JP4892040B2 - β radioactivity analyzer - Google Patents

β radioactivity analyzer Download PDF

Info

Publication number
JP4892040B2
JP4892040B2 JP2009168220A JP2009168220A JP4892040B2 JP 4892040 B2 JP4892040 B2 JP 4892040B2 JP 2009168220 A JP2009168220 A JP 2009168220A JP 2009168220 A JP2009168220 A JP 2009168220A JP 4892040 B2 JP4892040 B2 JP 4892040B2
Authority
JP
Japan
Prior art keywords
ionization
ray
current value
radioactivity
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009168220A
Other languages
Japanese (ja)
Other versions
JP2009236932A (en
Inventor
明 佐野
哲夫 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009168220A priority Critical patent/JP4892040B2/en
Publication of JP2009236932A publication Critical patent/JP2009236932A/en
Application granted granted Critical
Publication of JP4892040B2 publication Critical patent/JP4892040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Description

本発明は、β/γ放射性物質の全β放射能量を測定するβ放射能測定装置に係り、特に
β線によって電離された空気を電離箱内に移送し、イオン化による電流量を測定すること
によりβ放射能を求めるβ放射能測定装置に関する。
The present invention relates to a β radioactivity measuring apparatus for measuring the total β radioactivity of β / γ radioactive substances, and in particular, by transferring air ionized by β rays into an ionization chamber and measuring the amount of current due to ionization. The present invention relates to a β radioactivity measuring apparatus for obtaining β radioactivity.

一般に、放射線により電離した空気を電離箱内に吸引し、イオン化による電流値を測定
して放射能を求める装置あるいは方法においては、α線により電離した空気を吸引して、
電離箱内でα放射能を求める発明が知られている(例えば、特許文献1参照)。
In general, in an apparatus or method for obtaining radioactivity by sucking air ionized by radiation into an ionization chamber and measuring a current value by ionization, the air ionized by α rays is sucked,
An invention for obtaining α radioactivity in an ionization chamber is known (see, for example, Patent Document 1).

この従来例は、図2に示すようにイオン化された空気がファン1によって吸引され、イ
オンは接地された側板2に囲まれ、かつ電源3から電圧が印加されたグリッド4に収集さ
れ、このグリッド4と電源3との間に接続された電流計5により電離電流が測定される。
In this conventional example, as shown in FIG. 2, ionized air is sucked by a fan 1, and ions are collected in a grid 4 surrounded by a grounded side plate 2 and applied with a voltage from a power source 3. The ionization current is measured by an ammeter 5 connected between 4 and the power source 3.

したがって、従来α線に対しては、閉空間内での電離作用に着目し、その限定された空
間内の空気の電離量を測定していた。α線1崩壊当たりの電離イオン数は多く、α線の飛
程は空気中で高々約5cmと短いため、放射線源近傍の空気が高密度で電離されることに
より、前記従来例の構成によってα放射能が測定可能となる。
Therefore, with respect to conventional α rays, focusing on the ionization action in a closed space, the amount of ionization of air in the limited space has been measured. Since the number of ionized ions per α-ray decay is large and the range of α-rays is as short as about 5 cm at most in the air, the air in the vicinity of the radiation source is ionized with a high density. Radioactivity can be measured.

一方、β線についてはα線と比べて飛程が長く、より大きな体積における空気電離量を
測定する必要があるため、上記のような小型閉空間の測定装置の構成では、電離電流の測
定下限値の制約もあり測定することができなかった。このため、β汚染については、この
ような空気電離計測手段ではなく、表面サーベイ・計測の一般的手法が用いられている。
On the other hand, the β ray has a longer range than the α ray, and it is necessary to measure the amount of air ionization in a larger volume. The measurement was not possible due to the limitation of the value. For this reason, a general method of surface survey and measurement is used for β contamination instead of such air ionization measurement means.

米国特許第5,194,737号明細書US Pat. No. 5,194,737

ところで、従来の電離電流を利用した放射能測定装置では、α線による電離電流を測定
し、α放射能を求めるものであって、β放射能を求めるためものではない。そのため、装
置構成、測定方法などもβ線を求めるために設定された条件ではないため、測定精度が低
いという課題があった。一般に、原子力発電所で発生する廃棄物はβ/γ放射性廃棄物で
あり、そのためβ放射能を簡便に測定可能な装置が求められている。
By the way, in the conventional radioactivity measuring apparatus using the ionizing current, the ionizing current by the α ray is measured to obtain the α radioactivity, and not to obtain the β radioactivity. For this reason, the apparatus configuration, the measurement method, and the like are not the conditions set for obtaining β-rays, and there is a problem that the measurement accuracy is low. Generally, the waste generated at nuclear power plants is β / γ radioactive waste, and therefore, an apparatus capable of easily measuring β radioactivity is required.

本発明は上記事情を考慮してなされたもので、簡便かつ高精度にβ放射能を測定するこ
とができるβ放射能測定装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a β radioactivity measuring apparatus that can measure β radioactivity easily and with high accuracy.

上記目的を達成するため、本発明のβ放射能測定装置においては、測定対象物から放出
される放射線により電離した空気を吸引して電離電流値を測定してβ放射能を求めるβ放
射能測定装置において、前記測定対象物の放射線源の近傍空間とこの近傍空間から離れた
離間空間とを隔離する隔離板と、前記近傍空間から空気を吸引してα線による電離が支配
的となるα線電離電流値を求めるとともに、前記離間空間から空気を吸引してβ線による
電離が支配的となるβ線電離電流値を求める電流値測定手段と、前記α線電離電流値とβ
線電離電流値との比を求め、この比と予め求めた基準の比率とを比較してα線およびβ線
の放射能を評価する手段とを備えたことを特徴とするものである。
In order to achieve the above object, in the β radioactivity measuring apparatus of the present invention, β radioactivity measurement for obtaining β radioactivity by sucking air ionized by radiation emitted from a measurement object and measuring an ionization current value In the apparatus, an isolating plate that separates a space near the radiation source of the measurement object and a separated space away from the near space, and an α ray that sucks air from the near space and is predominantly ionized by α rays. A current value measuring means for obtaining an ionization current value and for obtaining a β-ray ionization current value in which air is sucked from the separation space and ionization by β-rays is dominant, and the α-ray ionization current value and β
A means for obtaining a ratio of the line ionization current value and comparing the ratio with a previously obtained reference ratio to evaluate the radioactivity of α rays and β rays is provided.

本発明のβ放射能測定装置によれば、測定対象物の放射線源の近傍空間とそれより離れ
た離間空間とを隔離する隔離板を設け、放射線源の近傍空間の空気を吸引してα線による
電離の影響が大きい電離電流とし、放射線源の離間空間の空気を吸引してβ線による電離
電流として、α線による電離電流を補正することにより、高精度にβ放射能を測定するこ
とができる。
According to the β radioactivity measuring apparatus of the present invention, the separator for separating the space near the radiation source of the measurement object and the separated space away from the radiation source is provided, and the air in the space near the radiation source is sucked to emit α rays. It is possible to measure β radioactivity with high accuracy by correcting the ionization current due to α rays as the ionization current that is greatly affected by ionization and sucking the air in the separation space of the radiation source and as the ionization current due to β rays. it can.

本発明に係るβ放射能測定装置の実施形態を示す構成図。The block diagram which shows embodiment of the beta-radioactivity measuring apparatus which concerns on this invention. 従来のβ放射能測定装置の一例を示す構成図。The block diagram which shows an example of the conventional (beta) radioactivity measuring apparatus.

以下、本発明に係るβ放射能測定装置の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of a β radioactivity measuring apparatus according to the present invention will be described with reference to the drawings.

図1は本発明に係るβ放射能測定装置の実施形態を示す構成図である。   FIG. 1 is a configuration diagram showing an embodiment of a β radioactivity measuring apparatus according to the present invention.

図1に示すように、測定対象物11は、α線源23およびβ線源24が設置された近傍
空間(周辺部)26と、この近傍空間26から離れた離間空間(中心部)27とが隔離板
28により互いに隔離して形成されている。
As shown in FIG. 1, the measurement object 11 includes a nearby space (peripheral portion) 26 where the α-ray source 23 and the β-ray source 24 are installed, and a separated space (center portion) 27 separated from the nearby space 26. Are separated from each other by a separator plate 28.

この放射線源の近傍空間26における密閉板25には、近傍空間吸引パイプ29が連結
され、この近傍空間吸引パイプ29に吸引パイプ12が接続される一方、離間空間27に
おける密閉板25には、離間空間吸引パイプ30が連結され、この離間空間吸引パイプ3
0に吸引パイプ12が接続されている。
A near space suction pipe 29 is connected to the sealing plate 25 in the near space 26 of the radiation source, and the suction pipe 12 is connected to the near space suction pipe 29, while the sealing plate 25 in the separation space 27 is separated from the sealing plate 25. The space suction pipe 30 is connected, and this separated space suction pipe 3
A suction pipe 12 is connected to zero.

そして、吸引ポンプ14を駆動し、近傍空間26から近傍空間吸引パイプ29および吸
引パイプ12を経て空気を吸引することにより、α線による電離が支配的となるα線電離
電流値が電離電流測定装置13により求められる一方、離間空間27から離間空間吸引パ
イプ30および吸引パイプ12を経て空気を吸引することにより、β線による電離が支配
的となるβ線電離電流値が電離電流測定装置13により求められる。
Then, by driving the suction pump 14 and sucking air from the nearby space 26 through the nearby space suction pipe 29 and the suction pipe 12, the α-ray ionization current value in which the ionization by the α-ray is dominant is the ionization current measuring device. On the other hand, by sucking air from the separation space 27 through the separation space suction pipe 30 and the suction pipe 12, a β-ray ionization current value in which ionization by β-rays is dominant is obtained by the ionization current measuring device 13. It is done.

また、データ処理装置16は、上記α線電離電流値とβ線電離電流値との比を求め、こ
の比と予め求めた基準の比率とを比較してα線およびβ線の放射能を評価する。
Further, the data processing device 16 obtains a ratio between the α-ray ionization current value and the β-ray ionization current value, and compares the ratio with a previously obtained reference ratio to evaluate the radioactivity of the α-ray and the β-ray. To do.

次に、本実施形態の作用を説明する。   Next, the operation of this embodiment will be described.

測定対象物11は、例えばパイプのような内部に空間を有し、内部が放射能によって汚
染されているものとする。今、α線源23のエネルギ−が5〜6MeVとすると、空気中
での飛程は3.5cmから4.6cmであるので、5cmの距離でこれらのα線が停止す
る。したがって、測定対象物11の内表面近傍から5cm程度を境界として隔離板28が
設置される。
The measurement object 11 has a space inside, for example, a pipe, and the inside is contaminated by radioactivity. Now, assuming that the energy of the α-ray source 23 is 5 to 6 MeV, the range in the air is 3.5 cm to 4.6 cm, so these α rays stop at a distance of 5 cm. Therefore, the separator 28 is installed with a boundary of about 5 cm from the vicinity of the inner surface of the measurement object 11.

測定対象物11の内表面から隔離板28までの近傍空間26の空気は、α線とβ線によ
って電離される一方、隔離板28から測定対象物11の離間空間27の空気はβ線によっ
て電離される。
The air in the adjacent space 26 from the inner surface of the measurement object 11 to the separator 28 is ionized by α rays and β rays, while the air in the separation space 27 of the measurement object 11 from the separator 28 is ionized by β rays. Is done.

ここで、α線とβ線によって電離された測定対象物11の内表面近傍の空気は、吸引ポ
ンプ14により近傍空間吸引パイプ29および吸引パイプ12を経て電離電流測定装置1
3まで吸引され、β線とα線による電離イオンの電流値Aが測定される。
Here, the air in the vicinity of the inner surface of the measurement object 11 ionized by α rays and β rays passes through the nearby space suction pipe 29 and the suction pipe 12 by the suction pump 14, and the ionization current measuring device 1.
The current value A of ionized ions by β rays and α rays is measured.

一方、隔離板28から測定対象物11の離間空間27の空気は、吸引ポンプ14により
離間空間吸引パイプ30および吸引パイプ12を経て電離電流測定装置13まで吸引され
、β線による電流値Bが測定される。
On the other hand, the air in the separation space 27 of the measurement object 11 from the separator plate 28 is sucked by the suction pump 14 through the separation space suction pipe 30 and the suction pipe 12 to the ionization current measuring device 13, and the current value B by β-ray is measured. Is done.

これら電流値A、電流値Bは、データ処理装置16に記録され、次に、この処理装置1
6により電流値A/電流値Bの比を計算し、この比と予め求めたβ線源のみで汚染された
測定対象物11の電流値A/電流値Bの基準値比とを比較する。
These current value A and current value B are recorded in the data processing device 16, and then this processing device 1
6, the ratio of the current value A / current value B is calculated, and this ratio is compared with the reference value ratio of the current value A / current value B of the measurement object 11 contaminated only with the β-ray source obtained in advance.

ここで、基準電流値比に対する測定電流値比が1以下であれば、α線の混在が少ないの
で測定対象物11の電流値Bからβ放射能を求める。また、基準電流値比に対する測定電
流値比が1未満であれば、α線の混在があるので、測定対象物11の電流値Bからは前述
のようにしてβ放射能を求め、測定対象物11の電流値Aからは、測定対象物11の電流
値Bに補正係数を乗じて算出したβ線の寄与分の電流値を電流値Aから減算すれば、α線
の電離による電流値を得ることができ、α線の電離電流からα放射能への換算定数を使用
することにより、α放射能を算出する。
Here, if the measured current value ratio with respect to the reference current value ratio is 1 or less, there is little mixture of α rays, and β radioactivity is obtained from the current value B of the measurement object 11. Further, if the measured current value ratio with respect to the reference current value ratio is less than 1, there is a mixture of α rays. Therefore, the β radioactivity is obtained from the current value B of the measured object 11 as described above, and the measured object. From the current value A of 11, the current value B of the measurement object 11 multiplied by the correction coefficient is subtracted from the current value A to obtain the current value due to the ionization of the α ray. The α radioactivity can be calculated by using a conversion constant from the ionizing current of the α ray to the α radioactivity.

このように構成された本実施形態において、測定対象物表面から5cmの位置に設置さ
れた隔離板28に対し、測定対象物11の離間空間27の空気の電離イオンを収集して測
定すれば、β線の電離に起因した電流が測定されるので、高精度にβ放射能の測定を行う
ことができる。
In the present embodiment configured as described above, if ionized ions in the air in the separation space 27 of the measurement object 11 are collected and measured with respect to the separator 28 installed at a position 5 cm from the surface of the measurement object, Since the current resulting from the ionization of β rays is measured, β radioactivity can be measured with high accuracy.

なお、隔離板28の設置位置は、α線のエネルギ−、測定対象物11の寸法と深く関係
し、これらの関係に応じて測定対象物11の内表面から2cm、3cm、4cmに適宜設
置することも可能である。
The installation position of the separator plate 28 is deeply related to the energy of the α-rays and the size of the measurement object 11, and is appropriately installed 2 cm, 3 cm, and 4 cm from the inner surface of the measurement object 11 according to these relationships. It is also possible.

また、測定対象物11の内部を2個以上の隔離板により、3個以上の隔離領域を設定し
、これらの内部の空気をそれぞれ独立に吸引してイオン化による電流を測定し、前述した
ように、これらの電流値を比較すれば、β線のエネルギーに関するデータを収集すること
が可能となり、一段と高精度にβ放射能を評価することができる。
Further, the inside of the measurement object 11 is set with three or more isolation regions by using two or more separators, and the current due to ionization is measured by sucking the air inside each of them independently, as described above. If these current values are compared, it becomes possible to collect data on the energy of β rays, and β radioactivity can be evaluated with higher accuracy.

このように本実施形態によれば、隔離板28によりα線の空気中の飛程より長い位置か
らの空気を吸引することによりα線の影響をなくして、β線のみにより電離したイオンを
測定しているので、高精度にβ放射能の測定を行うことができる。
As described above, according to the present embodiment, the ion from the position longer than the range of the α ray in the air is sucked by the separator 28 to eliminate the influence of the α ray, and the ion ionized only by the β ray is measured. Therefore, it is possible to measure β radioactivity with high accuracy.

11 測定対象物
12 吸引パイプ
13 電離電流測定装置(電流値測定手段)
14 吸引ポンプ
15 測定対象物内の空気
16 データ処理装置
22 遮蔽板
23 α線源
24 β線源
25 密閉板
26 近傍空間
27 離間空間
28 隔離板
29 近傍空間吸引パイプ
30 離間空間吸引パイプ
11 Measurement object 12 Suction pipe 13 Ionization current measuring device (current value measuring means)
14 Suction pump 15 Air in measurement object 16 Data processing device 22 Shield plate 23 α-ray source 24 β-ray source 25 Sealing plate 26 Near space 27 Spacing space 28 Separating plate 29 Near space suction pipe 30 Spacing space suction pipe

Claims (1)

測定対象物から放出される放射線により電離した空気を吸引して電離電流値を測定して
β放射能を求めるβ放射能測定装置において、前記測定対象物の近傍空間とこの近傍空間
から離れた離間空間とを隔離する隔離板と、前記近傍空間から空気を吸引してα線による
電離が支配的となるα線電離電流値を求めるとともに、前記離間空間から空気を吸引して
β線による電離が支配的となるβ線電離電流値を求める電流値測定手段と、前記α線電離
電流値とβ線電離値との比を求め、この比と予め求めたβ線源のみで汚染された測定対象
物のα線電離電流値とβ線電離値との基準の比とを比較してα線及びβ線の放射能を評価
する手段とを備えたことを特徴とするβ線放射能測定装置。
In a β radioactivity measurement apparatus that obtains β radioactivity by sucking air ionized by radiation emitted from a measurement object and measuring an ionization current value, the space adjacent to the measurement object and a space apart from the space near the measurement object A separator that separates the space and an α-ray ionization current value in which the ionization by α-rays is dominant by sucking air from the neighboring space, and the ionization by β-rays is sucked by air from the separation space. Current value measuring means for obtaining a dominant β-ray ionization current value, a ratio between the α-ray ionization current value and the β-ray ionization value, and a measurement object contaminated with only this ratio and a previously obtained β-ray source
A β-ray radioactivity measuring apparatus comprising means for evaluating the radioactivity of α-rays and β-rays by comparing a reference ratio between an α-ray ionization current value and a β-ray ionization value of an object.
JP2009168220A 2009-07-16 2009-07-16 β radioactivity analyzer Expired - Fee Related JP4892040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009168220A JP4892040B2 (en) 2009-07-16 2009-07-16 β radioactivity analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009168220A JP4892040B2 (en) 2009-07-16 2009-07-16 β radioactivity analyzer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000282300A Division JP4427175B2 (en) 2000-09-18 2000-09-18 β radioactivity analyzer

Publications (2)

Publication Number Publication Date
JP2009236932A JP2009236932A (en) 2009-10-15
JP4892040B2 true JP4892040B2 (en) 2012-03-07

Family

ID=41251010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009168220A Expired - Fee Related JP4892040B2 (en) 2009-07-16 2009-07-16 β radioactivity analyzer

Country Status (1)

Country Link
JP (1) JP4892040B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925191B2 (en) * 1979-11-20 1984-06-15 アロカ株式会社 Ionizing ability measuring device for parent bodies containing radioactive materials
DE3602519A1 (en) * 1986-01-28 1987-07-30 Wiederaufarbeitung Von Kernbre RADIATION MEASURING DEVICE
JPH04169888A (en) * 1990-11-01 1992-06-17 Fuji Electric Co Ltd Apparatus for measuring radiation
JP2000193749A (en) * 1998-12-28 2000-07-14 Toshiba Corp alphabeta DETECTOR AND alphabeta DETECTING DEVICE USING IT

Also Published As

Publication number Publication date
JP2009236932A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP4766407B2 (en) Radiation dosimeter and radiation dose calculation program
JP3741006B2 (en) Charged particle measuring apparatus and measuring method thereof
CN1633606A (en) Adaptable energy-resolved detection of ionizing radiation
US9588236B2 (en) Radioactivity analyzing apparatus
CN1432134A (en) Detector and method for detection of ionizing radiation
EP2246711A2 (en) Intelligent Sensor Platform
CN1658794A (en) Method and apparatus for detection of ionizing radiation
US20070007457A1 (en) Method and apparatus of detecting ionizing radiation
KR101786949B1 (en) Method for deriving depth of buried radiation source using in-suit measurement technology, and method for deriving radioactivity of buried radiation source using the same
Krieger et al. InGrid-based X-ray detector for low background searches
US9035266B2 (en) Dosimeter and method for determining an energy dose of a pulsed radiation field
Curioni et al. Measurements of 55Fe activity in activated steel samples with GEMPix
JP2003194946A (en) Method and apparatus for measurement of radioactivity and radioactive waste disposal system
Sánchez et al. Experimental set-up for the simultaneous measurement of fission and γ-emission probabilities induced by transfer or inelastic-scattering reactions
JP4892040B2 (en) β radioactivity analyzer
JP2024009260A (en) Radiation-based thickness gauge
JP4427175B2 (en) β radioactivity analyzer
Chepel et al. The liquid xenon detector for PET: recent results
JP4139905B2 (en) Radiation discrimination detector
KR20230037226A (en) Reactor coolant leak detection apparatus and method thereof
JP3542936B2 (en) Radiation measurement device
EP3449287A1 (en) Muographic observation instrument
Freitas et al. PMT calibration of a scintillation detector using primary scintillation
JP4671153B2 (en) Open window ionization chamber
JP2008032510A (en) Radioactivity measuring instrument and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees