JP4884593B2 - 画像記録媒体 - Google Patents

画像記録媒体 Download PDF

Info

Publication number
JP4884593B2
JP4884593B2 JP2001073376A JP2001073376A JP4884593B2 JP 4884593 B2 JP4884593 B2 JP 4884593B2 JP 2001073376 A JP2001073376 A JP 2001073376A JP 2001073376 A JP2001073376 A JP 2001073376A JP 4884593 B2 JP4884593 B2 JP 4884593B2
Authority
JP
Japan
Prior art keywords
layer
reading
charge
recording
photoconductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001073376A
Other languages
English (en)
Other versions
JP2002329848A (ja
JP2002329848A5 (ja
Inventor
真二 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2001073376A priority Critical patent/JP4884593B2/ja
Publication of JP2002329848A publication Critical patent/JP2002329848A/ja
Publication of JP2002329848A5 publication Critical patent/JP2002329848A5/ja
Application granted granted Critical
Publication of JP4884593B2 publication Critical patent/JP4884593B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)
  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、画像情報を静電潜像として記録することのできる画像記録媒体に関するものである。
【0002】
【従来の技術】
従来より、例えば、医療用X線撮影において、被験者の受ける被爆線量の減少、診断性能の向上などのために、X線に感応する光導電体(例えばセレンSeを用いたものなど)を用いた画像記録媒体を使用して、X線により該画像記録媒体に静電潜像を記録し、その後、該静電潜像を読み取るシステムが開示されている(例えば、米国特許第4176275号,同第5268569号,同第5354982号,同第4535468号,"23027 Method and devisce for recording and transducing an electromagnetic energy pattern";Reserch Disclosure June 1983、特開平9-5906号、米国特許第4961209号、"X-ray imaging using amorphous selenium";Med Phys.22(12)など)。
【0003】
具体的には、例えば上記米国特許第4535468号には、比較的厚い2mm厚のAlなどからなり、記録用の電磁波(以下記録光ともいう)としての放射線に対して透過性を有する導電性基板としての記録光側電極層上に、a−Se(アモルファスセレン)を主成分とする100〜500μm厚の記録用光導電層と、0.01〜10.0μm厚のAsS,As,AsSeなどからなり記録用光導電層内で発生した潜像極性電荷がトラップとして蓄積される中間層(トラップ層)と、a−Seを主成分とする0.5〜100μm厚の読取用光導電層と、100nm厚のAuやITO(Indium Tin Oxide)からなり読取用の電磁波(以下読取光ともいう)に対して透過性を有する読取光側電極層とを、この順に積層してなる画像記録媒体が開示されている。
【0004】
また、特に、読取光側電極層を正極として用いることが良好なa−Seの正孔の移動度を利用することができる点で好適であることや、電極からの電荷の直接注入によるS/N劣化を防止するために、読取光側電極層と読取用光導電層との間に有機物からなるブロッキング層を設けることが開示されている。この画像記録媒体は、高い暗抵抗を有する読取りの応答速度が優れた多層記録媒体である。
【0005】
ここで、画像のS/N向上のため、さらには並列読取り(主に主走査方向)を行なって読出時間の短縮を図るために、読取光側電極層の電極として多数のエレメント(線状電極)が画素ピッチで配列してなるストライプ電極を利用することがある(例えば、本願出願人による特願平10-232824号)。しかしながら、上記米国特許第4535468号に記載の画像記録媒体の積層構成では、製造の最終工程において、読取用光導電層を成膜した後に読取光側電極層を形成しなければならず、前記ストライプ電極を形成することは困難である。これは、ストライプ電極の形成のために電極の微細加工を行なうには、半導体製造で用いられるフォトエッチングを行なう必要があるが、この工程中には、フォトレジストのべーキング工程などの高温(例えば200℃)プロセスを通常必要とし、既に製膜された光導電層をなすa−Seはこのような高温に耐えられず、その特性が悪化するからである。さらに、フォトレジストの現像工程で用いられるアルカリ現像液とa−Seとは接触して有害なガスを出すので、その除害のために工程が複雑化、高コスト化する問題もある。
【0006】
一方、本願出願人は、特願平10-232824号において、Sn0(ネサ被膜)からなり、記録光としての放射線に対して透過性を有する記録光側電極層と、a−Seを主成分とする50〜1000μm厚の記録用光導電層と、有機物あるいは塩素(Cl)を10〜200ppmドープしたa−Seなどからなり記録用光導電層で発生した潜像極性電荷を蓄積する蓄電部を記録用光導電層との界面に形成するための電荷輸送層と、a−Seを主成分とする読取用光導電層と、読取光に対して透過性を有する読取光側電極層とを、この順に配してなる画像記録媒体(静電記録体)を提案している。
【0007】
この画像記録媒体を製造するとき、記録光側電極層から順に製膜するのか、逆に読取光側電極層から順に製膜するのかは、特に明言しておらず、いずれの順に製膜してもよかった。ただし、読取光側電極層としては、支持体としての透明ガラス基板にネサ被膜などの導電性物質を設けたものを提案し、該読取光側電極層を正極として使用すると共に高精細な「画素ピッチに対応するクシ歯のピッチ」で「半導体形成技術によってクシ歯を十分に狭い間隔でもって形成する」こと、すなわち読取光側電極層の電極を画素ピッチで分割されたストライプ電極とすることを提案しており、この場合には、最初に透明ガラス基板上にストライプ電極をフォトエッチングなどにより形成した後、読取用光導電層〜記録光側電極層を順次製膜することになる。なお、画素ピッチの具体的数値は直接には示していないが、医療用X線撮影において高い鮮鋭度を維持しつつ高S/Nを可能ならしめるものであることから、該画素ピッチとして50〜200μmが用いられることは当業者には想到可能である。
【0008】
また、この特願平10-232824号においては、上記米国特許第4535468号に記載のものと同様に、読取光側電極層と読取用光導電層との間にCe0などの無機物からなる500Å程度のブロッキング層を設けることにより、読取光側電極層に帯電した正電荷の直接注入によるS/N劣化を防止することも提案している。
【0009】
他方、本願発明者らは、上記特願平10-232824号に提案した画像記録媒体についてのその後の検討により、さらに以下の点を見い出した。
1)製造の際には、読取光側電極層として、透明ガラス基板上に、比較的薄い、50〜200nm厚のITO膜を成膜した後、フォトエッチングによりストライプ電極を形成する方法が、安価に高精細なストライプパターンを形成することができるため適している。
2)記録用光導電層を50〜1000μm厚のa−Seとすることが、高い暗抵抗の点で優れている。
3)電荷輸送層としては、電子を帯電して蓄電部を形成する薄い有機物からなる0.1〜1μm厚の第1正孔輸送層と、正孔を高速に輸送しかつ正孔トラップの少ない「Clを10〜200ppmドープしたa−Se」からなる5〜30μm厚の第2正孔輸送層との、2つの層を積層した積層型正孔輸送層が、残像および読取りの応答速度の点で優れている。
4)読取用光導電層を0.05〜0.5μm厚のa−Seとすることが、高い暗抵抗の点で優れている。
5)電荷輸送層を、PVKやTPDからなる0.1〜1μm厚の第1電荷輸送層と、Clを10〜200ppmドープした5〜30μm厚のa−Seを主成分とする第2電荷輸送層とからなる積層型正孔輸送層とすると、第1電荷輸送層に潜像極性電荷に対して強い絶縁性を、第2電荷輸送層に輸送極性電荷の高速輸送性をそれぞれ受け持たせることができるので、残像および読取りの応答速度の点で優れた、電荷輸送層として理想的なものにすることができるが、前記第2正孔輪送層を、5〜30μm厚のa−Seで置き換えて、読取用光導電層を兼ねる構成としても比較的良好な結果が得られ、製造が簡便となる。
【0010】
以上のことから、上記特願平10-232824号に記載の画像記録媒体は、高い暗抵抗を有し読取りの応答速度が優れた多層記録媒体であり、全体としてはa−Seを主成分とする層から構成されていることが望ましい。
【0011】
【発明が解決しようとする課題】
ところで、よく知られているように、アモルファス状態のセレン膜は、製膜時の蒸着過程において、他の物質との界面において界面結晶化(interfacial crystallization)が進行するという問題がある。このため、上記特願平10-232824号に記載のもののうち、ガラス基板などの支持体上に読取光側電極層を製膜した後に、読取用光導電層を製膜するものは、読取用光導電層の蒸着およびその後に続く記録用光導電層の蒸着過程において、電極材料とa−Seとの界面において界面結晶化が進行し、電極からの電荷注入が増えるためにS/Nが低下するという問題が生じる。電極材料として、透明酸化被膜、特にITOを用いた場合には、電極材料とa−Seの界面での界面結晶化が顕著に進行し、S/N低下が著しくなるため改善が望まれる。
【0012】
また、上記のような画像記録媒体においては、被写体を透過した記録用の電磁波により記録用光導電層において生じた潜像極性電荷を蓄電部に蓄積することにより静電潜像の記録が行われ、そして、読取光側電極層を透過した読取用の電磁波により読取用光導電層において生じた電荷対が蓄電部における潜像極性電荷と結合することにより読取りが行われる。
【0013】
ここで、上記読取用光導電層で発生する電荷対の発生効率は、蓄電部と読取光側電極層との間に形成される電界強度の強さに比例する。従って、被写体を透過した記録用の電磁波の線量が低線量側である場合には、蓄電部に蓄積される潜像極性電荷が少ないため蓄電部と読取光側電極層との間に形成される電界強度が弱くなり、読取用光導電層における電荷対の発生効率が低下する。この電荷対の発生効率の低下は画像記録媒体の読取光に対する感度の低下となり、読取光の光量を増加させることによるコストアップの問題などを招くことになる。
【0014】
本発明は上記の事情に鑑みてなされたものであり、上記のような画像記録媒体において、界面結晶化の進行を遅らせ、該界面結晶化に起因するS/N低下の問題を軽減・解消することができる画像記録媒体およびその製造方法を提供することを目的とするものである。
【0015】
また、上記界面結晶化に起因するS/N低下の問題をさらに軽減・解消するとともに読取光に対する感度の向上をも図ることができる画像記録媒体およびその製造方法を提供することを目的とするものである。
【0016】
【課題を解決するための手段】
本発明の第1の画像記録媒体は、読取用の電磁波に対して透過性を有する支持体上に、読取用の電磁波に対して透過性を有する、例えばITOなどの透明酸化被膜などからなる第1電極層(読取光側電極層)と、a−Seを主成分とする、読取用の電磁波の照射を受けることにより導電性を呈する読取用光導電層と、記録用光導電層で発生した潜像極性電荷を蓄積する蓄電部と、記録用の電磁波の照射を受けることにより導電性を呈する記録用光導電層と、記録用の電磁波に対し透過性を有する第2電極層(記録光側電極層)とがこの順に積層されてなる画像記録媒体において、第1電極層と読取用光導電層との間に、読取用の電磁波に対し透過性を有する、a−Seの界面結晶化を抑制する抑制層が設けられていることを特徴とするものである。
【0017】
なお、この抑制層は、界面結晶化を抑制する層であることに加えて、第1電極層から直接電荷が注入されるのを抑制するブロッキング性能や、第1電極層と読取用光導電層の熱膨張率差による熱ストレスを和らげる緩衝性を有すると共に、第1電極層と読取用光導電層を密着強化する層であることが好ましい。
【0018】
ここで、前記第1電極層の電極が、多数の線状電極を、その長手方向と直交する方向に配列してなるストライプ電極である場合には、抑制層が、各線状電極の上面および側面に亘って連続的に設けられていることが望ましい。
【0019】
「上面」とは、読取用光導電層側の面を意味する。また、「側面」とは、線状電極の長手方向に延びる2つの側面を意味する。これにより、各線状電極の表面全てが抑制層で覆われることとなる。
【0020】
なお、界面結晶化を抑制するとの観点からは、上述のように、各線状電極の表面全てを抑制層で覆えば足りるが、製造容易性の観点からは、各線状電極間の支持体の上面にも抑制層が形成されていてもよく、この場合、各線状電極の上面および側面と支持体の上面に亘って連続的に抑制層が設けられることとなる。
【0021】
抑制層としては、具体的には、前記透過性やブロッキング性能などを持たせつつ、界面結晶化を抑制する層として機能させるのがよく、このためには、該抑制層形成材料を、透明且つブロッキング性能が良好で弾力性を有する、ポリアミド、ポリイミド、ポリエステル、ポリビニルブチラール、ポリビニルピロリドン、ポリウレタン、ポリメチルメタクリレート、ポリカーボネートなどの絶縁性有機ポリマー材料、あるいは有機バインダーと低分子有機材料からなる混合膜などの有機薄膜材料とするのが望ましい。
【0022】
また、抑制層の厚さは、0.05〜5μm程度にするとよいが、熱ストレス緩衝の点では、0.1〜5μmの範囲が好ましい一方、残像のない良好なブロッキング性能のためには、0.05〜0.5μmの範囲が好ましく、両者のバランスの上では、0.1〜0.5μmの範囲とするのが望ましい。
【0023】
なお、第1の画像記録媒体は、上記各層が上記の順番で積層されていればよく、例えば、後述する電荷輸送層などの他の層が上記各層の間に積層されていてもよい。
【0024】
本発明の第2の画像記録媒体は、読取用の電磁波に対して透過性を有する支持体上に、読取用の電磁波に対して透過性を有する第1電極層(読取光側電極層)と、a−Seを主成分とする、読取用の電磁波の照射を受けることにより導電性を呈する読取用光導電層と、記録用光導電層で発生した潜像極性電荷を蓄積する蓄電部と、記録用の電磁波の照射を受けることにより導電性を呈する記録用光導電層と、記録用の電磁波に対し透過性を有する第2電極層(記録光側電極層)とがこの順に積層されてなる画像記録媒体において、読取用光導電層全体に、または読取用光導電層の第1電極層の電極との界面に、a−Seの界面結晶化を抑制する物質がドープされていることを特徴とするものである。
【0025】
ここで、読取用光導電層における前記界面に界面結晶化を抑制する物質をドープした場合には、読取用の電磁波の入射面に最も近い場所に界面結晶化を抑制する薄層が実質的に設けられたことになる。
【0026】
上記a−Seの界面結晶化を抑制する物質としては、例えば、As(砒素)が好ましく、そのドープ量は、0.5〜40atom%、さらに好ましくは5〜40atom%であることが望ましい。ドープ量をこのような範囲とするのは、Asのドープ量が少ないと界面のSe結晶化の防止効果が少なく、逆にAsのドープ量が40%を超えるとSe結晶化とは別の結晶化、例えば、AsSe結晶化などが起きやすくなるなど悪影響がでるためである。
【0027】
なお、読取用光導電層の厚さが、0.05〜0.5μmであれば、該読取用光導電層全体にAsを0.5〜40atom%程度ドープしても、読出し応答に大きな影響を与えない。読取用光導電層の厚さがこれ以上のときには、読取用光導電層内の第1電極層の電極との界面にのみAsを0.5〜40atom%程度ドープすることが好ましい。
【0028】
また、Asドープにより正孔あるいは電子トラップが増加するが、これは後述するように、前露光によって生じる界面の光疲労効果の持続性を高め、オフセットノイズの安定化に好都合となる場合がある。
【0029】
この場合、Asのドープ量によって正孔トラップあるいは電子トラップの増加量とそのバランスを変えることができる。As5atom%程度では正孔トラップが多くなるが、As濃度がさらに上がると電子トラップが支配的となっていき、Asのドープ量が40atom%付近ではa―AsSeの性質に近くなり電子トラップが多く、電子はほとんど移動できなくなり、正孔のみが移動できるようになる。これらのAsドープ量は、第1電極層の材料や、第1電極層と読取用光導電層との間に設けられるブロッキング層の材料などに応じて調整するとよい。
【0030】
また、Asに加えてClを1〜1000ppm(atomベース;以下同様)程度ドープすれば、電子トラップを増すことができる。また、Asに加えてNaを1〜1000ppm程度ドープすれば、正孔トラップを増すことができる。これらの追加するドープ材や量は、第1電極層の電極材料や、第1電極層と読取用光導電層との間に設けられるブロッキング層の材料などに応じて調整するとよい。
【0031】
本発明の製造方法は、上述のような構成の画像記録媒体のうち、第1電極層の電極がストライプ電極であると共に前記抑制層を有するものを製造する方法であり、該抑制層を、線状電極の長手方向に抑制層形成材料を塗布することにより形成することを特徴とするものである。
【0032】
ここで、線状電極の長手方向に抑制層形成材料を塗布するに際しては、ガラスや有機ポリマーなどの支持体上にストライプ電極を形成した後に、例えば、ディップ法、スプレー法、バーコーティング法、スクリーンコーティング法などを用いるとよい。特に、ディップ法は、溶剤中にストライプ電極が形成された支持体を含浸し引き上げるという操作を繰り返すだけでよく、大サイズものを比較的容易に製造できる。
【0033】
なお、第2の画像記録媒体は、上記各層が上記の順番で積層されていればよく、例えば、後述する電荷輸送層などの他の層が上記各層の間に積層されていてもよい。
【0034】
本発明の第3の画像記録媒体は、読取用の電磁波に対して透過性を有する支持体に、読取用の電磁波に対して透過性を有する第1電極層と、a−Seを主成分とする、読取用の電磁波の照射を受けることにより導電性を呈する読取用光導電層と、記録用光導電層で発生した潜像極性電荷を蓄積する蓄電部と、記録用の電磁波の照射を受けることにより導電性を呈する記録用光導電層と、記録用の電磁波に対し透過性を有する第2電極層とがこの順に積層されてなる画像記録媒体において、第1電極層と読取用光導電層との間に、読取用の電磁波に対する透過性を有し、かつ第1電極層に帯電する電荷の読取用光導電層への注入に対してブロッキング性能を有するとともにa−Seの界面結晶化を抑制する抑制層が設けられ、読取用光導電層全体に、または読取用光導電層の抑制層との界面に、a−Seの界面結晶化を抑制する物質および第1電極層に帯電する電荷と逆極性の電荷のトラップを増加せしめ、かつ同極性の電荷のトラップを減少せしめる物質がドープされていることを特徴とするものである。
【0035】
ここで、第3の画像記録媒体の上記抑制層の好ましい形態は第1の画像記録媒体における抑制層と材料および製造方法は同様である。第3の画像記録媒体における抑制層は、第1の画像記録媒体における抑制層と同様にa−Seの界面結晶化を抑制するとともに第1電極層に帯電する電荷の読取用光導電層への注入に対してブロッキング性能を有する。このブロッキング性能を有するということは、読取光側電極層から後述する読取用光導電層のブロッキング層との界面に形成される空間電荷層へ電荷が移動するのを妨げ、読取用光導電層のブロッキング層との界面に安定した空間電荷層を形成する性能を有することになる。
【0036】
また、読取用光導電層全体に、または読取用光導電層の抑制層との界面に、a−Seの界面結晶化を抑制する物質および第1電極層に帯電する電荷と逆極性の電荷のトラップを増加せしめ、かつ同極性の電荷のトラップを減少せしめる物質をドープしたとき、第2の画像記録媒体と同様の機能を果たす他、さらに、記録時において第1電極層に正の電荷、第2電極層に負の電荷が帯電される場合には、読取用光導電層の全体または抑制層との界面に負の空間電荷層を形成し、第1の電極層に負の電荷、第2の電極層に正の電荷が帯電される場合には、読取用光導電層の全体または抑制層との界面に正の空間電荷層を形成する機能をも果たす。
【0037】
また、上記界面結晶化を抑制する物質としてはAsを使用することができ、3〜40atom%ドープすることが好ましい。
【0038】
また、第1電極層に帯電する電荷が正電荷である際には、第1電極層に帯電する電荷と逆極性の電荷のトラップを増加せしめ、かつ同極性の電荷のトラップを減少せしめる物質としてClを利用することができ、1〜1000ppmドープすることが好ましい。
【0039】
また、第1電極層に帯電する電荷が負電荷である際には、第1電極層に帯電する電荷と逆極性の電荷のトラップを増加せしめ、かつ同極性の電荷のトラップを減少せしめる物質としてNaを利用することができ、1〜1000ppmドープすることが好ましい。
【0040】
また、上記ドープされる領域の厚さは0.01〜0.1μmとするのが好ましい。
【0041】
ここで、上記「ドープされる領域」とは、a−Seの界面結晶化を抑制する物質および第1電極層に帯電する電荷と逆極性の電荷のトラップを増加せしめ、かつ同極性の電荷のトラップを減少せしめる物質の両方が存在する領域を意味する。
【0042】
また、読取用の電磁波の波長は350〜550nmとするのが好ましい。
【0043】
なお、第3の画像記録媒体は、上記各層が上記の順番で積層されていればよく、例えば、後述する電荷輸送層などの他の層が上記各層の間に積層されていてもよい。
【0044】
【発明の効果】
本発明の第1の画像記録媒体によれば、第1電極層と読取用光導電層との間にa−Seの界面結晶化を抑制する抑制層を設けるようにしたので、ITOなどの電極材料とa−Seとの界面に、有機薄膜などからなる抑制層があることにより、電極材料とa−Seとの直接接触を妨げることができ、界面におけるSeの化学変化を防止し、界面結晶化を防ぐ効果が得られる。したがって、界面結晶化による電極からの電荷注入が増えることがなく、S/N低下の問題を解消できる。
【0045】
また、この抑制層は、ブロッキング層として機能させて電極からの直接注入によるS/N低下を防止するようにしたり、あるいは、読取用光導電層と読取光側電極層の間の熱ストレスを和らげる緩衝層として機能させ、熱ストレスによって、読取用光導電層が破れる、支持体が割れる、あるいは両者が物理的に剥離するなどの、構造的破壊の問題が生じることがないようにすることもできる。
【0046】
また、第1電極層の電極がストライプ電極の場合にも、抑制層が、線状電極の上面および側面に亘って連続的に形成されているものとすれば、各線状電極の表面全てを抑制層で覆うことができ、前述同様に、界面結晶化を確実に防ぐことができる。
【0047】
また、有機ポリマー材料などを線状電極の長手方向に塗布するという、簡単な製膜方法を用いて、各線状電極の表面全てを確実にカバーする薄膜を形成することができる。
【0048】
一方、本発明の第2の画像記録媒体によれば、読取用光導電層全体にa−Seの界面結晶化を抑制する物質をドープしたので、読取用光導電層の第1電極層との界面におけるSeの化学変化を防止し、界面結晶化を防ぐ効果が得られ、局所的な光導電特性に変化によるS/N低下の問題を解消できる。また、読取用光導電層と第1電極層の電極との界面に、a−Seの界面結晶化を抑制する物質をドープした場合には、読取用の電磁波の最も入射側に、界面結晶化を抑制する薄層を設けたのと実質的に等価となり、上記同様の効果を得ることができる。
【0049】
また、一般的には、該ドープにより、界面では、正孔あるいは電子のトラップが増加し、光導電層本来の機能が低下するが、前記トラップの増加により光疲労効果の持続性を高めることができるので、付加的効果として、オフセットノイズの安定化に都合がよくなることもある。なお、Asに加えて、ClやNaを1〜1000ppm程度ドープすることにより、光疲労効果の持続性を都合のよい状態に調整することができる。
【0050】
また、本発明の第3の画像記録媒体によれば、第1電極層と読取用光導電層との間に、読取用の電磁波に対する透過性を有し、かつ第1電極層に帯電する電荷の読取用光導電層への注入に対してブロッキング性能を有するとともにa−Seの界面結晶化を抑制する抑制層を設け、読取用光導電層全体に、または読取用光導電層の抑制層との界面に、a−Seの界面結晶化を抑制する物質および第1電極層に帯電する電荷と逆極性の電荷のトラップを増加せしめ、かつ同極性の電荷のトラップを減少せしめる物質をドープするようにしたので、上記第1および第2の画像記録媒体と同様の効果を得ることができるとともに、さらに読取用光導電層内に負または正の空間電荷層を形成することにより電界強度を強めて電荷対の発生効率を向上することができるので、読取光に対する感度の向上を図ることができる。
【0051】
また、界面結晶化を抑制する物質としてAsを使用し、3〜40atom%ドープした場合には、光導電層本来の機能を低下させることなくより効率よく上記空間電荷層を形成することができるので、より電荷対の発生効率の向上を図ることができる。
【0052】
また、第1電極層に帯電する電荷が正電荷である際、界面結晶化を抑制する物質としてAsを使用し、第1電極層に帯電する電荷と逆極性の電荷のトラップを増加せしめ、かつ同極性の電荷のトラップを減少せしめる物質としてClまたはNaを使用し、ClまたはNaを1〜1000ppmドープした場合には、光導電層本来の機能を低下させることなく、より効率よく上記負または正の空間電荷層を形成することができるので、より電荷対の発生効率の向上を図ることができる。
【0053】
また、a−Seの界面結晶化を抑制する物質および第1電極層に帯電する電荷と逆極性の電荷のトラップを増加せしめ、かつ同極性の電荷のトラップを減少せしめる物質がドープされる領域の厚さを0.01〜0.1μmとした場合には、ドープされる領域の厚さが、読取光の読取用光導電層に対する吸収の深さと同程度以下となるのでより効率よく電荷対の発生効率を向上することができる。
【0054】
また、読取用の電磁波の波長を350〜550nmとした場合には、上記同様より効率よく電荷対の発生効率を向上することができる。
【0055】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。図1は本発明の画像記録媒体の一態様である静電記録体の第1の実施の形態の概略を示す斜視図(A)およびその一部の断面図(B)である。
【0056】
この第1の実施の形態の静電記録体10は、記録光(例えばX線などの放射線)に対して透過性を有する記録光側電極層1、この記録光側電極層1を透過した記録光の照射を受けることにより導電性を呈する記録用光導電層2、記録光側電極層1に帯電される電荷(潜像極性電荷)に対しては略絶縁体として作用し、かつ、該潜像極性電荷と逆極性の電荷(輸送極性電荷)に対しては略導電体として作用する電荷輸送層3、読取光(例えば波長550nm以下の青色域光)の照射を受けることにより導電性を呈する読取用光導電層4、読取光に対して透過性を有する読取光側電極層5、読取光に対して透過性を有する支持体8を、この順に配列してなるものである。記録用光導電層2と電荷輸送層3との界面に、記録用光導電層2内で発生した潜像極性電荷を蓄積する蓄電部23が形成される。なお、以下の各実施形態においては、記録光側電極層1に負電荷を、読取光側電極層5に正電荷を帯電させて、記録用光導電層2と電荷輸送層3との界面に形成される蓄電部23に潜像極性電荷としての負電荷を蓄積せしめると共に、電荷輸送層3を、潜像極性電荷としての負電荷の移動度よりも、その逆極性となる輸送極性電荷としての正電荷の移動度の方が大きい、いわゆる正孔輸送層として機能させる静電記録体ついて説明する。
【0057】
この静電記録体10を製造する際には、上述した順序とは逆に、支持体8の上に読取光側電極層5を製膜(積層)し、その後、順次、読取用光導電層4、電荷輸送層3、記録用光導電層2、記録光側電極層1を製膜(積層)していく。
【0058】
また、この静電記録体10の大きさ(面積)は、例えば、20×20cm以上、特に胸部X線撮影用の場合、有効サイズ43×43cm程度とする。
【0059】
支持体8としては、読取光に対して透明であることに加えて、環境の温度変化に対して変形可能であり、また支持体8の熱膨張率が読取用光導電層4の物質の熱膨張率の数分の1〜数倍以内、好ましくは両者の熱膨張率が比較的近い物質を使用する。後述するように、本実施形態では読取用光導電層4としてa−Se(アモルファスセレン)を使用するので、Seの熱膨張率が3.68×10−5/K(40℃)であることを考慮して、熱膨張率が1.0〜10.0×10−5/K(40℃)、より好ましくは1.2〜6.2×10−5/K(40℃)、さらに好ましくは、2.2〜5.2×10−5/K(40℃)である物質を使用する。変形可能であり、また熱膨張率がこの範囲の物質としては、有機ポリマー材料を使用することができる。
【0060】
有機ポリマー材料の具体的な例としては、熱膨張率が7.0×10−5/K(40℃)のポリカーボネートや、熱膨張率が5.0×10−5/K(40℃)のポリメチルメタクリレート(PMMA)などを使用することができる。
【0061】
これによって、基板としての支持体8と読取用光導電層4(Se膜)との熱膨張のマッチングがとれ、特別な環境下、例えば寒冷気候条件下での船舶輸送中などにおいて、大きな温度サイクルを受けても、支持体8と読取用光導電層4との界面で熱ストレスが生じて、両者が物理的に剥離する、読取用光導電層4(Se膜)が破れる、あるいは支持体8が割れるなど、熱膨張差による破壊の問題が生じることがない。さらに、ガラス基板に比べて有機ポリマー材料は衝撃に強いというメリットがある。
【0062】
記録光側電極層1および読取光側電極層5としては、それぞれ記録光あるいは読取光に対して透過性を有するものであればよく、例えば、共に、ネサ皮膜(SnO)、ITO(Indium Tin Oxide)、アモルファス状光透過性酸化膜であるIDIXO(Idemitsu Indium X-metal Oxide ;出光興産(株))などを50〜200nm厚にして用いることができる。なお、記録光としてX線を使用し、記録光側電極層1側から該X線を照射して画像を記録する場合、可視光に対する透過性が不要であるから、記録光側電極層1は、例えば100nm厚のAlやAuなどを用いることもできる。
【0063】
なお、各電極層1,5は、本実施形態のように、その全体が電極のみからなるもの(いわゆる平板電極)であってもよいし、例えば、線状電極を、その長手方向と直行する方向に配列してなるストライプ電極を有するものであってもよい。後者の場合において、各線状電極の間に絶縁物が配される場合には、線状電極と絶縁物とにより電極層が構成される一方、後述する第3の実施の形態のように、絶縁物が配されることなく、次の層が直ちに積層される場合には、ストライプ電極のみで電極層が構成される。
【0064】
記録用光導電層2としては、記録光の照射を受けることにより導電性を呈するものであればよく、例えば、a−Se,PbO,PbIなどの酸化鉛(II)やヨウ化鉛(II),Bi12(Ge,Si)O20,Bi/有機ポリマーナノコンポジットなどのうち少なくとも1つを主成分とする光導電性物質が適当であるが、本実施の形態では、放射線に対して比較的量子効率が高く、また暗抵抗が高いなどの点で優れているa−Seを使用する。
【0065】
このa−Seを主成分とする記録用光導電層2の厚さは、記録光を十分に吸収できるようにするため、50μm以上1000μm以下であるのが好ましい。
【0066】
電荷輸送層3としては、記録光側電極層1に帯電される負電荷の移動度と、その逆極性となる正電荷の移動度の差が大きい程良く(例えば10以上、望ましくは10以上)、ポリN−ビニルカルバゾール(PVK)、N,N'−ジフェニル−N,N'−ビス(3−メチルフェニル)−〔1,1'−ビフェニル〕−4,4'−ジアミン(TPD)やディスコティック液晶などの有機系化合物、或いはTPDのポリマー(ポリカーボネート、ポリスチレン、PUK)分散物,Clを10〜200ppmドープしたa−Seなどの半導体物質が適当である。特に、有機系化合物(PVK,TPD、ディスコティック液晶など)は光不感性を有するため好ましく、また、誘電率が一般に小さいため電荷輸送層3と読取用光導電層4の容量が小さくなり読取時の信号取り出し効率を大きくすることができる。なお、「光不感性を有する」とは、記録光や読取光の照射を受けても殆ど導電性を呈するものでないことを意味する。
【0067】
また、例えば、その膜厚垂直方向の電荷移動度を膜厚水平方向の電荷移動度よりも大きいものを使用すれば、輸送極性電荷が厚み方向には高速で移動でき横方向には移動しにくい電荷輸送層とすることができるので、鮮鋭度を向上させることができる。具体的な材料としては、ディスコティック液晶,ヘキサペンチロキシトリフェニレン(hexapentyloxytriphenylene(Physical Review LETTERS 70.4,1933参照)),中心部コアがπ共役縮合環あるいは遷移金属を含有するディスコティック液晶群(EKISHO VOL No.1 1997 P55参照)などが好適である。
【0068】
また、この電荷輸送層3を、記録用光導電層2に帯電される電荷すなわち潜像極性電荷と同極性の電荷に対しては略絶縁体として作用する性質を有する材料からなる第1電荷輸送層と、潜像極性電荷と逆極性の電荷すなわち輸送極性電荷に対して略導電体として作用する性質を有する材料からなる第2電荷輸送層とを少なくとも含み、第1電荷輸送層が記録用光導電層2側となり第2電荷輸送層が読取用光導電層4側となるように積層した積層型正孔輸送層とすれば、第2電荷輸送層に輸送極性電荷の高速輸送性を受け持たせ、第1電荷輸送層に潜像極性電荷に対して強い絶縁性を受け持たせることができるので、残像および読取りの応答速度の点で優れた、電荷輸送層として理想的なものにすることができる。具体的には、第2電荷輸送層の方が第1電荷輸送層よりも膜厚が厚くなるように、第1電荷輸送層を有機物であるPVKあるいはTPDのうち少なくとも一方からなる0.1〜1μm厚の層とし、第2電荷輸送層をClが10〜200ppmドープされた5〜30μm厚のa−Se層とすればよい。
【0069】
また、PVKからなる層とTPDからなる層を比較すると、PVKからなる層は、潜像極性電荷(上記例では負極性)と同極性の電荷に対しては略絶縁体として作用する性質がTPDからなる層より強く、TPDからなる層は、輸送極性電荷(上記例では正極性)に対して略導電体として作用する性質がPVKからなる層より強いので、TPDからなる層とPVKからなる層とを、TPDからなる層が読取用光導電層側となりPVKからなる層が記録用光導電層側となるように積層した電荷輸送層としてもよい。
【0070】
なお、2層に限らず、さらに複数の層からなるものとしてもよいが、この場合に各層を積層する際には、各層の上記各性質を夫々比較したときに、潜像極性電荷と同極性の電荷に対しては略絶縁体として作用する性質が比較的強い層が記録用光導電層側となり、輸送極性電荷に対して略導電体として作用する性質が比較的強い層が読取用光導電層側となるように積層すればよい。
【0071】
読取用光導電層4としては、読取光の照射を受けることにより導電性を呈するものであればよく、例えば、a−Se,Se−Te,Se−As−Te,無金属フタロシアニン,金属フタロシアニン,MgPc(Magnesium phtalocyanine),VoPc(phaseII of Vanadyl phthalocyanine),CuPc(Cupper phtalocyanine)などのうち少なくとも1つを主成分とする光導電性物質が好適である。
【0072】
また、近紫外から青の領域の波長(300〜550nm)の電磁波に対して高い感度を有し、赤の領域の波長(700nm以上)の電磁波に対して低い感度を有するもの、具体的には、a−Se,PbI,Bi12(Ge,Si)O20,ペリレンビスイミド(R=n−プロピル),ペリレンビスイミド(R=n−ネオペンチル)のうち少なくとも1つを主成分とする光導電性物質を使用すれば、バンドギャップが大きく熱による暗電流の発生が小さい読取用光導電層4にすることができるので、読取時に、近紫外から青の領域の波長の電磁波を走査露光するようにすれば、暗電流によるノイズを小さくすることができる。
【0073】
また、電荷輸送層3と読取用光導電層4との厚さの合計は記録用光導電層2の厚さの1/2以下であることが望ましく、薄ければ薄いほど(例えば、1/10以下、さらには1/20以下など)読取時の応答性が向上する。
【0074】
特に、0.05〜0.5μm厚のa−Seとすれば、暗抵抗が非常に高くなるので好ましい。以上のことから、本実施形態では、読取用光導電層4を、a−Seを主成分とする0.05〜0.5μm厚の層とする。
【0075】
なお、電荷輸送層3における「Clを10〜200ppmドープしたa−Se」からなる5〜30μm厚の第2正孔輪送層を、5〜30μm厚のa−Seで置き換え、読取用光導電層4を兼ねる構成とすることもできる。また、この構成の場合、静電記録体10の製造が比較的簡便となる。
【0076】
ここで、上述したようにアモルファス状態のセレン膜は、製膜時の蒸着過程において、他の物質との界面において界面結晶化が進行するという問題を有する。本発明の静電記録体10も、支持体8上に読取光側電極層5を製膜した後に読取用光導電層4を製膜するので、読取用光導電層4の蒸着過程において、電極材料とa−Seとの界面において界面結晶化が進行し、電極からの電荷注入が増えるためにS/Nが低下するという問題が生じ得る。電極材料として、透明酸化被膜、特にITOを用いた場合には、電極材料とa−Seの界面での界面結晶化が顕著に進行し、S/N低下が著しくなる。
【0077】
ところが、本発明の静電記録体10には、読取用光導電層4の読取光側電極層5の電極との界面に、読取用光導電層4をなすa−Seの界面結晶化を抑制する物質がドープされ、該ドープにより、実質的に、界面結晶化を抑制する薄層が形成されている。
【0078】
本実施の形態においては、界面結晶化を抑制する物質として、As(砒素)を用いており、そのドープ量は0.5〜40%atom程度としている。ドープ量をこのような範囲とするのは、Asのドープ量が少ないと界面のSe結晶化の防止効果が少なく、逆にAsのドープ量が40%を超えるとSe結晶化とは別の結晶化、例えば、AsSe結晶化などが起きやすくなるなど悪影響がでるためである。なお、Asに限らず、界面結晶化を抑制する性質を有していればその他の物質をドープしてもよい。
【0079】
なお、読取用光導電層4の厚さを0.05〜0.5μmにすれば、暗抵抗が高く、しかも読取用光導電層4全体にAsを0.5〜40atom%程度ドープしても、読出し応答に大きな影響を与えない。一方、読取用光導電層4の厚さがこれ以上のときには、読取用光導電層4内の読取光側電極層5との界面にのみドープするようにした方が好ましい。
【0080】
なお、図2に示すように、読取光側電極層5の電極を、多数のエレメント(線状電極)6aを配列してなるストライプ電極6とする場合には、読取用光導電層4と各エレメント6aの上面および側面に亘る界面にAsをドープし、界面結晶化を確実に防ぐようにする。なお、段差部分でドープ量に多少差があってもよく、この場合エレメント6aの上面における界面でのドープ量が0.5〜40atom%程度であればよい。
【0081】
ところで、読取光側電極層5の電極とa−Seとが直接接触すると、両者の界面に障壁電界が形成され、記録光の照射がない領域(放射線の線量が0mR領域)であっても、読取光の照射によって電流が流れ、いわゆる光起電力ノイズが発生しオフセットノイズが生じることも知られている。
【0082】
この光起電力ノイズを抑制するために、本願出願人は、特願平11-194546号において、両電極層1,5の電極を同電位にした状態で読取用光導電層4に前露光光を照射する空読みを行ない、該空読みを停止した後、両電極間に記録用電圧を印加した状態で記録光を照射して静電潜像の記録を行なうことにより、前露光光が照射された、読取用光導電層4と読取光側電極層5との界面である光入射界面(電子−ホールペア形成領域)に、光疲労状態(トラップ蓄積状態)を一時的に形成し、読取光を照射した際に生じ得る光起電力ノイズを該光疲労状態によって低減すると共に安定化する方法を提案している。
【0083】
上述したように、本実施の形態の静電記録体10における読取用光導電層4の読取光側電極層5(詳しくは電極)との界面、すなわち光入射界面には、Asがドープされており、該ドープにより、該光入射界面では正孔および電子のトラップが増加している。ここで、前露光は、光の当たった界面に光疲労状態(トラップ蓄積状態)を形成することにより、光起電力ノイズを抑制しようとするものであるから、前記Asドープによる正孔あるいは電子トラップの増加があった方が、前露光によって生じる界面の光疲労効果を持続させられるので、オフセットノイズの安定化にむしろ都合がよいということになる。なお、キャリア走行性は、ドープされていない部分が担うことになる。
【0084】
ただし、Asドープによる正孔および電子のトラップ増加量をコントロールすることは難しく、Asドープだけで前記光疲労効果の持続を都合のよい状態にすることは容易ではない。しかしながら、この場合、Asに加えて、例えば、Clを1〜1000ppm程度ドープすれば電子トラップを増すことができ、また、Naを1〜1000ppm程度ドープすれば正孔トラップを増すことができるから、これらの追加するドープ材や量をコントロールすることで、前記光疲労効果の持続を都合のよい状態にすることができる。なお、ClとNaのいずれをどの程度ドープするかは、読取光側電極層5の電極材料に応じて調整するとよい。また後述するように、読取光側電極層5と読取用光導電層4との間にブロッキング層を設ける場合には、該ブロッキング層の材料に応じても調整するとよい。
【0085】
なお、アモルファス状態のセレン膜は、時間とともに結晶化が進行し、その特性、特に暗抵抗特性が低下するという問題、いわゆるバルク結晶化の問題を生じやすく、該バルク結晶化は、特に非ドープ純a−Seの場合に顕著に現れ、また、温度が高いとより速く進行するということもよく知られている。
【0086】
このため、記録用光導電層2、読取用光導電層4、および電荷輸送層3として、非ドープ純a−Seを多く使用したときには、静電記録体10は、使用温度条件および寿命が厳しく制限されるという問題も生じる。
【0087】
一方、よく知られているように、バルク結晶化を防止するために、所定の物質、特にAsをドープすると、該バルク結晶化の進行を遅くすることができる。ところが、多量のAsをa−Seにドープすると、例えば、AsSe結晶化が起きやすくなるなど悪影響がでるため、0.1〜0.5atom%程度の微量ドープ、より好ましくは0.33atom%程度とする。このドープ量は、上述した界面結晶化を抑制するためのドープ量よりも少なく、少なくとも1/10以下とするのが好ましい。
【0088】
また、前記弊害を積極的に防止するために、Asをドープすると同時に、10〜50ppmのClを微量ドープする。このとき、文献“Time-of-Flight Study of Compensation Mechanism in a-Se Alloys”(JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY/ Vol.41 ,Number 2 Mar./Apr. 1997)に記載されているように、純a−Seに対し、0.33atom%のAsをドープすると同時に、約30〜40ppmのClを添加すると、Asドープによる正孔トラップ増加をClドープにより理想的に補償することができるので、両者をドープする際には、Asが0.33atom%でClが30〜40ppmの比を維持するようにすることが望ましい。
【0089】
このような微量ドープを純a−Seに対して施すという手法を、a−Seを主成分とする記録用光導電層2や読取用光導電層4に施すことにより、大きな弊害を生じることなく、S/Nがよく、比較的高温での使用に耐えることができ、長寿命の画像記録媒体を実現することができる。なお、読取用光導電層4と読取光側電極層5との界面に上記界面結晶化を抑制するAsドープなどを行なうと共に、読取用光導電層4にバルク結晶化を抑制するAsドープなどを行なうこともできる。この際には、前記界面と読取用光導電層4層内部とでドープ量が異なるだけである。また、バルクおよび界面の両結晶化の臨界点である0.5atom%でAsドープを行なった場合には、前記界面においてはバルクおよび界面の両結晶化を抑制することができる。
【0090】
一方、電荷輸送層3を正孔輸送層として機能させる場合、Asをドープ材として用いると、正孔トラップの増加により、正孔輸送層としての機能が低下し、場合によっては、その機能を失うことになる。したがって、正孔輸送層として機能する電荷輸送層3に対しては、バルク結晶化防止のために、単にAsのみをドープすることは好ましくない。一方、上述のように、Asドープによる正孔トラップ増加をClドープにより補償することができるので、正孔輸送層として機能する、Clを10〜200ppmドープしたa−Seからなる電荷輸送層3のバルク結晶化防止のためには、Asを0.1〜0.5atom%、Clを20〜250ppmドープすれば、正孔輸送層としての機能を低下させることなく、バルク結晶化の進行を遅らせることができる。なお、この場合においても、Asが0.33atom%でClが30〜40ppmの比を維持するようにすると、正孔輸送層としての機能を殆ど低下させることがない。
【0091】
次に、上記構造の静電記録体10に画像情報を静電潜像として記録し、さらに記録された静電潜像を読み出す基本的な方法について簡単に説明する。図3は静電記録体10を用いた静電潜像記録装置と静電潜像読取装置を便宜的に一体的に表した概略図であり、記録装置と読取装置とをあわせて記録読取システムという。なお、図では、支持体8を省略して示している。
【0092】
この記録読取システムは、静電記録体10と、記録光照射手段90と、接続手段S1と、電源70と、接続手段S2および検出アンプ81からなる電流検出回路80と、読取光走査手段92とからなり、静電潜像記録装置部分は静電記録体10、電源70、記録光照射手段90、および接続手段S1からなり、静電潜像読取装置部分は静電記録体10、電流検出回路80、および接続手段S2からなる。
【0093】
検出アンプ81はオペアンプ81aと帰還抵抗81bとからなる、いわゆる電流電圧変換回路となっている。なお、検出アンプ81は、このようなものに限らず、例えばチャージアンプ構成としてもよい。
【0094】
静電記録体10の記録光側電極層1は接続手段S1を介して電源70の負極に接続されるとともに、接続手段S2の一端(出力側)にも接続されている。接続手段S2の他端の一方はオペアンプ81aの反転入力端子(−)に接続され、静電記録体10の読取光側電極層5、電源70の正極、接続手段S2の他端の他方並びにオペアンプ81aの非反転入力端子(+)は接地されている。
【0095】
記録光側電極層1の上面には被写体9が配設されており、被写体9は放射線L1に対して透過性を有する部分9aと透過性を有しない遮断部(遮光部)9bが存在する。記録光照射手段90はX線などの放射線L1を被写体9に一様に***するものであり、読取光走査手段92はレーザ光などの読取光L2を図2中の矢印方向へ走査露光するものであり、読取光L2は細径に収束されたビーム形状をしていることが望ましい。
【0096】
静電記録体10に静電潜像を記録する際には、先ず、接続手段S2を開放状態にして、接続手段S1をオンし記録光側電極層1と読取光側電極層5との間に電源70による直流電圧Edを印加し、電源70から負の電荷を記録光側電極層1に、正の電荷を読取光側電極層5に帯電させる。これにより、静電記録体10には記録光側電極層1と5との間に平行な電場(電界)が形成される。
【0097】
次に記録光照射手段90から放射線L1を被写体9に向けて一様に***する。放射線L1は被写体9の透過部9aを透過し、さらに記録光側電極層1をも透過する。記録用光導電層2はこの透過した放射線L1(この被写体9以降の放射線が記録光となる)を受け、放射線L1の線量(光量)に応じた電子(負電荷;本例の潜像極性電荷)とホール(正電荷;本例の輸送極性電荷)の電荷対が生じ、導電性を呈するようになる。
【0098】
記録用光導電層2中に生じた正電荷は該光導電層2中を記録光側電極層1に向かって高速に移動し、記録光側電極層1と光導電層2との界面で記録光側電極層1に帯電している負電荷と電荷再結合して消滅する。一方、光導電層2中に生じた負電荷は光導電層2中を電荷輸送層3に向かって移動する。電荷輸送層3は記録光側電極層1に帯電した電荷と同じ極性の潜像極性電荷(本例では負電荷)に対して絶縁体として作用するものであるから、光導電層2中を移動してきた負電荷は、光導電層2と電荷輸送層3との界面に形成される蓄電部23で停止し、この界面(蓄電部23)に蓄積される。蓄積される電荷量は光導電層2中に生じる負電荷の量、すなわち、放射線L1の被写体9を透過した量によって定まる。一方、放射線L1は被写体9の遮光部9bを透過しないから、静電記録体10の遮光部9bの下部にあたる部分は何ら変化を生じない。
【0099】
このようにして、被写体9に放射線L1を***することにより、被写体像に応じた電荷を記録用光導電層2と電荷輸送層3との界面に形成される蓄電部23に蓄積することができるようになる。尚、この蓄積せしめられた潜像極性電荷が担持する被写体像を静電潜像という。上記説明で明らかなように、本発明にかかる静電記録体10に静電潜像を記録する装置の構成は極めて簡単なものであり、記録作業も極めて簡単なものとなる。
【0100】
このようにして記録した静電潜像を読み取る際には、接続手段S1を開放し電源供給を停止すると共に、接続手段S2を一旦接地側に接続し、静電記録体10の両電極層1,5を同電位にして電荷の再配列を行なった後に、接続手段S2を検出アンプ81側に接続する。
【0101】
次に、読取光走査手段92により、読取光L2で静電記録体10の読取光側電極層5側を走査する。読取光L2は読取光側電極層5を透過し、読取光L2が照射された読取用光導電層4は該走査に応じて導電性を呈するようになる。これは記録用光導電層2が放射線L1の照射を受けて正負の電荷対が生じることにより導電性を呈するのと同様に、読取光L2の照射を受けて正負の電荷対が生じることに依存するものである。
【0102】
潜像極性電荷が蓄積されている蓄電部23(記録用光導電層2と電荷輸送層3との界面)と読取光側電極層5との間には、読取用光導電層4と電荷輸送層3の合計厚さと、潜像極性電荷の量に応じて、電界が形成されている。ここで、電荷輸送層3は輸送極性電荷(本例では正電荷)に対しては導電体として作用するものであるから、読取用光導電層4に生じた正電荷は蓄電部23の潜像極性電荷に引きつけられるように電荷輸送層3の中を急速に移動し、蓄電部23で潜像極性電荷と電荷再結合して消滅する。一方、読取用光導電層4に生じた負電荷は読取光側電極層5の正電荷と電荷再結合して消滅する。光導電層4は読取光L2により十分な光量でもって走査されており、蓄電部23に蓄積されている潜像極性電荷が担持する静電潜像が全て電荷再結合により消滅せしめられる。このように、静電記録体10に蓄積されていた電荷が消滅するということは、静電記録体10内に電荷の移動による電流が流れたことを意味する。静電記録体10には電流検出回路80が接続されており、この電流を外部に取り出して検出アンプ81で検出する(電圧信号に変換する)ことにより、画像信号が得られる。
【0103】
なお、読取用光導電層4と電荷輸送層3との合計厚さ(両者の厚さの和)が記録用光導電層2の厚さに較べて薄ければ薄いほど電荷の移動が急速に行なわれるようになるので、読取りを高速に行なうことができるようになる。さらに、電荷輸送層3における負電荷の移動度が正電荷の移動度より十分小さければ(例えば1/10以下)、蓄積電荷の蓄積性が向上し、静電潜像の保存性が向上することとなる。
【0104】
次に、静電記録体の第2の実施の形態について説明する。図4は第2の実施の形態の静電記録体の概略を示す斜視図(A)およびその一部の断面図(B)である。
【0105】
この第2の実施の形態の静電記録体10は、読取用光導電層4と読取光側電極層5との間に、読取光に対して透過性を有し、且つ読取光側電極層5の電極からの電荷注入に対しブロッキング性能を有する(障壁電位を有する)ブロッキング層7が設けられている点が第1の実施の形態のものと異なる。
【0106】
第1の実施の形態のように、ブロッキング層が設けられていない場合には、読取光側電極層5(の電極)に帯電した電荷(本例においては正電荷)の一部には読取用光導電層4に直接注入されるものが存在し、読取用光導電層4に直接注入された正電荷が電荷輸送層3内を移動し、蓄積電荷(潜像極性電荷)と電荷再結合して蓄積電荷を消滅せしめるようになる。この電荷再結合による蓄積電荷の消滅は、読取光の照射により生ずるものではないため、いわゆるノイズ成分となるものである。一方、本実施の形態のように、読取光側電極層5と読取用光導電層4との間に有機薄膜からなるブロッキング層7を積層することにより、読取光側電極層5に帯電した正電荷は、障壁電位のため読取用光導電層4に注入されるようなことがなくなり、正電荷の直接注入によるノイズの発生を防止できる。
【0107】
ここで、上述のように、アモルファス状態のセレン膜は、他の金属との界面において界面結晶化が進行する。ところが、この第2実施形態の静電記録体10には、読取光側電極層5と読取用光導電層4との間に有機薄膜からなるブロッキング層7が設けられているので、該ブロッキング層7を、a−Seの界面結晶化を抑制する抑制層として機能させることができ、読取光側電極層5の電極材料と読取用光導電層4のa−Seとの直接接触を妨げることで、界面におけるSeの化学変化を防止し、界面結晶化を防ぐ効果が得られる。したがって、電極からの電荷注入が増えることがなく、界面結晶化によるS/N低下の問題を解消できる。
【0108】
また、本実施の形態では、このブロッキング層7として、弾力性のある材質のものを用い、該ブロッキング層7を、支持体8と読取用光導電層4との間の熱ストレスを和らげる(以下熱ストレス緩衝という)緩衝層としても機能させることとする。なお、このブロッキング層7は、読取用光導電層4と読取光側電極層5とを密着強化する層としても機能させるのが好ましい。
【0109】
ブロッキング層7に熱ストレス緩衝の機能を持たせると、読取用光導電層4と支持体8との間の熱膨張差による熱ストレスを該ブロッキング層7の機械的ストレスの緩衝作用によって和らげることができるので、支持体8としては、読取用光導電層4の熱膨張率を考慮することなく、その材質を選択できる。例えば、ガラスなどを用いた場合でも、支持体8としてのガラス基板と読取用光導電層4としてのSe膜との熱膨張のミスマッチングを緩和する熱ストレス緩衝効果が生じ、第1の実施の形態と同様に、特別な環境下においても、熱膨張差による破壊の問題が生じることがない。
【0110】
ここで、ブロッキング層7を、a−Seの界面結晶化を抑制する抑制層として機能させると共に熱ストレスを和らげる緩衝層としても機能させるには、例えば、弾力性に富んだ有機薄膜の層とすることが好ましい。この有機薄膜としては、例えば米国特許第4,535,468号に示されているポリアミド(polyamide)やポリイミド(polyimide)、あるいは、ポリエステル、ポリビニルブチラール、ポリビニルピロリドン、ポリウレタン、ポリメチルメタクリレート、ポリカーボネートなどの、読取光(例えば青光)に透明であり、且つ正孔ブロッキング性能の良好な、絶縁性有機ポリマーの薄膜を使用することができる。また、有機バインダーと、約0.3パーセント〜3パーセント重量比(by weight) のニグロシン(nigrosine) などの低分子有機材料からなる混合膜の薄層を使用することもできる。
【0111】
有機薄膜の膜厚としては、0.05〜5μm程度にするとよいが、熱ストレス緩衝の点では、0.1〜5μmの範囲が好ましい一方、残像のない良好なブロッキング性能のためには、0.05〜0.5μmの範囲が好ましく、両者のバランスの上では、0.1〜0.5μmの範囲とするとよい。
【0112】
次に、静電記録体の第3の実施の形態について説明する。図5は第3の実施の形態の静電記録体の概略を示す斜視図(A)およびその一部の断面図(B)である。図6は該静電記録体の製造方法の一例を、途中段階まで示した図である。
【0113】
この第3の実施の形態の静電記録体10は、上記第2の実施の形態のものにおいて、読取光側電極層の電極を、多数のエレメント(線状電極)6aを画素ピッチで配列してなるストライプ電極6とした点が異なる。この場合、各エレメント6aの間に絶縁物が配されることなく、次の層であるブロッキング層7が直ちに積層されており、ストライプ電極6のみで読取光側電極層5が構成される。
【0114】
この第3の実施の形態の静電記録体10のブロッキング層7は、上記第2の実施の形態のものと同様に、a−Seの界面結晶化を抑制する抑制層として機能させることができ、界面結晶化によるS/N低下の問題を解消できる。
【0115】
なお、読取光側電極層5の電極をストライプ電極6とする目的は、後述するように、ストラクチャノイズの補正を簡便にしたり、容量を低減することにより画像のS/Nを向上させたり、静電潜像をストライプ電極に対応して局在化させることにより電界強度を強めて読取りの効率を向上させS/Nを向上させたり、並列読取り(主に主走査方向)を行なって読出時間の短縮を図ることなどである。
【0116】
第3の実施の形態の静電記録体10を製造する際には、先ず、支持体8の上に、ITO、あるいはエッチングのし易いIDIXOなどの透明酸化被膜を所定の厚さ(例えば200nm程度)となるように製膜して読取光側電極層5を形成する(図6(A)参照)。
【0117】
そして、ITO膜などを製膜した後、フォトエッチングなどの処理を行なって、エレメント6aを形成してストライプ電極6とする(図6(B)参照)。この方法によれば、例えば、医療用途として好適な、画素ピッチ50〜200μm程度の、高精細なストライプパターンを安価に形成することができる。
【0118】
なお、IDIXOはエッチングし易い膜であり、エレメント6aをなす電極部材としてこのIDIXOを用いると、エッチング処理の際に、支持体8を溶かす虞れが少なくなり、支持体8の選択範囲も広くなる。
【0119】
次に、緩衝層としても機能するブロッキング層7をなすブロッキング層形成材料を、エレメント6aに沿うようにエレメント6aの長手方向に塗布して所定の厚さ(例えば200nm程度)となるように製膜する。第2の実施の形態のように、読取光側電極層5が平面状のときには、塗布方向を問題とすることがなく、例えばスピンコーティングなどの方法を用いて塗布することもできるが、第3の実施の形態のものは、前記スピンコーティングを用いるのは好ましくない。
【0120】
なお、熱ストレスに対する緩衝層としても機能するブロッキング層7を、エレメント6aの長手方向に塗布して製膜するに際しては、支持体8上にストライプ電極6を形成した後に、例えば、ディップ法(dippinng),スプレー法(Spraying)、バーコーティング法、スクリーンコーティング法など、部材、ノズルあるいは刷毛などを1次元的に移動させて塗布する方法を用いるとよい。
【0121】
図6(C)は、ディップ法の一例を簡単に示したものである。このディップ法は、容器40内に、ブロッキング層7用の材料液70を充填し、支持体8上にストライプ電極6が形成された部材11を、エレメント6aの長手方向に沿って、液70中に浸し引き上げるという方法である。この方法は、部材11、すなわち、静電記録体10のサイズが大きい場合でも、それに応じた容器40を用いるだけで対応でき、含浸と引き上げの繰り返しで膜厚を調整できるので、大サイズの自由な膜厚のものを、簡単に製造できるというメリットがある。
【0122】
図7(A)は、エレメント6aの長手方向に塗布してブロッキング層7を製膜した状態を示した断面図である。図示するように、ブロッキング層7がエレメント6aのエッジで非連続となることなく、エレメント6aの上面6bおよび側面6cと支持体8の上面8aに亘って連続的に良好に塗布され、各エレメント6aの表面全てがブロッキング層7で覆われている。
【0123】
また、透明酸化被膜からなるエレメント6aの長手方向の抵抗(線抵抗)を小さくするために、透明酸化被膜を比較的厚くする(例えば2000Å程度)場合においても、有機ポリマーをエレメント6aの長手方向に塗布することにより、図7(B)に示すように、エッジ段差が大きくかつ急峻である場合であっても、例えば、50〜500nm(0.05〜0.5μm)程度の連続的な薄膜が良好に形成でき、良好なブロッキング特性や界面結晶化抑制特性が得られる。また、塗りを繰り返すことで、さらに5μm程度の厚さにすることもできる。
【0124】
また、第2の実施の形態のものと同様に、ブロッキング層7に緩衝層としての機能を持たせることができるので、読取用光導電層4と支持体8との間の熱膨張差による熱ストレスを和らげることができ、第1および第2実施形態と同様に、特別な環境下においても、熱膨張差による破壊の問題が生じることがない。
【0125】
これに対して、厚さ2000Å程度の薄膜ITOを形成した後に、500Å程度のCeOを抵抗加熱真空蒸着により積層して製膜した場合には、図7(C)に示すように、エレメント6aと支持体8のエッジ段差が大きくかつ急峻であるために、CeOからなるブロッキング膜がエッジ全体をカバーできず、図7(B)に示す状態の膜を形成することはできない。このため、エッジ部分のブロッキング膜が形成されていない、図7(C)中60で示す部分からの暗電流注入を阻止しきれずに、ブロッキング性能が悪化し、S/Nが低下するという問題を生じる。この問題は、該エレメント6a(読取光側電極層5)が厚ければ厚いほど、エッジ段差が大きくなるので、全面を連続的にカバーするブロッキング膜を形成しにくくなり、ブロッキング性能の悪化が顕著になる。
【0126】
次に、第3の実施の形態の静電記録体10に画像情報を静電潜像として記録し、さらに記録された静電潜像を読み出す基本的な方法について簡単に説明する。図8は第3の実施の形態の静電記録体10を用いた記録読取システムを表した概略図である。なお、図では、支持体8を省略して示している。
【0127】
この記録読取システムは、各エレメント6aごとに検出アンプ81を個別に接続していること、エレメント6aの長手方向と直交する方向(主走査方向)に延びた、読取光としてのライン光でエレメント6aの長手方向(副走査方向)に走査して画像信号を取得する点が第1の実施の形態用のシステムと異なる。
【0128】
読取光走査手段93は、ライン状に略一様な読取光L2を読取光側電極層5のエレメント6aと略直交させつつ、エレメント6aの長手方向(図中の矢印方向)に走査するものである。ストライプ電極6を有する静電記録体10を用いれば、レーザビームなどのスポット光で走査する必要がないので、走査光学系の構成を極めて簡易で低コストなものとすることができ、また、インコヒーレントな光源が使用できるため、干渉縞ノイズの発生を防止することもできる。
【0129】
電流検出回路80には、読取光側電極層5の各エレメント6aごとに接続された検出アンプ81が設けられており、静電記録体10の記録光側電極層1は接続手段S3の一方の入力および電源70の負極に接続されており、電源70の正極は接続手段S3の他方の入力に接続されている。接続手段S3の出力は各検出アンプ81を構成するオペアンプ81aの非反転入力端子(+)に共通に接続されている。各エレメント6aは、オペアンプ81aの反転入力端子(−)に個別に接続されている。検出アンプ81は、オペアンプ81a、積分コンデンサ81c、およびスイッチ81dからなるチャージアンプ構成のものである。
【0130】
第3の実施の形態の静電記録体10に静電潜像を記録する過程について、図9に示す静電記録体10の横断面図を参照して説明する。なお、図では、支持体8を省略して示している。
【0131】
基本的には、第1の実施の形態のものと同様であるが、蓄電部23における電荷の蓄積の仕方が若干異なる。最初に記録光側電極層1と読取光側電極層5の各エレメント6aとの間に直流電圧を印加し両電極層を帯電させる。これにより、記録光側電極層1と読取光側電極層5のエレメント6aとの間にはUの字状の電界が形成され、記録用光導電層2の大部分の所は概略平行な電場が存在するが、該光導電層2と電荷輸送層3との界面には電界が存在しない部分が生じる(図9(A)のZを参照)。電荷輸送層3と読取用光導電層4の合計厚さが記録用光導電層2の厚さに較べて薄いほど、また、エレメント6aの幅とピッチとの比が小さいほど(75%以下であれば良好である)、さらに電荷輸送層3と読取用光導電層4の厚みがエレメント6aのピッチと略同等若しくはそれ以下であるほど、このような電界の存在しない部分が明確に形成される。
【0132】
このような状態で放射線L1を被写体9に***すると、透過部9aを透過した放射線L1により発生せしめられる正負の電荷対のうちの負電荷は電界分布に沿ってエレメント6aに集中せしめられることとなり(図9(B)参照)、エレメント6aを中心として静電潜像が記録される(図9(C)参照)。特に、放射線L1の量が少ないときには、負電荷はエレメント6aの中心に引き寄せられて各エレメント6aごとに蓄積電荷が分離されるようになり、また、蓄積電荷は各エレメント6aの並びに合わせて蓄積せしめられるから、エレメント6aのピッチ(画素ピッチ)を狭くすることにより、高い鮮鋭度(空間解像度)をもって静電潜像を記録することができる。さらに、電界の各エレメント6aへの集中化により読取りの効率を高めS/Nを上げることができる。半導体形成技術の進歩した今日にあっては、エレメント6aを十分に狭い間隔でもって形成することは容易なことであるから、この第3の実施の形態の静電記録体10を容易に製造することができる。なお、記録用光導電層2内で発生する正負の電荷対のうちの正電荷が記録光側電極層1に引き寄せられて消滅するのは第1の実施の形態と同様である。
【0133】
このようにして記録した静電潜像を読み取る際には、接続手段S3を静電記録体10の記録光側電極層1側に接続し、オペアンプ81aのイマジナリショートを介して、静電記録体10の両電極層1,5を同電位にして電荷の再配列を行なう。次に、読取光走査手段93により、ライン状の読取光L2でエレメント6aの長手方向に走査することにより、第1実施形態同様に、読取光L2が入射した読取用光導電層4が導電性を呈し、静電記録体10内には電流が流れる。この電流により、各エレメント6aごとに接続された検出アンプ81の積分コンデンサ81cが充電され、流れる電流量に応じて積分コンデンサ81cに電荷が蓄積され、積分コンデンサ81cの両端の電圧が上昇する。したがって、各検出アンプ81ごとに、読取光L2の走査中の画素と画素の間にスイッチ81dをオンして積分コンデンサ81cに蓄積された電荷を放電させることにより、積分コンデンサ81cの両端には次々と画素毎の蓄積電荷に対応して電圧の変化が観測される。この電圧の変化は、静電記録体10に蓄積されていた各画素毎の電荷と対応するものであるから、電圧の変化を検出することで静電潜像を読み出すことができる。
【0134】
このように、ライン状の読取光L2でエレメント6aの長手方向に走査して、静電記録体10から静電潜像を読み取ることとすれば、個別の検出アンプ81で、主走査方向には、並列的に画像信号が得られることとなり、読出時間の短縮化を図ることができる。また、読取光側電極層5がストライプ状になっているから電荷輸送層3と読取用光導電層4とによる分布容量が小さくなり、検出アンプ81はノイズの影響を受けにくくなると共に、画素ピクセルを少なくともエレメント間隔(画素ピッチ)で固定することができるので、エレメント6aの配置に合わせて画像データの補正を行ない、ストラクチャーノイズの補正を正確に行なうこともできるようになる。
【0135】
また、読取光側電極層5のエレメント6aと潜像極性電荷が引き合っており、その電場にしたがって読取光L2の照射により発生せしめられる輸送極性電荷が潜像極性電荷を消去しやすくなり、読取時においても鮮鋭度を高く維持することが可能となり、特に記録時の低光量側(すなわち、蓄積電荷量の少ないとき)においてその効果が高い。エレメント6aの間を読取光L2に対して遮光性を有するものとすれば、一層、鮮鋭度を向上させることができる。
【0136】
さらに、エレメント6aの近傍において読取用光導電層4の電界強度が強くなるから、この強い電界において読取光L2による電荷対が発生せしめられるので、励起子のイオン解離の効率が上昇し、電荷対の発生の量子効率を1に近づけることが可能となるので、読取りの効率が向上しS/Nを上げることができるとともに、光エネルギー密度を小さくできる。さらに電荷輸送層3と読取用光導電層4の容量を小さくすることができ、読取時の信号取り出し効率を大きくすることができる。
【0137】
上述したように、第4535468号に記載の画像記録媒体の積層構成では、製膜の最終工程でストライプ電極を形成することは困難であるから、上記本発明のような効果を得るのは難しく、支持体側から読取光側電極層を製膜する、本発明を適用した静電記録体とすることの意義は大きい。
【0138】
また、エレメント6aの間が読取光L2に対して遮光性を有するものとするとともにエレメントの長手方向(走査方向)にも所定間隔で遮光部と透過部とを設けると、いわゆる簀の子の目に相当する部分が読取光透過部として形成され、エレメント6aの長手方向に対しても読取時において隣接する読取光透過部との光漏れによる空間解像度の低下を避けることができるようになり、実質的に小さなスポットビームにより並列的に走査露光していることとなり、読取光L2をさほど収束させなくても極めて高い鮮鋭度の読取画像を得ることもできる。
【0139】
次に、静電記録体の第4の実施の形態について説明する。図10は第4の実施の形態の静電記録体の概略を示す斜視図(A)およびその一部の断面図(B)である。
【0140】
この第4の実施の形態の静電記録体10は、記録光側電極層1、記録用光導電層2、電荷輸送層3、読取用光導電層24、ブロッキング層7、読取光側電極層5および支持体8を、この順に配列してなるものである。そして、さらに読取用光導電層24のブロッキング層7との界面には界面結晶化を抑制する物質および読取光側電極層に帯電する電荷と逆極性の電荷のトラップを増加せしめ、かつ同極性の電荷のトラップを減少せしめる物質がドープされている。
【0141】
本実施の形態におけるブロッキング層7は、第1の画像記録媒体におけるブロッキング層7と同様にa−Seの界面結晶化を抑制するとともに読取光側電極層5に帯電する電荷の読取用光導電層24への注入に対してブロッキング性能を有する。このブロッキング性能を有するということは、読取光側電極層5から後述する読取用光導電層24のブロッキング層5との界面に形成される空間電荷層へ電荷が移動するのを妨げ、読取用光導電層24のブロッキング層7との界面に安定した空間電荷層を形成する性能を有することになる。
【0142】
また、本実施の形態における読取用光導電層24には、上記のようにそのブロッキング層との界面に界面結晶化を抑制する物質および読取光側電極層5に帯電する電荷と逆極性の電荷のトラップを増加せしめ、かつ同極性の電荷のトラップを減少せしめる物質がドープされている。界面結晶化を抑制する物質としては、上記第1の実施の形態と同様にAsを用いているが、そのドープ量は第1の実施の形態と異なり3〜40atom%程度が好ましい。また、読取光側電極層5に帯電する電荷と逆極性の電荷のトラップを増加せしめ、かつ同極性の電荷のトラップを減少せしめる物質には、読取光側電極層5に正電荷が帯電する場合にはClを、読取光側電極層5に負電荷が帯電する場合にはNaを用いるのが好ましく、そのドープ量はともに1〜1000ppm程度とするのが好ましい。Clは読取光側電極層24に正電荷が帯電されたとき正孔を放出して電子をトラップし、Naは読取光側電極層5に負電荷が帯電されたとき電子を放出して正孔をトラップする。その結果、読取用光導電層24のブロッキング層7との界面にはそれぞれの場合において負の空間電荷層または正の空間電荷層が形成される。
【0143】
従って、本実施の形態では、読取用光導電層24およびブロッキング層7の上記のような機能により読取用光導電層24のブロッキング層7との界面に安定した負の空間電荷層または正の空間電荷層が形成される。
【0144】
なお、その他の各層の材料および製造方法は上記第1および第2の実施の形態と同様である。
【0145】
次に、上記構成の静電記録体10に画像情報を静電潜像として記録し、さらに記録された静電潜像を読み出す基本的な方法について図11を用いて簡単に説明する。なお、本実施の形態における静電記録体を用いた記録読取システムは第1の実施の形態とほぼ同様であるため、特に必要のない限り説明は省略する。また、図11では、支持体8を省略して示している。
【0146】
静電記録体10に静電潜像を記録する際には、記録光側電極層1と読取光側電極層5との間に電源70による直流電圧を印加することにより、記録光側電極層1に負の電荷を、読取光側電極層5に正の電荷を帯電させる(図11(A))。これにより、静電記録体10には記録光側電極層1と読取光側電極層5との間に平行な電場(電界)が形成される。
【0147】
そして、その直後には読取用光導電層24のブロッキング層7との界面において、ドープされたClが正孔を放出することにより負の空間電荷層が形成される(図11(B))。ブロッキング層7が読取光側電極層5から負の空間電荷層へ電荷が移動するのを妨げるので、負の空間電荷層は安定した電荷層となる。
【0148】
次に、放射線L1が被写体9に向けて一様に***される。放射線L1は被写体9の透過部9aを透過し、さらに記録光側電極層1をも透過する。記録用光導電層2はこの透過した放射線L1(この被写体9以降の放射線が記録光となる)を受け、放射線L1の線量(光量)に応じた電子と正孔の電荷対が生じ、導電性を呈するようになる(図11(C))。
【0149】
記録用光導電層2中に生じた正電荷は該光導電層2中を記録光側電極層1に向かって高速に移動し、記録光側電極層1と記録用光導電層2との界面で記録光側電極層1に帯電している負電荷と電荷再結合して消滅する。一方、光導電層2中に生じた負電荷は光導電層2中を電荷輸送層3に向かって移動する。電荷輸送層3は記録光側電極層1に帯電した電荷と同じ極性の潜像極性電荷(本例では負電荷)に対して絶縁体として作用するものであるから、光導電層2中を移動してきた負電荷は、光導電層2と電荷輸送層3との界面に形成される蓄電部23で停止し、この界面(蓄電部23)に蓄積される。一方、放射線L1は被写体9の遮光部9bを透過しないから、静電記録体10の遮光部9bの下部にあたる部分は何ら変化を生じない(図11(C))。
【0150】
潜像極性電荷が蓄積されている蓄電部23(記録用光導電層2と電荷輸送層3との界面)と読取光側電極層5との間には、読取用光導電層4と電荷輸送層3の合計厚さと、潜像極性電荷の量に応じて、電界が形成されている。また、上記負の空間電荷層と読取光側電極層5との間にも電界が形成され、負の空間電荷層内では局所的に電界強度が強まる。図12には読取光の入射面からの深さ(距離)と形成される電界の強度との関係を示す。図12において実線で示されるとおり上記負の空間電荷層においては、負の電荷が所定の密度で一様に分布しているため、深さに応じて(読取光の入射面に近づく程)電界強度が増加する。なお、上記負の空間電荷層が形成されない場合は、図12において破線で示されるとおり蓄電部に蓄積された潜像極性電荷と読取光側電極層に帯電された正の電荷により形成される一様な平均電界が分布することになる。
【0151】
次に、静電記録体10の記録光側電極層1は接地電位とし、読取光側電極層5には電流検出回路90の検出アンプ91に接続する。そして、読取光L2で静電記録体10の読取光側電極層5側を走査する。読取光L2は読取光側電極層5を透過し、読取光L2が照射された読取用光導電層24では該走査に応じて正負の電荷対が生じて導電性を呈するようになる。
【0152】
ここで、電荷輸送層3は輸送極性電荷(本例では正電荷)に対しては導電体として作用するものであるから、読取用光導電層24に生じた正電荷は蓄電部23の潜像極性電荷に引きつけられるように電荷輸送層3の中を急速に移動し、蓄電部23で潜像極性電荷と電荷再結合して消滅する。このとき、読取用光導電層24とブロッキング層7との界面に形成された負の空間電荷層内においては上記のように局所的に電界強度が大きくなっているので、読取光の照射による電荷対の発生効率を向上させることができる。従って、蓄積部23に蓄積される電子が少なく、弱電界となっている(記録用光導電層に照射される記録光が低線量側である)場合においても、読取光の強度を大きくすることなく十分な電荷対の発生効率が得ることができる。なお、上記作用を効率的に得るため負の空間電荷層の領域、つまりAsおよびClをドープする領域の厚さは読取光の吸収の深さと同程度もしくはそれ以下にすることが望ましい。
【0153】
上記のように静電記録体10に蓄積されていた潜像極性電荷が消滅することによりこれに応じた電流変化が静電記録体10に接続された電流検出回路80により検出される。なお、記録光の非照射部に対応する読取用光導電層においても上記負の空間電荷層は形成され、読取光の照射により電荷対が発生しうるが、蓄電部23と読取光側電極層5との間に電界が形成されていないためこれによる電流が検出されることはない。
【0154】
以上本発明の画像記録媒体の好ましい実施形態について説明したが、本発明は必ずしも上述した実施形態に限定されるものではない。
【0155】
例えば、上述の説明は、記録光側電極層に負電荷を、読取光側電極層に正電荷を帯電させて、記録用光導電層と電荷輸送層との界面に形成される蓄電部に負電荷を蓄積せしめるものについて説明したが、本発明は必ずしもこのようなものに限るものではなく、それぞれが逆極性の電荷であっても良く、このように極性を逆転させる際には、正孔輸送層として機能する電荷輸送層を電子輸送層として機能する電荷輸送層に変更し、また第4の実施の形態においては読取用光導電層にClの代わりにNaをドープするなどすればよい。
【0156】
例えば、記録用光導電層として上述のアモルファスセレンa−Se、酸化鉛(II)、ヨウ化鉛(II)などの光導電性物質が同様に使用でき、電荷輸送層としてN−トリニトロフルオレニリデン・アニリン(TNFA)誘電体、トリニトロフルオレノン( TNF)/ポリエステル分散系、非対称ジフェノキノン誘導体が適当である。
【0157】
また、第1から第3の実施の形態について、いずれの変更態様においても、a−Seを主成分とする読取用光導電層と読取光側電極層との間に、界面結晶化を抑制する抑制層として機能するブロッキング層を設けない場合には、読取用光導電層全体、あるいは読取用光導電層と読取光側電極層の電極との界面に、界面結晶化を抑制する物質をドープするのは言うまでもなく、さらに読取用電極層上へのブロッキング層の設けるとともにブロッキング層と読取用光導電層の界面または読取用光導電層に界面結晶化を抑制する物質をドープするようにしてもよい。
【0158】
また、上記実施形態では、蓄電部を記録用光導電層と電荷輸送層との界面に形成していたが、これに限らず、例えば、上記第4535468号に記載のように、潜像極性電荷をトラップとして蓄積するトラップ層により蓄電部を形成してもよい。
【0159】
なお、読取用光導電層のa−Seと読取光側電極層の電極との界面にAsドープをしたり、両層の間にブロッキング層を設けることにより、界面結晶化を抑制する手法は、記録用光導電層と記録光側電極層の電極との界面における界面結晶化を抑制するためにも適用することができる。例えば、被写体を透過した放射線を蛍光体層で一旦可視光に変換し、該可視光を静電記録体に照射する態様とする場合には、記録光側電極層を可視光に対して透過性を有するものとしなければならず、電極材料として、必然的に、ITOなどの透明酸化被膜を用いることになるので、本発明を適用する意味はある。
【図面の簡単な説明】
【図1】第1の実施の形態による静電記録体の斜視図(A)およびその一部の断面図(B)
【図2】読取光側電極層の電極をストライプ電極としたときのドープを説明する図
【図3】第1の実施の形態による静電記録体を用いた静電潜像記録装置と静電潜像読取装置を一体的に表した概略図
【図4】第2の実施の形態による静電記録体の斜視図(A)およびその一部の断面図(B)
【図5】第3の実施の形態による静電記録体の斜視図(A)およびその一部の断面図(B)
【図6】第3の実施の形態による静電記録体の製造方法の一例を示した図
【図7】第3の実施の形態による静電記録体の製造途中段階を示した断面図(A),(B)および他の方法による製造途中段階を示した断面図(C)
【図8】第3の実施の形態による静電記録体を用いた静電潜像記録装置と静電潜像読取装置を一体的に表した概略図
【図9】第3の実施の形態による静電記録体を用いた記録過程を説明する図
【図10】第4の実施の形態による静電記録体の斜視図(A)およびその一部の断面図(B)
【図11】第4の実施の形態による静電記録体を用いた記録過程および読取過程を説明する図
【図12】第4の実施の形態による静電記録体において形成される電界強度と読取光の入射面からの深さとの関係を示す図
【符号の説明】
10 静電記録体
1 記録光側電極層(第2電極層)
2 記録用光導電層
3 電荷輸送層
4,24 読取用光導電層
5 読取光側電極層(第1電極層)
6 ストライプ電極
6a エレメント(線状電極)
7 ブロッキング層(界面結晶化を抑制する抑制層)
8 支持体
23 蓄電部
70 電源
80,90 電流検出回路
81,91 検出アンプ

Claims (7)

  1. 読取用の電磁波に対して透過性を有する支持体上に、前記読取用の電磁波に対して透過性を有する第1電極層と、a−Seを主成分とする、前記読取用の電磁波の照射を受けることにより導電性を呈する読取用光導電層と、記録用光導電層で発生した潜像極性電荷を蓄積する蓄電部と、記録用の電磁波の照射を受けることにより導電性を呈する前記記録用光導電層と、前記記録用の電磁波に対し透過性を有する第2電極層とがこの順に積層されてなる画像記録媒体において、
    前記第1電極層と前記読取用光導電層との間に、前記読取用の電磁波に対し透過性を有する、前記a−Seの界面結晶化を抑制する有機薄膜が設けられているとともに、
    前記第1電極層の電極が、多数の線状電極を配列してなるストライプ電極であり、
    前記有機薄膜が、前記各線状電極の上面および側面に亘って連続的に設けられていることを特徴とする画像記録媒体。
  2. 読取用の電磁波に対して透過性を有する支持体上に、前記読取用の電磁波に対して透過性を有する第1電極層と、a−Seを主成分とする、前記読取用の電磁波の照射を受けることにより導電性を呈する読取用光導電層と、記録用光導電層で発生した潜像極性電荷を蓄積する蓄電部と、記録用の電磁波の照射を受けることにより導電性を呈する前記記録用光導電層と、前記記録用の電磁波に対し透過性を有する第2電極層とがこの順に積層されてなる画像記録媒体において、
    前記読取用光導電層の前記第1電極層の電極との界面のみに、前記a−Seの界面結晶化を抑制するAsがドープされていることを特徴とする画像記録媒体。
  3. 前記Asが、0.5〜40atom%ドープされていることを特徴とする請求項記載の画像記録媒体。
  4. 前記読取用光導電層の厚さが、0.05〜0.5μmであることを特徴とする請求項記載の画像記録媒体。
  5. 前記有機薄膜の厚さが、0.05〜5μmであることを特徴とする請求項項記載の画像記録媒体。
  6. 前記有機薄膜の厚さが、0.1〜0.5μmであることを特徴とする請求項記載の画像記録媒体。
  7. 前記第1電極層の電極が、ITOからなるものであることを特徴とする請求項記載の画像記録媒体。
JP2001073376A 2000-03-22 2001-03-15 画像記録媒体 Expired - Fee Related JP4884593B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001073376A JP4884593B2 (ja) 2000-03-22 2001-03-15 画像記録媒体

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2000080486 2000-03-22
JP2000080486 2000-03-22
JP2001-51596 2001-02-27
JP2000-80486 2001-02-27
JP2001051596 2001-02-27
JP2001051596 2001-02-27
JP2001073376A JP4884593B2 (ja) 2000-03-22 2001-03-15 画像記録媒体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011087645A Division JP2011185942A (ja) 2000-03-22 2011-04-11 画像記録媒体およびその製造方法

Publications (3)

Publication Number Publication Date
JP2002329848A JP2002329848A (ja) 2002-11-15
JP2002329848A5 JP2002329848A5 (ja) 2006-03-09
JP4884593B2 true JP4884593B2 (ja) 2012-02-29

Family

ID=27342754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001073376A Expired - Fee Related JP4884593B2 (ja) 2000-03-22 2001-03-15 画像記録媒体

Country Status (1)

Country Link
JP (1) JP4884593B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186604A (ja) * 2002-12-06 2004-07-02 Fuji Photo Film Co Ltd 画像記録媒体
EP1780802B1 (en) 2005-11-01 2012-03-28 Fujifilm Corporation X-ray radiation image detector based on amorphous selen
JP2008078597A (ja) * 2005-11-01 2008-04-03 Fujifilm Corp 放射線画像検出器
JP5077921B2 (ja) * 2005-11-21 2012-11-21 富士フイルム株式会社 放射線固体センサーおよびその製造方法
JP4739298B2 (ja) * 2007-08-31 2011-08-03 富士フイルム株式会社 放射線画像検出器
JP5070130B2 (ja) * 2008-05-26 2012-11-07 富士フイルム株式会社 放射線検出器
CN103140943A (zh) * 2010-09-30 2013-06-05 迪迩科技 用于检测辐射的辐射检测器及方法
JP2012160564A (ja) * 2011-01-31 2012-08-23 Nippon Hoso Kyokai <Nhk> 撮像デバイス及びこれを用いた撮像管

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3236137A1 (de) * 1982-09-29 1984-03-29 Siemens AG, 1000 Berlin und 8000 München Bildaufnahmeeinrichtung
JP2608401B2 (ja) * 1986-11-28 1997-05-07 京セラ株式会社 電子写真感光体
CA2184667C (en) * 1996-09-03 2000-06-20 Bradley Trent Polischuk Multilayer plate for x-ray imaging and method of producing same
DE19640946A1 (de) * 1996-10-04 1998-04-16 Philips Patentverwaltung Röntgenaufnahme-Anordnung mit einem Photoleiter
EP0898421A3 (en) * 1997-08-19 2001-12-05 Fuji Photo Film Co., Ltd. Electrostatic recording member, electrostatic latent image recording apparatus, and electrostatic latent image read-out apparatus

Also Published As

Publication number Publication date
JP2002329848A (ja) 2002-11-15

Similar Documents

Publication Publication Date Title
US6552356B2 (en) Image recording medium
JP3445164B2 (ja) 静電記録体、静電潜像記録装置および静電潜像読取装置
US6268614B1 (en) Electrostatic recording member, electrostatic latent image recording apparatus, and electrostatic latent image read-out apparatus
US6590224B2 (en) Image storage medium and method of manufacturing the same
US6774385B2 (en) Image recording medium and method of manufacturing the same
US7002173B2 (en) Image recording medium having suppression layer for suppressing interfacial crystallization
JP4884593B2 (ja) 画像記録媒体
JP2009088154A (ja) 放射線検出器
US20080224042A1 (en) Radiation image detector
JP4356854B2 (ja) 画像信号読取システム及び画像検出器
JP4739298B2 (ja) 放射線画像検出器
US6724006B2 (en) Solid state radiation detector
JP2001337171A (ja) 画像記録媒体およびその製造方法
JP2009233488A (ja) インクジェットヘッド、塗布方法および塗布装置、ならびに放射線検出器の製造方法
JP2011185942A (ja) 画像記録媒体およびその製造方法
JP2001284565A (ja) 画像検出器
JP2003037258A (ja) 光検出装置
JP2001337464A (ja) 画像記録媒体およびその製造方法
JP3970668B2 (ja) 放射線固体検出器
US7247872B2 (en) Image recording medium and method of producing the same
JP2003209237A (ja) 固体検出器
JP3999470B2 (ja) 放射線固体検出器、並びにそれを用いた放射線画像記録/読取方法および装置
JP2003218335A (ja) 固体検出器
JP2003007989A (ja) 画像記録媒体および製造方法
JP2002350594A (ja) 画像記録媒体並びに画像読取方法および装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20111111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees