JP4885906B2 - Method for manufacturing light emitting device - Google Patents

Method for manufacturing light emitting device Download PDF

Info

Publication number
JP4885906B2
JP4885906B2 JP2008129516A JP2008129516A JP4885906B2 JP 4885906 B2 JP4885906 B2 JP 4885906B2 JP 2008129516 A JP2008129516 A JP 2008129516A JP 2008129516 A JP2008129516 A JP 2008129516A JP 4885906 B2 JP4885906 B2 JP 4885906B2
Authority
JP
Japan
Prior art keywords
coating
coating liquid
applying
color component
ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008129516A
Other languages
Japanese (ja)
Other versions
JP2009277578A (en
Inventor
博 早田
健志 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008129516A priority Critical patent/JP4885906B2/en
Publication of JP2009277578A publication Critical patent/JP2009277578A/en
Application granted granted Critical
Publication of JP4885906B2 publication Critical patent/JP4885906B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、塗布技術によって発光層を形成する発光装置の製造方法、特に有機エレクトロルミネッセンスディスプレイの製造方法に関する。   The present invention relates to a method for manufacturing a light emitting device in which a light emitting layer is formed by a coating technique, and more particularly to a method for manufacturing an organic electroluminescence display.

近年、インクジェット法やダイコート法等の塗布技術を用いて電子デバイスを製造する方法が注目を集めている(例えば、特許文献1、2参照。)。塗布技術による製造方法は、蒸着技術などに比べて設備構成がシンプルで大型化が可能である。例えば、表示デバイスにおいては大画面への市場要求が高まり、塗布による表示デバイス製造技術への期待は高まっている。特に、表示デバイスとして、基板上に塗布技術によって発光層を形成した有機ELディスプレイの開発が試みられている。   In recent years, a method of manufacturing an electronic device using an application technique such as an inkjet method or a die coating method has attracted attention (see, for example, Patent Documents 1 and 2). The manufacturing method based on the coating technique has a simple equipment configuration and can be increased in size as compared with the vapor deposition technique. For example, in the display device, the market demand for a large screen is increasing, and the expectation for the display device manufacturing technology by coating is increasing. In particular, development of an organic EL display in which a light emitting layer is formed on a substrate by a coating technique has been attempted as a display device.

この有機ELディスプレイについて説明する。有機ELディスプレイは、基板上に隔壁で区画された画素ごとに面に垂直方向に、陽極、発光層、陰極の順に積層されて構成されている。また、発光層としてRGBの3色に対応した3種類がある。この有機ELディスプレイでは、陰極からの電子と陽極からの正孔が発光層内で結合し発光する。   This organic EL display will be described. The organic EL display is configured by stacking an anode, a light emitting layer, and a cathode in order in a direction perpendicular to the surface of each pixel partitioned by a partition on a substrate. In addition, there are three types of light emitting layers corresponding to three colors of RGB. In this organic EL display, electrons from the cathode and holes from the anode are combined in the light emitting layer to emit light.

次に、この有機エレクトロルミネッセンスディスプレイの塗布による製造技術の例について説明する。
(a)まず、フォトリソグラフィの技術を用いて基板上に陽極を形成する。
(b)次に、フォトリソグラフィの技術を用いて隔壁を形成する。
(c)その後、印刷法によりRGBの発光層のインクが塗布される。
(d)塗布されたインクは塗布工程および次の工程で乾燥され、発光層のパターンが形成される。
(e)その後、発光層の上にスパッタリングなどの方法で陰極が形成される。
以上によって有機ELディスプレイが製造される。
Next, an example of a manufacturing technique by applying this organic electroluminescence display will be described.
(A) First, an anode is formed on a substrate using a photolithography technique.
(B) Next, partition walls are formed using a photolithography technique.
(C) Thereafter, the ink of the RGB light emitting layer is applied by a printing method.
(D) The applied ink is dried in the application step and the next step to form a light emitting layer pattern.
(E) Thereafter, a cathode is formed on the light emitting layer by a method such as sputtering.
Thus, an organic EL display is manufactured.

上記有機ELの各色成分のインクなど溶媒が蒸発しやすいインクは、塗布工程においても溶媒が蒸発していく。その結果、基板表面の溶媒蒸気分圧に分布が発生し、それが画素内の膜成分の偏りを引き起こし、膜厚のバラツキとなり、輝度ムラが発生する。この様子を図8の(a)、(b)に示す。図8(a)は、赤(R)インク401Rが塗布された直後の状態である。その後、他の色成分の塗布工程に移行する前に赤(R)インク中の溶媒が蒸発し、図8(b)に示すような不均一な膜厚分布となる場合がある。これは、塗布によって基板上の中央が高く、端部で低いという溶媒蒸気圧の分布が発生したことによる。このような基板上の溶媒蒸気圧の分布のため、基板上の画素の位置によりインクの乾燥速度が異なり、その結果、特に端部の画素で溶質が偏ってしまうため膜厚の偏りが発生するものと思われる。   In the ink that easily evaporates, such as the ink of each color component of the organic EL, the solvent evaporates even in the coating process. As a result, a distribution occurs in the solvent vapor partial pressure on the surface of the substrate, which causes unevenness of film components in the pixels, resulting in variations in film thickness, and uneven brightness. This is shown in FIGS. 8A and 8B. FIG. 8A shows a state immediately after the red (R) ink 401R is applied. Thereafter, the solvent in the red (R) ink evaporates before shifting to another color component coating process, resulting in a non-uniform film thickness distribution as shown in FIG. This is because the distribution of the solvent vapor pressure occurs such that the center on the substrate is high and the end is low due to coating. Due to the distribution of the solvent vapor pressure on the substrate, the ink drying speed differs depending on the position of the pixel on the substrate, and as a result, the solute is biased particularly at the pixels at the end, resulting in uneven thickness. It seems to be.

上記問題を解決するために、塗布順を工夫する(例えば、特許文献1参照。)技術や、ダミー塗布を行う(例えば、特許文献2参照。)という技術が開示されている。   In order to solve the above problem, a technique of devising the application order (for example, refer to Patent Document 1) and a technique of performing dummy application (for example, refer to Patent Document 2) are disclosed.

特開2004−298844号公報JP 2004-298844 A 特開2005−259719号公報JP 2005-259719 A

しかしながら、特許文献1に記載の技術においては、1回で塗布される領域内において基板の中央部と端部との溶媒蒸気圧の分布を解消できないという問題がある。また、特許文献2に記載の技術においては、基板上に画素として機能しないダミー塗布部分を設ける必要があるため、一枚のマザー基板から取れる表示パネルの枚数が減るという問題がある。さらに、画素と画素の間にダミー塗布部分を設ける場合は、画素ピッチを狭めることができず、高精細なディスプレイに対応できないという問題がある。   However, the technique described in Patent Document 1 has a problem in that the distribution of the solvent vapor pressure between the central portion and the end portion of the substrate cannot be eliminated within the region where the coating is performed once. Further, in the technique described in Patent Document 2, since it is necessary to provide a dummy coating portion that does not function as a pixel on the substrate, there is a problem that the number of display panels that can be taken from one mother substrate is reduced. Furthermore, when providing a dummy application | coating part between pixels, there exists a problem that a pixel pitch cannot be narrowed and it cannot respond to a high-definition display.

本発明の目的は、塗布中の乾燥ムラによる膜厚の不均一が発生せず、しかも生産性がよい発光装置を製造する方法を提供することである。また、本発明の他の目的は、大面積であっても面内の特性バラツキがなく高品位であり、しかも安価な有機ELディスプレイを提供することにある。   An object of the present invention is to provide a method for manufacturing a light-emitting device that does not cause non-uniform film thickness due to drying unevenness during coating and has good productivity. Another object of the present invention is to provide an organic EL display which has a high quality without in-plane characteristic variations even in a large area and is inexpensive.

本発明に係る発光装置の製造方法は、基板上の平面内の面内方向に複数の隔壁によって区画された複数の画素領域について、各色成分の画素領域ごとに各色成分を順に塗布して発光層を形成する方法を含む、発光素子を製造する方法であって、
第1色成分を溶解した第1塗布液を前記第1色成分の画素領域に塗布するステップと、
第2色成分を溶解した第2塗布液を前記第2色成分の画素領域に塗布するステップと、
を含み、
前記第1塗布液と前記第2塗布液のそれぞれの溶媒は、少なくとも一つの共通の溶媒からなり
前記各色成分の塗布液を塗布するステップでは、単位面積に塗布する前記共通の溶媒の量が相対的に多い色成分の塗布液から、単位面積に塗布する前記共通の溶媒の量が相対的に少ない色成分の塗布液の順番に塗布を行うことを特徴とする。

In the method for manufacturing a light emitting device according to the present invention, for each of a plurality of pixel areas partitioned by a plurality of partition walls in an in-plane direction within a plane on a substrate, each color component is sequentially applied to each pixel area of each color component to form a light emitting layer. A method of manufacturing a light emitting device, including a method of forming
Applying a first coating solution in which the first color component is dissolved to the pixel region of the first color component;
Applying a second coating solution in which the second color component is dissolved to the pixel region of the second color component;
Including
Wherein the first coating liquid each solvent of the second coating solution comprises at least one common solvent,
In the step of applying the coating liquid of each color component, the amount of the common solvent to be applied to the unit area is relatively larger from the coating liquid of the color component having a relatively large amount of the common solvent to be applied to the unit area. It is characterized in that the coating is performed in the order of coating solutions having a small number of color components.

また、前記各色成分の塗布液を塗布するステップにおいて、単位面積に塗布する前記共通の溶媒の量が前記第2塗布液よりも多くなるように前記第1塗布液を塗布するステップを行った後、次いで、前記第2塗布液を塗布するステップを行ってもよい。   In the step of applying the coating liquid of each color component, after performing the step of applying the first coating liquid so that the amount of the common solvent applied to a unit area is larger than that of the second coating liquid. Then, a step of applying the second coating solution may be performed.

さらに、前記各色成分の塗布液を塗布するステップにおいて、単位面積に塗布する第1塗布液の量と前記第2塗布液の量が実質的に同じであって、
前記第2塗布液よりも前記共通の溶媒の濃度が高い前記第1塗布液を用いて、単位面積に塗布する前記共通の溶媒の量が前記第2塗布液よりも多い前記第1塗布液を塗布するステップを行った後、次いで、前記第2塗布液を塗布するステップを行ってもよい。
Furthermore, in the step of applying the coating liquid of each color component, the amount of the first coating liquid applied to a unit area and the amount of the second coating liquid are substantially the same,
Using the first coating solution having a higher concentration of the common solvent than the second coating solution, the amount of the common solvent applied to a unit area is larger than that of the second coating solution. After performing the step of applying, the step of applying the second coating solution may then be performed.

またさらに、前記各色成分の塗布液を塗布するステップにおいて、前記第1塗布液と前記第2塗布液とは前記共通の溶媒の濃度が実質的に同じであって、
単位面積に塗布する第1塗布液の量が前記第2塗布液の量よりも多くなるように、前記第1塗布液を塗布するステップを行った後、次いで、前記第2塗布液を塗布するステップを行ってもよい。
Furthermore, in the step of applying the coating liquid of each color component, the first coating liquid and the second coating liquid have substantially the same concentration of the common solvent,
After performing the step of applying the first application liquid so that the amount of the first application liquid applied to the unit area is larger than the amount of the second application liquid, the second application liquid is then applied. Steps may be performed.

また、前記各色成分の塗布液を塗布するステップにおいて、前記第1塗布液を塗布するステップの後、塗布された前記第1塗布液の前記共通の溶媒が残留している状態で、前記第2塗布液を塗布するステップを行ってもよい。   Further, in the step of applying the coating liquid of each color component, after the step of applying the first coating liquid, the second solvent in the state where the common solvent of the applied first coating liquid remains. You may perform the step which apply | coats a coating liquid.

さらに、前記各色成分の塗布液を塗布するステップにおいて、
単位面積に塗布する前記共通の溶媒が相対的に多い色成分の塗布液はインクジェット法で塗布し、
単位面積に塗布する前記共通の溶媒が相対的に少ない色成分の塗布液はダイコート法で塗布してもよい。
Furthermore, in the step of applying the coating liquid of each color component,
The color component coating solution having a relatively large amount of the common solvent applied to the unit area is applied by an inkjet method,
The coating solution having a color component with a relatively small amount of the common solvent applied to a unit area may be applied by a die coating method.

またさらに、前記各色成分の塗布液を塗布するステップにおいて、
単位面積に塗布される前記共通の溶媒が相対的に多い前記第1塗布液を塗布するステップで、前記基板の中央部で塗布する量が、前記基板の端部で塗布する量より少なくなるように、前記第1塗布液を塗布してもよい。
Furthermore, in the step of applying the coating liquid of each color component,
In the step of applying the first coating solution having a relatively large amount of the common solvent applied to a unit area, the amount applied at the center of the substrate is less than the amount applied at the end of the substrate. In addition, the first coating solution may be applied.

また、前記各色成分の塗布液を塗布するステップは、前記基板の端部の周辺を閉塞して、前記基板の中央部に開口を持つ覆いの中で行ってもよい。   Further, the step of applying the coating liquid of each color component may be performed in a cover having an opening at the center portion of the substrate by closing the periphery of the end portion of the substrate.

本発明に係る発光装置の製造方法によれば、単位面積に塗布される共通の溶媒の量が相対的に多い塗布液を塗布し、その共通の溶媒が残留しており、未蒸発の状態で単位面積に塗布される共通の溶媒の量が相対的に少ない塗布液を塗布する。そこで、先に塗った塗布液において残留する共通の溶媒によって基板上の溶媒の蒸気圧のバラツキが緩和される。これによって単位面積に塗布する共通の溶媒量の少ない塗布液を塗った場合でも乾燥ムラが抑制され、塗布中の乾燥ムラによる膜厚の不均一が発生しない発光装置、特に有機ELディスプレイを製造することができる。また、ダミー塗布に必要な領域が不要となるので、高い生産性を維持しながら、高精細な有機ELディスプレイを製造できる。   According to the method for manufacturing a light emitting device according to the present invention, a coating solution having a relatively large amount of a common solvent applied to a unit area is applied, and the common solvent remains and is not evaporated. A coating solution having a relatively small amount of common solvent applied to a unit area is applied. Therefore, the variation in the vapor pressure of the solvent on the substrate is alleviated by the common solvent remaining in the previously applied coating solution. As a result, even when a coating solution with a small amount of common solvent applied to a unit area is applied, drying unevenness is suppressed, and a light-emitting device, particularly an organic EL display, that does not cause uneven film thickness due to drying unevenness during application is manufactured. be able to. In addition, since a region necessary for dummy coating is not required, a high-definition organic EL display can be manufactured while maintaining high productivity.

以下、本発明の実施の形態に係る発光装置の製造方法について、添付図面を参照しながら説明する。なお、図面において実質的に同一の部材には同一の符号を付している。   Hereinafter, a method for manufacturing a light emitting device according to an embodiment of the present invention will be described with reference to the accompanying drawings. In the drawings, substantially the same members are denoted by the same reference numerals.

(実施の形態1)
図1から図5を用いて、本発明の実施の形態1に係る発光装置の製造方法における発光層の塗布工程を説明する。この発光装置は、有機エレクトロルミネッセンス(EL)ディスプレイである。ここでは、その発光層の塗布工程として印刷法の一つであるダイコート法を用いた例について説明する。
(Embodiment 1)
The light emitting layer coating process in the method for manufacturing the light emitting device according to the first embodiment of the present invention will be described with reference to FIGS. This light-emitting device is an organic electroluminescence (EL) display. Here, an example in which a die coating method, which is one of printing methods, is used as the light emitting layer coating step.

<ダイコート法>
図1(a)は、ダイコート装置20による基板1への塗布前の平面図であり、図1(b)は、塗布後の平面図であり、図1(c)はダイコート装置20の構成を示す正面図である。このダイコート法で用いるダイコート装置20は、定板21、基板1を載置して搬送する基板搬送ステージ2、基板1に塗布液を塗布するノズルヘッド10、ノズルヘッド10を取り付けるノズルヘッド取り付け支柱22、インク配送配管3、インクタンク4、インク用ポンプ5、ノズルヘッド昇降機構(不図示)、制御部(不図示)を備える。次に、ダイコート装置20の各構成要素の動作を説明する。インクタンク4には各色成分の原料を溶媒に溶かしたインク(塗布液)が貯蔵されている。インクはインクタンク4からインク用ポンプ5によってインク配送配管3を通ってノズルヘッド10に送り込まれる。
<Die coat method>
FIG. 1A is a plan view before application to the substrate 1 by the die coating apparatus 20, FIG. 1B is a plan view after application, and FIG. 1C shows the configuration of the die coating apparatus 20. FIG. FIG. A die coating apparatus 20 used in this die coating method includes a fixed plate 21, a substrate transport stage 2 on which the substrate 1 is placed and transported, a nozzle head 10 for coating the substrate 1 with a coating liquid, and a nozzle head mounting column 22 for mounting the nozzle head 10. , An ink delivery pipe 3, an ink tank 4, an ink pump 5, a nozzle head lifting mechanism (not shown), and a control unit (not shown). Next, the operation of each component of the die coat apparatus 20 will be described. The ink tank 4 stores ink (coating liquid) in which the raw materials for each color component are dissolved in a solvent. Ink is sent from the ink tank 4 to the nozzle head 10 by the ink pump 5 through the ink delivery pipe 3.

図2(a)は、ダイコート装置20のノズルヘッド10について基板1の搬送方向23に垂直な方向から見た断面図であり、図2(b)は、ノズルヘッド10について基板1の搬送方向23から見た断面図である。ノズルヘッド10は、インク配送配管3が接続されるインク導入口13、導入されたインクを各ノズル穴11に分配するマニホールド部12、およびノズル穴11を備える。ノズルヘッド10には複数のノズル穴11が開いており、インク用ポンプ5によって印加された圧力によってノズル穴開口部14からインクが吐出される。基板1とノズルヘッド10のノズル穴開口部14は、ノズル昇降機構により20〜100μmのギャップに調整される。基板1は、図1(a)、(b)に示した基板搬送ステージ2の動きによって搬送方向23に搬送される。また、ノズル穴開口部14から吐出されたインクは、搬送方向23に搬送されている基板1上に塗布される。その結果、基板1上の隔壁31で区画されたライン状の領域にインクでライン状のパターンが形成される。   2A is a cross-sectional view of the nozzle head 10 of the die coating apparatus 20 as viewed from a direction perpendicular to the conveyance direction 23 of the substrate 1, and FIG. 2B is a conveyance direction 23 of the substrate 1 with respect to the nozzle head 10. It is sectional drawing seen from. The nozzle head 10 includes an ink introduction port 13 to which the ink delivery pipe 3 is connected, a manifold portion 12 that distributes the introduced ink to the nozzle holes 11, and the nozzle holes 11. A plurality of nozzle holes 11 are opened in the nozzle head 10, and ink is ejected from the nozzle hole openings 14 by the pressure applied by the ink pump 5. The nozzle hole opening 14 of the substrate 1 and the nozzle head 10 is adjusted to a gap of 20 to 100 μm by a nozzle lifting mechanism. The substrate 1 is transferred in the transfer direction 23 by the movement of the substrate transfer stage 2 shown in FIGS. The ink ejected from the nozzle hole opening 14 is applied onto the substrate 1 being transported in the transport direction 23. As a result, a line-shaped pattern is formed with ink in a line-shaped region defined by the partition walls 31 on the substrate 1.

<塗布方法>
図5を用いて本発明の実施の形態1に係る発光装置の製造方法における発光層の塗布工程を説明する。この場合の塗布装置としては、ダイコート装置を使用する。
(a)基板1上に陽極32および隔壁31を形成する(図5(a))。図5(a)は、各色成分の塗布液を塗布する塗布工程直前の状態を示す概略断面図である。隔壁31にはポリイミド樹脂やアクリル樹脂が使用され、フッ素ガスによるプラズマ処理等でインクに対して撥液化処理される。この隔壁31は、次の塗布工程において塗布液を塗布する各画素を区画する。隔壁31を形成しているので、塗布されたインク(塗布液)は所望の画素領域にとどまり混色することなく高品位なディスプレイを実現できる。
なお、図4に示すように、隔壁31を線状に形成し、RGBの各色ごとにライン形状に区画してもよい。あるいは、隔壁31を格子状に形成し、各画素(ピクセル)を区画してもよい。なお、ライン状に区画した場合には、陽極32をピクセル状にパターニングしておくことによって各画素ごとについて選択可能となり、テレビ等の表示装置として機能させることができる。
<Application method>
The light emitting layer coating step in the method for manufacturing the light emitting device according to Embodiment 1 of the present invention will be described with reference to FIG. As a coating apparatus in this case, a die coating apparatus is used.
(A) An anode 32 and a partition wall 31 are formed on the substrate 1 (FIG. 5A). Fig.5 (a) is a schematic sectional drawing which shows the state just before the application | coating process which apply | coats the coating liquid of each color component. A polyimide resin or an acrylic resin is used for the partition wall 31, and a liquid repellency treatment is performed on the ink by a plasma treatment using fluorine gas or the like. The partition wall 31 partitions each pixel to which the coating liquid is applied in the next coating process. Since the partition wall 31 is formed, the applied ink (coating liquid) stays in a desired pixel region, and a high-quality display can be realized without being mixed.
In addition, as shown in FIG. 4, the partition wall 31 may be formed in a line shape, and may be partitioned into a line shape for each color of RGB. Alternatively, the partition walls 31 may be formed in a lattice shape to partition each pixel (pixel). In addition, when it divides into the line form, it becomes selectable for every pixel by patterning the anode 32 in a pixel form, and can function as a display apparatus, such as a television.

(b)基板1を図1のダイコート装置20に搬送し、まず、単位面積に塗布する溶媒量が最も多い緑(G)インク401Gを塗布する(図5(b))。図5(b)にGインク401G塗布後の状態を示す概略断面図である。塗布は一括でするのが望ましいが、塗布方向(基板搬送方向)と垂直方向でのノズルヘッド10の幅が狭い場合は複数回走査して塗布してもよい。
このGインクの原料としては、ポリフルオレン系、ポリアリーレン系、ポリアリーレンビニレン系、アルコキシベンゼン、アルキルベンゼンなどの高分子材料を用いることができる。また、溶媒としては、トルエン、キシレン、アセトン、アニソール、メチルエチルケトン、メチルイソブチルケトン、シクロヘキシルベンゼン等の単独または混合溶媒が挙げられる。なお、他のRインク、Bインクについてもそれぞれ所望の色を有する同様の高分子材料及び溶媒を用いることができる。
(B) The substrate 1 is transported to the die coater 20 of FIG. 1, and first, green (G) ink 401G having the largest amount of solvent applied to a unit area is applied (FIG. 5B). FIG. 5B is a schematic cross-sectional view showing a state after applying the G ink 401G. It is desirable to apply all at once, but when the width of the nozzle head 10 in the direction perpendicular to the application direction (substrate transport direction) is narrow, the application may be performed by scanning a plurality of times.
As a raw material for the G ink, polymer materials such as polyfluorene-based, polyarylene-based, polyarylene vinylene-based, alkoxybenzene, alkylbenzene, and the like can be used. Examples of the solvent include single or mixed solvents such as toluene, xylene, acetone, anisole, methyl ethyl ketone, methyl isobutyl ketone, cyclohexyl benzene and the like. For the other R ink and B ink, similar polymer materials and solvents having desired colors can be used.

(c)次に、別の塗布装置、または、同じダイコート装置の別のノズルヘッドを使用して、単位面積に塗布する溶媒量が次に多い青(B)インク401Bを塗布する(図5(c))。図5(c)はBインク401B塗布後の状態を示す概略断面図である。搬送中の風による乾燥ムラを抑制するためには同じ塗布装置の別のノズルヘッドを使用するのが望ましい。別の塗布装置に搬送し塗布する場合は、風による乾燥ムラが発生しないよう搬送雰囲気の溶媒蒸気圧を飽和蒸気圧付近に保つのが望ましい。
また、図5(c)に示すように、青(B)インク401Bを塗布する時点で緑(G)インク401Gの溶媒が隔壁間に残っているように緑(G)インク401Gの溶媒量を調整しておくのが望ましい。
(d)最後に、別の塗布装置、又は、同じ塗布装置の別のノズルヘッドを使用して、単位面積に塗布する溶媒量が最も少ない赤(R)インク401Rを塗布する(図5(d))。図5(d)は、Rインク401R塗布後の状態を示す概略断面図である。図5(e)は、Rインク401Rが乾燥して、発光層(R)となった状態を示す概略断面図である。
(e)RGBのすべてのインクを塗布した後、真空乾燥炉などで残留溶媒を除去する。
(f)その後、スパッタリング法等で陰極33を形成する(図3)。
以上のようにして、乾燥ムラに起因する膜厚ムラがない高品位な有機ELディスプレイを製造できる。
(C) Next, using another coating device or another nozzle head of the same die coating device, the blue (B) ink 401B having the next largest amount of solvent applied to the unit area is applied (FIG. 5 ( c)). FIG. 5C is a schematic cross-sectional view showing a state after the B ink 401B is applied. In order to suppress drying unevenness due to wind during conveyance, it is desirable to use another nozzle head of the same coating apparatus. When transporting and coating to another coating apparatus, it is desirable to keep the solvent vapor pressure in the transport atmosphere near the saturated vapor pressure so that drying unevenness due to wind does not occur.
Further, as shown in FIG. 5C, the amount of the green (G) ink 401G is adjusted so that the solvent of the green (G) ink 401G remains between the partition walls when the blue (B) ink 401B is applied. It is desirable to adjust.
(D) Finally, using another coating device or another nozzle head of the same coating device, the red (R) ink 401R with the smallest amount of solvent applied to the unit area is applied (FIG. 5D )). FIG. 5D is a schematic cross-sectional view showing a state after the R ink 401R is applied. FIG. 5E is a schematic cross-sectional view showing a state in which the R ink 401R is dried to form a light emitting layer (R).
(E) After all the RGB inks are applied, the residual solvent is removed in a vacuum drying furnace or the like.
(F) Thereafter, the cathode 33 is formed by sputtering or the like (FIG. 3).
As described above, a high-quality organic EL display having no film thickness unevenness due to dry unevenness can be produced.

<塗布液の塗布順について>
本発明の実施の形態1に係る発光装置(有機ELディスプレイ)を製造する方法では、各色成分の塗布液を塗布するステップにおいて、単位面積に塗布する共通の溶媒の量が相対的に多い色成分の塗布液から、単位面積に塗布する共通の溶媒の量が相対的に少ない色成分の塗布液の順番に塗布を行うことを特徴とする。これについて、実施の形態1では、溶媒へのインクの溶解性が下記の関係式、
(Rインク)>(Bインク)>(Gインク)
を満たす各インクを使用する場合を例に説明する。また、この有機ELディスプレイでは、RGBのそれぞれの発光層の膜厚が50〜100nmの範囲内でほぼ等しいものとする。この時、インクの製造工程を短縮するため、溶解性の高いインクは高い濃度で、溶解性の低いインクは低い濃度で塗布する。そのため、単位面積に塗布される溶媒の量の関係は
(Gインク)>(Bインク)>(Rインク)
となる。なお、有機ELディスプレイの製造方法におけるインクの濃度は0.5〜10wt%の範囲である。
<About the order of application of coating solutions>
In the method for manufacturing the light emitting device (organic EL display) according to Embodiment 1 of the present invention, in the step of applying the coating liquid of each color component, the color component having a relatively large amount of the common solvent applied to the unit area. The coating is performed in the order of the coating liquids of the color components in which the amount of the common solvent applied to the unit area is relatively small. In this regard, in Embodiment 1, the solubility of the ink in the solvent is expressed by the following relational expression:
(R ink)> (B ink)> (G ink)
An example in which each ink satisfying the conditions is used will be described. Further, in this organic EL display, the film thicknesses of the respective light emitting layers of RGB are assumed to be substantially equal within a range of 50 to 100 nm. At this time, in order to shorten the ink manufacturing process, the ink having high solubility is applied at a high concentration, and the ink having low solubility is applied at a low concentration. Therefore, the relationship of the amount of solvent applied to the unit area is (G ink)> (B ink)> (R ink)
It becomes. In addition, the density | concentration of the ink in the manufacturing method of an organic electroluminescent display is the range of 0.5-10 wt%.

本発明の実施の形態1に係る発光装置を製造する方法では、単位面積に塗布される溶媒の量が多い塗布液から少ない塗布液、Gインク→Bインク→Rインクの順に塗布する。このような塗布方法によれば、単位面積に塗布する共通する溶媒の量が相対的に多いGインク401GやBインク401Bを塗布する。その後、先に塗布した各インク(塗布液)に共通する溶媒が残留し、まだ未蒸発の状態で、単位面積に塗布する溶媒の量が少ないRインク401Rを塗布する。そのため、先に塗った塗布液に残留する溶媒によって基板上の蒸気圧のバラツキが緩和される。その結果、溶媒量が少なく乾きやすいRインク401Rを塗った際、塗布工程で乾燥が生じた場合でも乾燥ムラが抑制され、図8(b)のような膜厚の不均一は発生せず、図5(e)のように膜厚が均一な有機EL装置を製造することができる。しかもダミー塗布に必要な領域が要らないので、高精細なディスプレイを生産性よく製造できる。   In the method for manufacturing the light emitting device according to the first embodiment of the present invention, the coating liquid is applied in the order of coating liquid having a large amount of solvent applied to a unit area, from small coating liquid to G ink → B ink → R ink. According to such a coating method, the G ink 401G and the B ink 401B having a relatively large amount of common solvent applied to the unit area are applied. Thereafter, a common solvent remains in each of the previously applied inks (application liquids), and the R ink 401R with a small amount of the solvent applied to the unit area is applied in a state where the ink is not yet evaporated. Therefore, the variation in vapor pressure on the substrate is alleviated by the solvent remaining in the previously applied coating solution. As a result, when applying the R ink 401R that is easy to dry with a small amount of solvent, even when drying occurs in the coating process, unevenness in drying is suppressed, and non-uniform film thickness as shown in FIG. As shown in FIG. 5E, an organic EL device having a uniform film thickness can be manufactured. In addition, since a region necessary for dummy coating is not required, a high-definition display can be manufactured with high productivity.

なお、上記実施の形態1ではすべてのインクをダイコートで塗布する例で説明したが、これに限られず、単位面積に塗布する溶媒量の多いGインク401Gが塗布時に隔壁を越えて画素間での混色が発生するのを防ぐために、インク塗布位置精度の高いインクジェット方式で塗布してもよい。また、他の色はノズルのコストが低いダイコート法で塗布してもよい。   In the first embodiment, the example in which all the inks are applied by die coating has been described. However, the present invention is not limited to this, and the G ink 401G having a large amount of solvent applied to a unit area crosses the partition walls at the time of application. In order to prevent color mixing, the ink may be applied by an ink jet method with high ink application position accuracy. Further, other colors may be applied by a die coating method with a low nozzle cost.

なお、上記効果をさらに高めるためには、基板の端部においてGインク401Gの単位面積に塗布する溶媒量を中央部より多く塗布することが望ましい。これによって基板1の端部と中央部とにおける溶媒の蒸気圧分布を制御できるので、先に塗ったGインクによる溶媒の蒸気圧の均一化効果をさらに高めることができる。   In order to further enhance the above effect, it is desirable to apply a larger amount of solvent to the unit area of the G ink 401G at the end of the substrate than at the center. As a result, the distribution of the vapor pressure of the solvent at the end and the center of the substrate 1 can be controlled, so that the effect of equalizing the vapor pressure of the solvent by the previously applied G ink can be further enhanced.

また、上記効果をさらに高めるためには、図7に示すダイコート装置20aのように基板1の端部が閉塞され中央部に開口を持つ覆い50を設けてもよい。このようにすると、基板1の端部と中央部とにおける溶媒の蒸気圧分布が生じることを抑制できるので、先に塗った緑(G)インク401Gによる溶媒の蒸気圧の均一化効果をさらに高めることができる。   In order to further enhance the above effect, a cover 50 having an end portion closed and an opening at the center may be provided as in the die coater 20a shown in FIG. In this way, since it is possible to suppress the distribution of the vapor pressure of the solvent at the end portion and the central portion of the substrate 1, the effect of uniformizing the vapor pressure of the solvent by the previously applied green (G) ink 401G is further enhanced. be able to.

上記実施の形態1では、Rインク、Gインク、Bインクのそれぞれに共通する溶媒として、シクロヘキシルベンゼンの単独溶媒を用いる例で説明したが、これに限られず、トルエン、キシレン、アセトン、アニソール、メチルエチルケトン、メチルイソブチルケトン等との混合溶媒を使用してもよい。また、共通する溶媒は、一つの場合に限るものではなく、複数の溶媒について共通してもよい。   In the first embodiment, the example in which a single solvent of cyclohexylbenzene is used as the solvent common to each of the R ink, the G ink, and the B ink is described. However, the present invention is not limited to this, and toluene, xylene, acetone, anisole, methyl ethyl ketone are used. A mixed solvent with methyl isobutyl ketone or the like may be used. Further, the common solvent is not limited to one, and may be common to a plurality of solvents.

<発光装置(有機ELディスプレイ)>
図3は、本発明の実施の形態1に係る発光装置の製造方法によって得られる有機ELディスプレイの構造を示す概略断面図である。また、図4は、この有機ELディスプレイの平面図である。この有機ELディスプレイは、基板1の平面上に複数の隔壁31で区画された画素領域を有し、各画素は、面に垂直方向について陽極32、発光層301、陰極33が順に積層されて構成されている。有機ELディスプレイの場合、発光層としてRGBの3色に対応した3種類がある。それぞれを301R、301G、301Bで表している。各画素ごとに発光層301は、赤(R)301R、緑(G)301G、青(B)301Bの各色の発光層が形成される。この有機ELディスプレイでは、陰極からの電子と陽極からの正孔が発光層内で結合し発光する。
なお、基板1にはディスプレイを駆動するためのTFT(図示せず)を内蔵してもよい。また、陰極の上層には封止膜(図示せず)やカラーフィルタ(図示せず)などが適宜配置してもよい。
<Light-emitting device (organic EL display)>
FIG. 3 is a schematic cross-sectional view showing the structure of the organic EL display obtained by the method for manufacturing the light emitting device according to Embodiment 1 of the present invention. FIG. 4 is a plan view of the organic EL display. This organic EL display has a pixel region defined by a plurality of partition walls 31 on the plane of the substrate 1, and each pixel is configured by stacking an anode 32, a light emitting layer 301, and a cathode 33 in order in a direction perpendicular to the surface. Has been. In the case of an organic EL display, there are three types of light emitting layers corresponding to three colors of RGB. These are represented by 301R, 301G, and 301B, respectively. For each pixel, the light emitting layer 301 is formed with red (R) 301R, green (G) 301G, and blue (B) 301B light emitting layers. In this organic EL display, electrons from the cathode and holes from the anode are combined in the light emitting layer to emit light.
The substrate 1 may include a TFT (not shown) for driving the display. A sealing film (not shown), a color filter (not shown), or the like may be appropriately disposed on the upper layer of the cathode.

(実施の形態2)
図6を用いて、本発明の実施の形態2に係る発光装置の製造方法における発光層の塗布方法を説明する。塗布装置としては、実施の形態1と同様にダイコート装置を使用する。
(a)基板1上の平面内に陽極32および隔壁31を形成する(図6(a))。図6(a)は、発光層の塗布工程直前の状態を示す概略断面図である。
(b)基板1を図1の塗布装置に搬送した後、まず、単位面積に塗布する共通の溶媒量が最も多いRインク401Rを塗布する(図6(b))。図6(b)は、Rインク401R塗布後の状態を示す概略断面図である。塗布は一括でするのが望ましいが、塗布方向(基板搬送方向)と垂直方向でのノズルヘッド10の幅が狭い場合には複数回走査して塗布してもよい。
(Embodiment 2)
The light emitting layer coating method in the method for manufacturing the light emitting device according to the second embodiment of the present invention will be described with reference to FIG. As a coating apparatus, a die coating apparatus is used as in the first embodiment.
(A) An anode 32 and a partition wall 31 are formed in a plane on the substrate 1 (FIG. 6A). Fig.6 (a) is a schematic sectional drawing which shows the state just before the application | coating process of a light emitting layer.
(B) After the substrate 1 is transported to the coating apparatus of FIG. 1, first, the R ink 401R having the largest amount of common solvent applied to the unit area is applied (FIG. 6B). FIG. 6B is a schematic cross-sectional view showing a state after applying the R ink 401R. The application is preferably performed in a lump, but when the width of the nozzle head 10 in the direction perpendicular to the application direction (substrate transport direction) is narrow, the application may be performed by scanning multiple times.

(c)次に、別の塗布装置、あるいは、同じダイコート装置の別のノズルヘッドを使用して、単位面積に塗布する溶媒量が次に多いGインク401Gを塗布する。この場合、搬送中の風による乾燥ムラを抑制するためには、同じ塗布装置を用いて、別のノズルヘッドを使用することが望ましい。なお、基板を別の塗布装置に搬送し塗布する場合は、風による乾燥ムラが発生しないよう搬送雰囲気の溶媒蒸気圧を飽和蒸気圧付近に保つことが望ましい。
図6(c)は、Gインク401G塗布後の状態を示す断面図である。Gインク401Gの塗布の時点でRインク401Rの溶媒が隔壁間に残っているようにRインク401Rの溶媒量を調整しておくことが望ましい。
(d)最後に、別の塗布装置、又は、同じ塗布装置の別のノズルヘッドを使用して、単位面積に塗布する溶媒量が最も少ない青(B)インク401Bを塗布する(図6(d))。図6(d)は、Bインク401B塗布後の状態を示す概略断面図である。図6(e)は、Bインク401Bが乾燥して、発光層(B)となった状態を示す概略断面図である。
(e)RGBのすべてのインクを塗布した後、真空乾燥炉などで残留溶媒を除去する。
(f)その後、スパッタリング法等で陰極33を形成する(図3)。
以上のようにして、乾燥ムラに起因する膜厚ムラがない高品位な有機ELディスプレイを製造できる。
(C) Next, using another coating apparatus or another nozzle head of the same die coating apparatus, the G ink 401G having the next largest amount of solvent applied to the unit area is applied. In this case, in order to suppress drying unevenness due to wind during conveyance, it is desirable to use another nozzle head using the same coating apparatus. When the substrate is transported to another coating apparatus and coated, it is desirable to keep the solvent vapor pressure in the transport atmosphere near the saturated vapor pressure so that drying unevenness due to wind does not occur.
FIG. 6C is a cross-sectional view showing a state after applying the G ink 401G. It is desirable to adjust the solvent amount of the R ink 401R so that the solvent of the R ink 401R remains between the partition walls at the time of application of the G ink 401G.
(D) Finally, using another coating apparatus or another nozzle head of the same coating apparatus, the blue (B) ink 401B having the smallest amount of solvent applied to the unit area is applied (FIG. 6D). )). FIG. 6D is a schematic cross-sectional view showing a state after the B ink 401B is applied. FIG. 6E is a schematic cross-sectional view showing a state in which the B ink 401B is dried to form a light emitting layer (B).
(E) After all the RGB inks are applied, the residual solvent is removed in a vacuum drying furnace or the like.
(F) Thereafter, the cathode 33 is formed by sputtering or the like (FIG. 3).
As described above, a high-quality organic EL display having no film thickness unevenness due to dry unevenness can be produced.

<塗布液の塗布順について>
本実施の形態2に係る発光装置(有機ELディスプレイ)を製造する方法では、各色成分の塗布液を塗布するステップにおいて、単位面積に塗布する共通の溶媒の量が相対的に多い色成分の塗布液から、単位面積に塗布する共通の溶媒の量が相対的に少ない色成分の塗布液の順番に塗布を行うことを特徴とする。これについて、実施の形態2では、R、G、Bの各発光層の膜厚が50〜100nmの範囲で、下記関係式、
(Rの膜厚)>(Gの膜厚)>(Bの膜厚)
を満たす有機ELデバイスを例に説明する。
塗布装置の調整を容易に行うことが製造コストを低減する上で重要となるので、それぞれのインクの粘度はほぼ等しいことが望ましい。インクの粘度はインクの濃度に比例するので、それぞれのインクの濃度がほぼ等しいことが望ましい。そのため単位面積に塗布されるインクの量は膜厚に比例する。そこで、単位面積に塗布される溶媒の量の関係は、下記関係式、
(Rインク)>(Gインク)>(Bインク)
を満たすものとなる。なお、有機ELディスプレイの製造方法におけるインクの濃度は0.5〜10wt%の範囲である。
<About the order of application of coating solutions>
In the method for manufacturing the light emitting device (organic EL display) according to the second embodiment, in the step of applying the coating liquid for each color component, the application of the color component in which the amount of the common solvent applied to the unit area is relatively large. It is characterized in that the application is performed in the order of the application liquids of the color components in which the amount of the common solvent applied to the unit area is relatively small. In this regard, in the second embodiment, the R, G, and B light emitting layers each have a film thickness in the range of 50 to 100 nm.
(R film thickness)> (G film thickness)> (B film thickness)
An organic EL device that satisfies the above will be described as an example.
Since it is important to easily adjust the coating apparatus in order to reduce the manufacturing cost, it is desirable that the viscosity of each ink is substantially equal. Since the viscosity of the ink is proportional to the ink density, it is desirable that the density of each ink is approximately equal. Therefore, the amount of ink applied to the unit area is proportional to the film thickness. Therefore, the relationship of the amount of solvent applied to the unit area is the following relational expression:
(R ink)> (G ink)> (B ink)
It will satisfy. In addition, the density | concentration of the ink in the manufacturing method of an organic electroluminescent display is the range of 0.5-10 wt%.

本発明の実施の形態2に係る発光装置を製造する方法では、単位面積に塗布される溶媒の量が多い塗布液から少ない塗布液、Rインク→Gインク→Bインクの順に塗布する。このような塗布方法によれば、まず、単位面積に塗布する共通する溶媒の量が相対的に多いRインク401RやBインク401Bを塗布する。その後、先に塗布した各インク(塗布液)に共通する溶媒が残留し、まだ未蒸発の状態で、単位面積に塗布する共通する溶媒の量が相対的に少ないBインク401Bを塗布する。そのため、先に塗った塗布液に残留する溶媒によって基板上の蒸気圧のバラツキが緩和される。その結果、溶媒量が少なく乾きやすいBインク401Bを塗った際、塗布工程で乾燥が生じた場合でも乾燥ムラが抑制され、図8(b)のような膜厚の不均一は発生せず、図6(e)のように膜厚が均一な有機EL装置を製造することができる。しかもダミー塗布に必要な領域が要らないので、高精細なディスプレイを生産性良く製造できる。   In the method for manufacturing the light emitting device according to the second embodiment of the present invention, the coating liquid is applied in the order of the coating liquid having a large amount of the solvent applied to the unit area in order from the coating liquid having a large amount of solvent, R ink → G ink → B ink. According to such a coating method, first, the R ink 401R and the B ink 401B having a relatively large amount of the common solvent applied to the unit area are applied. Thereafter, a common solvent remains in each of the previously applied inks (application liquids), and the B ink 401B is applied in a relatively small amount of the common solvent to be applied to a unit area in a state where the ink is not yet evaporated. Therefore, the variation in vapor pressure on the substrate is alleviated by the solvent remaining in the previously applied coating solution. As a result, when applying the B ink 401B that is easy to dry with a small amount of solvent, even if drying occurs in the coating process, unevenness in drying is suppressed, and non-uniform film thickness as shown in FIG. As shown in FIG. 6E, an organic EL device having a uniform film thickness can be manufactured. In addition, since a region necessary for dummy coating is not required, a high-definition display can be manufactured with high productivity.

本発明に係る発光装置の製造方法によると、発光層の塗布中の乾燥ムラによる膜厚の不均一が発生しない発光装置を製造することができる。そこで、本発明に係る発光装置の製造方法は有機ELディスプレイパネルなどの製造に適用可能である。   According to the method for manufacturing a light emitting device according to the present invention, it is possible to manufacture a light emitting device in which non-uniform film thickness due to uneven drying during application of the light emitting layer does not occur. Therefore, the method for manufacturing a light emitting device according to the present invention can be applied to manufacture of an organic EL display panel and the like.

(a)は、本発明の実施の形態1で用いるダイコート装置による基板への塗布前の平面図であり、(b)は、塗布後の平面図であり、(c)はダイコート装置の構成を示す正面図である。(A) is a top view before the application | coating to the board | substrate by the die-coating apparatus used in Embodiment 1 of this invention, (b) is a top view after application | coating, (c) is a structure of a die-coating apparatus. FIG. (a)は、ダイコート装置のノズルヘッドについて基板の搬送方向に垂直な方向から見た断面図であり、(b)は、ノズルヘッドについて基板の搬送方向から見た断面図である。(A) is sectional drawing which looked at the nozzle head of the die coating apparatus from the direction perpendicular | vertical to the conveyance direction of a board | substrate, (b) is sectional drawing seen from the conveyance direction of the board | substrate about a nozzle head. 有機EL装置の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of an organic EL apparatus. 有機EL装置の平面図である。It is a top view of an organic EL device. (a)〜(e)は、本発明の実施の形態1に係る発光装置の製造方法の各ステップを示す概略断面図である。(A)-(e) is a schematic sectional drawing which shows each step of the manufacturing method of the light-emitting device which concerns on Embodiment 1 of this invention. (a)〜(e)は、本発明の実施の形態2に係る発光装置の製造方法の各ステップを示す概略断面図である。(A)-(e) is a schematic sectional drawing which shows each step of the manufacturing method of the light-emitting device which concerns on Embodiment 2 of this invention. (a)は、本発明の実施の形態1で用いる別例のダイコート装置による基板への塗布前の平面図であり、(b)は、塗布後の平面図であり、(c)は、別例のダイコート装置の構成を示す正面図である。(A) is a top view before the application | coating to the board | substrate by the die coating apparatus of another example used in Embodiment 1 of this invention, (b) is a top view after application | coating, (c) is another It is a front view which shows the structure of the example die coat apparatus. (a)及び(b)は、従来技術の発光層の塗布における問題点を説明する概略断面図である。(A) And (b) is a schematic sectional drawing explaining the problem in application | coating of the light emitting layer of a prior art.

符号の説明Explanation of symbols

1 基板
2 基板搬送ステージ
3 インク配送配管
4 インクタンク
5 インク用ポンプ
10 ノズルヘッド
11 ノズル穴
12 マニホールド部
13 インク導入口
14 ノズル穴開口部
20、20a ダイコート装置
21 定板
22 ノズル取り付け柱
23 搬送方向
31 隔壁
32 陽極
33 陰極
50 覆い
301R 発光層(赤(R))
301G 発光層(緑(G))
303B 発光層(青(B))
401R 塗布された赤(R)インク
401G 塗布された緑(G)インク
403B 塗布された青(B)インク
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Board | substrate conveyance stage 3 Ink delivery piping 4 Ink tank 5 Ink pump 10 Nozzle head 11 Nozzle hole 12 Manifold part 13 Ink inlet 14 Nozzle hole opening 20, 20a Die coat apparatus 21 Surface plate 22 Nozzle attachment column 23 Conveyance direction 31 Partition 32 Anode 33 Cathode 50 Cover 301R Light emitting layer (red (R))
301G Light emitting layer (green (G))
303B Light emitting layer (blue (B))
401R Red (R) ink applied 401G Green (G) ink 403B applied Blue (B) ink applied

Claims (8)

基板上の平面内の面内方向に複数の隔壁によって区画された複数の画素領域について、各色成分の画素領域ごとに各色成分を順に塗布して発光層を形成する方法を含む、発光素子を製造する方法であって、
第1色成分を溶解した第1塗布液を前記第1色成分の画素領域に塗布するステップと、
第2色成分を溶解した第2塗布液を前記第2色成分の画素領域に塗布するステップと、
を含み、
前記第1塗布液と前記第2塗布液のそれぞれの溶媒は、少なくとも一つの共通の溶媒からなり
前記各色成分の塗布液を塗布するステップでは、単位面積に塗布する前記共通の溶媒の量が相対的に多い色成分の塗布液から、単位面積に塗布する前記共通の溶媒の量が相対的に少ない色成分の塗布液の順番に塗布を行う、発光装置を製造する方法。
Manufacturing a light emitting device including a method of forming a light emitting layer by sequentially applying each color component for each pixel region of a plurality of pixel regions partitioned by a plurality of partition walls in a plane direction in a plane on a substrate A way to
Applying a first coating solution in which the first color component is dissolved to the pixel region of the first color component;
Applying a second coating solution in which the second color component is dissolved to the pixel region of the second color component;
Including
Wherein the first coating liquid each solvent of the second coating solution comprises at least one common solvent,
In the step of applying the coating liquid of each color component, the amount of the common solvent to be applied to the unit area is relatively larger from the coating liquid of the color component having a relatively large amount of the common solvent to be applied to the unit area. A method of manufacturing a light-emitting device, in which coating is performed in the order of coating liquids with few color components.
前記各色成分の塗布液を塗布するステップにおいて、単位面積に塗布する前記共通の溶媒の量が前記第2塗布液よりも多くなるように前記第1塗布液を塗布するステップを行った後、次いで、前記第2塗布液を塗布するステップを行う、請求項1に記載の発光装置を製造する方法。   In the step of applying the coating liquid of each color component, after performing the step of applying the first coating liquid so that the amount of the common solvent applied to a unit area is larger than that of the second coating liquid, The method for manufacturing the light emitting device according to claim 1, wherein the step of applying the second coating liquid is performed. 前記各色成分の塗布液を塗布するステップにおいて、単位面積に塗布する第1塗布液の量と前記第2塗布液の量が実質的に同じであって、
前記第2塗布液よりも前記共通の溶媒の濃度が高い前記第1塗布液を用いて、単位面積に塗布する前記共通の溶媒の量が前記第2塗布液よりも多い前記第1塗布液を塗布するステップを行った後、次いで、前記第2塗布液を塗布するステップを行う、請求項2に記載の発光装置を製造する方法。
In the step of applying the coating liquid of each color component, the amount of the first coating liquid applied to a unit area and the amount of the second coating liquid are substantially the same,
Using the first coating solution having a higher concentration of the common solvent than the second coating solution, the amount of the common solvent applied to a unit area is larger than that of the second coating solution. The method of manufacturing the light emitting device according to claim 2, wherein after performing the coating step, the step of coating the second coating liquid is performed.
前記各色成分の塗布液を塗布するステップにおいて、前記第1塗布液と前記第2塗布液とは前記共通の溶媒の濃度が実質的に同じであって、
単位面積に塗布する第1塗布液の量が前記第2塗布液の量よりも多くなるように、前記第1塗布液を塗布するステップを行った後、次いで、前記第2塗布液を塗布するステップを行う、請求項2に記載の発光装置を製造する方法。
In the step of applying the coating liquid of each color component, the first coating liquid and the second coating liquid have substantially the same concentration of the common solvent,
After performing the step of applying the first application liquid so that the amount of the first application liquid applied to the unit area is larger than the amount of the second application liquid, the second application liquid is then applied. The method for manufacturing the light emitting device according to claim 2, wherein the step is performed.
前記各色成分の塗布液を塗布するステップにおいて、前記第1塗布液を塗布するステップの後、塗布された前記第1塗布液の前記共通の溶媒が残留している状態で、前記第2塗布液を塗布するステップを行う、請求項2に記載の発光装置を製造する方法。   In the step of applying the coating liquid of each color component, after the step of applying the first coating liquid, the second coating liquid in a state where the common solvent of the applied first coating liquid remains. The method of manufacturing the light-emitting device of Claim 2 which performs the step which apply | coats. 前記各色成分の塗布液を塗布するステップにおいて、
単位面積に塗布する前記共通の溶媒が相対的に多い色成分の塗布液はインクジェット法で塗布し、
単位面積に塗布する前記共通の溶媒が相対的に少ない色成分の塗布液はダイコート法で塗布する、
請求項2に記載の発光装置を製造する方法。
In the step of applying the coating liquid of each color component,
The color component coating solution having a relatively large amount of the common solvent applied to the unit area is applied by an inkjet method,
The color component coating solution with relatively few common solvents applied to a unit area is applied by a die coating method.
A method for manufacturing the light-emitting device according to claim 2.
前記各色成分の塗布液を塗布するステップにおいて、
単位面積に塗布される前記共通の溶媒が相対的に多い前記第1塗布液を塗布するステップで、前記基板の中央部で塗布する量が、前記基板の端部で塗布する量より少なくなるように、前記第1塗布液を塗布する、請求項2に記載の発光装置の製造方法。
In the step of applying the coating liquid of each color component,
In the step of applying the first coating solution having a relatively large amount of the common solvent applied to a unit area, the amount applied at the center of the substrate is less than the amount applied at the end of the substrate. The manufacturing method of the light-emitting device according to claim 2, wherein the first coating liquid is applied to the surface.
前記各色成分の塗布液を塗布するステップは、前記基板の端部の周辺を閉塞して、前記基板の中央部に開口を持つ覆いの中で行われる、請求項1から7のいずれか一項に記載の発光装置の製造方法。   8. The step of applying the coating liquid of each color component is performed in a cover having an opening at the center portion of the substrate that closes the periphery of the end portion of the substrate. The manufacturing method of the light-emitting device as described in any one of.
JP2008129516A 2008-05-16 2008-05-16 Method for manufacturing light emitting device Expired - Fee Related JP4885906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008129516A JP4885906B2 (en) 2008-05-16 2008-05-16 Method for manufacturing light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008129516A JP4885906B2 (en) 2008-05-16 2008-05-16 Method for manufacturing light emitting device

Publications (2)

Publication Number Publication Date
JP2009277578A JP2009277578A (en) 2009-11-26
JP4885906B2 true JP4885906B2 (en) 2012-02-29

Family

ID=41442807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008129516A Expired - Fee Related JP4885906B2 (en) 2008-05-16 2008-05-16 Method for manufacturing light emitting device

Country Status (1)

Country Link
JP (1) JP4885906B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092931A1 (en) * 2009-02-16 2010-08-19 凸版印刷株式会社 Organic electroluminescence display and manufacturing method therefor
JP4983940B2 (en) * 2009-03-04 2012-07-25 住友化学株式会社 Method for manufacturing organic electroluminescence device
WO2011077477A1 (en) 2009-12-22 2011-06-30 パナソニック株式会社 Display device and method for manufacturing same
CN102165593B (en) 2009-12-22 2015-01-28 松下电器产业株式会社 Display device and manufacturing method thereof
CN102165592B (en) 2009-12-22 2014-10-15 松下电器产业株式会社 Display device and manufacturing method thereof
KR101743789B1 (en) 2010-10-15 2017-06-05 가부시키가이샤 제이올레드 Organic light emitting panel, method of manufacturing the same and organic display device
CN102577615B (en) 2010-10-15 2016-01-27 株式会社日本有机雷特显示器 Organic luminous panel and manufacture method thereof and organic display device
WO2012049712A1 (en) 2010-10-15 2012-04-19 パナソニック株式会社 Organic light-emitting panel, method for producing same, and organic display device
JP5197882B2 (en) 2010-10-15 2013-05-15 パナソニック株式会社 ORGANIC LIGHT EMITTING PANEL, ITS MANUFACTURING METHOD, AND ORGANIC DISPLAY DEVICE
WO2012049715A1 (en) 2010-10-15 2012-04-19 パナソニック株式会社 Organic light-emitting panel, method for producing same, and organic display device
CN102960066B (en) 2010-10-15 2015-09-30 株式会社日本有机雷特显示器 Organic luminous panel and manufacture method thereof and organic display device
WO2012049718A1 (en) 2010-10-15 2012-04-19 パナソニック株式会社 Organic light-emitting panel, method for producing same, and organic display device
WO2012073754A1 (en) * 2010-11-29 2012-06-07 シャープ株式会社 Patterned film manufacturing method, patterned film, color filter substrate, liquid crystal display device, and light-emitting device
JP6032659B2 (en) * 2015-04-16 2016-11-30 株式会社Joled Organic light emitting panel and organic display device
TWI763772B (en) * 2017-01-30 2022-05-11 德商麥克專利有限公司 Method for forming an organic element of an electronic device
KR20210083347A (en) * 2018-11-06 2021-07-06 메르크 파텐트 게엠베하 Method of Forming Organic Elements of Electronic Devices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4285264B2 (en) * 2000-11-28 2009-06-24 セイコーエプソン株式会社 Method for manufacturing organic electroluminescence device
JP4023344B2 (en) * 2003-03-10 2007-12-19 セイコーエプソン株式会社 Drawing apparatus, electro-optical device manufacturing method, electro-optical device, and electronic apparatus
JP2004361428A (en) * 2003-05-30 2004-12-24 Seiko Epson Corp Method for manufacturing color filter, color filter substrate and its manufacturing method, electroluminescence substrate and its manufacturing method, electro-optic device and its manufacturing method, electronic appliance and its manufacturing method, and film forming method
JP4894150B2 (en) * 2005-03-15 2012-03-14 セイコーエプソン株式会社 Electro-optical device manufacturing method, droplet discharge device
JP2007012387A (en) * 2005-06-29 2007-01-18 Toshiba Matsushita Display Technology Co Ltd Manufacturing method of organic electroluminescent display device

Also Published As

Publication number Publication date
JP2009277578A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP4885906B2 (en) Method for manufacturing light emitting device
US11004917B2 (en) Pixel defining layer, display substrate and manufacturing method thereof, and display apparatus
US10811476B2 (en) Pixel definition layer, manufacturing method thereof, display substrate and display device
US10388709B2 (en) Pixel defining layer and production method thereof, display panel and production method thereof, and display apparatus
US9768382B2 (en) Display substrate, its manufacturing method and display device
US10886344B2 (en) Display substrate, manufacturing method thereof, and display device
US10084132B2 (en) Groove structure for printing coating process and manufacturing method thereof
US11038109B2 (en) Method for fabricating organic light-emitting display panel and display device using ink jet printing to form light-emiting layer
WO2017012309A1 (en) Organic electroluminescence display substrate and preparation method thereof, display panel, and display device
US20230337472A1 (en) Pixel defining structure and manufacturing method thereof, display panel and display device
WO2014190685A1 (en) Oled pixel limiting structure, manufacturing method therefor and array substrate
US11678525B2 (en) Display substrate, manufacturing method thereof, and display device
US11917865B2 (en) Display panel, method for fabricating the same, and display device
US7952660B2 (en) Method of fabricating black matrices of color filter
JP2005100982A (en) Substrate for ink jet printing and method for its manufacture
Chen et al. P‐56: High Resolution Organic Light‐Emitting Diode Panel Fabricated by Ink Jet Printing Process
US10957879B2 (en) OLED substrate, manufacturing method thereof, display device
CN110459690A (en) Display base plate and preparation method thereof, display device, the method for inkjet printing
US20170213965A1 (en) Oled display panel, manufacturing method thereof and display device
WO2020233596A1 (en) Organic electroluminescent device, method for manufacture thereof, and display apparatus
Chen et al. 71‐4: Uniformity Study on High Resolution OLED Display Fabricated by Ink Jet Printing Process
CN204257657U (en) A kind of display base plate and display unit
CN111106240B (en) Ink jet print cartridge and method for preparing organic light emitting diode display device
US20080266350A1 (en) Apparatus to print printing patterns using inkjet technique and method thereof
JP2010272382A (en) Method and device of manufacturing functional element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4885906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees