JP4889168B2 - 固体高分子型燃料電池のセル及び固体高分子型燃料電池 - Google Patents

固体高分子型燃料電池のセル及び固体高分子型燃料電池 Download PDF

Info

Publication number
JP4889168B2
JP4889168B2 JP2001252887A JP2001252887A JP4889168B2 JP 4889168 B2 JP4889168 B2 JP 4889168B2 JP 2001252887 A JP2001252887 A JP 2001252887A JP 2001252887 A JP2001252887 A JP 2001252887A JP 4889168 B2 JP4889168 B2 JP 4889168B2
Authority
JP
Japan
Prior art keywords
catalyst layer
electrode catalyst
oxygen electrode
layer
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001252887A
Other languages
English (en)
Other versions
JP2003068318A (ja
Inventor
修 山▲ざき▼
満秋 越後
健 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001252887A priority Critical patent/JP4889168B2/ja
Publication of JP2003068318A publication Critical patent/JP2003068318A/ja
Application granted granted Critical
Publication of JP4889168B2 publication Critical patent/JP4889168B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電解質層としての高分子膜の一方の面にその周部を露出する状態で酸素極触媒層を備え、且つ、他方の面にその周部を露出する状態で燃料極触媒層を備えた固体高分子型燃料電池のセル、及び、そのようなセルの複数個にて構成された高分子型燃料電池に関する。
【0002】
【従来の技術】
かかる固体高分子型燃料電池のセル(以下、単にセルと記載する場合がある)においては、電極触媒を保持した酸素極触媒層及び燃料極触媒層夫々と高分子膜との接触面積を大きくして、発電性能を高くする必要があることから、酸素極触媒層及び燃料極触媒層夫々と高分子膜との接触面積を大きくするために、以下のようにして、高分子膜に対して酸素極触媒層及び燃料極触媒層を接合するものである。
即ち、高分子膜の一方の面にその周部を露出する状態で酸素極触媒層を配置し且つ他方の面にその周部を露出する状態で燃料極触媒層を配置した状態で、高分子膜と各層の重ね方向にホットプレスしてそれらを接合したり、高分子膜と各層の重ね方向に押圧してそれらを接着剤にて接合したりして、酸素極触媒層及び燃料極触媒層夫々と高分子膜との接触面積を大きくするものである。
【0003】
そして、固体高分子型燃料電池のセルを用いて構成した固体高分子型燃料電池においては、高分子膜厚さ方向に押圧力を印加させることにより、流路形成部材をセルにおける酸素極触媒層の周縁部に対応する外周部に密着させて、セルとの間に酸素極側ガス流路を気密状に形成し、並びに、流路形成部材をセルにおける燃料極触媒層の周縁部に対応する外周部に密着させて、セルとの間に燃料極側ガス流路を気密状に形成している。
【0004】
従来、高分子膜に酸素極触媒層及び燃料極触媒層を接合するに当たっては、図19に示すように、面方向の全体にわたって厚さが略均一で且つ強度が略均一に形成した高分子膜1を用い、その高分子膜1の両面に、上述のように酸素極触媒層2cと燃料極触媒層3cとを振分け配置した状態で、高分子膜1と各層の重ね方向にホットプレスしてそれらを接合したり、高分子膜1と各層の重ね方向に押圧してそれらを接着剤にて接合したりしていた。更に、そのように高分子膜1に酸素極触媒層2c及び燃料極触媒層3cを接合して形成した電極―膜接合体における酸素極触媒層2c側にその酸素極触媒層2cと同じ大きさの酸素極集電層2pを重ねると共に、その酸素極触媒層2c側の矩形枠状の高分子膜1の露出部分に矩形枠状の酸素極側シール材6を重ね、並びに、燃料極触媒層3c側にその燃料極触媒層3cと同じ大きさの燃料極集電層3pを重ねると共に、その燃料極触媒層3c側の矩形枠状の高分子膜1の露出部分に矩形枠状の燃料極側シール材7を重ねて、セルCを構成していた。尚、通常は、酸素極触媒層2c及び燃料極触媒層3cは高分子膜1よりも硬い材料にて形成され、酸素極集電層2p及び燃料極集電層3pは酸素極触媒層2c及び燃料極触媒層3cよりも硬い材料(例えばカーボンペーパー等)にて形成される。
【0005】
図18は、上述のように構成した従来のセルCにおける厚さ方向での断面図を示す。つまり、図18に示すように、上述のように高分子膜1の両面に酸素極触媒層2cと燃料極触媒層3cとを振分け配置した状態で、高分子膜1と各層の重ね方向に押圧力を印加してそれらを接合することから、高分子膜1において酸素極触媒層2cや燃料極触媒層3cが重なっている部分は、酸素極触媒層2c及び燃料極触媒層3cが重なっていない部分に比べて、膜厚が薄くなる。
【0006】
そして、従来、固体高分子型燃料電池においては、図20に示すように、上述のように構成した複数のセルCを、隣接するセル間に、導電性を有する流路形成部材として酸素極側セパレータ8及び燃料極側セパレータ9を位置させた状態で厚さ方向に並置し、酸素極側セパレータ8をそれに隣接するセルCにおける酸素極触媒層2cの周縁部に対応する外周部に密着させて、セルCとの間に酸素極側ガス流路sを形成し、燃料極側セパレータ9をそれに隣接するセルCにおける燃料極触媒層3cの周縁部に対応する外周部に密着させて、セルCとの間に燃料極側ガス流路fを形成するように構成していた。
【0007】
つまり、複数のセルCを上述のように並置した状態で、高分子膜厚さ方向に押圧力を印加させるようにセル並置方向の両側から挟み付けることにより、各セルCを電気的に接続する接続抵抗を小さくすると共に、酸素極側セパレータ8をそれに隣接するセルCにおける酸素極触媒層2cの周縁部に対応する外周部に密着させ、且つ、燃料極側セパレータ9をそれに隣接するセルCにおける燃料極触媒層3cの周縁部に対応する外周部に密着させて、酸素極側ガス流路s及び燃料極側ガス流路fを気密状に形成していた。
【0008】
【発明が解決しようとする課題】
ところで、固体高分子型燃料電池のセルを用いて構成した固体高分子型燃料電池では、セルに対して、高分子膜厚さ方向に押圧力が印加されることになる。
従来では、酸素極触媒層の周縁部にその酸素極触媒層よりも硬い酸素極集電層の周縁部が重なり、且つ、燃料極触媒層の周縁部にその燃料極触媒層よりも硬い燃料極集電層の周縁部が重なることから、酸素極触媒層の周縁部が酸素極集電層の周縁部に押圧されたり、燃料極触媒層の周縁部が燃料極集電層の周縁部に押圧されたりすることにより、高分子膜においては、酸素極触媒層の周縁部に対応する膜部分(以下、酸素極境界膜部分と称する場合がある)や、燃料極触媒層の周縁部に対応する膜部分(以下、燃料極境界膜部分と称する場合がある)には、他の部分よりも大きい応力がかかり易い。
又、固体高分子型燃料電池のセルは、高分子膜、各触媒層、各集電層というように熱膨張率の異なる部材にて構成されているので、固体高分子型燃料電池においては、高分子膜厚さ方向に押圧力が印加された状態で、起動・停止の繰り返しにより昇温・降温が繰り返されると、高分子膜に引っ張り応力や圧縮応力が繰り返し発生する。
【0009】
しかしながら、従来の固体高分子型燃料電池のセルでは、上述のように、高分子膜において、酸素極触媒層や燃料極触媒層が重なっている部分は、酸素極触媒層及び燃料極触媒層が重なっていない部分に比べて膜厚が薄くなっているので、高分子膜の酸素極境界膜部分又は燃料極境界膜部分は他の部分よりも強度が弱くなっている。
従って、このようなセルを用いて固体高分子型燃料電池を構成すると、高分子膜厚さ方向に印加される押圧力により、高分子膜の酸素極境界膜部分や燃料極境界膜部分に他の部分よりも強い応力がかかったり、起動・停止の繰り返しにより、高分子膜に引っ張り応力や圧縮応力が繰り返しかかったりすると、強度が弱くなっている酸素極境界膜部分又は燃料極境界膜部分に、歪みや亀裂等の損傷が生じ易い。
高分子膜の損傷は、発電反応用としての酸素極側ガス又は燃料極側ガスのクロスリークの原因となり、そのようなガスのクロスリークが生じると発電性能が低下することから、従来の固体高分子型燃料電池のセルでは、固体高分子型燃料電池を構成したときの耐久性を向上する上で改善の余地があった。
【0010】
本発明は、かかる実情に鑑みてなされたものであり、その目的は、固体高分子型燃料電池を構成したときに耐久性に優れる固体高分子型燃料電池のセル及び耐久性に優れる固体高分子型燃料電池を提供することにある。
【0011】
〔請求項1記載の発明〕
請求項1に記載の固体高分子型燃料電池のセルの特徴構成は、前記酸素極触媒層における前記高分子膜存在側とは反対側又は前記燃料極触媒層における前記高分子膜存在側とは反対側に、弾性変形自在な補強部材が、前記高分子膜の厚さ方向に印加される押圧力により弾性変形して、前記高分子膜における前記酸素極触媒層の周縁部又は前記燃料極触媒層の周縁部に対応する膜部分に応力が集中するのを抑制するように、前記酸素極触媒層又は前記燃料極触媒層の周縁内外にわたる状態で設けられ、さらに、前記酸素極触媒層における前記高分子膜存在側とは反対側、又は前記燃料極触媒層における前記高分子膜存在側とは反対側に、前記酸素極触媒層より大きな酸素極集電層、又は前記燃料極触媒層より大きな燃料極集電層を備え、前記酸素極触媒層の周縁と前記酸素極集電層の周縁、又は前記燃料極触媒層の周縁と前記燃料極集電層の周縁とがずれるように構成され、前記酸素極集電層が前記酸素極触媒層と前記補強部材とに接触、又は前記燃料極集電層が前記燃料極触媒層と前記補強部材とに接触していることにある。
請求項1記載のセルを用いて固体高分子型燃料電池を構成すると、酸素極触媒層における高分子膜存在側とは反対側又は燃料極触媒層における高分子膜存在側とは反対側に、酸素極触媒層又は燃料極触媒層の周縁内外にわたる状態で、弾性変形自在な補強部材が設けられていることから、高分子膜厚さ方向に押圧力が印加されたり、高分子膜厚さ方向に押圧力が印加された状態で起動・停止が繰り返されて、高分子膜に引っ張り応力や圧縮応力が繰り返しかかったりしても、補強部材が弾性変形することにより、高分子膜の酸素極境界膜部分や燃料極境界膜部分に応力がかかるのが抑制されるので、高分子膜の酸素極境界膜部分や燃料極境界膜部分が他の部分よりも強度が弱くなっていたとしても、酸素極境界膜部分又は燃料極境界膜部分に歪みや亀裂等の損傷が生じるのが防止される。
従って、固体高分子型燃料電池を構成したときに耐久性に優れる固体高分子型燃料電池のセルを提供することができるようになった。
また、酸素極集電層の周縁と酸素極触媒層の周縁とが重なる場合、又は、燃料極集電層の周縁と燃料極触媒層の周縁とが重なる場合に比べて、高分子膜における電極境界膜部分に印加される応力が一層小さくなる。
【0012】
〔請求項2記載の発明〕
請求項2に記載の固体高分子型燃料電池のセルの特徴構成は、前記高分子膜と前記酸素極触媒層との間又は前記高分子膜と前記燃料極触媒層との間に、弾性変形自在な補強部材が、前記高分子膜の厚さ方向に印加される押圧力により弾性変形して、前記高分子膜における前記酸素極触媒層の周縁部又は前記燃料極触媒層の周縁部に対応する膜部分に応力が集中するのを抑制するように、前記酸素極触媒層又は前記燃料極触媒層の周縁内外にわたる状態で設けられ、さらに、前記酸素極触媒層における前記高分子膜存在側とは反対側、又は前記燃料極触媒層における前記高分子膜存在側とは反対側に、前記酸素極触媒層より大きな酸素極集電層、又は前記燃料極触媒層より大きな燃料極集電層を備え、前記酸素極触媒層の周縁と前記酸素極集電層の周縁、又は前記燃料極触媒層の周縁と前記燃料極集電層の周縁とがずれるように構成され、前記酸素極集電層が前記酸素極触媒層と前記補強部材とに接触、又は前記燃料極集電層が前記燃料極触媒層と前記補強部材とに接触していることにある。
請求項2記載のセルを用いて固体高分子型燃料電池を構成すると、高分子膜と酸素極触媒層との間又は高分子膜と燃料極触媒層との間に、酸素極触媒層又は燃料極触媒層の周縁内外にわたる状態で、弾性変形自在な補強部材が設けられていることから、高分子膜厚さ方向に押圧力が印加されたり、高分子膜厚さ方向に押圧力が印加された状態で起動・停止が繰り返されて、高分子膜に引っ張り応力や圧縮応力が繰り返しかかったりしても、補強部材が弾性変形することにより、高分子膜の酸素極境界膜部分や燃料極境界膜部分に応力がかかるのが抑制されるので、高分子膜の酸素極境界膜部分や燃料極境界膜部分が他の部分よりも強度が弱くなっていたとしても、酸素極境界膜部分又は燃料極境界膜部分に歪みや亀裂等の損傷が生じるのが防止される。
又、高分子膜と酸素極触媒層との間又は高分子膜と燃料極触媒層との間に、弾性変形自在な補強部材を酸素極触媒層又は燃料極触媒層の周縁内外にわたる状態で配置した状態で、高分子膜と各層の重ね方向にホットプレスしてそれらを接合したり、高分子膜と各層の重ね方向に押圧してそれらを接着剤にて接合したりすると、高分子膜の厚さ方向に押圧力が印加される際に補強部材が弾性変形して、高分子膜の酸素極境界膜部分又は燃料極境界膜部分に印加される応力が逃がされるので、応力が集中するのが抑制されることとなり、酸素極境界膜部分や燃料極境界膜部分の強度が弱くなるのを抑制することができる。そして、そのように酸素極境界膜部分や燃料極境界膜部分の強度が弱くなるのを抑制したセルを用いて、固体高分子型燃料電池を構成すると、酸素極境界膜部分又は燃料極境界膜部分に損傷が生じるのを防止する上で、一層好ましいものとなる。
従って、固体高分子型燃料電池を構成したときに耐久性に優れる固体高分子型燃料電池のセルを提供することができるようになった。
また、酸素極集電層の周縁と酸素極触媒層の周縁とが重なる場合、又は、燃料極集電層の周縁と燃料極触媒層の周縁とが重なる場合に比べて、高分子膜における電極境界膜部分に印加される応力が一層小さくなる。
【0013】
〔請求項3記載の発明〕
請求項3に記載の固体高分子型燃料電池のセルの特徴構成は、前記高分子膜における前記酸素極触媒層の周縁部又は前記燃料極触媒層の周縁部に対応する部分に、繊維状補強材を前記酸素極触媒層又は前記燃料極触媒層の周縁に対して内外方向にわたって混入することにより、前記高分子膜における前記酸素極触媒層の周縁部又は前記燃料極触媒層の周縁部に対応する部分の強度が他の部分よりも強くなるように構成され、さらに、前記酸素極触媒層における前記高分子膜存在側とは反対側、又は前記燃料極触媒層における前記高分子膜存在側とは反対側に、前記酸素極触媒層より大きな酸素極集電層、又は前記燃料極触媒層より大きな燃料極集電層を備え、前記酸素極触媒層の周縁と前記酸素極集電層の周縁、又は前記燃料極触媒層の周縁と前記燃料極集電層の周縁とがずれるように構成され、前記酸素極集電層が前記酸素極触媒層と前記高分子膜における前記酸素極触媒層の周縁部に対応する部分とに接触、又は前記燃料極集電層が前記燃料極触媒層と前記高分子膜における前記燃料極触媒層の周縁部に対応する部分とに接触していることにある。
請求項3に記載の特徴構成によれば、高分子膜における酸素極境界膜部分又は燃料極境界膜部分に、繊維状補強材を酸素極触媒層又は燃料極触媒層の周縁に対して内外方向にわたって混入することにより、高分子膜における酸素極境界膜部分又は燃料極境界膜部分の強度が他の部分よりも強くなるように構成されているので、高分子膜に酸素極触媒層及び燃料極触媒層を接合するときに、高分子膜の両面に酸素極触媒層と燃料極触媒層とを振分け配置した状態で、高分子膜と各層の重ね方向に押圧力が印加されても、それら酸素極境界膜部分や燃料極境界膜部分の強度が弱くなるのが抑制される。
そして、そのようなセルを用いて固体高分子型燃料電池を構成すると、セルの状態で酸素極境界膜部分や燃料極境界膜部分の強度が弱くなるのが抑制されていることに加えて、繊維状補強材によって、高分子膜における酸素極境界膜部分又は燃料極境界膜部分の強度が他の部分よりも強くなるように構成されていることから、高分子膜厚さ方向に押圧力が印加されたり、高分子膜厚さ方向に押圧力が印加された状態で起動・停止が繰り返されて、高分子膜に引っ張り応力や圧縮応力が繰り返しかかったりしても、酸素極境界膜部分又は燃料極境界膜部分に歪みや亀裂等の損傷が生じるのが防止される。
従って、固体高分子型燃料電池を構成したときに耐久性に優れる固体高分子型燃料電池のセルを提供することができるようになった。
また、酸素極集電層の周縁と酸素極触媒層の周縁部に対応する部分が重なる場合、又は、燃料極集電層の周縁と燃料極触媒層の周縁部に対応する部分とが重なる場合に比べて、高分子膜における電極境界膜部分に印加される応力が一層小さくなる。
【0014】
〔請求項4記載の発明〕
請求項4に記載の固体高分子型燃料電池のセルの特徴構成は、前記高分子膜の全体にわたって混入する繊維状補強材の混入率を、前記高分子膜における前記酸素極触媒層の周縁部又は前記燃料極触媒層の周縁部に対応する部分を他の部分よりも高くすることにより、前記高分子膜における前記酸素極触媒層の周縁部又は前記燃料極触媒層の周縁部に対応する部分の強度が他の部分よりも強くなるように構成され、さらに、前記酸素極触媒層における前記高分子膜存在側とは反対側、又は前記燃料極触媒層における前記高分子膜存在側とは反対側に、前記酸素極触媒層より大きな酸素極集電層、又は前記燃料極触媒層より大きな燃料極集電層を備え、前記酸素極触媒層の周縁と前記酸素極集電層の周縁、又は前記燃料極触媒層の周縁と前記燃料極集電層の周縁とがずれるように構成され、前記酸素極集電層が前記酸素極触媒層と前記高分子膜における前記酸素極触媒層の周縁部に対応する部分とに接触、又は前記燃料極集電層が前記燃料極触媒層と前記高分子膜における前記燃料極触媒層の周縁部に対応する部分とに接触していることにある。
請求項4に記載の特徴構成によれば、高分子膜の全体にわたって混入する繊維状補強材の混入率を、高分子膜における酸素極境界膜部分又は燃料極境界膜部分を他の部分よりも高くすることにより、高分子膜における酸素極境界膜部分又は燃料極境界膜部分の強度が他の部分よりも強くなるように構成されているので、高分子膜に酸素極触媒層及び燃料極触媒層を接合するときに、高分子膜の両面に酸素極触媒層と燃料極触媒層とを振分け配置した状態で、高分子膜と各層の重ね方向に押圧力が印加されても、それら酸素極境界膜部分や燃料極境界膜部分の強度が弱くなるのが抑制される。
そして、そのようなセルを用いて固体高分子型燃料電池を構成すると、セルの状態で酸素極境界膜部分や燃料極境界膜部分の強度が弱くなるのが抑制されていることに加えて、繊維状補強材によって、高分子膜における酸素極境界膜部分又は燃料極境界膜部分の強度が他の部分よりも強くなるように構成されていることから、高分子膜厚さ方向に押圧力が印加されたり、高分子膜厚さ方向に押圧力が印加された状態で起動・停止が繰り返されて、高分子膜に引っ張り応力や圧縮応力が繰り返しかかったりしても、酸素極境界膜部分又は燃料極境界膜部分に歪みや亀裂等の損傷が生じるのが防止される。
従って、固体高分子型燃料電池を構成したときに耐久性に優れる固体高分子型燃料電池のセルを提供することができるようになった。
また、酸素極集電層の周縁と酸素極触媒層の周縁部に対応する部分が重なる場合、又は、燃料極集電層の周縁と燃料極触媒層の周縁部に対応する部分とが重なる場合に比べて、高分子膜における電極境界膜部分に印加される応力が一層小さくなる。
【0015】
〔請求項5記載の発明〕
請求項5に記載の固体高分子型燃料電池の特徴構成は、請求項1〜4のいずれか1項に記載の固体高分子型燃料電池のセルの複数が、隣接するセル間に流路形成部材を位置させた状態で、厚さ方向に並置され、
前記流路形成部材が、その一方側に隣接する前記セルにおける前記酸素極触媒層の周縁部に対応する外周部に密着されて、前記セルとの間に酸素極側ガス流路を形成し、他方側に隣接する前記セルにおける前記燃料極触媒層の周縁部に対応する外周部に密着されて、前記セルとの間に燃料極側ガス流路を形成するように構成されていることにある。
請求項5に記載の特徴構成によれば、請求項1〜4のいずれか1項に記載の固体高分子型燃料電池のセルの複数を、隣接するセル間に流路形成部材を位置させて、厚さ方向に並置した状態で、セル並置方向に押圧力を印加させるようにセル並置方向の両側から挟み付けることにより、各セルを電気的に接続する接続抵抗を小さくすると共に、流路形成部材を、その一方側に隣接するセルにおける酸素極触媒層の周縁部に対応する外周部に密着させ、且つ、他方側に隣接するセルにおける燃料極触媒層の周縁部に対応する外周部に密着させて、酸素極側ガス流路及び燃料極側ガス流路を気密状に形成する。
そして、高分子膜厚さ方向に押圧力が印加されたり、高分子膜厚さ方向に押圧力が印加された状態で起動・停止が繰り返されて、高分子膜に引っ張り応力や圧縮応力が繰り返しかかったりしても、請求項1〜4のいずれか1項に記載のセルを用いていることにより、以下のようにして、高分子膜の酸素極境界膜部分や燃料極境界膜部分に歪みや亀裂等の損傷が生じるのが防止される。
つまり、請求項1記載のセルを用いた固体高分子型燃料電池では、酸素極触媒層における高分子膜存在側とは反対側又は燃料極触媒層における高分子膜存在側とは反対側に、酸素極触媒層又は燃料極触媒層の周縁内外にわたる状態で、弾性変形自在な補強部材が設けられていることから、高分子膜厚さ方向に押圧力が印加されたり、高分子膜厚さ方向に押圧力が印加された状態で起動・停止が繰り返されて、高分子膜に引っ張り応力や圧縮応力が繰り返しかかったりしても、補強部材が弾性変形することにより、高分子膜の酸素極境界膜部分や燃料極境界膜部分に応力がかかるのが抑制されるので、酸素極境界膜部分又は燃料極境界膜部分に損傷が生じるのが防止される。
【0016】
請求項2記載のセルを用いた固体高分子型燃料電池では、高分子膜と酸素極触媒層との間又は高分子膜と燃料極触媒層との間に、酸素極触媒層又は燃料極触媒層の周縁内外にわたる状態で、弾性変形自在な補強部材が設けられていることから、高分子膜厚さ方向に押圧力が印加されたり、高分子膜厚さ方向に押圧力が印加された状態で起動・停止が繰り返されて、高分子膜に引っ張り応力や圧縮応力が繰り返しかかったりしても、補強部材が弾性変形することにより、高分子膜の酸素極境界膜部分や燃料極境界膜部分に応力がかかるのが抑制されるので、酸素極境界膜部分又は燃料極境界膜部分に損傷が生じるのが防止される。
【0017】
請求項3記載のセルを用いた固体高分子型燃料電池では、高分子膜における酸素極境界膜部分又は燃料極境界膜部分に、繊維状補強材を酸素極触媒層又は燃料極触媒層の周縁に対して内外方向にわたって混入することにより、あるいは、請求項4記載のセルを用いた固体高分子型燃料電池では、高分子膜の全体にわたって混入する繊維状補強材の混入率を、高分子膜における酸素極境界膜部分又は燃料極境界膜部分を他の部分よりも高くなるようすることにより、高分子膜における酸素極境界膜部分又は燃料極境界膜部分の強度が他の部分よりも強くなっているので、高分子膜厚さ方向に押圧力が印加されたり、高分子膜厚さ方向に押圧力が印加された状態で起動・停止が繰り返されて、高分子膜に引っ張り応力や圧縮応力が繰り返しかかったりしても、酸素極境界膜部分又は燃料極境界膜部分に損傷が生じるのが防止される。
従って、耐久性に優れる固体高分子型燃料電池を提供することができるようになった。
【0018】
【発明の実施の形態】
〔第1実施形態〕
以下、図面に基づいて本発明の第1実施形態を説明する。
先ず、図1及び図2に基づいて、固体高分子型燃料電池のセルCについて説明する。尚、図1及び図2においては、高分子膜1の厚さ方向に沿う方向での各部の形状を分かり易いようにするために、高分子膜1の厚さ方向に直交する方向に沿う方向での各部の寸法に対する、高分子膜1の厚さ方向に沿う方向での各部の寸法の比率を実際よりも大きくしてある。
【0019】
セルCは、電解質層としての高分子膜1の一方の面にその周部を露出する状態で酸素極触媒層2cを備え、且つ、他方の面にその周部を露出する状態で燃料極触媒層3cを備え、更に、酸素極触媒層2cにおける高分子膜存在側とは反対側の面に酸素極集電層2pを備え、且つ、燃料極触媒層3cにおける高分子膜存在側とは反対側の面に燃料極集電層3pを備えて構成してある。そして、酸素極触媒層2cと酸素極集電層2pにより、酸素極2を構成し、燃料極触媒層3cと燃料極集電層3pにより燃料極3を構成してある。
【0020】
第1実施形態においては、酸素極触媒層2cにおける高分子膜存在側とは反対側に弾性変形自在な酸素極側補強部材4を、及び、燃料極触媒層3cにおける高分子膜存在側とは反対側に弾性変形自在な燃料極側補強部材5を、それぞれが高分子膜1の厚さ方向に印加される押圧力により弾性変形して、高分子膜1における酸素極触媒層2cの周縁部に対応する膜部分及び燃料極触媒層3cの周縁部に対応する膜部分に応力が集中するのを抑制するように、それぞれ酸素極触媒層2cの周縁内外にわたる状態、燃料極触媒層3cの周縁内外にわたる状態で設けてある。
【0021】
又、酸素極集電層2pは、平面形状が酸素極触媒層2cよりも大きくなるように形成して、その酸素極集電層2pを酸素極触媒層2cにおける高分子膜存在側とは反対側の面に、その酸素極触媒層2cの周部を全周にわたって覆う状態で、且つ、高分子膜1の周部を全周にわたって露出する状態で備え、並びに、燃料極集電層3pも、平面形状が燃料極触媒層3cよりも大きくなるように形成して、その燃料極集電層3pを燃料極触媒層3cにおける高分子膜存在側とは反対側の面に、その燃料極触媒層3cの周部を全周にわたって覆う状態で、且つ、高分子膜1の周部を全周にわたって露出する状態で備えてある。
【0022】
説明を加えると、高分子膜1は矩形状であり、酸素極触媒層2cと燃料極触媒層3cは、互いに同一の矩形状であり、高分子膜1よりも小さく、又、酸素極集電層2pと燃料極集電層3pは、互いに同一の矩形状であり、酸素極触媒層2c及び燃料極触媒層3cよりも大きい。そして、酸素極触媒層2cと燃料極触媒層3cは、高分子膜1に対して面対称となるように配置し、並びに、酸素極集電層2pと燃料極集電層3pとは、高分子膜1に対して面対称となるように配置する。従って、高分子膜1における酸素極触媒層2cの周縁部に対応する膜部分、即ち、酸素極境界膜部分、及び、高分子膜1における燃料極触媒層3cの周縁部に対応する膜部分、即ち、燃料極境界膜部分夫々における高分子膜1の面方向における位置は一致するので、以下の説明では、高分子膜1における酸素極境界膜部分及び高分子膜1における燃料極境界膜部分夫々を、高分子膜1における電極境界膜部分1Wと称する場合がある。
【0023】
酸素極側補強部材4と燃料極側補強部材5とは、同一の矩形枠状であり、外周が高分子膜1と同一の矩形状で、内周が酸素極触媒層2c及び燃料極触媒層3cよりも小さい矩形状であり、厚さは、酸素極触媒層2c及び酸素極集電層2p夫々の厚さを加えた厚さ(即ち、燃料極触媒層3c及び燃料極集電層3p夫々の厚さを加えた厚さ)よりも薄い。
【0024】
そして、高分子膜1の両面に酸素極触媒層2cと燃料極触媒層3cとを振分け配置した状態で、高分子膜1と各層の重ね方向にホットプレスしてそれらを接合して、電極−膜接合体を形成し、続いて、その電極−膜接合体における酸素極触媒層2c側に、酸素極側補強部材4、酸素極集電層2pを高分子膜1側から記載順に配置して重ねると共に、酸素極側補強部材4における矩形枠状の露出部分に矩形枠状の酸素極側シール材6を重ね、並びに、電極−膜接合体における燃料極触媒層3c側に、燃料極側補強部材5、燃料極集電層3pを高分子膜1側から記載順に配置して重ねると共に、燃料極側補強部材5における矩形枠状の露出部分に矩形枠状の燃料極側シール材7を重ねて配置して、セルCを構成してある。
【0025】
酸素極側シール材6及び燃料極側シール材7は、互いに同一の矩形枠状であり、外周が高分子膜1と同一の矩形状で、内周が酸素極集電層2p及び燃料極集電層3pの外周と略同一の矩形状である。
【0026】
尚、図1は、上述のように構成したセルCに対して、高分子膜1の厚さ方向に押圧力を印加した状態、即ち、後述するセルスタックNCにセルCが組み込まれた状態を示し、押圧力により部材同士の重なり部において各部材が変形している状態を示している。但し、押圧力により各部材が変形する形状は、図1に示す形状に限定されるものではない。
【0027】
高分子膜1は、プロトン導電性を備えたフッ素樹脂系のイオン交換膜(例えば、Nafion112)にて形成してあり、厚さは、例えば50μmである。
酸素極触媒層2c及び燃料極触媒層3cは、互いに同様の構成であり、カーボンから成る多孔状の導電材にて形成し、夫々、白金及び白金系合金から成る電極触媒を担持してあり、厚さは、例えば20μm程度である。
酸素極集電層2p及び燃料極集電層3pは、互いに同様の構成であり、多孔状の導電材、例えば、カーボンペーパー又はカーボンフェルトにて形成し、撥水剤(PTFE:ポロテトラフルオロエチレン等)にて撥水加工してあり、厚さは、例えば350μm程度である。
又、酸素極側補強部材4及び燃料極側補強部材5は、互いに同様の構成であり、弾性変形自在で気密性を有する材料、例えば、高分子膜1を形成するのと同一の材料にて形成し、厚さは、例えば高分子膜1と同程度である。
酸素極側シール材6及び燃料極側シール材7は、互いに同様の構成であり、気密性を有する材料、例えば、PTFEシートにて形成し、厚さは、例えば250μm程度である。
【0028】
次に、図3、及び、図13ないし図16に基づいて、上述のセルCの複数個を用いて構成する固体高分子型燃料電池について説明する。尚、図3、及び、図13ないし図6においても、図1及び図2と同様に、高分子膜1の厚さ方向に直交する方向に沿う方向での各部の寸法に対する、高分子膜1の厚さ方向に沿う方向での各部の寸法の比率を実際よりも大きくしてある。
固体高分子型燃料電池は、セルスタックNCを備えて構成してある。そのセルスタックNCは、図16に示すように、セルCの複数個を、隣接するセル間に流路形成部材としての酸素極側セパレータ8及び燃料極側セパレータ9を位置させた状態で、厚さ方向に並置し、更に、積層方向の両端部夫々に電力取り出し用の集電部10及び各流体給排用の端板11を配置した状態で、セル並置方向に押圧力を印加させるように、セル並置方向の両側から挟持部材(図示省略)にて挟み付けることにより構成してある。
【0029】
酸素極側セパレータ8は、それに隣接するセルCにおける酸素極触媒層2cの周縁部に対応する外周部に密着されて、セルCとの間に酸素極側ガス流路sを形成するように構成し、燃料極側セパレータ9は、それに隣接するセルCにおける燃料極触媒層3cの周縁部に対応する外周部に密着されて、セルCとの間に燃料極側ガス流路fを形成するように構成してある。
【0030】
酸素極側セパレータ8及び燃料極側セパレータ9は、カーボンからなる緻密な気密性を有する導電材にて形成してある。
【0031】
図3、及び、図13ないし図15に示すように、酸素極側セパレータ8は、酸素極2側の面に、酸素極側反応用ガスを通流させる酸素極側ガス流路sを形成する酸素極側ガス通流溝を形成し、反対側の面に、冷却水流路wを形成する冷却水通流溝を形成してある。
燃料極側セパレータ9は、燃料極3側の面に、燃料極側反応用ガスを通流させる燃料極側ガス流路fを形成する燃料極側ガス通流溝を形成し、反対側の面に、酸素極側セパレータ8の冷却水通流溝と面対称となる冷却水流路形成用の冷却水通流溝を形成してある。
【0032】
更に、セルC、酸素極側セパレータ8及び燃料極側セパレータ9の夫々には、それらを重ねたときに夫々が積層方向に連なる状態で、厚さ方向に貫通する6個の孔Ch,8h,9hを形成してある。積層方向視において、セルC、酸素極側セパレータ8及び燃料極側セパレータ9の夫々に形成する6個の孔Ch,8h,9hのうち、2個は酸素極側ガス流路sの通流経路の両端部に各別に重なり、別の2個は燃料極側ガス流路fの通流経路の両端部に各別に重なり、残りの2個は冷却水流路wの通流経路の両端部に各別に重なる。
【0033】
従って、セルスタックNCには、セルC、酸素極側セパレータ8及び燃料極側セパレータ9夫々の孔Ch,8h,9hが積層方向に連なって形成される通路が6本形成されるが、それらのうちの2本は、各酸素極側ガス流路sの通流経路の両端部に各別に連通し、別の2本は、各燃料極側ガス流路fの通流経路の両端部に各別に連通し、残りの2本は、各冷却水流路wの通流経路の両端部に各別に連通している。
尚、各酸素極側ガス流路sの通流経路の両端部に各別に連通する2本の通路を、酸素極側連通路Tsと、各燃料極側ガス流路fの通流経路の両端部に各別に連通する2本の通路を燃料極側連通路Tfと、各冷却水流路wの通流経路の両端部に各別に連通する2本の通路を冷却水側連通路Twと夫々称する。
【0034】
更に、図16に示すように、セルスタックNCの積層方向の両端部夫々に端板11を設けてある。一方の端板11には、2本の酸素極側連通路Tsのうちの一方の端部に連通接続する酸素極側ガス用接続部12s、2本の燃料極側連通路Tfのうちの一方の端部に連通接続する燃料極側ガス用接続部12f、及び、2本の冷却水連通路Twのうちの一方の端部に連通接続する冷却水用接続部12wを備えてある。又、他方の端板11には、2本の酸素極側連通路Tsのうちの他方の端部に連通接続する酸素極側ガス用接続部12s、2本の燃料極側連通路Tfのうちの他方の端部に連通接続する燃料極側ガス用接続部12f、及び、2本の冷却水連通路Twのうちの他方の端部に連通接続する冷却水用接続部12wを備えてある。
【0035】
尚、2個の酸素極側ガス用接続部12sのうち、一方は酸素極側反応用ガスの供給用として、他方は酸素極側反応用ガスの排出用として用い、2個の燃料極側ガス用接続部12fのうち、一方は燃料極側反応用ガスの供給用として、他方は燃料極側反応用ガスの排出用として用い、並びに、2個の冷却水用接続部12wのうち、一方は冷却水の供給用として、他方は冷却水の排出用として用いる。
【0036】
そして、炭化水素系の原燃料を改質した水素含有ガスを燃料極側反応用ガスとして、加湿器(図示省略)にて加湿した後、供給用の酸素極側ガス用接続部12sからセルスタックNCに供給し、並びに、送風機(図示省略)からの空気を酸素極側反応用ガスとして、加湿器(図示省略)にて加湿した後、供給用の燃料極側ガス用接続部12fからセルスタックNCに供給する。
並びに、冷却水ポンプ(図示省略)により、冷却水を供給用の冷却水用接続部12wからセルスタックNCに供給する。
【0037】
すると、加湿された酸素極側反応ガスは、図14及び図15において実線矢印にて示すように、一方の酸素極側連通路Tsから各セルCの酸素極側ガス流路sに供給され、酸素極側ガス流路sを通流してから、他方の酸素極側連通路Tsに流出し、その酸素極側連通路Tsを通流して排出用の酸素極側ガス用接続部12sから排出される。
又、燃料極側反応ガスは、図14及び図15において二点鎖線矢印にて示すように、一方の燃料極側連通路Tfから各セルCの燃料極側ガス流路fに供給され、燃料極側ガス流路fを通流してから、他方の燃料極側連通路Tfに流出し、その燃料極側連通路Tfを通流して排出用の燃料極側ガス用接続部12fから排出される。
又、冷却水は、図14及び図15において一点鎖線矢印にて示すように、一方の冷却水連通路Twから各セルCの冷却水流路wに供給され、冷却水流路wを通流してから、他方の冷却水連通路Twに流出し、その冷却水連通路Twを通流して排出用の冷却水用接続部12wから排出される。
【0038】
そして、各セルCにおいては、酸素極側反応用ガス及び燃料極側反応用ガス夫々に含まれている水蒸気によって、高分子膜1が湿らされる状態で、酸素極側反応用ガス中の酸素と燃料極側反応用ガス中の水素との電気化学反応により発電される。又、冷却水の通流により、各セルCの温度が所定の温度に維持される。
【0039】
上述のように構成したセルスタックNCにおいては、セル並置方向に押圧力が印加されることになって、高分子膜1における電極境界膜部分1Wには、酸素極触媒層2c、酸素極集電層2p、酸素極側シール材6、燃料極触媒層3c、燃料極集電層3p及び燃料極側シール材7夫々のエッジによって、他の部分よりも応力が印加され易いが、酸素極側補強部材4及び燃料極側補強部材5が弾性変形することにより、高分子膜1における電極境界膜部分1Wに応力が印加されるのが抑制され、又、起動・停止が繰り返されて高分子膜1に引っ張り応力や圧縮応力が繰り返しかかっても、酸素極側補強部材4及び燃料極側補強部材5が弾性変形することにより、高分子膜1における電極境界膜部分1Wに応力が印加されるのが抑制されるので、高分子膜1における電極境界膜部分1Wにクリープ破壊が生じるのが防止される。
しかも、酸素極集電層2pを酸素極触媒層2cよりも大きくして、酸素極集電層2pの周縁と酸素極触媒層2cの周縁とをずらし、並びに、燃料極集電層3pを燃料極触媒層3cよりも大きくして、燃料極集電層3pの周縁と燃料極触媒層3cの周縁とをずらしてあるので、酸素極集電層2pの周縁と酸素極触媒層2cの周縁とが重なり、並びに、燃料極集電層3pの周縁と燃料極触媒層3cの周縁とが重なる場合に比べて、高分子膜1における電極境界膜部分1Wに印加される応力が一層小さくなるように構成してある。
【0040】
以下、上述のように構成した本発明によるセルCと、図18及び図19に示す従来のセルCとにより、耐久性を比較した結果を説明する。尚、耐久性の比較は、酸素極2側に酸素極側セパレータ5を付設し且つ燃料極3側に燃料極側セパレータ6を付設して、出力電圧が最も高くなるように両側から締め付けた状態の1枚のセルを用いて行った。尚、両方のセルC共に、高分子膜1の面積は75mm×75mmであり、酸素極2及び燃料極3の面積は50mm×50mmである。
【0041】
本発明のセル及び従来のセル夫々について、酸素極側ガス流路s及び燃料極側ガス流路f夫々のガス出口を大気開放させた状態で、酸素極側反応用ガスとして空気を加湿器にて加湿した後、酸素極側ガス流路sに供給し、並びに、燃料極側反応用ガスとして純水素ガスを加湿器にて加湿した後、燃料極側ガス流路fに供給し、電子負荷装置を用いて、電流密度が3000A/m2 になるように定電流にて発電させて、出力電圧を測定して、両者で比較した。
尚、セルの温度は、70°Cに維持し、燃料利用率を60%、空気利用率を40%に夫々、設定した。
【0042】
図17に、本発明のセル及び従来のセルの夫々について、時間経過に伴う出力電圧の変化を示す。
発電開始時点から3500時間が経過するまでの間は、本発明のセルと従来のセルでは、略同様の低下率で出力電圧が低下するが、3500時間が経過した頃から、従来のセルの出力電圧の低下率が急激に大きくなるとともに、出力電圧が不安定となり、従来のセルは本発明のセルに比べて大きく性能が低下していることが分かる。
【0043】
発電開始時点の開回路電圧は、本発明のセル及び従来のセル共に900mV以上であり、発電時間が5000時間経過後の開回路電圧は、本発明のセルは900mV以上であったが、従来のセルは850mVにまで低下していた。
発電時間が5000時間経過後、セルを分解して高分子膜1を観察したところ、従来のセルでは、電極境界膜部分1Wに亀裂が発生していたことから、その亀裂部分でガスのクロスリークが起こって、出力電圧が低下していたものと考えられる。一方、本発明のセルでは、高分子膜1には異状がなかった。
【0044】
〔第2実施形態〕
先ず、図4及び図5に基づいて、固体高分子型燃料電池のセルCについて説明する。尚、図4及び図5においては、図1及び図2と同様に、高分子膜1の厚さ方向に直交する方向に沿う方向での各部の寸法に対する、高分子膜1の厚さ方向に沿う方向での各部の寸法の比率を実際よりも大きくしてある。
【0045】
セルCは、電解質層としての高分子膜1の一方の面にその周部を露出する状態で酸素極触媒層2cを備え、且つ、他方の面にその周部を露出する状態で燃料極触媒層3cを備え、更に、酸素極触媒層2cにおける高分子膜存在側とは反対側の面に酸素極集電層2pを備え、且つ、燃料極触媒層3cにおける高分子膜存在側とは反対側の面に燃料極集電層3pを備えて構成してある。そして、酸素極触媒層2cと酸素極集電層2pにより、酸素極2を構成し、燃料極触媒層3cと燃料極集電層3pにより燃料極3を構成してある。
【0046】
第2実施形態においては、高分子膜1と酸素極触媒層2cとの間に弾性変形自在な酸素極側補強部材1sを、及び、高分子膜1と燃料極触媒層3cとの間に弾性変形自在な燃料極側補強部材1fを、それぞれが高分子膜1の厚さ方向に印加される押圧力により弾性変形して、高分子膜1における酸素極触媒層2cの周縁部及び燃料極触媒層3cの周縁部に対応する膜部分に応力が集中するのを抑制するように、それぞれ酸素極触媒層2cの周縁内外にわたる状態、燃料極触媒層3cの周縁内外にわたる状態で設けてある。
【0047】
説明を加えると、高分子膜1は矩形状であり、その高分子膜1の酸素極触媒層2c側の面において、酸素極触媒層2cの周縁部に対応する四角枠状の膜部分を突起させて、その突起部分を酸素極側補強部材1sとして機能させ、並びに、高分子膜1の燃料極触媒層3c側の面において、燃料極触媒層3cの周縁部に対応する四角枠状の膜部分を突起させて、その突起部分を燃料極側補強部材1fとして機能させるように構成してある。つまり、酸素極側補強部材1s及び燃料極側補強部材1fを高分子膜1と一体的に形成してある。尚、酸素極側補強部材1s及び燃料極側補強部材1fの幅は、高分子膜1において、酸素極触媒層2c及び燃料極触媒層3cの周縁に対応する位置よりも内方から、酸素極集電層2p及び燃料極集電層3pの周縁に対応する位置よりも外方にわたるような幅としてある。
【0048】
高分子膜1、酸素極触媒層2c、燃料極触媒層3c、酸素極集電層2p、燃料極集電層3p、酸素極側シール材6及び燃料極側シール材7それぞれの形状、大きさは、第1実施形態と同様であるので説明を省略する。つまり、第2実施形態においても、第1実施形態と同様に、以下の説明では、高分子膜1における酸素極境界膜部分及び高分子膜1における燃料極境界膜部分夫々を高分子膜1における電極境界膜部分1Wと称する場合がある。
【0049】
そして、高分子膜1の一方側に酸素極触媒層2cを配置し、並びに、他方側に燃料極触媒層3cを配置した状態で、高分子膜1と各層の重ね方向にホットプレスしてそれらを接合して、電極−膜接合体を形成し、続いて、電極−膜接合体における酸素極触媒層2c側に酸素極集電層2pを重ねると共に、その側における矩形枠状の高分子膜1の露出部分に矩形枠状の酸素極側シール材6を重ね、並びに、電極−膜接合体における燃料極触媒層3c側に燃料極集電層3pを重ねると共に、その側における矩形枠状の高分子膜1の露出部分に矩形枠状の燃料極側シール材7を重ねて配置して、セルCを構成してある。
【0050】
尚、図4は、上述のように構成したセルCに対して、高分子膜1の厚さ方向に押圧力を印加した状態、即ち、後述するセルスタックNCにセルCが組み込まれた状態を示し、押圧力により部材同士の重なり部において各部材が変形している状態を示している。但し、押圧力により各部材が変形する形状は、図4に示す形状に限定されるものではない。
【0051】
上述のように高分子膜1の厚さ方向に押圧力を印加してホットプレスによって電極−膜接合体を製作する際には、酸素極触媒層2cのエッジや燃料極触媒層3cのエッジにより高分子膜1における電極境界膜部分1Wに応力が集中するのを、酸素極側補強部材1s及び燃料極側補強部材1fが弾性変形することにより抑制することができるので、高分子膜1における電極境界膜部分1Wの強度が弱くなるのを抑制することができる。
【0052】
高分子膜1、酸素極触媒層2c、燃料極触媒層3c、酸素極集電層2p、燃料極集電層3pそれぞれの材料、厚さは、第1実施形態と同様である。又、酸素極側補強部材1sの厚さ、燃料極側補強部材1fの厚さは、それぞれ第1実施形態の酸素極側補強部材4の厚さ、燃料極側補強部材5の厚さと同様である。
【0053】
図6に、上述のセルCの複数個を用いて構成した固体高分子型燃料電池の要部の縦断面図を示す。尚、固体高分子型燃料電池を構成するセルスタックNCの積層構造、即ち、セルCの複数個を、隣接するセル間に流路形成部材としての酸素極側セパレータ8及び燃料極側セパレータ9を位置させた状態で、厚さ方向に並置し、更に、積層方向の両端部夫々に電力取り出し用の集電部10及び各流体給排用の端板11を配置した状態で、セル並置方向に押圧力を印加させるように、セル並置方向の両側から挟持部材(図示省略)にて挟み付ける構造は、第1実施形態において図13ないし図16を用いて説明した構造と同様であるので、説明を省略する。又、図6においても、図1及び図2と同様に、高分子膜1の厚さ方向に直交する方向に沿う方向での各部の寸法に対する、高分子膜1の厚さ方向に沿う方向での各部の寸法の比率を実際よりも大きくしてある。
【0054】
上述のように構成したセルスタックNCにおいては、セル並置方向に押圧力が印加されることになって、高分子膜1における電極境界膜部分1Wには、酸素極触媒層2c、酸素極集電層2p、酸素極側シール材6、燃料極触媒層3c、燃料極集電層3p及び燃料極側シール材7夫々のエッジによって、他の部分よりも応力が印加され易いが、酸素極側補強部材1s及び燃料極側補強部材1fが弾性変形することにより、高分子膜1における電極境界膜部分1Wに応力が印加されるのが抑制され、又、起動・停止が繰り返されて高分子膜1に引っ張り応力や圧縮応力が繰り返しかかっても、酸素極側補強部材1s及び燃料極側補強部材1fが弾性変形することにより、高分子膜1における電極境界膜部分1Wに応力が印加されるのが抑制されるので、高分子膜1における電極境界膜部分1Wにクリープ破壊が生じるのが防止される。
しかも、酸素極集電層2pを酸素極触媒層2cよりも大きくして、酸素極集電層2pの周縁と酸素極触媒層2cの周縁とをずらし、並びに、燃料極集電層3pを燃料極触媒層3cよりも大きくして、燃料極集電層3pの周縁と燃料極触媒層3cの周縁とをずらしてあるので、酸素極集電層2pの周縁と酸素極触媒層2cの周縁とが重なり、並びに、燃料極集電層3pの周縁と燃料極触媒層3cの周縁とが重なる場合に比べて、高分子膜1における電極境界膜部分1Wに印加される応力が一層小さくなるように構成してある。
【0055】
〔第3実施形態〕
先ず、図7及び図8に基づいて、固体高分子型燃料電池のセルCについて説明する。尚、図7及び図8においては、図1及び図2と同様に、高分子膜1の厚さ方向に直交する方向に沿う方向での各部の寸法に対する、高分子膜1の厚さ方向に沿う方向での各部の寸法の比率を実際よりも大きくしてある。
【0056】
セルCは、電解質層としての高分子膜1の一方の面にその周部を露出する状態で酸素極触媒層2cを備え、且つ、他方の面にその周部を露出する状態で燃料極触媒層3cを備え、更に、酸素極触媒層2cにおける高分子膜存在側とは反対側の面に酸素極集電層2pを備え、且つ、燃料極触媒層3cにおける高分子膜存在側とは反対側の面に燃料極集電層3pを備えて構成してある。そして、酸素極触媒層2cと酸素極集電層2pにより、酸素極2を構成し、燃料極触媒層3cと燃料極集電層3pにより燃料極3を構成してある。
【0057】
第3実施形態においては、高分子膜1における酸素極触媒層2cの周縁部及び燃料極触媒層3cの周縁部に対応する部分に、繊維状補強材1rを酸素極触媒層1c及び燃料極触媒層3cの周縁に対して内外方向にわたって混入することにより、高分子膜1おける酸素極触媒層2cの周縁部又は燃料極触媒層3cの周縁部に対応する部分の強度が他の部分よりも強くなるように構成してある。
【0058】
高分子膜1、酸素極触媒層2c、燃料極触媒層3c、酸素極集電層2p、燃料極集電層3p、酸素極側シール材6及び燃料極側シール材7それぞれの形状、大きさは、第1実施形態と同様であるので説明を省略する。つまり、第3実施形態においても、第1実施形態と同様に、以下の説明では、高分子膜1における酸素極境界膜部分及び高分子膜1における燃料極境界膜部分夫々を高分子膜1における電極境界膜部分1Wと称する場合がある。
【0059】
そして、第3実施形態においては、高分子膜1において矩形枠状の電極境界膜部分1Wに、繊維状補強材1rを混入することにより、高分子膜1における電極境界膜部分1Wを、他よりも強度が強くなるように補強(所謂、フィブリル補強)してある。尚、高分子膜1において繊維状補強材1rを混入する範囲は、酸素極触媒層2c及び燃料極触媒層3cの周縁に対応する位置よりも内方から、酸素極集電層2p及び燃料極集電層3pの周縁に対応する位置よりも外方にわたる範囲としてある。
【0060】
そして、高分子膜1の一方側に酸素極触媒層2cを配置し、並びに、他方側に燃料極触媒層3cを配置した状態で、高分子膜1と各層の重ね方向にホットプレスしてそれらを接合して、電極−膜接合体を形成し、続いて、電極−膜接合体における酸素極触媒層2c側に酸素極集電層2pを重ねると共に、その側における矩形枠状の高分子膜1の露出部分に矩形枠状の酸素極側シール材6を重ね、並びに、電極−膜接合体における燃料極触媒層3c側に燃料極集電層3pを重ねると共に、その側における矩形枠状の高分子膜1の露出部分に矩形枠状の燃料極側シール材7を重ねて配置して、セルCを構成してある。
【0061】
尚、図7は、上述のように構成したセルCに対して、高分子膜1の厚さ方向に押圧力を印加した状態、即ち、後述するセルスタックNCにセルCが組み込まれた状態を示し、押圧力により部材同士の重なり部において各部材が変形している状態を示している。但し、押圧力により各部材が変形する形状は、図7に示す形状に限定されるものではない。
【0062】
上述のように高分子膜1の厚さ方向に押圧力を印加してホットプレスによって電極−膜接合体を製作する際に、酸素極触媒層2cのエッジや燃料極触媒層3cのエッジにより高分子膜1における電極境界膜部分1Wに応力が集中しても、高分子膜1における電極境界膜部分1Wに、繊維状補強材1rを混入することにより、電極境界膜部分1Wの強度が他の部分よりも強くなるようにしてあるので、高分子膜1における電極境界膜部分1Wの強度が弱くなるのを抑制することができる。
【0063】
高分子膜1、酸素極触媒層2c、燃料極触媒層3c、酸素極集電層2p、燃料極集電層3pそれぞれの材料、厚さは、第1実施形態と同様である。
繊維状補強材としては、高分子膜1に悪影響を与えず、固体高分子型燃料電池の運転条件下において安定な種々の繊維状材を用いることが可能であるが、補強作用を一層増大させるには、弾性を有する繊維状材が好ましく、例えば、PTFEフィブリル(微小繊維)を用いることができる。
【0064】
図9に、上述のセルCの複数個を用いて構成した固体高分子型燃料電池の要部の縦断面図を示す。尚、固体高分子型燃料電池を構成するセルスタックNCの積層構造は、第1実施形態において図13ないし図16を用いて説明した構造と同様であるので、説明を省略する。又、図9においても、図1及び図2と同様に、高分子膜1の厚さ方向に直交する方向に沿う方向での各部の寸法に対する、高分子膜1の厚さ方向に沿う方向での各部の寸法の比率を実際よりも大きくしてある。
【0065】
上述のように構成したセルスタックNCにおいては、セル並置方向に押圧力が印加されることになって、高分子膜1における電極境界膜部分1Wには、酸素極触媒層2c、酸素極集電層2p、酸素極側シール材6、燃料極触媒層3c、燃料極集電層3p及び燃料極側シール材7夫々のエッジによって、他の部分よりも大きい応力が印加されることとなり、又、起動・停止が繰り返されて高分子膜1に引っ張り応力や圧縮応力が繰り返しかかることとなるが、高分子膜1における電極境界膜部分1Wを他の部分よりも強度が強くなるように繊維状補強材1rにて補強してあるので、電極境界膜部分1Wにクリープ破壊が生じるのが防止される。
しかも、酸素極集電層2pを酸素極触媒層2cよりも大きくして、酸素極集電層2pの周縁と酸素極触媒層2cの周縁とをずらし、並びに、燃料極集電層3pを燃料極触媒層3cよりも大きくして、燃料極集電層3pの周縁と燃料極触媒層3cの周縁とをずらしてあるので、酸素極集電層2pの周縁と酸素極触媒層2cの周縁とが重なり、並びに、燃料極集電層3pの周縁と燃料極触媒層3cの周縁とが重なる場合に比べて、高分子膜1における電極境界膜部分1Wに印加される応力が一層小さくなるように構成してある。
【0066】
〔第4実施形態〕
先ず、図10及び図11に基づいて、固体高分子型燃料電池のセルCについて説明する。尚、図10及び図11においては、図1及び図2と同様に、高分子膜1の厚さ方向に直交する方向に沿う方向での各部の寸法に対する、高分子膜1の厚さ方向に沿う方向での各部の寸法の比率を実際よりも大きくしてある。
【0067】
セルCは、電解質層としての高分子膜1の一方の面にその周部を露出する状態で酸素極触媒層2cを備え、且つ、他方の面にその周部を露出する状態で燃料極触媒層3cを備え、更に、酸素極触媒層2cにおける高分子膜存在側とは反対側の面に酸素極集電層2pを備え、且つ、燃料極触媒層3cにおける高分子膜存在側とは反対側の面に燃料極集電層3pを備えて構成してある。そして、酸素極触媒層2cと酸素極集電層2pにより、酸素極2を構成し、燃料極触媒層3cと燃料極集電層3pにより燃料極3を構成してある。
【0068】
第3実施形態においては、高分子膜1の全体にわたって混入する繊維状補強材1rの混入率を、高分子膜1における酸素極触媒層2cの周縁部及び燃料極触媒層3cの周縁部に対応する部分を他の部分よりも高くすることにより、高分子膜1における酸素極触媒層2cの周縁部及び燃料極触媒層3cの周縁部に対応する部分の強度が他の部分よりも強くなるように構成してある。尚、高分子膜1において繊維状補強材1rの混入率を他の部分よりも高くする範囲は、酸素極触媒層2c及び燃料極触媒層3cの周縁に対応する位置よりも内方から、酸素極集電層2p及び燃料極集電層3pの周縁に対応する位置よりも外方にわたる範囲としてある。
【0069】
高分子膜1、酸素極触媒層2c、燃料極触媒層3c、酸素極集電層2p、燃料極集電層3p、酸素極側シール材6及び燃料極側シール材7それぞれの形状、大きさは、第1実施形態と同様であるので説明を省略する。つまり、第4実施形態においても、第1実施形態と同様に、以下の説明では、高分子膜1における酸素極境界膜部分及び高分子膜1における燃料極境界膜部分夫々を高分子膜1における電極境界膜部分1Wと称する場合がある。
【0070】
そして、第4実施形態においては、高分子膜1の全体にわたって繊維状補強材1rを混入して、高分子膜1を補強(所謂、フィブリル補強)してあるが、その繊維状補強材1rの混入率を、高分子膜1における矩形枠状の電極境界膜部分1Wを他の部分よりも高くすることにより、高分子膜1における電極境界膜部分1Wを、他よりも強度が強くなるようにしてある。
【0071】
そして、高分子膜1の一方側に酸素極触媒層2cを配置し、並びに、他方側に燃料極触媒層3cを配置した状態で、高分子膜1と各層の重ね方向にホットプレスしてそれらを接合して、電極−膜接合体を形成し、続いて、電極−膜接合体における酸素極触媒層2c側に酸素極集電層2pを重ねると共に、その側における矩形枠状の高分子膜1の露出部分に矩形枠状の酸素極側シール材6を重ね、並びに、電極−膜接合体における燃料極触媒層3c側に燃料極集電層3pを重ねると共に、その側における矩形枠状の高分子膜1の露出部分に矩形枠状の燃料極側シール材7を重ねて配置して、セルCを構成してある。
【0072】
尚、図10は、上述のように構成したセルCに対して、高分子膜1の厚さ方向に押圧力を印加した状態、即ち、後述するセルスタックNCにセルCが組み込まれた状態を示し、押圧力により部材同士の重なり部において各部材が変形している状態を示している。但し、押圧力により各部材が変形する形状は、図10に示す形状に限定されるものではない。
【0073】
上述のように高分子膜1の厚さ方向に押圧力を印加してホットプレスによって電極−膜接合体を製作する際に、酸素極触媒層2cのエッジや燃料極触媒層3cのエッジにより高分子膜1における電極境界膜部分1Wに応力が集中しても、高分子膜1における電極境界膜部分1Wの繊維状補強材1rの混入率を他の部分よりも高くすることにより、電極境界膜部分1Wの強度が他の部分よりも強くなるようにしてあるので、高分子膜1における電極境界膜部分1Wの強度が弱くなるのを抑制することができる。
【0074】
高分子膜1、酸素極触媒層2c、燃料極触媒層3c、酸素極集電層2p、燃料極集電層3pそれぞれの材料、厚さは、第1実施形態と同様である。
繊維状補強材としては、第3実施形態において説明したものと同様のものを用いることができる。
【0075】
図12に、上述のセルCの複数個を用いて構成した固体高分子型燃料電池の要部の縦断面図を示す。尚、固体高分子型燃料電池を構成するセルスタックNCの積層構造は、第1実施形態において図13ないし図16を用いて説明した構造と同様であるので、説明を省略する。又、図12においても、図1及び図2と同様に、高分子膜1の厚さ方向に直交する方向に沿う方向での各部の寸法に対する、高分子膜1の厚さ方向に沿う方向での各部の寸法の比率を実際よりも大きくしてある。
【0076】
上述のように構成したセルスタックNCにおいては、セル並置方向に押圧力が印加されることになって、高分子膜1における電極境界膜部分1Wには、酸素極触媒層2c、酸素極集電層2p、酸素極側シール材6、燃料極触媒層3c、燃料極集電層3p及び燃料極側シール材7夫々のエッジによって、他の部分よりも大きい応力が印加されることとなり、又、起動・停止が繰り返されて高分子膜1に引っ張り応力や圧縮応力が繰り返しかかることとなるが、高分子膜1における電極境界膜部分1Wを他の部分よりも強度が強くなるように繊維状補強材1rにて補強してあるので、電極境界膜部分1Wにクリープ破壊が生じるのが防止される。
しかも、酸素極集電層2pを酸素極触媒層2cよりも大きくして、酸素極集電層2pの周縁と酸素極触媒層2cの周縁とをずらし、並びに、燃料極集電層3pを燃料極触媒層3cよりも大きくして、燃料極集電層3pの周縁と燃料極触媒層3cの周縁とをずらしてあるので、酸素極集電層2pの周縁と酸素極触媒層2cの周縁とが重なり、並びに、燃料極集電層3pの周縁と燃料極触媒層3cの周縁とが重なる場合に比べて、高分子膜1における電極境界膜部分1Wに印加される応力が一層小さくなるように構成してある。
【0077】
〔別実施形態〕
次に別実施形態を説明する。
(イ) 上記の第1及び第2の各実施形態においては、酸素極側補強部材及び燃料極側補強部材の両方を設ける場合について例示したが、酸素極側補強部材及び燃料極側補強部材のうちのいずれか一方のみを設けても良い。
【0078】
(ロ) 上記の各実施形態においては、高分子膜1における酸素極触媒層2cの周縁部に対応する膜部分、即ち、酸素極境界膜部分と、高分子膜1における燃料極触媒層3cの周縁部に対応する膜部分、即ち、燃料極境界膜部分とで、高分子膜1の面方向における位置が一致するように構成する場合について例示したが、酸素極境界膜部分と燃料極境界膜部分とで、高分子膜1の面方向における位置が異なるように構成しても良い。
この場合、第1及び第2の各実施形態のように、酸素極側補強部材及び燃料極側補強部材の両方を設けても良いが、酸素極側補強部材及び燃料極側補強部材のうちのいずれか一方のみを設けても良い。
又、高分子膜1における酸素極境界膜部分及び燃料極境界膜部分の両方を他の部分よりも強度が強くなるように繊維状補強材1rにて補強しても良いが、高分子膜1における酸素極境界膜部分及び燃料極境界膜部分のうちのいずれか一方のみを他の部分よりも強度が強くなるように繊維状補強材1rにて補強しても良い。
【0079】
(ハ) 上記の各実施形態においては、高分子膜1、酸素極触媒層2c及び燃料極触媒層3cをホットプレスしてそれらを接合することにより、電極−膜接合体を形成する場合について例示したが、高分子膜1、酸素極触媒層2c、酸素極集電層2p、燃料極触媒層3c及び燃料極集電層3pをホットプレスしてそれらを接合することにより、電極−膜接合体を形成しても良い。
【0080】
(ニ) 上記の各実施形態において、酸素極シール部材6及び燃料極シール部材7を省略しても良い。その場合、第1実施形態においては、酸素極側セパレータ8をそれに隣接するセルCの酸素極側補強材4に密着させ、燃料極側セパレータ9をそれに隣接するセルCの燃料極側補強材5に密着させることになる。又、第2ないし第4の各実施形態においては、酸素極側セパレータ8をそれに隣接するセルCの高分子膜1の露出部分に密着させ、燃料極側セパレータ9をそれに隣接するセルCの高分子膜1の露出部分に密着させることになる。
【0081】
(ホ) 上記の第2実施形態においては、酸素極側補強部材1s及び燃料極側補強部材1fを高分子膜1と一体的に形成する場合について例示したが、酸素極側補強部材1s及び燃料極側補強部材1fを高分子膜1と別体にしても良い。その場合、酸素極側補強部材1s及び燃料極側補強部材1f夫々の材料は、高分子膜1の材料と異ならせても良い。
【0082】
(ヘ) 請求項1に記載の特徴構成、請求項2に記載の特徴構成及び請求項3に記載の特徴構成のうちのいずれか二つ、あるいは、全てを組み合わせて、セルCを構成しても良い。又、請求項1に記載の特徴構成、請求項2に記載の特徴構成及び請求項4に記載の特徴構成のうちのいずれか二つ、あるいは、全てを組み合わせて、セルCを構成しても良い。
【0083】
(ト) 高分子膜1を湿らせるための水分をセルCに供給する形態は、上記の実施形態にて例示した形態、即ち、セルCに供給する酸素極側反応用ガスや燃料極側反応用ガスを外部に設けた加湿器にて加湿して、それら酸素極側反応用ガスや燃料極側反応用ガスを媒体として水分を供給する形態に限定されるものではない。
例えば、酸素極側セパレータ8及び燃料極側セパレータ9を通水可能な多孔材にて構成すると共に、冷却水流路wを通流する冷却水の圧力を、酸素極側ガス流路s及び燃料極側ガス流路f夫々を通流する各反応用ガスの圧力よりも高くして、冷却水流路wを通流する冷却水の一部を酸素極側ガス流路s側や燃料極側ガス流路f側に各セパレータ8,9を透過させることにより、セルCに直接水分を供給する形態としても良い。
【図面の簡単な説明】
【図1】第1実施形態に係る固体高分子型燃料電池のセルの厚さ方向における断面図
【図2】第1実施形態に係る固体高分子型燃料電池のセルの分解斜視図
【図3】第1実施形態に係る固体高分子型燃料電池のセルスタックの要部の横断面図
【図4】第2実施形態に係る固体高分子型燃料電池のセルの厚さ方向における断面図
【図5】第2実施形態に係る固体高分子型燃料電池のセルの分解斜視図
【図6】第2実施形態に係る固体高分子型燃料電池のセルスタックの要部の横断面図
【図7】第3実施形態に係る固体高分子型燃料電池のセルの厚さ方向における断面図
【図8】第3実施形態に係る固体高分子型燃料電池のセルの分解斜視図
【図9】第3実施形態に係る固体高分子型燃料電池のセルスタックの要部の横断面図
【図10】第4実施形態に係る固体高分子型燃料電池のセルの厚さ方向における断面図
【図11】第4実施形態に係る固体高分子型燃料電池のセルの分解斜視図
【図12】第4実施形態に係る固体高分子型燃料電池のセルスタックの要部の横断面図
【図13】実施形態に係る固体高分子型燃料電池のセルスタックの要部の分解斜視図
【図14】実施形態に係る固体高分子型燃料電池のセルスタックの要部の分解斜視図
【図15】実施形態に係る固体高分子型燃料電池のセルスタックの要部の分解斜視図
【図16】実施形態に係る固体高分子型燃料電池のセルスタックの全体概略構成を示す側面図
【図17】運転時間経過に伴うセルの出力電圧の変化を示す図
【図18】従来の固体高分子型燃料電池のセルの厚さ方向における断面図
【図19】従来の固体高分子型燃料電池のセルの分解斜視図
【図20】従来の固体高分子型燃料電池のセルスタックの要部の横断面図
【符号の説明】
1 高分子膜
1f,1s 補強部材
1r 繊維状補強材
2c 酸素極触媒層
3c 燃料極触媒層
4,5 補強部材
8,9 流路形成部材
f 燃料極側ガス流路
s 酸素極側ガス流路
C セル

Claims (5)

  1. 電解質層としての高分子膜の一方の面にその周部を露出する状態で酸素極触媒層を備え、且つ、他方の面にその周部を露出する状態で燃料極触媒層を備えた固体高分子型燃料電池のセルであって、
    前記酸素極触媒層における前記高分子膜存在側とは反対側又は前記燃料極触媒層における前記高分子膜存在側とは反対側に、弾性変形自在な補強部材が、前記高分子膜の厚さ方向に印加される押圧力により弾性変形して、前記高分子膜における前記酸素極触媒層の周縁部又は前記燃料極触媒層の周縁部に対応する膜部分に応力が集中するのを抑制するように、前記酸素極触媒層又は前記燃料極触媒層の周縁内外にわたる状態で設けられ
    さらに、前記酸素極触媒層における前記高分子膜存在側とは反対側、又は前記燃料極触媒層における前記高分子膜存在側とは反対側に、前記酸素極触媒層より大きな酸素極集電層、又は前記燃料極触媒層より大きな燃料極集電層を備え、
    前記酸素極触媒層の周縁と前記酸素極集電層の周縁、又は前記燃料極触媒層の周縁と前記燃料極集電層の周縁とがずれるように構成され、
    前記酸素極集電層が前記酸素極触媒層と前記補強部材とに接触、又は前記燃料極集電層が前記燃料極触媒層と前記補強部材とに接触している固体高分子型燃料電池のセル。
  2. 電解質層としての高分子膜の一方の面にその周部を露出する状態で酸素極触媒層を備え、且つ、他方の面にその周部を露出する状態で燃料極触媒層を備えた固体高分子型燃料電池のセルであって、
    前記高分子膜と前記酸素極触媒層との間又は前記高分子膜と前記燃料極触媒層との間に、弾性変形自在な補強部材が、前記高分子膜の厚さ方向に印加される押圧力により弾性変形して、前記高分子膜における前記酸素極触媒層の周縁部又は前記燃料極触媒層の周縁部に対応する膜部分に応力が集中するのを抑制するように、前記酸素極触媒層又は前記燃料極触媒層の周縁内外にわたる状態で設けられ
    さらに、前記酸素極触媒層における前記高分子膜存在側とは反対側、又は前記燃料極触媒層における前記高分子膜存在側とは反対側に、前記酸素極触媒層より大きな酸素極集電層、又は前記燃料極触媒層より大きな燃料極集電層を備え、
    前記酸素極触媒層の周縁と前記酸素極集電層の周縁、又は前記燃料極触媒層の周縁と前記燃料極集電層の周縁とがずれるように構成され、
    前記酸素極集電層が前記酸素極触媒層と前記補強部材とに接触、又は前記燃料極集電層が前記燃料極触媒層と前記補強部材とに接触している固体高分子型燃料電池のセル。
  3. 電解質層としての高分子膜の一方の面にその周部を露出する状態で酸素極触媒層を備え、且つ、他方の面にその周部を露出する状態で燃料極触媒層を備えた固体高分子型燃料電池のセルであって、
    前記高分子膜における前記酸素極触媒層の周縁部又は前記燃料極触媒層の周縁部に対応する部分に、繊維状補強材を前記酸素極触媒層又は前記燃料極触媒層の周縁に対して内外方向にわたって混入することにより、前記高分子膜における前記酸素極触媒層の周縁部又は前記燃料極触媒層の周縁部に対応する部分の強度が他の部分よりも強くなるように構成され
    さらに、前記酸素極触媒層における前記高分子膜存在側とは反対側、又は前記燃料極触媒層における前記高分子膜存在側とは反対側に、前記酸素極触媒層より大きな酸素極集電層、又は前記燃料極触媒層より大きな燃料極集電層を備え、
    前記酸素極触媒層の周縁と前記酸素極集電層の周縁、又は前記燃料極触媒層の周縁と前記燃料極集電層の周縁とがずれるように構成され、
    前記酸素極集電層が前記酸素極触媒層と前記高分子膜における前記酸素極触媒層の周縁部に対応する部分とに接触、又は前記燃料極集電層が前記燃料極触媒層と前記高分子膜における前記燃料極触媒層の周縁部に対応する部分とに接触している固体高分子型燃料電池のセル。
  4. 電解質層としての高分子膜の一方の面にその周部を露出する状態で酸素極触媒層を備え、且つ、他方の面にその周部を露出する状態で燃料極触媒層を備えた固体高分子型燃料電池のセルであって、
    前記高分子膜の全体にわたって混入する繊維状補強材の混入率を、前記高分子膜における前記酸素極触媒層の周縁部又は前記燃料極触媒層の周縁部に対応する部分を他の部分よりも高くすることにより、前記高分子膜における前記酸素極触媒層の周縁部又は前記燃料極触媒層の周縁部に対応する部分の強度が他の部分よりも強くなるように構成され
    さらに、前記酸素極触媒層における前記高分子膜存在側とは反対側、又は前記燃料極触媒層における前記高分子膜存在側とは反対側に、前記酸素極触媒層より大きな酸素極集電層、又は前記燃料極触媒層より大きな燃料極集電層を備え、
    前記酸素極触媒層の周縁と前記酸素極集電層の周縁、又は前記燃料極触媒層の周縁と前記燃料極集電層の周縁とがずれるように構成され、
    前記酸素極集電層が前記酸素極触媒層と前記高分子膜における前記酸素極触媒層の周縁部に対応する部分とに接触、又は前記燃料極集電層が前記燃料極触媒層と前記高分子膜における前記燃料極触媒層の周縁部に対応する部分とに接触している固体高分子型燃料電池のセル。
  5. 請求項1〜4のいずれか1項に記載の固体高分子型燃料電池のセルの複数が、隣接するセル間に流路形成部材を位置させた状態で、厚さ方向に並置され、
    前記流路形成部材が、その一方側に隣接する前記セルにおける前記酸素極触媒層の周縁部に対応する外周部に密着されて、前記セルとの間に酸素極側ガス流路を形成し、他方側に隣接する前記セルにおける前記燃料極触媒層の周縁部に対応する外周部に密着されて、前記セルとの間に燃料極側ガス流路を形成するように構成されている固体高分子型燃料電池。
JP2001252887A 2001-08-23 2001-08-23 固体高分子型燃料電池のセル及び固体高分子型燃料電池 Expired - Lifetime JP4889168B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001252887A JP4889168B2 (ja) 2001-08-23 2001-08-23 固体高分子型燃料電池のセル及び固体高分子型燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001252887A JP4889168B2 (ja) 2001-08-23 2001-08-23 固体高分子型燃料電池のセル及び固体高分子型燃料電池

Publications (2)

Publication Number Publication Date
JP2003068318A JP2003068318A (ja) 2003-03-07
JP4889168B2 true JP4889168B2 (ja) 2012-03-07

Family

ID=19081291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001252887A Expired - Lifetime JP4889168B2 (ja) 2001-08-23 2001-08-23 固体高分子型燃料電池のセル及び固体高分子型燃料電池

Country Status (1)

Country Link
JP (1) JP4889168B2 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496712B2 (ja) * 2003-03-31 2010-07-07 セイコーエプソン株式会社 燃料電池
JP2005216834A (ja) * 2004-02-02 2005-08-11 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池
JP2005243292A (ja) * 2004-02-24 2005-09-08 Nissan Motor Co Ltd 燃料電池用の、固体高分子電解質膜およびセパレータ
JP2005285677A (ja) * 2004-03-30 2005-10-13 Toyota Motor Corp 固体高分子型燃料電池
JP5101185B2 (ja) * 2005-09-15 2012-12-19 パナソニック株式会社 膜−膜補強部材接合体、膜−触媒層接合体、膜−電極接合体、及び高分子電解質形燃料電池
CN101268575B (zh) 2005-09-15 2010-05-26 松下电器产业株式会社 膜-膜增强部件组件、膜-催化剂层组件、膜-电极组件以及高分子电解质型燃料电池
JP5130623B2 (ja) * 2005-12-15 2013-01-30 トヨタ自動車株式会社 燃料電池およびガスケット
JP2008091329A (ja) * 2006-09-07 2008-04-17 Sumitomo Chemical Co Ltd 単セルの耐久性評価方法、耐久性評価装置、耐久性評価プログラム及び燃料電池の単セル
US20100179774A1 (en) 2006-09-07 2010-07-15 Sumitomo Chemical Company, Limited Method for evaluating durability of unit cell, device for evaluating durability, program for evaluating durability, and unit cell of fuel cell
JP2008218130A (ja) * 2007-03-02 2008-09-18 Toyota Motor Corp 燃料電池
WO2008126350A1 (ja) * 2007-03-14 2008-10-23 Panasonic Corporation 膜-膜補強部材接合体、膜-触媒層接合体、膜-電極接合体、高分子電解質形燃料電池、及び膜-電極接合体の製造方法
US8512907B2 (en) 2007-09-27 2013-08-20 Dai Nippon Printing Co., Ltd. Membrane catalyst layer assembly with reinforcing films, membrane electrode assembly with reinforcing films, and polymer electrolyte fuel cells
JP5326250B2 (ja) * 2007-09-27 2013-10-30 大日本印刷株式会社 固体高分子形燃料電池構造体及びこれを用いた固体高分子形燃料電池
JP5364990B2 (ja) * 2007-10-19 2013-12-11 トヨタ自動車株式会社 燃料電池
JP5205960B2 (ja) * 2007-12-27 2013-06-05 トヨタ自動車株式会社 燃料電池およびその製造方法
JP5141281B2 (ja) * 2008-02-12 2013-02-13 日産自動車株式会社 燃料電池用電極集成体の製造方法
JP5146012B2 (ja) 2008-02-29 2013-02-20 日産自動車株式会社 燃料電池用膜電極接合体
JP5828613B2 (ja) * 2008-07-10 2015-12-09 大日本印刷株式会社 補強膜付き触媒層−電解質膜積層体、補強膜付き電極−電解質膜積層体、及び固体高分子形燃料電池
JP2010080112A (ja) * 2008-09-24 2010-04-08 Toyota Motor Corp 膜電極接合体を含む燃料電池
JP5791222B2 (ja) * 2009-03-23 2015-10-07 大日本印刷株式会社 補強膜付き触媒層−電解質膜積層体、補強膜付き膜電極接合体、及び固体高分子形燃料電池
WO2011096205A1 (ja) 2010-02-05 2011-08-11 パナソニック株式会社 高分子電解質形燃料電池
JP2012123922A (ja) * 2010-12-06 2012-06-28 Nok Corp 燃料電池のシール構造
US9419301B2 (en) 2011-01-07 2016-08-16 Panasonic Intellectual Property Management Co., Ltd. Electrolyte membrane for solid polymer fuel cells, membrane electrode assembly having said electrolyte membrane, and solid polymer fuel cell
US9178236B2 (en) * 2011-08-02 2015-11-03 Panasonic Intellectual Property Management Co., Ltd. Polymer electrolyte fuel cell
JP5880669B2 (ja) * 2014-11-20 2016-03-09 大日本印刷株式会社 補強シート付き電解質膜−触媒層接合体
JP7018580B2 (ja) * 2017-02-16 2022-02-14 パナソニックIpマネジメント株式会社 高分子電解質型燃料電池とその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215903A (ja) * 1999-01-25 2000-08-04 Toshiba Corp 固体高分子電解質型燃料電池
JP2000260443A (ja) * 1999-03-04 2000-09-22 Asahi Glass Co Ltd 固体高分子電解質型燃料電池
JP2001015127A (ja) * 1999-06-28 2001-01-19 Fuji Electric Co Ltd 電解質膜/電極接合体および固体高分子電解質型燃料電池
JP2001351651A (ja) * 2000-06-07 2001-12-21 Honda Motor Co Ltd 電解質・電極接合体および燃料電池
JP4316164B2 (ja) * 2001-07-10 2009-08-19 本田技研工業株式会社 膜・電極構造体及び燃料電池セル

Also Published As

Publication number Publication date
JP2003068318A (ja) 2003-03-07

Similar Documents

Publication Publication Date Title
JP4889168B2 (ja) 固体高分子型燃料電池のセル及び固体高分子型燃料電池
JP5043923B2 (ja) 高分子電解質型燃料電池
US7572539B2 (en) Polymer electrolyte fuel cell
US8007949B2 (en) Edge-protected catalyst-coated diffusion media and membrane electrode assemblies
JP5079507B2 (ja) 高分子電解質形燃料電池及びそれに用いる燃料電池用シール部材
WO2005074062A1 (ja) 高分子電解質型燃料電池
JP2008171613A (ja) 燃料電池
JP3535865B2 (ja) 高分子電解質型燃料電池
JP4739685B2 (ja) 高分子電解質型燃料電池
JPH06251780A (ja) 固体高分子電解質型燃料電池
JP4599115B2 (ja) 高分子電解質型燃料電池
KR100985261B1 (ko) 연료 전지의 시일 구조
WO2010016248A1 (ja) 燃料電池スタックとそれを用いた燃料電池
JP2006260810A (ja) 固体高分子電解質形燃料電池
JPH10289722A (ja) 固体高分子型燃料電池およびその製造方法
CN113675422B (zh) 燃料电池组
JP4439646B2 (ja) 導電性セパレータ、高分子電解質型燃料電池および高分子電解質型燃料電池の製造方法
JP4786008B2 (ja) 燃料電池
JP2010003470A (ja) 燃料電池
JP2001167789A (ja) 高分子電解質型燃料電池
JP4859281B2 (ja) 高分子電解質型燃料電池用膜電極接合体
JP2004349014A (ja) 燃料電池
JP5286896B2 (ja) 燃料電池の製造方法、燃料電池、および、セパレータ
WO2008142557A2 (en) Separator and fuel cell
JP2001126743A (ja) 高分子電解質型燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111213

R150 Certificate of patent or registration of utility model

Ref document number: 4889168

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

EXPY Cancellation because of completion of term