purged. The internal pressure at the start of polymerization was 0.29 MPa (gauge pressure), and the internal pressure at the time of polymerization termination was 0.22 MPa (gauge pressure).

オートクレーブを冷却し系内ガスをパージしてから、オートクレーブ内容物を回収してヘキサンに投入して凝集物を得た。凝集物をヘキサンで洗浄してから、100℃にて真空乾燥して白色の重合体(以下、重合体(A4−4)という。)(3.0g)を得た。重合体(A4−4)は、全モノマー単位に対してモノマー単位(A4)を34.8モル%含み、CF=CFに基づくモノマー単位を65.2モル%含むことを確認した。重合体(A4−4)のAは1.55meq/gであり、重合体(A4−4)のTは355℃であった。 After the autoclave was cooled and the gas in the system was purged, the autoclave contents were recovered and put into hexane to obtain agglomerates. The aggregate was washed with hexane and then vacuum dried at 100 ° C. to obtain a white polymer (hereinafter referred to as polymer (A4-4)) (3.0 g). Polymer (A4-4) comprises 34.8 mole% of monomer units (A4) based on all monomer units was confirmed to contain a monomer unit based on CF 2 = CF 2 65.2 mol%. A R of the polymer (A4-4) is 1.55meq / g, T Q of the polymer (A4-4) was 355 ° C..

[例10]重合体(A4−1)〜重合体(A4−4)の膜処理例
オートクレーブに、重合体(A4−1)を入れ窒素ガスで20体積%に希釈したフッ素ガスを内圧が0.3MPa(ゲージ圧)になるまで封入してから、180℃にて4時間保持してフッ素ガス処理した。
[Example 10] Example of membrane treatment of polymer (A4-1) to polymer (A4-4) In an autoclave, the polymer (A4-1) was placed and diluted with nitrogen gas to 20% by volume. The mixture was sealed until it became 3 MPa (gauge pressure), and then kept at 180 ° C. for 4 hours for fluorine gas treatment.

つぎに300℃の加圧プレス成型により重合体をフィルム(膜厚100μm)に加工した。ジメチルスルホキシドの30質量%とKOHの11質量%を含む水溶液に、90℃にてフィルムを16時間浸漬させることにより、重合体(A4−1)中の−SOF基が加水分解されて下記モノマー単位(A4−K)を含む重合体からなるフィルムを得た。 Next, the polymer was processed into a film (film thickness: 100 μm) by pressure press molding at 300 ° C. By immersing the film in an aqueous solution containing 30% by mass of dimethyl sulfoxide and 11% by mass of KOH at 90 ° C. for 16 hours, the —SO 2 F group in the polymer (A4-1) is hydrolyzed, and the following: A film made of a polymer containing monomer units (A4-K) was obtained.

さらに該フィルムを、1mol/L硫酸水溶液に浸漬させて酸処理し、さらに水洗して該重合体中の−SOK基がスルホン酸基に変換された下記モノマー単位(A4−H)を含む重合体で構成される膜を得た。膜の軟化温度は124℃であった。重合体(A4−1)と同様にして重合体(A4−2)、重合体(A4−3)および重合体(A4−4)をそれぞれ膜処理して得た膜の軟化温度は、順に128℃、128℃、132℃であった。 The film further includes the following monomer unit (A4-H) in which the film is immersed in a 1 mol / L sulfuric acid aqueous solution, acid-treated, and further washed with water to convert —SO 3 K groups in the polymer into sulfonic acid groups. A film composed of a polymer was obtained. The softening temperature of the film was 124 ° C. The softening temperatures of the films obtained by subjecting the polymer (A4-2), the polymer (A4-3) and the polymer (A4-4) to film treatment in the same manner as the polymer (A4-1) were 128 in order. ° C, 128 ° C and 132 ° C.

Figure 0004894154
Figure 0004894154

[例11]化合物(a−2)の重合例およびその重合体の膜処理例(その1)
オートクレーブ(内容積30mL、ステンレス製)に、化合物(a−2)(0.96g)、CHOH(16.6mg)、R−225cb(26.78g)およびジイソプロピルペルオキシジカーボネート(1.5mg)を入れ、液体窒素で冷却して脱気した。つぎにオートクレーブにCF=CFを導入し、内温を40℃に保持して6時間45分間重合を行った。つづいてオートクレーブ内を冷却して重合を停止し、雰囲気をパージした。なお重合開始時の内圧は0.29MPa(ゲージ圧)であり、重合停止時の内圧は0.22MPa(ゲージ圧)であった。
[Example 11] Polymerization example of compound (a-2) and film treatment example of the polymer (Part 1)
In an autoclave (internal volume 30 mL, made of stainless steel), compound (a-2) (0.96 g), CH 3 OH (16.6 mg), R-225cb (26.78 g) and diisopropyl peroxydicarbonate (1.5 mg) And cooled with liquid nitrogen and degassed. Next, CF 2 = CF 2 was introduced into the autoclave, and polymerization was carried out for 6 hours and 45 minutes while maintaining the internal temperature at 40 ° C. Subsequently, the inside of the autoclave was cooled to stop the polymerization, and the atmosphere was purged. The internal pressure at the start of polymerization was 0.29 MPa (gauge pressure), and the internal pressure at the time of polymerization termination was 0.22 MPa (gauge pressure).

オートクレーブ内容物をヘキサン中に投入して生成した凝集物を回収し、ヘキサンで洗浄してから100℃にて真空乾燥して白色の重合体(0.63g)(以下、重合体(A2−1)という。)を得た。溶融19F−NMRより、重合体(A2−1)は、全モノマー単位に対して下記モノマー単位(A2)を27モル%含み、CF=CFに基づくモノマー単位を73モル%含むことを確認した。求めた組成より、重合体(A2−1)のAは1.59meq/gであり、重合体(A2−1)のTは300℃であった。重合体(A2−1)中の−SOF基を例10同様にスルホン酸基に酸処理して得た膜の軟化温度は、134℃であった。 The agglomerates produced by charging the autoclave contents into hexane are collected, washed with hexane, and then vacuum dried at 100 ° C. to give a white polymer (0.63 g) (hereinafter referred to as polymer (A2-1). )). Melting 19 F-NMR, the polymer (A2-1) comprises 27 mole% of the following monomer units (A2) relative to the total monomer units, to include monomer units based on CF 2 = CF 2 73 mol% confirmed. From composition determined, A R of the polymer (A2-1) is 1.59meq / g, T Q of the polymer (A2-1) was 300 ° C.. The softening temperature of the film obtained by acid-treating —SO 2 F groups in the polymer (A2-1) to sulfonic acid groups in the same manner as in Example 10 was 134 ° C.

Figure 0004894154
Figure 0004894154

[例12]化合物(a−2)の重合例およびその重合体の膜処理例(その2)
オートクレーブ(内容積30mL、ステンレス製)に、化合物(c−2)(0.99g)、CHOH(49.4mg)を含有するR−225cb(26.78g)、ジイソプロピルペルオキシジカーボネート(1.5mg)を入れ、液体窒素で冷却して脱気した。つぎにオートクレーブにCF=CFを導入し、内温を40℃に保持して7時間重合を行った。つづいてオートクレーブ内を冷却して重合を停止し、雰囲気をパージした。なお重合開始時の内圧は0.45MPa(ゲージ圧)であり、重合停止時の内圧は0.35MPa(ゲージ圧)であった。
[Example 12] Polymerization example of compound (a-2) and film treatment example of the polymer (part 2)
R-225cb (26.78 g) containing compound (c-2) (0.99 g), CH 3 OH (49.4 mg), diisopropyl peroxydicarbonate (1. 5 mg) and cooled with liquid nitrogen and degassed. Next, CF 2 = CF 2 was introduced into the autoclave, and polymerization was carried out for 7 hours while maintaining the internal temperature at 40 ° C. Subsequently, the inside of the autoclave was cooled to stop the polymerization, and the atmosphere was purged. The internal pressure at the start of polymerization was 0.45 MPa (gauge pressure), and the internal pressure at the time of polymerization termination was 0.35 MPa (gauge pressure).

オートクレーブを冷却し系内ガスをパージしてから、オートクレーブ内容物を回収してヘキサンに投入して凝集物を得た。凝集物をヘキサンで洗浄してから、100℃にて真空乾燥して白色の重合体(以下、重合体(A2−2)という。)(1.1g)を得た。溶融19F−NMRより、重合体(A2−2)は、全モノマー単位に対してモノマー単位(A2−2)を15モル%含み、CF=CFに基づくモノマー単位を85モル%含むことを確認した。求めた組成より、重合体(A2−2)のAは1.08meq/gであり、重合体(A2−2)のTは300℃であった。重合体(A2−2)中の−SOF基を例10同様にスルホン酸基に酸処理して得た膜の軟化温度は、132℃であった。 After the autoclave was cooled and the system gas was purged, the contents of the autoclave were recovered and put into hexane to obtain agglomerates. The aggregate was washed with hexane and then vacuum dried at 100 ° C. to obtain a white polymer (hereinafter referred to as polymer (A2-2)) (1.1 g). Melting 19 F-NMR, the polymer (A2-2) comprises 15 mole% of monomer units (A2-2) relative to total monomer units, contain 85 mole% of monomer units based on CF 2 = CF 2 It was confirmed. From composition determined, A R of the polymer (A2-2) is 1.08meq / g, T Q of the polymer (A2-2) was 300 ° C.. The softening temperature of the film obtained by acid-treating the —SO 2 F group in the polymer (A2-2) to a sulfonic acid group in the same manner as in Example 10 was 132 ° C.

[例13(比較例)]化合物(z1)の重合例およびその重合体の膜処理例
オートクレーブ(内容積100mL、ステンレス製)に、下記化合物(z1)(8.48g)、メタノール(17mg)を含有するR−225cb(76.3g)およびペルフルオロ過酸化ベンゾイル(170mg)を入れ、液体窒素で冷却して脱気した。つぎにオートクレーブにCF=CFを導入し、内温を70℃に保持して50分間重合を行った。つづいてオートクレーブ内を冷却して重合を停止し、雰囲気をパージした。重合開始時の内圧は0.97MPa(ゲージ圧)であり、重合停止時の内圧は0.43MPa(ゲージ圧)であった。
Example 13 (Comparative Example) Polymerization Example of Compound (z1) and Film Treatment Example of Polymer The following compound (z1) (8.48 g) and methanol (17 mg) were added to an autoclave (internal volume 100 mL, made of stainless steel). The contained R-225cb (76.3 g) and benzoyl perfluoroperoxide (170 mg) were charged and degassed by cooling with liquid nitrogen. Next, CF 2 = CF 2 was introduced into the autoclave, and polymerization was carried out for 50 minutes while maintaining the internal temperature at 70 ° C. Subsequently, the inside of the autoclave was cooled to stop the polymerization, and the atmosphere was purged. The internal pressure at the start of polymerization was 0.97 MPa (gauge pressure), and the internal pressure at the time of polymerization termination was 0.43 MPa (gauge pressure).

オートクレーブ内容物をヘキサン中に投入して生成した凝集物を回収し、ヘキサンで洗浄してから100℃にて真空乾燥して白色の重合体(14.1g)(以下、重合体(Z1)という。)を得た。元素分析を用いて求めた硫黄原子の含有量から重合体(Z1)のAは1.12meq/gであり、重合体(Z1)のTは300℃超であった。重合体(Z1)を例10と同様に、フッ素ガス処理、加圧プレス成型してフィルムを得た。該フィルムを例10同様に、加水分解してから酸処理して得た下式(Z1−H)を含む重合体で構成される膜の軟化温度は98℃であった。 The agglomerates produced by charging the autoclave contents into hexane are collected, washed with hexane, and then vacuum dried at 100 ° C. to give a white polymer (14.1 g) (hereinafter referred to as polymer (Z1)). .) A R of the polymer from the content of sulfur atom was determined using elemental analysis (Z1) is 1.12meq / g, T Q of the polymer (Z1) was 300 ° C. greater. The polymer (Z1) was treated with fluorine gas and pressure-press molded in the same manner as in Example 10 to obtain a film. The softening temperature of the film composed of a polymer containing the following formula (Z1-H) obtained by hydrolyzing and then acid-treating the film in the same manner as in Example 10 was 98 ° C.

Figure 0004894154
Figure 0004894154

本発明は、ペルフルオロ(2−メチレン−1,3−ジオキソラン)構造を有し、該構造の4位が式−(CFSOFで表される基(ただし、nは1〜6の整数を示す。)に置換された化合物、および該化合物の反応中間体として有用な新規化合物、その製造方法を提供する。該化合物を重合させて得た重合体は、−SOF基がエーテル性酸素原子を含まない炭素原子−炭素結合の連鎖を介して該構造に結合するため、軟化温度が高く機械的強度(たとえば、高温温域における弾性率)に優れる。本発明の重合体は、イオン交換膜(食塩電解用のイオン交換膜や燃料電池用のイオン交換膜)、固体高分子型燃料電池用電解質材料、燃料電池の触媒層に用いうる有用な電解質材料である。
The present invention has a perfluoro (2-methylene-1,3-dioxolane) structure, and the 4-position of the structure is a group represented by the formula — (CF 2 ) n SO 2 F (where n is 1 to 6). And a novel compound useful as a reaction intermediate of the compound, and a process for producing the compound. A polymer obtained by polymerizing the compound has a high softening temperature and a high mechanical strength (-SO 2 F group is bonded to the structure via a carbon atom-carbon bond chain not containing an etheric oxygen atom). For example, it is excellent in the elastic modulus in a high temperature range. The polymer of the present invention is a useful electrolyte material that can be used for ion exchange membranes (ion exchange membranes for salt electrolysis and ion exchange membranes for fuel cells), electrolyte materials for polymer electrolyte fuel cells, and catalyst layers for fuel cells. It is.

Claims (5)

下式(A)で表される単位の1種以上と式(A)で表される単位以外の単位の1種以上からなり、
式(A)で表される単位以外の単位が、CF =CF または下記化合物(m2−2)を重合させて得た単位を含むものであり、
重合体の全単位に対する式(A)で表される単位の割合が5〜50モル%であり、式(A)で表される単位以外の単位の割合が95〜50モル%である重合体(ただし、nは1〜6の整数を示し、R F3 およびR F4 は、それぞれ独立に、フッ素原子または炭素数1〜3のペルフルオロアルキル基を示し、R F5 はフッ素原子またはトリフルオロメトキシ基を示す。)。
Figure 0004894154
It is composed of one or more units represented by the following formula (A) and one or more units other than the unit represented by the formula (A),
Units other than the unit represented by Formula (A) include units obtained by polymerizing CF 2 = CF 2 or the following compound (m2-2),
The polymer whose ratio of the unit represented by Formula (A) with respect to all the units of a polymer is 5-50 mol%, and whose ratio of units other than the unit represented by Formula (A) is 95-50 mol% (where, n is indicates an integer of 1 to 6, R F3 and R F4 are each independently a fluorine atom or perfluoroalkyl group having 1 to 3 carbon atoms, R F5 is a fluorine atom or a trifluoromethoxy group the shows be.).
Figure 0004894154
質量平均分子量が5×10〜5×10である請求項に記載の重合体。 The polymer according to claim 1 , which has a mass average molecular weight of 5 × 10 3 to 5 × 10 6 . 式(a)で表される化合物の1種以上と下式(a)で表される化合物以外の化合物の1種以上とを重合させて下式(A)で表される単位を含む重合体を製造する方法であって、
式(a)で表される化合物以外の化合物が、CF =CF または下記化合物(m2−2)を含むものであり、
重合体の全単位に対する式(A)で表される単位の割合が5〜50モル%であり、式(A)で表される単位以外の単位の割合が95〜50モル%であることを特徴とする下式(A)で表される単位を含む重合体の製造方法(ただし、nは1〜6の整数を示し、R F3 およびR F4 は、それぞれ独立に、フッ素原子または炭素数1〜3のペルフルオロアルキル基を示し、R F5 はフッ素原子またはトリフルオロメトキシ基を示す。)
Figure 0004894154
The weight containing the unit represented by the following formula (A) by polymerizing one or more compounds represented by the following formula (a) and one or more compounds other than the compound represented by the following formula (a) A method for producing a coalescence,
Compounds other than the compound represented by the formula (a) include CF 2 = CF 2 or the following compound (m2-2),
The proportion of the unit represented by formula (A) to the total units of the polymer is 5 to 50 mol%, proportion 95 to 50 mol% der Rukoto units other than the unit represented by formula (A) polymer method for producing comprising a unit represented by the following formula (a), wherein (where, n is indicates an integer of 1 to 6, R F3 and R F4 are each independently a fluorine atom or a C It indicates the number 1-3 perfluoroalkyl group, R F5 are shown to a fluorine atom or a trifluoromethoxy group.)
Figure 0004894154
下式(B)で表される単位の1種以上と式(B)で表される単位以外の単位の1種以上からなり、
式(B)で表される単位以外の単位が、CF =CF または下記化合物(m2−2)を重合させて得た単位を含むものであり、
重合体の全単位に対する式(B)で表される単位の割合が5〜50モル%であり、式(B)で表される単位以外の単位の割合が95〜50モル%である重合体(ただし、nは1〜6の整数、Mは水素原子または対イオンを示し、R F3 およびR F4 は、それぞれ独立に、フッ素原子または炭素数1〜3のペルフルオロアルキル基を示し、R F5 はフッ素原子またはトリフルオロメトキシ基を示す。)。
Figure 0004894154
It is composed of one or more units represented by the following formula (B) and one or more units other than the unit represented by the formula (B),
Units other than the unit represented by the formula (B) include units obtained by polymerizing CF 2 = CF 2 or the following compound (m2-2),
The polymer whose ratio of the unit represented by Formula (B) with respect to all the units of a polymer is 5-50 mol%, and whose ratio of units other than the unit represented by Formula (B) is 95-50 mol% (where, n is an integer from 1 to 6, M represents indicates a hydrogen atom or a counter ion, R F3 and R F4 are each independently a fluorine atom or perfluoroalkyl group having 1 to 3 carbon atoms, R F5 indicate to a fluorine atom or a trifluoromethoxy group.).
Figure 0004894154
質量平均分子量が5×10〜5×10である請求項に記載の重合体。 The polymer according to claim 4 , which has a mass average molecular weight of 5 × 10 3 to 5 × 10 6 .
JP2005098629A 2004-04-02 2005-03-30 Polymer of compound containing fluorosulfonyl group Active JP4894154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098629A JP4894154B2 (en) 2004-04-02 2005-03-30 Polymer of compound containing fluorosulfonyl group

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004109869 2004-04-02
JP2004109869 2004-04-02
JP2005098629A JP4894154B2 (en) 2004-04-02 2005-03-30 Polymer of compound containing fluorosulfonyl group

Publications (3)

Publication Number Publication Date
JP2005314388A JP2005314388A (en) 2005-11-10
JP2005314388A5 JP2005314388A5 (en) 2008-04-17
JP4894154B2 true JP4894154B2 (en) 2012-03-14

Family

ID=35442171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098629A Active JP4894154B2 (en) 2004-04-02 2005-03-30 Polymer of compound containing fluorosulfonyl group

Country Status (1)

Country Link
JP (1) JP4894154B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867843B2 (en) 2007-08-09 2012-02-01 旭硝子株式会社 Fluorosulfonyl group-containing monomer and polymer thereof, and sulfonic acid group-containing polymer
EP2436705B1 (en) * 2009-05-29 2018-01-24 Asahi Glass Company, Limited Electrolyte material, liquid composite, and membrane electrode assembly for solid polymer fuel cells
US20110027687A1 (en) 2009-07-31 2011-02-03 Asahi Glass Company, Limited Electrolyte material, liquid composition and membrane/electrode assembly for polymer electrolyte fuel cell
WO2013115072A1 (en) 2012-01-31 2013-08-08 旭硝子株式会社 Method for producing fluorinated ion exchange resin solution
EP3795598A4 (en) 2018-05-18 2022-03-02 Agc Inc. Method for producing fluorine-containing polymer and method for producing fluorine-containing ion-exchange polymer
JP7283486B2 (en) 2019-01-08 2023-05-30 Agc株式会社 Catalyst layer, liquid for forming catalyst layer, and membrane electrode assembly

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4032738B2 (en) * 2000-12-26 2008-01-16 旭硝子株式会社 Solid polymer electrolyte material, liquid composition, solid polymer fuel cell, fluoropolymer and fluoropolymer
JP4492121B2 (en) * 2001-10-30 2010-06-30 旭硝子株式会社 Fluorosulfonyl group-containing compound and method for producing compound derived from the compound
JP2003282088A (en) * 2002-03-20 2003-10-03 Matsushita Electric Ind Co Ltd Polymerelectrolyte type fuel cell and production process thereof
JP4997968B2 (en) * 2004-04-02 2012-08-15 旭硝子株式会社 Electrolyte material for polymer electrolyte fuel cell, electrolyte membrane and membrane electrode assembly

Also Published As

Publication number Publication date
JP2005314388A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
JP4492121B2 (en) Fluorosulfonyl group-containing compound and method for producing compound derived from the compound
JP5454592B2 (en) Electrolyte material for polymer electrolyte fuel cell, electrolyte membrane and membrane electrode assembly
JP4867843B2 (en) Fluorosulfonyl group-containing monomer and polymer thereof, and sulfonic acid group-containing polymer
CN101228117B (en) Fluorosulfonyl group-containing compound, method for production and polymer thereof
JP4788267B2 (en) Polymer having fluorosulfonyl group and 1,3-dioxolane structure and use thereof
JP4894154B2 (en) Polymer of compound containing fluorosulfonyl group
JP2007517083A (en) Fluorinated polymer, fluorinated compound and polymer production method
JP2006131588A (en) Method for producing fluorine-containing sulfinate
JP2006335699A (en) Method for producing monomer intermediate
JPS60156632A (en) Manufacture of vinyl chloride ether monomer and intermediate
JP2014524894A (en) Allyl ether terminated fluoroalkylsulfinic acid and its salts
JP2003515584A5 (en)
JP2010195937A (en) Fluorine-containing organic peroxide, polymerization initiator, and method for producing fluorine-containing polymer
JP7339573B2 (en) New fluorine-containing compound
JP4131917B2 (en) Production method of fluorinated monomer
JPS5911582B2 (en) Fluorinated acid fluoride and its manufacturing method
JP4260466B2 (en) Fluorinated sulfonate monomer
JPS5911581B2 (en) Fluorinated vinyl ether compound and its production method
JP2005225816A (en) Production method for fluorine-containing allyl ether
JP5405515B2 (en) Method for producing fluorinated compound and fluorinated polymer
WO2019221243A1 (en) Method for producing fluorine-containing polymer and method for producing fluorine-containing ion-exchange polymer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080229

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R151 Written notification of patent or utility model registration

Ref document number: 4894154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250