JP4883837B2 - A novel ion-exchange porous resin for solid-phase extraction and chromatography - Google Patents

A novel ion-exchange porous resin for solid-phase extraction and chromatography Download PDF

Info

Publication number
JP4883837B2
JP4883837B2 JP2000553484A JP2000553484A JP4883837B2 JP 4883837 B2 JP4883837 B2 JP 4883837B2 JP 2000553484 A JP2000553484 A JP 2000553484A JP 2000553484 A JP2000553484 A JP 2000553484A JP 4883837 B2 JP4883837 B2 JP 4883837B2
Authority
JP
Japan
Prior art keywords
porous resin
compound
solute
divinylbenzene
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000553484A
Other languages
Japanese (ja)
Other versions
JP2002517574A5 (en
JP2002517574A (en
Inventor
リー,ジェン−ジョン
オーガラ,ジョン・イー
Original Assignee
ウォーターズ・テクノロジーズ・コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウォーターズ・テクノロジーズ・コーポレーション filed Critical ウォーターズ・テクノロジーズ・コーポレーション
Publication of JP2002517574A publication Critical patent/JP2002517574A/en
Publication of JP2002517574A5 publication Critical patent/JP2002517574A5/ja
Application granted granted Critical
Publication of JP4883837B2 publication Critical patent/JP4883837B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3285Coating or impregnation layers comprising different type of functional groups or interactions, e.g. different ligands in various parts of the sorbent, mixed mode, dual zone, bimodal, multimodal, ionic or hydrophobic, cationic or anionic, hydrophilic or hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/20Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/26Cation exchangers for chromatographic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/20Anion exchangers for chromatographic processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/24Haloalkylation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/34Introducing sulfur atoms or sulfur-containing groups
    • C08F8/36Sulfonation; Sulfation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/58Use in a single column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/62In a cartridge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/66Other type of housings or containers not covered by B01J2220/58 - B01J2220/64
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/80Aspects related to sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J2220/82Shaped bodies, e.g. monoliths, plugs, tubes, continuous beds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Embodiments of the present invention are directed to porous resins for solid phase extractions. The resins feature at least one hydrophobic component, at least one hydrophilic component and at least one ion exchange functional group. The resins exhibit superior wetting and ion exchange performance.

Description

【0001】
発明の分野
本発明は、少なくとも1つの疎水性成分、少なくとも1つの親水性成分及び少なくとも1つのイオン交換官能基を含有する固相抽出及びクロマトグラフィー用の新規な多孔質樹脂に関する。
発明の背景
固相抽出(SPE)は、例えば、分析試料の予備濃縮及び浄化のために、種々の化学物質の精製のために、また水溶液から毒性又は有用な物質を除去するために広く使用されるクロマトグラフ技術である。SPEは適当な樹脂を含有するカラム又はカートリッジを用いて一般に実施される。SPE法は疎水機構、イオン交換、キレート化機構、収着機構及びその他の機構により検体と相互作用して、流体に検体を結合させ、そして流体から検体を分離できる吸収剤を用いて発展してきた。SPEの用途に応じて、異なる吸収剤が求められるため、特殊な選択性を持つ新規な特性の吸収剤が必要である。
発明の概要
本発明の目的は優れた湿潤性を示す固相抽出及びクロマトグラフィー用の多孔質樹脂として使用できる化合物を提供することである。
【0002】
本発明の他の目的は特殊な選択性を有する多孔質樹脂化合物を提供することである。
本発明の他の目的は検体を選択的に捕獲でき、そして検体が保持されないで通過するのを妨害できる多孔質樹脂化合物を提供することである。
【0003】
本発明の他の目的はイオン交換官能基、疎水性成分及び親水性極性成分を有する多孔質樹脂化合物を提供することである。
本発明の他の目的は溶液から溶質を単離又は除去するために本発明の新規な多孔質樹脂を利用することである。
【0004】
本発明の更に他の目的は溶液中の溶質の量を分析により決定するために本発明の新規な多孔質樹脂を利用することである。
1つの態様において、本発明は
化学式:
【0005】
【化6】

Figure 0004883837
【0006】
の化合物及びその塩を特徴とし、
但し、A、B及びCの順番はランダム、ブロック、又はランダム及びブロックの組合せであり;
但し、
【0007】
【化7】
Figure 0004883837
【0008】
但し、Aは
【0009】
【化8】
Figure 0004883837
【0010】
から成る群から選ばれ、
但し、Bは
【0011】
【化9】
Figure 0004883837
【0012】
から成る群から選ばれ、
但し、CはA又は修正されたAであり、ここで、修正されたAは
【0013】
【化10】
Figure 0004883837
【0014】
から成る群から選ばれ、そして
ここで、XはSO3H、CH2CO2H、CH2CH(CO2H)2、CO2H、PO32、PO22、CH2PO32、CH2Cl、CH2NH2、CH2N[(CH2yCH32(但しyは0〜18の整数である)、CH2+[(CH2y=CH33-(但しy=は0〜18の整数そしてD-はアニオンである)、SO2NHR(但しRはポリエチレンイミンである)、及びCH2NHR(但しRはポリエチレンイミンである)から成る群から選ばれる。
【0015】
本発明の他の態様は少なくとも1つの疎水性単量体と少なくとも1つの親水性単量体を共重合させて共重合体を生成し、そして上記共重合体をスルホン化反応させて、少なくとも1つのイオン交換官能基、少なくとも1つの親水性成分、及び少なくとも1つの疎水性成分を含むスルホン化共重合体を生成することにより得られる多孔質樹脂である。
【0016】
好ましい態様において、上記疎水性単量体はジビニルベンゼンであり、上記親水性単量体はN‐ビニルピロリドンであり、そして上記共重合体はポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)である。好ましくは、上記多孔質樹脂はスルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)である。
【0017】
本発明の他の態様は少なくとも1つのイオン交換官能基、少なくとも1つの親水性成分、及び少なくとも1つの疎水性成分を含む固相抽出又はクロマトグラフィー用の多孔質樹脂である。
【0018】
本発明の他の態様は溶質を単離又は除去するために溶液を処理する方法である。溶質を有する溶液はこの溶質が多孔質樹脂に収着するような条件下で多孔質樹脂に接触する。この多孔質樹脂は少なくとも1つのイオン交換官能基、少なくとも1つの親水性極性成分、及び少なくとも1つの疎水性成分を含む。特定の態様では、溶質は多孔質樹脂から除去される。特定の態様では、イオン交換官能基はSO3H、CH2CO2H、CH2CH(CO2H)2、CO2H、PO32、PO22、CH2PO32、CH2Cl、CH2NH2、CH2N[(CH2yCH32(但しyは0〜18の整数である)、CH2+[(CH2y=CH33-(但しy=は0〜18の整数そしてD-はアニオンである)、SO2NHR(但しRはポリエチレンイミンである)、又はCH2NHR(但しRはポリエチレンイミンである)である。特定の態様では、親水性単量体は複素環式基、例えば、飽和、不飽和又は芳香族の複素環式基を含む。窒素‐含有複素環式基の例はピリジル基、例えば、2‐ビニルピリジン、3‐ビニルピリジン、又は4‐ビニルピリジンを含み、又はピロリドニル基、例えば、N‐ビニルピロリドンを含む。特定の態様では、疎水性単量体は芳香族炭素環式基、例えば、フェニル基又はフェニレン基、又は直鎖C2‐C18‐アルキル基又は枝分れC2‐C18‐アルキル基を含む。疎水性単量体は、例えば、スチレン又はジビニルベンゼンである。好ましい共重合体はポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)である。好ましい多孔質樹脂は化学式Iの化合物及びその塩である。好ましくは、多孔質樹脂はスルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)である。
【0019】
本発明の別の特徴は溶液中の溶質の量を分析により決定する方法である。溶質を有する溶液は溶質が多孔質樹脂に収着するような条件下で多孔質樹脂と接触する。この多孔質樹脂は少なくとも1つのイオン交換官能基、少なくとも1つの親水性極性成分、及び少なくとも1つの疎水性成分を含む。収着した溶質を有する上記多孔質樹脂は上記多孔質樹脂から上記溶質を放出するような条件下で溶媒を用いて洗浄される。洗浄の後に、溶媒中に存在する上記放出した溶質の量は分析により決定される。特定の態様では、多孔質樹脂は化学式Iの化合物及びその塩である。好ましくは、多孔質樹脂はスルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)である。
【0020】
本発明の別の特徴は開口容器内に詰められた多孔質樹脂を含む固相抽出カートリッジである。この多孔質樹脂は少なくとも1つのイオン交換官能基、少なくとも1つの親水性極性成分及び少なくとも1つの疎水性成分を含む。特定の態様では、多孔質樹脂は化学式Iの化合物及びその塩である。好ましくは、多孔質樹脂はスルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)である。
【0021】
本発明の上記及び他の特徴、目的及び利点は図面と共に以下の明細書の記載により更によく理解できるであろう。
詳細な記述
本発明は
化学式:
【0022】
【化11】
Figure 0004883837
【0023】
の化合物及びその塩を提供し、
但し、A、B及びCの順番はランダム、ブロック、又はランダム及びブロックの組合せであり;
但し、
【0024】
【化12】
Figure 0004883837
【0025】
但し、Aは
【0026】
【化13】
Figure 0004883837
【0027】
から成る群から選ばれ、
但し、Bは
【0028】
【化14】
Figure 0004883837
【0029】
から成る群から選ばれ、
但し、CはA又は修正されたAであり、ここで、修正されたAは
【0030】
【化15】
Figure 0004883837
【0031】
から成る群から選ばれ、そして
ここで、XはSO3H、CH2CO2H、CH2CH(CO2H)2、CO2H、PO32、PO22、CH2PO32、CH2Cl、CH2NH2、CH2N[(CH2yCH32(但しyは0〜18の整数である)、CH2+[(CH2y=CH33-(但しy=は0〜18の整数そしてD-はアニオンである)、SO2NHR(但しRはポリエチレンイミンである)、及びCH2NHR(但しRはポリエチレンイミンである)から成る群から選ばれる。
【0032】
好ましい化合物はXがSO3H、CH2PO32、CH2CO2H、又はこれらの組合せであるものである。最も好ましい化合物はXがSO3Hであるものである。
【0033】
好ましくは、Xは化合物のグラム当り約0.01〜約5.0ミリ当量の濃度で存在し、より好ましくは約0.6〜約3.2ミリ当量の濃度で存在し、更により好ましくは約0.8〜約2.1ミリ当量の濃度で存在し、そして最も好ましくは約1.0ミリ当量の濃度で存在する。
【0034】
ブロックの順番はそれぞれの構成単位が一定のパターン又は一連の繰り返しで結合する順番を意味する。ランダムの順番はそれぞれの構成単位が無作為に結合する順番を意味する。
【0035】
本発明の化合物は少なくとも1つの疎水性単量体、例えば、ジビニルベンゼン、スチレン、又はエチルビニルベンゼン、及び少なくとも1つの親水性単量体、例えば、N‐ビニルピロリドン、N‐ビニルピリジン、メタクリレート、メチルメタクリレート、酢酸ビニル、アクリルアミド又はメタクリルアミドを官能化する、即ち、化学的に変えることにより調製できる。好ましくは、疎水性単量体はジビニルベンゼンである。好ましくは、親水性単量体はN‐ビニルピロリドンである。上記共重合体は当業者に公知の標準的な合成法により、例えば、実施例1に記述するように調製できる。
【0036】
このような共重合体、例えば、ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)はイオン交換官能基、X基の添加によって官能化が可能であり、これらの基は陽イオン、例えば、SO3H、CH2CO2H、CH2CH(CO2H)2、CO2H、PO32、PO22、又はCH2PO32、又は陰イオン、例えば、CH2NH2、CH2N[(CH2yCH32、CH2+[(CH2y=CH33-、SO2NHR又はCH2NHR又は中間体、例えば、CH2Clである。これらの添加は、例えば、Lieto等のChemtechの46〜53頁(1983);Mitchell等のTetrahedron Lettersの3795〜3798頁(1976);及びクロマトグラフ科学双書,47巻、585〜720頁(1990)におけるK. Ungerの“クロマトグラフ技術における充填物及び固定相”に記載されているようにして達成可能である。例えば、ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)のスルホン化を記述する実施例2を参照。
【0037】
本発明の新規な化合物は、例えば、固相抽出及びクロマトグラフィー用の多孔質樹脂として使用できる。固相抽出は、例えば、収着、イオン交換、キレート化、サイズ排除(分子濾過)、親和力、又はイオン対の機構により、ガス及び液体のような流体相から分子化学種の部類を単離するために固相を採用する方法を意味する。
【0038】
また本発明は少なくとも1つの疎水性単量体及び少なくとも1つの親水性単量体を共重合して共重合体を形成し、この共重合体をスルホン化反応させて少なくとも1つのイオン交換官能基、少なくとも1つの疎水性成分、及び少なくとも1つの親水性成分を含むスルホン化共重合体を形成することにより得られる多孔質樹脂を含む。
【0039】
多孔質樹脂は溶液が拡散できる通路を通って浸透する架橋重合体粒子の部類のメンバーを意味する。気孔は密に詰め込まれた重合体鎖の間の領域を意味する。単量体は重合前の1又はそれ以上の重合可能な官能基を含む分子、又は重合体の繰返し単位を意味する。共重合体は2又はそれ以上の異なる単量体を含む重合体を意味する。イオン交換官能基は対イオンが部分的に遊離し、そして同じ符号の別のイオンと容易に交換できる基を意味する。親水性は水を引付け、吸着し、又は吸収するための親和力を持つことを意味する。疎水性は水をはじき、又は水を吸着又は吸収する親和力を持たないことを意味する。
【0040】
好ましい態様では、疎水性単量体はジビニルベンゼンである。好ましい態様では、親水性単量体はN‐ビニルピロリドンである。好ましい態様では、共重合体はポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)である。好ましい態様において、多孔質樹脂はスルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)である。好ましくは、スルホン酸塩基は多孔質樹脂のグラム当り、約0.01〜約5.0、より好ましくは約0.6〜約3.2、更により好ましくは約0.8〜約2.1、そして最も好ましくは約1.0ミリ当量の濃度で存在する。
【0041】
また本発明は少なくとも1つのイオン交換官能基、少なくとも1つの親水性成分、及び少なくとも1つの疎水性成分を含有する固相抽出又はクロマトグラフィー用の多孔質樹脂を含む。
【0042】
イオン交換官能基は多孔質樹脂を塩基性で陽イオンの溶質と相互反応させることができる。親水性極性成分は溶質に対する極性相互作用及び水素結合能力を多孔質樹脂に持たせることができる。疎水性成分は疎水性相互作用を通じて無極性溶質に対する親和力を多孔質樹脂に持たせることができる。本発明の多孔質樹脂は溶質に対して種々の相互作用力の組み合わせを有するため、これらは、例えば、固相抽出、イオン交換、液体クロマトグラフィーの用途において極めて有用な樹脂である。例えば、これらの新規な多孔質樹脂は流体から溶質を回収し、固定し、及び/又は除去できる。
【0043】
また本発明は溶液を処理して溶質を単離又は除去する方法を含む。溶質を有する溶液は多孔質樹脂に溶質が収着するような条件下で多孔質樹脂に接触する。この多孔質樹脂は少なくとも1つのイオン交換官能基、少なくとも1つの親水性成分、及び少なくとも1つの疎水性成分を含む。ある態様では、溶質は多孔質樹脂から除去される。
【0044】
収着は吸収又は吸着により取り上げて保持できることを意味する。
ある態様において、イオン交換官能基はSO3H、CH2CO2H、CH2CH(CO2H)2、CO2H、PO32、PO22、CH2PO32、CH2Cl、CH2NH2、CH2N[(CH2yCH32(但しyは0〜18の整数である)、CH2+[(CH2y=CH33-(但しy=は0〜18の整数そしてD-はアニオンである)、SO2NHR(但しRはポリエチレンイミンである)、又はCH2NHR(但しRはポリエチレンイミンである)である。好ましくは、イオン交換官能基はSO3Hである。好ましくは、イオン交換官能基は多孔質樹脂のグラム当り、約0.01〜約5.0、より好ましくは約0.6〜約3.2、更により好ましくは約0.8〜約2.1、そして最も好ましくは約1.0ミリ当量の濃度で存在する。
【0045】
ある態様において、親水性極性成分はアミド基、エステル基、カーボネート基、カルバメート基、尿素基、ヒドロキシ基、又はピリジル基である。
ある態様において、多孔質樹脂は少なくとも1つのイオン交換官能基を有する共重合体を含み、そしてこの共重合体は少なくとも1つの親水性単量体及び少なくとも1つの疎水性単量体を含む。好ましくは、親水性単量体は複素環式基、例えば、飽和、不飽和又は芳香族の複素環式基を含む。例としては、窒素‐含有複素環式基、例えば、ピリジル基、例えば、2‐ビニルピリジン、3‐ビニルピリジン、又は4‐ビニルピリジンを含み、又はピロリドニル基、例えば、N‐ビニルピロリドンを含む。好ましくは、疎水性単量体は芳香族炭素環式基、例えば、フェニル基又はフェニレン基、又は直鎖C2‐C18‐アルキル基又は枝分れC2‐C18‐アルキル基を含む。疎水性単量体は、例えば、スチレン又はジビニルベンゼンである。好ましい共重合体はポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)である。
【0046】
好ましい多孔質樹脂は上述した化学式Iの化合物及びその塩である。好ましくは、多孔質樹脂はスルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)である。
【0047】
好ましい態様では、多孔質樹脂は少なくとも約12モルパーセントのN‐ビニルピロリドンを含む。好ましい態様では、多孔質樹脂は約30モルパーセントより少ないN‐ビニルピロリドンを含む。モルパーセントは多孔質樹脂の共重合体を構成する種々の(2又はそれ以上の)単量体の合計モルに対する対象の単量体の、パーセントで表示された、モル分率を意味する。好ましくは、多孔質樹脂は固相抽出能力を有する。
【0048】
多孔質樹脂は、例えば、ビーズ、ペレット、又は用途に応じたその他の形状であってもよい。多孔質樹脂粒子は、例えば、球形、規則的な形状、又は不規則な形状を持つことができる。好ましくは、上記樹脂粒子は約3〜約500μm、より好ましくは約20〜約200μmの範囲の直径を有するビーズである。好ましくは、多孔質樹脂はグラム当り約50〜約850平方メートルの範囲の比表面積と約0.5nm〜約100nmの範囲の直径を有する。ある態様では、多孔質樹脂はマトリックス中に入れられる。
【0049】
ある態様において、2種類以上の官能化多孔質樹脂が本発明のカラム、カートリッジ及び類似物中で使用できる。
溶質は、例えば、疎水性、親水性、又はイオンの相互作用又はこれらの相互作用の2又は3種の組合せを有する分子であってもよい。好ましくは、溶質は多孔質樹脂に吸着されるのに適した極性を有する有機化合物である。このような溶質は、例えば、薬剤、農薬、除草剤、毒物及び環境汚染物質、例えば、地下燃料又は水銀、鉛又はカドミウムのような重金属を含む金属‐有機化合物のような他の工業物質の燃焼により生じる物質を含む。また溶質は上記物質の代謝物質又は分解生成物であってもよい。また溶質は、例えば、蛋白質、ペプチド、ホルモン、ポリヌクレオチド、ビタミン、補因子、代謝物質、脂質のような生体分子、及び炭水化物を含む。
【0050】
溶液は、例えば、水、水溶液、水又は水溶液の混合物、及び水‐混和性極性有機溶媒、例えば、メタノール、エタノール、N,N‐ジメチルホルムアミド、ジメチルスルホキシド又はアセトニトリルを含むことができる。好ましい態様では、溶液は酸性、塩基性又は中性の水溶液、即ち、約1%〜約99%水容量の溶液である。溶質を含む溶液は任意に更に1又はそれ以上の別の溶質を含むことができる。ある態様において、溶液は種々の溶質の錯体を含む水溶液である。この形式の溶液は、例えば、血液、血漿、尿、髄液、滑液、及び肝臓組織、筋肉組織、脳組織又は心臓組織のような組織の抽出物を含むその他の生物的液体を含む。これらの抽出物は、例えば、水性又は有機の抽出物であってもよく、これらは乾燥後に水又は水/有機混合物中に戻される。また溶液は、例えば、地下水、地上水、飲料水、又は土壌サンプルのような環境サンプルの水性又は有機抽出物を含む。溶液の他の例は果物や野菜のジュース又はミルクのような食品、又は果物、野菜、穀物又は肉のような食物の水性又は水性/有機抽出物を含む。その他の溶液は、例えば、植物及びスープからの天然抽出物を含む。
【0051】
溶液はバッチ又はクロマトグラフ法のように、溶質を多孔質樹脂に収着させる方法で多孔質樹脂に接触できる。例えば、溶液は多孔質重合体カラム、ディスク又はプラグに通されてもよいし、又は溶液はバッチ‐撹拌反応器内で多孔質樹脂と撹拌されてもよい。また溶液はマイクロタイター(microtiter)板から成る多孔質樹脂‐含有ウエル(well)に加えられてもよい。多孔質樹脂は、例えば、ビーズ又はペレットの形状を成すこともできる。溶液は溶質が多孔質樹脂上に実質的に収着するのに十分な時間で多孔質樹脂に接触する。この時間は溶質が多孔質樹脂表面と溶液との間で平衡になるのに必要な時間である。多孔質樹脂上への溶質の収着又は分割は部分的又は完全である。
【0052】
ある態様では、多孔質樹脂は開口容器内の粒子として充填されて固相抽出カートリッジを形成する。
また本発明は溶液中の溶質の量を分析により決定する方法を含む。溶質を有する溶液は多孔質樹脂への溶質の収着を許容するような条件下で多孔質樹脂と接触する。上記多孔質樹脂は少なくとも1つのイオン交換官能基、少なくとも1つの親水性極性成分、及び少なくとも1つの疎水性成分を含む。上記収着した溶質を有する多孔質樹脂は多孔質樹脂から溶質を放出するような条件下で溶媒により洗浄される。上記洗浄の後に、溶媒中に存在する上記放出した溶質の量が分析により決定される。
【0053】
ある態様において、多孔質樹脂は化学式Iの化合物及びその塩である。好ましくは、多孔質樹脂はスルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)である。
【0054】
多孔質樹脂に接触する溶液は目的の溶質を希釈された形で、例えば、正確な定量には低すぎる濃度で含むことができる。溶質を多孔質樹脂上に収着し、次いで、例えば、実質的に小容量の極性の小さい溶媒を用いて脱着することにより、目的の溶質を含有し、最初の溶液よりも溶質の濃度が実質的に高い溶液を調製できる。この方法は溶媒交換が可能、即ち、溶媒は第1溶媒から除去され、そして第2溶媒に再溶解できる。
【0055】
溶質を多孔質樹脂から脱着するのに適する溶媒は、極性水‐混和性有機溶媒、例えば、メタノール、エタノール、イソプロパノールのようなアルコール、又はアセトニトリル、アセトン、テトラヒドロフラン、又は水及びこれらの溶媒の混合物である。また脱着溶媒は、例えば、ジクロロメタン、ジエチルエーテル、クロロホルム、又は酢酸エチルのような非極性又は適度に極性の水‐非混和性溶媒である。これらの溶媒の混合物も好適である。好ましい溶媒又は溶媒混合物はそれぞれ別個のケースに応じて決定されるべきである。好ましい溶媒はクロマトグラフ法において、日常的に行われているため、不当な実験を行うことなく、当業者が決定できる(例えば、McDonald及びBouvier, eds., の固相抽出の適用ガイド及び参考文献の“サンプル調製法の進歩のための資源”6巻、Waters, Milford, MA(1995);及びSnyder及びKirkland、最新の液体クロマトグラフィー入門、ニューヨーク:J. Wiley及びSons(1974)を参照)。
【0056】
溶媒中に存在する脱着された溶媒の量は当業者に知られている種々の技術、例えば、高性能液体クロマトグラフィー、ガスクロマトグラフィー、ガスクロマトグラフィー/質量分析、又はイムノアッセイにより分析的に決定できる。
【0057】
また本発明は開口容器内に詰められた多孔質樹脂を含む固相抽出カートリッジを含む。この多孔質樹脂は少なくとも1つのイオン交換官能基、少なくとも1つの親水性極性成分及び少なくとも1つの疎水性成分を含む。特定の態様では、多孔質樹脂は上述の化学式Iの化合物及びその塩である。好ましくは、多孔質樹脂はスルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)である。
【0058】
容器は、例えば、両端が開放した円筒形の容器又はカラムであって、溶液は一端を通って容器内に入り、容器内の多孔質樹脂と接触し、そして他端を通って容器から出る。多孔質樹脂は約3μm〜約500μm、好ましくは約20μm〜約200μmの直径を有するビーズのような小粒子として容器内に充填できる。ある態様では、多孔質樹脂粒子は多孔質膜の網にかけられた状態で容器内に充填できる。
【0059】
容器は固相抽出プロセスの時間枠内において、工程で使用される溶液と溶媒に適合できる材料から形成できる。このような材料はガラス又は高密度ポリエチレン及びポリプロピレンのような種々のプラスチックを含む。ある態様では、容器はその大部分が円筒形であり、そして一端に狭い先端を有する。このような容器の一例はシリンジバレルである。容器内の多孔質樹脂の量は容器の容積により制限され、そして約0.001グラム〜約50キログラム、好ましくは約0.025グラム〜約1グラムの範囲内にある。所望の抽出に適する多孔質樹脂の量は収着される溶質の量、多孔質樹脂の利用される表面積、及び溶質と多孔質樹脂との間の相互作用の強度に依存する。この量は当業者により容易に決定できる。カートリッジは単一使用のカートリッジであって、単一サンプルの処理に使用された後に、廃棄されてもよく、又は複数サンプルの処理に使用できる。
【0060】
以下の非限定的実施例は更に本発明を説明する。
実施例
実施例1ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)共重合
の調製
この実施例はポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)共重合の調製を説明する。
【0061】
5.0グラムのヒドロキシプロピルメチルセルロース(Methocel E15、ダウケミカル会社、Midland、ミシガン州)を1000ミリリットルの水に溶かした溶液を3000ミリリットルのフラスコに加えた。これに175グラムのジビニルベンゼン(DVB HP-80、ダウケミカル)、102グラムのN‐ビニル‐2‐ピロリドン(International Specialty Products、Wayne、ニュージャージー州)、及び1.85グラムのアゾビスイソブチロニトリル(Vazo 64、デュポンケミカル会社、Wilmington、デラウエア州)を242グラムのトルエンに溶かした溶液を加えた。
【0062】
上記80%純度のジビニルベンゼンはスチレン又はエチルビニルベンゼン、又は低純度のジビニルベンゼンのような他の疎水性単量体と置換されてもよいが、しかし80%純度のジビニルベンゼンが好ましい。上記N‐ビニルピロリドンはN‐ビニル‐ピリジン、メタクリレート、メチルメタクリレート、酢酸ビニル、アクリルアミド、又はメタクリルアミドのような他の親水性単量体と置換されてもよいが、しかしN‐ビニルピロリドンが好ましい。
【0063】
得られた2相の混合物を室温で30分間撹拌して、所望のミクロン寸法の油滴を形成した。次いで得られた懸濁液を適度に撹拌しながら、70℃まで加熱し、そしてこの温度で20時間維持した。この懸濁液を室温まで冷却し、濾過し、そしてメタノールで洗浄した。この濾過ケークを真空中で80℃で16時間乾燥した。生成物重合体の組成を元素分析により決定した。元素分析:N:2.24%; モルパーセントN‐ビニルピロリドン:20%。
【0064】
またこの方法によりジビニルベンゼンとN‐ビニルピロリドンの出発比率を変化させることにより、約13、14、16、及び22モルパーセントのN‐ビニルピロリドンを含む一連のポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)共重合体を調製した。
実施例2ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)共重合
のスルホン化
この実施例はスルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)多孔質樹脂の調製を説明する。実施例1から得た共重合体、好ましくはポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)は硫酸(95‐98%、A. C. S. 試薬、Aldrich、25,810‐5、Milwaukee、ウイスコンシン州)で誘導できる。最も好ましくは、OASIS(登録商標)HLB(Waters株式会社、Milford、マサチューセッツ州から入手)が使用される。
【0065】
プロセス設計及び品質管理のための指針として役立ち得る。
式1: 共重合体(meq HSO3/gスルホン化共重合体)のイオン
交換能力=0.53+0.018×[温度]+0.00029
×[時間]
ここで、[温度]=反応温度(℃)
[時間]=反応時間(分)
【0066】
【表1】
Figure 0004883837
【0067】
実施例3スルホン化樹脂のクロマトグラフ保持挙動に関するスルホン化の
効果
この実施例はスルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)樹脂のスルホン化の程度が樹脂の疎水性及びイオン交換性の挙動並びに樹脂の保持特性にどのように影響を与えるかを示す。
【0068】
実施例2から得られた樹脂のJJL03‐90,100,114,119,123,124,及び143をそれぞれ4.6×30mmの高性能液体クロマトグラフィー(HPLC)カラム中にスラリー状で充填した。疎水性の保持及びイオン交換の挙動に関するスルホン化の効果を種々の中性及び塩基性の検体の保持力を検査することにより決定した。選ばれたモデル化合物はアセトアミノフェン、p‐トルアミド、カフェイン、プロカインアミド、ラニチジン(ranitidine)、アンフェタミン、メスアンフェタミン(methanphetamine)及びm‐トルイジンであった。これらのモデル化合物を図1に示す。移動相を40:60メタノール‐20mM(NH4)H2PO4から構成し、NH4Clをイオン強度調節剤として用いてpHを3.0とした。流量は1.0mL/分、温度は30℃であった。注入容量は5マイクロリットルであった。各化合物は別々に注入された。検出を254nmの紫外線により実施した。
【0069】
疎水性又はイオン性の機構による相互作用が存在するか否かを決定するために、保持挙動をイオン強度の関数として決定した。図2A及び2Bは非スルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)(Oasis(登録商標)HLB、バッチ6B)、及び比較的多くスルホン化されたポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)(バッチJJL03‐100)(2.52meq/g)について、保持に基づくイオン強度の効果を示す。非スルホン化樹脂から判るように、イオン強度の増大につれて、全ての成分について保持力の増大は極めて僅かであった。この結果は疎水性の相互作用の機構と一致する。また非スルホン化樹脂について、保持係数が−<1の場合、使用される条件下において塩基性化合物の疎水性保持力はほんの僅かであった。スルホン化樹脂の場合、中性化合物の保持力はほとんど変化しないことが判明した。しかしながら、塩基性化合物の保持力はイオン強度によって劇的に影響された。保持力はイオン強度の増大と共に著しく増大し、これはイオン交換機構を示唆する。
【0070】
図3は保持力に基づく樹脂のスルホン化の効果を示す。1MのNH4Clが保持時間を最小にするために使用された。このグラフは中性化合物の保持力がスルホン化の増大につれて減少したことを示す。塩基性化合物については、保持力はスルホン化が1meq/gにまで増大するにつれて増大した。しかしながら、より高いスルホン化のレベルにおいては、保持力は再び減少した。
実施例4スルホン化樹脂の固相抽出の実施に基づくスルホン化の効果
この実施例はスルホン化樹脂の固相抽出(SPE)の実施に基づくこの樹脂のスルホン化の効果を説明する。
【0071】
SPEの実施を評価するために、HPLC法を採用して、いくつかのモデル化合物の回収を検証した。SymmetryShield(登録商標)RP8カラム、3.5μm、4.6×75mm(Waters株式会社、Milford、マサチューセッツ州)をSentry(登録商標)カラム(Waters株式会社、Milford、マサチューセッツ州)と共にインラインで使用した。流量は2.0ミリリットル/分、温度は36℃であった。移動相を95:5 20mM K2HPO4、pH7.0‐メタノールから構成した。検出を254nmの紫外線により実施した。注入容量は10μLであった。最適な分離を示すクロマトグラムを図4に示す。
【0072】
SPEの評価のために、次の樹脂、即ち、Oasis(登録商標)HLBバッチ#6B、JJL03-143、JJL03-124及びJJL03-100を使用した。96‐ウエルプレート形態で吸収剤をそれぞれ30ミリグラム使用してSPEを実施した。工程は以下の通りである。上記カートリッジ/ウェルを1ミリリットルのメタノール(−1mL/分)で状態調整し、次いで1ミリリットルの水で平衡にした。スパイクされた(spiked)リン酸塩で緩衝された生理食塩水又はスパイクされた豚の血漿から成る1ミリリットルのサンプルを導入した。サンプルはアセトアミノフェン、トルアミド、カフェイン及びプロカインアミドを10μg/mLまでスパイクされ、そしてアンフェタミン、メスアンフェタミン及びトルイジンを20μg/mLまでスパイクされた。導入されたサンプルを0.1MのHClを1ミリリットル含む水で洗浄し、次いで1ミリリットルのメタノールで洗浄し、そして2%のNH4OHを含有する1ミリリットルのメタノールの1/2で溶離した。平衡の後に、全ての画分を集めた。10μg/mLのラニチジン(ranitidine)の50μLをそれぞれのサンプルに加えた。このサンプルを加熱ブロック内のN2流の下で蒸発させて乾燥した。次いでサンプルを1ミリリットルの20mMリン酸塩緩衝液(pH7.0)で復元した。
【0073】
最初のSPE性能実験をリン酸塩‐緩衝生理食塩水中で実施した。完全な物質収支がスルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)、バッチ#JJL03-143を使用してSPE画分に対して実行された。表2は回収と物質収支の結果を示す。
【0074】
【表2】
Figure 0004883837
【0075】
アンフェタミン、メスアンフェタミン及びトルイジンは全てのケースにおいて、十分に回収できなかった。これはこれらの化合物が半‐揮発性であるため、蒸発を通じて失われることに起因する。サンプルが乾燥していない実験例では、完全な回収が得られた。生理食塩水を回収して調べた結果、漏出はいかなる場合でも添加又はHCl洗浄工程において生じなかった。全ての化合物がOasis(登録商標)HLBに対するメタノール洗浄において溶離したが、中性化合物のみが全てのスルホン化樹脂に対して溶離した。塩基性化合物はメタノール/NH4OH溶液によって完全に溶離した。スルホン化樹脂に関しては、ほとんどのカフェインが最初のメタノール洗浄で溶離した。また各画分の回収はスルホン化の程度に依存し、スルホン化が最小の樹脂は最初のメタノール洗浄で回収が最大になることが判明した。この異常な結果はカフェインが13.9のpKbを有する弱塩基であることに起因する。別の観察によれば、アセトアミノフェンはスルホン化樹脂に関してメタノール/塩基の溶離において僅かな量の漏出(−1%)を示した。
【0076】
類似の結果が血漿を用いた場合に得られた。表3は3種類の異なる吸収剤のOasis(登録商標)HLBバッチ6B、JJL03-100及びJJL03-124について得られた回収の結果を示す。
【0077】
【表3】
Figure 0004883837
【0078】
Figure 0004883837
【0079】
中性物質はメタノール洗浄において溶離し、塩基はメタノール/水酸化アンモニウム工程において溶離した。スルホン化樹脂からのスパイクされない血漿抽出物のHPLC分析を図5A及び5Bに示し、ここでラニチジンが内標準である。
【0080】
抽出物中の蛋白質をクマシーブルー(Coomassie blue)によって計量した。血漿の2つの異なるロットを試験した。結果を表4に示す。
【0081】
【表4】
Figure 0004883837
【0082】
塩基化されたメタノール中の蛋白質はOasis(登録商標)HLB、JJL03-100及びJJL03-124について類似点があることが判明した。比較として、(メタノール溶離工程からの)Oasis(登録商標)HLBカートリッジについて、これらの蛋白質量は推奨されるSPEプロトコール(“Water Oasis(登録商標)HLB抽出カートリッジ及びプレート”1997 Waters 株式会社、6/97WB025‐US)を用いて典型的に観察されるものより約5倍も少なかった。
【0083】
高いスルホン化ローディング(loadings)において、樹脂を通過する血漿ロード(load)は懸濁した。関連の観察の結果、流量は高いスルホン化ローディングにおいて減少することが判明した。これらの観察結果は樹脂の酸性度に起因する。大部分のスルホン化樹脂は最も高い酸性度を有する。従って、血漿を樹脂に通すことは酸性の沈殿物を生成させること相当し、これはサンプルをより懸濁させ、そしてフリット及び樹脂含有充填ベッドを塞ぐことになる。
実施例5ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)多孔質
樹脂のクロロメチル化
ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)、OASIS(登録商標)HLB、(Waters株式会社、Milford、マサチューセッツ州)を塩酸(12モル、36.5〜38%、A.C.S.試薬、J.T.Baker、9535‐03、Phillipsburgh、ニュージャージー州)及びパラホルムアルデヒド(95%、Aldrich Chemical、15,812‐7、Milwaukee、ウイスコンシン州)で誘導した。3リットルの三つ口の丸底フラスコに温度計、撹拌機、凝縮器、及び反応器温度制御装置を取り付けた。塩酸を上記フラスコ中に導入した(塩酸の量に関しては表5を参照)。次いで撹拌及び温度制御を行った。撹拌機はフラスコ頂部の中心開口内に適当なテフロンベアリングを介してすりガラスシャフトにより固定された。テフロンパドルは単一羽根であった。撹拌速度を適切な混合を得るために調節した。ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)、OASIS(登録商標)HLBを添加した(OASIS(登録商標)HLBの量に関しては表5を参照)。次いでパラホルムアルデヒドを添加した(パラホルムアルデヒドの量に関しては表5を参照)。反応混合物を特定時間、一定の温度で撹拌した(反応時間及び温度に関しては表5を参照)。反応混合物を冷却し、そして酸溶液を濾過した。クロロメチル化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)共重合体を収集し、そしてスラリーのpHが5.0以上になるまで水で洗浄した。次いでクロロメチル化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)共重合体の濾過ケークをメタノール(HPLC等級、J.T. Baker、9535‐03、Phillipsburgh、ニュージャージー州)で2回洗浄し、そして真空中において80℃で15時間乾燥した。クロロメチル化の程度を塩素元素分析(Atlantic Microlab株式会社、Norcross、ジョージア州)により決定した。上記共重合体上のクロロメチル基(CH2Cl)の量を表5に示す。
【0084】
反応時間、反応温度、及び塩酸モル濃度は全てポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)共重合体へのクロロメチル基の付与量に影響を与えることが判明した。これら3種類の変数の種々の組合せ及びその結果のクロロメチル付与量を表5に示す。
【0085】
【表5】
Figure 0004883837
【0086】
実施例6クロロメチル化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロ
リドン)多孔質樹脂のアミノ化
実施例5で述べたように調製されたクロロメチル化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)多孔質樹脂を次の第三アミン(全てをAldrich Chemical、Milwaukee、ウイスコンシン州から購入)、即ちトリメチルアミン(TMA、40重量%水溶液、43、326‐8)、トリエチルアミン(TEA、99%、13、206‐3)、N,N‐ジメチルエチルアミン(DMEA、99%、23、935‐6)、N,N‐ジエチルメチルアミン(DEMA、98%、D9、820‐3)、N,N‐ジメチルブチルアミン(DMBA、99%、36、952‐7)、及びN‐メチルピロリドン(NMP、97%、M7、920‐4)と反応させた。一般的なアミノ化の手順を以下に示す。反応アミンアルキル基のクロロメチル化ロード(load)及び立体サイズ(Hirsch, J.A. 立体化学における話題、第1巻、Allinger, N.L.; Eliel, E.D., Eds. Wiley: ニューヨーク、1967、第1章)はポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)共重合体上へのアンモニウム基のローディングに通常影響を与えることが判明した。一般的な反応の手順を以下に示す。工程1のクロロメチルのローディング、アミンの種類、及び反応温度の種々の組合せ、及び得られる第4アミンのローディングを表6に示す。
【0087】
250ミリリットルの三つ口の丸底フラスコに温度計、撹拌機、凝縮器、及び反応器温度制御装置を取り付けた。トリアルキルアミンを上記フラスコ内に導入し(それぞれのアミンの量に関しては表6を参照)、そして撹拌及び温度制御を開始した。撹拌機はフラスコ頂部の中心開口内に適当なテフロンベアリングを介してすりガラスシャフトにより固定された。テフロンパドルは単一羽根であった。クロロメチル化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)を添加(樹脂の量に関しては表6を参照)し、そして充分な混合を得るために撹拌速度を調節した。反応混合物を特定時間、一定の温度で撹拌した(反応時間及び温度に関しては表6を参照)。反応混合物を冷却し、そしてアミンを濾過した。アミン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)共重合体を収集し、そしてスラリーのpHが5.5以下になるまで水で洗浄した。次いでアミノ化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)共重合体の濾過ケークをメタノール(HPLC等級、J.T. Baker、9535‐03、Phillipsburgh、ニュージャージー州)で2回洗浄し、そして真空中において80℃で15時間乾燥した。アミノ化の程度を滴定により決定した。上記共重合体上のメチレントリアルキルアンモニウム基(CH2NR3 +Cl-)の量を表6に示す。
【0088】
【表6】
Figure 0004883837
【0089】
結論として、上記実験によれば、スルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)は塩基性化合物のSPEのために通常の方法で使用できることが実証された。またこれは中性及び塩基性化合物のクラス分別を達成する道具として使用できる。
【0090】
当業者は普通の実験を使用するだけで上述した本発明の具体例と同等の物を数多く確認できるであろう。これらのそして全ての同等物は上述のクレイムの保護範囲内にある。
[本発明の態様]
[1]
化学式:
【化1】
Figure 0004883837
の化合物及びその塩であって、但し、A、B及びCの順番はランダム、ブロック、又はランダム及びブロックの組合せであり;
但し、
【化2】
Figure 0004883837
但し、Aは
【化3】
Figure 0004883837
から成る群から選ばれ、
但し、Bは
【化4】
Figure 0004883837
から成る群から選ばれ、 但し、CはA又は修正されたAであり、ここで、修正されたAは
【化5】
Figure 0004883837
から成る群から選ばれ、そして
ここで、XはSO 3 H、CH 2 CO 2 H、CH 2 CH(CO 2 H) 2 、CO 2 H、PO 3 2 、PO 2 2 、CH 2 PO 3 2 、CH 2 Cl、CH 2 NH 2 、CH 2 N[(CH 2 y CH 3 2 (但しyは0〜18の整数である)、CH 2 + [(CH 2 y= CH 3 3 - (但しy=は0〜18の整数そしてD - はアニオンである)、SO 2 NHR(但しRはポリエチレンイミンである)、及びCH 2 NHR(但しRはポリエチレンイミンである)から成る群から選ばれる上記化合物及びその塩。
[2]
Xは化合物のグラム当り約0.1〜約5.0ミリ当量の濃度で存在する1の化合物。
[3]
Xは化合物のグラム当り約0.6〜約3.2ミリ当量の濃度で存在する1の化合物。
[4]
Xは化合物のグラム当り約0.8〜約2.1ミリ当量の濃度で存在する1の化合物。
[5]
Xは化合物のグラム当り約1.0ミリ当量の濃度で存在する1の化合物。
[6]
XはSO 3 H、CH 2 PO 3 2 、及びCH 2 CO 2 Hから成る群から選ばれる1の化合物。
[7]
XはSO 3 Hである6の化合物。
[8]
少なくとも1つの疎水性単量体と少なくとも1つの親水性単量体を共重合させて共重合体を生成し、そして上記共重合体をスルホン化反応させて、少なくとも1つのイオン交換官能基、少なくとも1つの親水性成分、及び少なくとも1つの疎水性成分を含むスルホン化共重合体を生成することにより得られる固相抽出又はクロマトグラフィー用の多孔質樹脂。
[9]
上記疎水性単量体はジビニルベンゼンである8の多孔質樹脂。
[10]
上記親水性単量体はN‐ビニルピロリドンである8の多孔質樹脂。
[11]
上記共重合体はポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)である8の多孔質樹脂。
[12]
上記多孔質樹脂はスルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)である8の多孔質樹脂。
[13]
上記スルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)は多孔質樹脂のグラム当り約0.1〜約5.0ミリ当量の濃度で存在するスルホン酸塩の基を有する12の多孔質樹脂。
[14]
少なくとも1つのイオン交換官能基、少なくとも1つの親水性成分、及び少なくとも1つの疎水性成分を含む固相抽出又はクロマトグラフィー用の多孔質樹脂。
[15]
溶質を単離又は除去するために溶液を処理する方法であって、 溶質を有する溶液を多孔質樹脂と上記溶質が上記多孔質樹脂に収着するような条件下で接触させることを含み;
上記多孔質樹脂は少なくとも1つのイオン交換官能基、少なくとも1つの親水性極性成分、及び少なくとも1つの疎水性成分を含む: 上記方法。
[16]
上記イオン交換官能基はSO 3 H、CH 2 CO 2 H、CH 2 CH(CO 2 H) 2 、CO 2 H、PO 3 2 、PO 2 2 、CH 2 PO 3 2 、CH 2 Cl、CH 2 NH 2 、CH 2 N[(CH 2 y CH 3 2 (但しyは0〜18の整数である)、CH 2 + [(CH 2 y= CH 3 3 - (但しy=は0〜18の整数そしてD - はアニオンである)、SO 2 NHR(但しRはポリエチレンイミンである)、及びCH 2 NHR(但しRはポリエチレンイミンである)から成る群から選ばれる14の方法。
[17]
上記イオン交換官能基はSO 3 H、CH 2 PO 3 2 、及びCH 2 CO 2 Hから成る群から選ばれる16の方法。
[18]
上記イオン交換官能基はSO 3 Hである17の方法。
[19]
上記イオン交換官能基は多孔質樹脂のグラム当り約0.1〜約5.0ミリ当量の濃度で存在する15の方法。
[20]
上記親水性極性成分はアミド基、エステル基、カーボネート基、カルバメート基、尿素基、ヒドロキシ基、及びピリジル基から成る群から選ばれる15の方法。
[21]
上記多孔質樹脂は少なくとも1つのイオン交換官能基を有する共重合体を含み、上記共重合体は少なくとも1つの親水性単量体及び少なくとも1つの疎水性単量体を含む15の方法。
[22]
上記親水性単量体は複素環式基を含む21の方法。
[23]
上記複素環式基はピリジル基又はピロリドニル基である22の方法。
[24]
上記ピリジル基は2‐ビニルピリジン、3‐ビニルピリジン、及び4‐ビニルピリジンから成る群から選ばれる23の方法。
[25]
上記ピロリドニル基はN‐ビニルピロリドンである23の方法。
[26]
上記疎水性単量体はフェニル基、フェニレン基、直鎖C 2 ‐C 18 ‐アルキル基及び枝分れC 2 ‐C 18 ‐アルキル基から成る群から選ばれる基を含む21の方法。
[27]
上記疎水性単量体はスチレン又はジビニルベンゼンである26の方法。
[28]
上記疎水性単量体はジビニルベンゼンである26の方法。
[29]
上記共重合体はポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)である21の方法。
[30]
上記多孔質樹脂は化学式Iの化合物及びその塩である15の方法。
[31]
上記多孔質樹脂はスルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)である15の方法。
[32]
上記スルホン酸塩基は多孔質樹脂のグラム当り約0.1〜約5.0ミリ当量の濃度で存在する31の方法。
[33]
上記多孔質樹脂は少なくとも約12モルパーセントのN‐ビニルピロリドンを含む31の方法。
[34]
上記多孔質樹脂は約30モルパーセントより少ないN‐ビニルピロリドンを含む31の方法。
[35]
上記多孔質樹脂はビーズの形状である15の方法。
[36]
上記ビーズは約3〜約500マイクロメーターの平均寸法を有する35の方法。
[37]
上記多孔質樹脂はマトリックス中に入れられる15の方法。
[38]
上記多孔質樹脂は固相抽出能力を有する15の方法。
[39]
上記溶質は薬剤、農薬、除草剤、生体分子、毒物、汚染物質、代謝物、及びこれらの分解生成物から成る群から選ばれる15の方法。
[40]
上記溶液は水、水溶液、水又は水溶液の混合物、及び水‐混和性極性有機溶媒から成る群から選ばれる15の方法。
[41]
上記溶液は血液、血漿、尿、髄液、滑液、組織抽出物、地下水、地上水、飲料水、土壌抽出物、食糧物質、食糧物質の抽出物、植物及びブイヨンからの天然抽出物から成る群から選ばれる15の方法。
[42]
上記多孔質樹脂は開口容器内にある15の方法。
[43]
上記多孔質樹脂から上記溶質を除去する工程を更に含む15の方法。
[44]
溶液中の溶質の量を分析により決定する方法であって、 溶質を有する溶液を多孔質樹脂と上記溶質が上記多孔質樹脂に収着するような条件下で接触させ;
上記多孔質樹脂は少なくとも1つのイオン交換官能基、少なくとも1つの親水性極性成分、及び少なくとも1つの疎水性成分を含み;
上記収着した溶質を有する上記多孔質樹脂を上記多孔質樹脂から上記溶質を放出するような条件下で溶媒を用いて洗浄し;そして 上記洗浄の後に、上記溶媒中に存在する上記放出した溶質の量を分析により決定する: ことを含む上記方法。
[45]
上記多孔質樹脂は化学式Iの化合物及びその塩である44の方法。
[46]
上記多孔質樹脂はスルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)である45の方法。
[47]
開口容器内に詰められた多孔質樹脂を含み、上記多孔質樹脂は少なくとも1つのイオン交換官能基、少なくとも1つの親水性極性成分、及び少なくとも1つの疎水性成分を含む固相抽出カートリッジ。
[48]
上記多孔質樹脂は化学式Iの化合物及びその塩である47の固相抽出カートリッジ。
[49]
上記多孔質樹脂はスルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)である48の固相抽出カートリッジ。
【図面の簡単な説明】
【図1】模範的化合物のアセトアミノフェン、p‐トルアミド、カフェイン、プロカインアミド、ラニチジン、アンフェタミン、メスアンフェタミン及びm‐トルイジンの化学式を示す。
【図2】図2Aは、ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)のバッチ6Bに対するクロマトグラフ保持力に基づくイオン強度の効果を示すグラフである。図2Bは、スルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)のバッチJJL03‐100に対するクロマトグラフ保持力に基づくイオン強度の効果を示すグラフである。
【図3】本発明の特定のスルホン化樹脂に対する模範的化合物のクロマトグラフ保持力に基づくスルホン化の効果を示すグラフである。
【図4】SymmetryShield(登録商標)RP8カラムを用いた模範的化合物の分離を示すクロマトグラムである。
【図5】図5Aは、ラニチジンが内標準である固相抽出のために、スルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)のバッチJJL03‐124及びバッチJJL03‐100を用いた豚の血漿からのメタノール/水酸化アンモニウム抽出物のクロマトグラムである。図5Bは、ラニチジンが内標準である固相抽出のために、スルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)のバッチJJL03‐124及びバッチJJL03‐100を用いた豚の血漿からのメタノール/水酸化アンモニウム抽出物のクロマトグラムである。[0001]
Field of Invention
The present invention relates to a novel porous resin for solid phase extraction and chromatography containing at least one hydrophobic component, at least one hydrophilic component and at least one ion exchange functional group.
Background of the Invention
Solid phase extraction (SPE) is a chromatograph widely used, for example, for preconcentration and purification of analytical samples, for purification of various chemicals, and for removing toxic or useful substances from aqueous solutions. Technology. SPE is typically performed using a column or cartridge containing a suitable resin. The SPE method has been developed using absorbents that can interact with the analyte by binding, and separating the analyte from the fluid by hydrophobic, ion exchange, chelation, sorption and other mechanisms. . Depending on the application of SPE, different absorbents are required, and therefore, absorbents with new properties having special selectivity are required.
Summary of the Invention
An object of the present invention is to provide a compound that can be used as a porous resin for solid phase extraction and chromatography, which exhibits excellent wettability.
[0002]
Another object of the present invention is to provide a porous resin compound having special selectivity.
Another object of the present invention is to provide a porous resin compound capable of selectively capturing an analyte and preventing the analyte from passing unretained.
[0003]
Another object of the present invention is to provide a porous resin compound having an ion exchange functional group, a hydrophobic component and a hydrophilic polar component.
Another object of the present invention is to utilize the novel porous resin of the present invention to isolate or remove solutes from solution.
[0004]
Yet another object of the present invention is to utilize the novel porous resin of the present invention to analytically determine the amount of solute in solution.
In one aspect, the present invention provides
Chemical formula:
[0005]
[Chemical 6]
Figure 0004883837
[0006]
And a salt thereof,
Where the order of A, B and C is random, block, or a combination of random and block;
However,
[0007]
[Chemical 7]
Figure 0004883837
[0008]
However, A is
[0009]
[Chemical 8]
Figure 0004883837
[0010]
Selected from the group consisting of
However, B is
[0011]
[Chemical 9]
Figure 0004883837
[0012]
Selected from the group consisting of
Where C is A or modified A, where modified A is
[0013]
[Chemical Formula 10]
Figure 0004883837
[0014]
Selected from the group consisting of and
Where X is SOThreeH, CH2CO2H, CH2CH (CO2H)2, CO2H, POThreeH2, PO2H2, CH2POThreeH2, CH2Cl, CH2NH2, CH2N [(CH2)yCHThree]2(Where y is an integer from 0 to 18), CH2N+[(CH2)y =CHThree]ThreeD-(Where y = is an integer from 0 to 18 and D-Is an anion), SO2NHR (where R is polyethyleneimine), and CH2It is selected from the group consisting of NHR (where R is polyethyleneimine).
[0015]
Another aspect of the invention is to copolymerize at least one hydrophobic monomer and at least one hydrophilic monomer to form a copolymer, and to sulfonate the copolymer to at least 1 A porous resin obtained by producing a sulfonated copolymer comprising one ion exchange functional group, at least one hydrophilic component, and at least one hydrophobic component.
[0016]
In a preferred embodiment, the hydrophobic monomer is divinylbenzene, the hydrophilic monomer is N-vinylpyrrolidone, and the copolymer is poly (divinylbenzene-co-N-vinylpyrrolidone). . Preferably, the porous resin is sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone).
[0017]
Another aspect of the present invention is a porous resin for solid phase extraction or chromatography comprising at least one ion exchange functional group, at least one hydrophilic component, and at least one hydrophobic component.
[0018]
Another aspect of the invention is a method of treating a solution to isolate or remove solutes. The solution having a solute comes into contact with the porous resin under conditions such that the solute is sorbed onto the porous resin. The porous resin includes at least one ion exchange functional group, at least one hydrophilic polar component, and at least one hydrophobic component. In certain embodiments, the solute is removed from the porous resin. In certain embodiments, the ion exchange functional group is SO.ThreeH, CH2CO2H, CH2CH (CO2H)2, CO2H, POThreeH2, PO2H2, CH2POThreeH2, CH2Cl, CH2NH2, CH2N [(CH2)yCHThree]2(Where y is an integer from 0 to 18), CH2N+[(CH2)y =CHThree]ThreeD-(Where y = is an integer from 0 to 18 and D-Is an anion), SO2NHR (where R is polyethyleneimine) or CH2NHR (where R is polyethyleneimine). In certain embodiments, the hydrophilic monomer comprises a heterocyclic group, such as a saturated, unsaturated or aromatic heterocyclic group. Examples of nitrogen-containing heterocyclic groups include pyridyl groups, such as 2-vinylpyridine, 3-vinylpyridine, or 4-vinylpyridine, or pyrrolidonyl groups, such as N-vinylpyrrolidone. In certain embodiments, the hydrophobic monomer is an aromatic carbocyclic group, such as a phenyl or phenylene group, or a linear C2-C18-Alkyl groups or branched C2-C18-Contains an alkyl group. The hydrophobic monomer is, for example, styrene or divinylbenzene. A preferred copolymer is poly (divinylbenzene-co-N-vinylpyrrolidone). Preferred porous resins are compounds of formula I and salts thereof. Preferably, the porous resin is sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone).
[0019]
Another feature of the present invention is a method for analytically determining the amount of solute in a solution. The solution having a solute comes into contact with the porous resin under conditions such that the solute sorbs on the porous resin. The porous resin includes at least one ion exchange functional group, at least one hydrophilic polar component, and at least one hydrophobic component. The porous resin having a sorbed solute is washed with a solvent under conditions that release the solute from the porous resin. After washing, the amount of released solute present in the solvent is determined by analysis. In a particular embodiment, the porous resin is a compound of formula I and salts thereof. Preferably, the porous resin is sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone).
[0020]
Another feature of the present invention is a solid phase extraction cartridge containing a porous resin packed in an open container. The porous resin includes at least one ion exchange functional group, at least one hydrophilic polar component, and at least one hydrophobic component. In a particular embodiment, the porous resin is a compound of formula I and salts thereof. Preferably, the porous resin is sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone).
[0021]
The above and other features, objects and advantages of the present invention will be better understood from the following specification in conjunction with the drawings.
Detailed description
The present invention
Chemical formula:
[0022]
Embedded image
Figure 0004883837
[0023]
And a salt thereof,
Where the order of A, B and C is random, block, or a combination of random and block;
However,
[0024]
Embedded image
Figure 0004883837
[0025]
However, A is
[0026]
Embedded image
Figure 0004883837
[0027]
Selected from the group consisting of
However, B is
[0028]
Embedded image
Figure 0004883837
[0029]
Selected from the group consisting of
Where C is A or modified A, where modified A is
[0030]
Embedded image
Figure 0004883837
[0031]
Selected from the group consisting of and
Where X is SOThreeH, CH2CO2H, CH2CH (CO2H)2, CO2H, POThreeH2, PO2H2, CH2POThreeH2, CH2Cl, CH2NH2, CH2N [(CH2)yCHThree]2(Where y is an integer from 0 to 18), CH2N+[(CH2)y =CHThree]ThreeD-(Where y = is an integer from 0 to 18 and D-Is an anion), SO2NHR (where R is polyethyleneimine), and CH2It is selected from the group consisting of NHR (where R is polyethyleneimine).
[0032]
Preferred compounds are those where X is SOThreeH, CH2POThreeH2, CH2CO2H or a combination thereof. The most preferred compound is where X is SOThreeH.
[0033]
Preferably, X is present at a concentration of about 0.01 to about 5.0 milliequivalents per gram of compound, more preferably at a concentration of about 0.6 to about 3.2 milliequivalents, even more preferably It is present at a concentration of about 0.8 to about 2.1 milliequivalents, and most preferably at a concentration of about 1.0 milliequivalents.
[0034]
The order of blocks means the order in which the constituent units are combined in a fixed pattern or a series of repetitions. Random order means the order in which each constituent unit is randomly combined.
[0035]
The compounds of the present invention contain at least one hydrophobic monomer, such as divinylbenzene, styrene, or ethylvinylbenzene, and at least one hydrophilic monomer, such as N-vinylpyrrolidone, N-vinylpyridine, methacrylate, It can be prepared by functionalizing, i.e. chemically changing, methyl methacrylate, vinyl acetate, acrylamide or methacrylamide. Preferably, the hydrophobic monomer is divinylbenzene. Preferably, the hydrophilic monomer is N-vinyl pyrrolidone. The copolymer can be prepared by standard synthetic methods known to those skilled in the art, for example, as described in Example 1.
[0036]
Such copolymers, such as poly (divinylbenzene-co-N-vinylpyrrolidone), can be functionalized by the addition of ion exchange functional groups, X groups, which groups are cations such as SOThreeH, CH2CO2H, CH2CH (CO2H)2, CO2H, POThreeH2, PO2H2Or CH2POThreeH2Or an anion such as CH2NH2, CH2N [(CH2)yCHThree]2, CH2N+[(CH2)y =CHThree]ThreeD-, SO2NHR or CH2NHR or intermediates such as CH2Cl. These additions are described, for example, by Lieto et al., Chemtech, p. 46-53 (1983); Mitchell et al., Tetrahedron Letters, p. 3795-3798 (1976); Can be achieved as described in “Unpacking and stationary phases in chromatographic technology” by K. Unger. See, for example, Example 2, which describes the sulfonation of poly (divinylbenzene-co-N-vinylpyrrolidone).
[0037]
The novel compound of the present invention can be used, for example, as a porous resin for solid phase extraction and chromatography. Solid phase extraction isolates a class of molecular species from fluid phases such as gases and liquids by, for example, sorption, ion exchange, chelation, size exclusion (molecular filtration), affinity, or ion pair mechanisms. Therefore, it means a method of employing a solid phase.
[0038]
The present invention also provides a copolymer formed by copolymerizing at least one hydrophobic monomer and at least one hydrophilic monomer, and the copolymer is sulfonated to produce at least one ion-exchange functional group. A porous resin obtained by forming a sulfonated copolymer comprising at least one hydrophobic component and at least one hydrophilic component.
[0039]
Porous resin refers to a member of a class of crosslinked polymer particles that penetrates through channels through which solutions can diffuse. Pore means the area between closely packed polymer chains. Monomer means a molecule or polymer repeating unit containing one or more polymerizable functional groups prior to polymerization. Copolymer means a polymer comprising two or more different monomers. An ion exchange functional group means a group in which the counter ion is partially free and can be easily exchanged for another ion of the same sign. Hydrophilic means having an affinity to attract, adsorb or absorb water. Hydrophobic means having no affinity to repel water or to adsorb or absorb water.
[0040]
In a preferred embodiment, the hydrophobic monomer is divinylbenzene. In a preferred embodiment, the hydrophilic monomer is N-vinyl pyrrolidone. In a preferred embodiment, the copolymer is poly (divinylbenzene-co-N-vinylpyrrolidone). In a preferred embodiment, the porous resin is sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone). Preferably, the sulfonate group is from about 0.01 to about 5.0, more preferably from about 0.6 to about 3.2, and even more preferably from about 0.8 to about 2.1 per gram of porous resin. And most preferably at a concentration of about 1.0 milliequivalent.
[0041]
The invention also includes a porous resin for solid phase extraction or chromatography containing at least one ion exchange functional group, at least one hydrophilic component, and at least one hydrophobic component.
[0042]
The ion exchange functional group can allow the porous resin to interact with the basic cation solute. The hydrophilic polar component can make the porous resin have polar interaction with the solute and hydrogen bonding ability. The hydrophobic component can give the porous resin an affinity for nonpolar solutes through hydrophobic interactions. Since the porous resin of the present invention has a combination of various interaction forces with respect to the solute, these are extremely useful resins in, for example, solid phase extraction, ion exchange, and liquid chromatography. For example, these novel porous resins can recover, fix and / or remove solutes from fluids.
[0043]
The invention also includes a method of treating a solution to isolate or remove a solute. The solution having a solute contacts the porous resin under conditions such that the solute is sorbed onto the porous resin. The porous resin includes at least one ion exchange functional group, at least one hydrophilic component, and at least one hydrophobic component. In some embodiments, the solute is removed from the porous resin.
[0044]
Sorption means that it can be taken up and retained by absorption or adsorption.
In some embodiments, the ion exchange functional group is SO.ThreeH, CH2CO2H, CH2CH (CO2H)2, CO2H, POThreeH2, PO2H2, CH2POThreeH2, CH2Cl, CH2NH2, CH2N [(CH2)yCHThree]2(Where y is an integer from 0 to 18), CH2N+[(CH2)y =CHThree]ThreeD-(Where y = is an integer from 0 to 18 and D-Is an anion), SO2NHR (where R is polyethyleneimine) or CH2NHR (where R is polyethyleneimine). Preferably, the ion exchange functional group is SO.ThreeH. Preferably, the ion exchange functional groups are from about 0.01 to about 5.0, more preferably from about 0.6 to about 3.2, and even more preferably from about 0.8 to about 2. per gram of porous resin. 1, and most preferably at a concentration of about 1.0 milliequivalent.
[0045]
In some embodiments, the hydrophilic polar component is an amide group, ester group, carbonate group, carbamate group, urea group, hydroxy group, or pyridyl group.
In certain embodiments, the porous resin comprises a copolymer having at least one ion exchange functional group, and the copolymer comprises at least one hydrophilic monomer and at least one hydrophobic monomer. Preferably, the hydrophilic monomer comprises a heterocyclic group, such as a saturated, unsaturated or aromatic heterocyclic group. Examples include nitrogen-containing heterocyclic groups such as pyridyl groups such as 2-vinyl pyridine, 3-vinyl pyridine, or 4-vinyl pyridine, or pyrrolidonyl groups such as N-vinyl pyrrolidone. Preferably, the hydrophobic monomer is an aromatic carbocyclic group, such as a phenyl group or a phenylene group, or a linear C2-C18-Alkyl groups or branched C2-C18-Contains an alkyl group. The hydrophobic monomer is, for example, styrene or divinylbenzene. A preferred copolymer is poly (divinylbenzene-co-N-vinylpyrrolidone).
[0046]
Preferred porous resins are the compounds of formula I described above and salts thereof. Preferably, the porous resin is sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone).
[0047]
In a preferred embodiment, the porous resin comprises at least about 12 mole percent N-vinyl pyrrolidone. In a preferred embodiment, the porous resin contains less than about 30 mole percent N-vinyl pyrrolidone. The mole percentage means the mole fraction, expressed as a percentage, of the monomer of interest relative to the total moles of the various (two or more) monomers that make up the copolymer of the porous resin. Preferably, the porous resin has a solid phase extraction capability.
[0048]
The porous resin may be, for example, beads, pellets, or other shapes depending on the application. The porous resin particles can have, for example, a spherical shape, a regular shape, or an irregular shape. Preferably, the resin particles are beads having a diameter in the range of about 3 to about 500 μm, more preferably about 20 to about 200 μm. Preferably, the porous resin has a specific surface area in the range of about 50 to about 850 square meters per gram and a diameter in the range of about 0.5 nm to about 100 nm. In some embodiments, the porous resin is placed in a matrix.
[0049]
In some embodiments, more than one type of functionalized porous resin can be used in the columns, cartridges and the like of the present invention.
A solute can be, for example, a molecule having hydrophobic, hydrophilic, or ionic interactions or a combination of two or three of these interactions. Preferably, the solute is an organic compound having a polarity suitable for being adsorbed on the porous resin. Such solutes are, for example, burning of chemicals, pesticides, herbicides, poisons and environmental pollutants such as underground fuels or other industrial materials such as metal-organic compounds including heavy metals such as mercury, lead or cadmium. Including substances produced by The solute may be a metabolite or decomposition product of the above substance. Solutes include, for example, proteins, peptides, hormones, polynucleotides, vitamins, cofactors, metabolites, biomolecules such as lipids, and carbohydrates.
[0050]
The solution can include, for example, water, an aqueous solution, water or a mixture of aqueous solutions, and a water-miscible polar organic solvent such as methanol, ethanol, N, N-dimethylformamide, dimethyl sulfoxide or acetonitrile. In preferred embodiments, the solution is an acidic, basic or neutral aqueous solution, i.e., a solution having a volume of about 1% to about 99% water. The solution containing the solute can optionally further comprise one or more other solutes. In certain embodiments, the solution is an aqueous solution containing complexes of various solutes. This type of solution includes, for example, blood, plasma, urine, spinal fluid, synovial fluid, and other biological fluids including extracts of tissues such as liver tissue, muscle tissue, brain tissue or heart tissue. These extracts may be, for example, aqueous or organic extracts, which are returned to water or water / organic mixtures after drying. Solutions also include aqueous or organic extracts of environmental samples such as ground water, ground water, drinking water, or soil samples. Other examples of solutions include foods such as fruit or vegetable juices or milk, or aqueous or aqueous / organic extracts of foods such as fruits, vegetables, grains or meat. Other solutions include, for example, natural extracts from plants and soups.
[0051]
The solution can be contacted with the porous resin by a method of sorbing the solute onto the porous resin, such as batch or chromatographic methods. For example, the solution may be passed through a porous polymer column, disk or plug, or the solution may be stirred with the porous resin in a batch-stirred reactor. The solution may also be added to a porous resin-containing well consisting of a microtiter plate. The porous resin can also be in the form of beads or pellets, for example. The solution contacts the porous resin for a time sufficient for the solute to substantially sorb onto the porous resin. This time is the time required for the solute to equilibrate between the porous resin surface and the solution. Sorption or partitioning of the solute onto the porous resin is partial or complete.
[0052]
In some embodiments, the porous resin is filled as particles in an open container to form a solid phase extraction cartridge.
The invention also includes a method for analytically determining the amount of solute in a solution. The solution having the solute contacts the porous resin under conditions that allow sorption of the solute to the porous resin. The porous resin includes at least one ion exchange functional group, at least one hydrophilic polar component, and at least one hydrophobic component. The porous resin having the sorbed solute is washed with a solvent under conditions that release the solute from the porous resin. After the washing, the amount of the released solute present in the solvent is determined by analysis.
[0053]
In some embodiments, the porous resin is a compound of formula I and salts thereof. Preferably, the porous resin is sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone).
[0054]
The solution in contact with the porous resin can contain the solute of interest in diluted form, for example, at a concentration that is too low for accurate quantification. The solute is sorbed onto the porous resin and then desorbed using, for example, a substantially small volume of a less polar solvent, thereby containing the desired solute and having a substantially higher concentration of solute than the initial solution. High solution can be prepared. This method allows for solvent exchange, that is, the solvent can be removed from the first solvent and redissolved in the second solvent.
[0055]
Suitable solvents for desorbing solutes from porous resins are polar water-miscible organic solvents such as alcohols such as methanol, ethanol, isopropanol, or acetonitrile, acetone, tetrahydrofuran, or water and mixtures of these solvents. is there. The desorption solvent is also a nonpolar or moderately polar water-immiscible solvent such as, for example, dichloromethane, diethyl ether, chloroform, or ethyl acetate. Mixtures of these solvents are also suitable. The preferred solvent or solvent mixture should be determined for each separate case. Preferred solvents are routinely used in chromatographic methods and can be determined by one skilled in the art without undue experimentation (eg, McDonald and Bouvier, eds., Application guides and references for solid phase extraction). (See "Resources for Advances in Sample Preparation", Volume 6, Waters, Milford, MA (1995); and Snyder and Kirkland, an introduction to the latest liquid chromatography, New York: J. Wiley and Sons (1974)).
[0056]
The amount of desorbed solvent present in the solvent can be analytically determined by various techniques known to those skilled in the art, such as high performance liquid chromatography, gas chromatography, gas chromatography / mass spectrometry, or immunoassay. .
[0057]
The present invention also includes a solid-phase extraction cartridge containing a porous resin packed in an open container. The porous resin includes at least one ion exchange functional group, at least one hydrophilic polar component, and at least one hydrophobic component. In a particular embodiment, the porous resin is a compound of formula I as described above and salts thereof. Preferably, the porous resin is sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone).
[0058]
The container is, for example, a cylindrical container or column open at both ends, where the solution enters the container through one end, contacts the porous resin in the container, and exits the container through the other end. The porous resin can be filled into the container as small particles such as beads having a diameter of about 3 μm to about 500 μm, preferably about 20 μm to about 200 μm. In one embodiment, the porous resin particles can be filled in the container in a state where the porous resin particles are put on the net of the porous membrane.
[0059]
The container can be formed from a material that is compatible with the solution and solvent used in the process within the time frame of the solid phase extraction process. Such materials include glass or various plastics such as high density polyethylene and polypropylene. In some embodiments, the container is largely cylindrical and has a narrow tip at one end. An example of such a container is a syringe barrel. The amount of porous resin in the container is limited by the volume of the container and is in the range of about 0.001 grams to about 50 kilograms, preferably about 0.025 grams to about 1 gram. The amount of porous resin suitable for the desired extraction depends on the amount of solute sorbed, the surface area utilized of the porous resin, and the strength of the interaction between the solute and the porous resin. This amount can be readily determined by one skilled in the art. The cartridge is a single use cartridge that may be discarded after being used to process a single sample or may be used to process multiple samples.
[0060]
The following non-limiting examples further illustrate the present invention.
Example
Example 1:Poly (divinylbenzene-co-N-vinylpyrrolidone) copolymerization
Preparation of
This example illustrates the preparation of poly (divinylbenzene-co-N-vinylpyrrolidone) copolymer.
[0061]
A solution of 5.0 grams of hydroxypropyl methylcellulose (Methocel E15, Dow Chemical Company, Midland, MI) in 1000 milliliters of water was added to a 3000 milliliter flask. This includes 175 grams of divinylbenzene (DVB HP-80, Dow Chemical), 102 grams of N-vinyl-2-pyrrolidone (International Specialty Products, Wayne, NJ), and 1.85 grams of azobisisobutyronitrile. (Vazo 64, DuPont Chemical Company, Wilmington, Del.) Was added to a solution of 242 grams of toluene.
[0062]
The 80% purity divinylbenzene may be replaced with other hydrophobic monomers such as styrene or ethylvinylbenzene, or low purity divinylbenzene, but 80% purity divinylbenzene is preferred. The N-vinyl pyrrolidone may be substituted with other hydrophilic monomers such as N-vinyl-pyridine, methacrylate, methyl methacrylate, vinyl acetate, acrylamide, or methacrylamide, but N-vinyl pyrrolidone is preferred .
[0063]
The resulting biphasic mixture was stirred at room temperature for 30 minutes to form the desired micron sized oil droplets. The resulting suspension was then heated to 70 ° C. with moderate stirring and maintained at this temperature for 20 hours. The suspension was cooled to room temperature, filtered and washed with methanol. The filter cake was dried in vacuo at 80 ° C. for 16 hours. The composition of the product polymer was determined by elemental analysis. Elemental analysis: N: 2.24%; mole percent N-vinylpyrrolidone: 20%.
[0064]
Also, by varying the starting ratio of divinylbenzene and N-vinylpyrrolidone by this method, a series of poly (divinylbenzene-co-N-vinyl containing about 13, 14, 16, and 22 mole percent N-vinylpyrrolidone. A pyrrolidone) copolymer was prepared.
Example 2:Poly (divinylbenzene-co-N-vinylpyrrolidone) copolymerization
Sulfonation
This example illustrates the preparation of a sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone) porous resin. The copolymer obtained from Example 1, preferably poly (divinylbenzene-co-N-vinylpyrrolidone), is derivatized with sulfuric acid (95-98%, ACS reagent, Aldrich, 25,810-5, Milwaukee, Wis.). it can. Most preferably, OASIS® HLB (available from Waters Inc., Milford, Mass.) Is used.
[0065]
Can serve as a guide for process design and quality control.
Formula 1: Copolymer (meq HSOThree/ G sulfonated copolymer) ion
Exchange capacity = 0.53 + 0.018 × [temperature] +0.00029
× [Time]
Where [temperature] = reaction temperature (° C.)
[Time] = Reaction time (minutes)
[0066]
[Table 1]
Figure 0004883837
[0067]
Example 3:Of sulfonation on chromatographic retention behavior of sulfonated resin
effect
This example shows how the degree of sulfonation of sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone) resin affects the hydrophobic and ion exchange behavior of the resin and the retention properties of the resin .
[0068]
The resins JJL03-90, 100, 114, 119, 123, 124, and 143 obtained from Example 2 were each loaded into a 4.6 × 30 mm high-performance liquid chromatography (HPLC) column as a slurry. The effect of sulfonation on hydrophobic retention and ion exchange behavior was determined by examining the retention of various neutral and basic analytes. Model compounds selected were acetaminophen, p-toluamide, caffeine, procainamide, ranitidine, amphetamine, methamphetamine and m-toluidine. These model compounds are shown in FIG. The mobile phase is 40:60 methanol-20 mM (NHFour) H2POFourComposed of NHFourThe pH was adjusted to 3.0 using Cl as an ionic strength regulator. The flow rate was 1.0 mL / min and the temperature was 30 ° C. The injection volume was 5 microliters. Each compound was injected separately. Detection was performed with 254 nm UV light.
[0069]
Retention behavior was determined as a function of ionic strength to determine if there was an interaction due to a hydrophobic or ionic mechanism. FIGS. 2A and 2B show non-sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone) (Oasis® HLB, batch 6B) and relatively sulfonated poly (divinylbenzene-co-N-vinyl). Pyrrolidone) (Batch JJL03-100) (2.52 meq / g) shows the effect of ionic strength based on retention. As can be seen from the non-sulfonated resin, with increasing ionic strength, there was very little increase in retention for all components. This result is consistent with the mechanism of hydrophobic interaction. For non-sulfonated resins, when the retention coefficient was-<1, the hydrophobic retention of the basic compound was only slight under the conditions used. In the case of the sulfonated resin, it has been found that the retention of the neutral compound hardly changes. However, the retention of basic compounds was dramatically affected by ionic strength. Holding power increases significantly with increasing ionic strength, suggesting an ion exchange mechanism.
[0070]
FIG. 3 shows the effect of sulfonation of the resin based on holding power. 1M NHFourCl was used to minimize the retention time. This graph shows that the retention of neutral compounds decreased with increasing sulfonation. For basic compounds, retention increased as sulfonation increased to 1 meq / g. However, at higher levels of sulfonation, the holding power decreased again.
Example 4:Effect of sulfonation based on the implementation of solid phase extraction of sulfonated resin
This example illustrates the effect of sulfonation of this resin based on performing solid phase extraction (SPE) of the sulfonated resin.
[0071]
In order to evaluate the performance of SPE, an HPLC method was employed to verify the recovery of several model compounds. A SymmetryShield® RP8 column, 3.5 μm, 4.6 × 75 mm (Waters Inc., Milford, Mass.) Was used inline with a Sentry® column (Waters Inc., Milford, Mass.). The flow rate was 2.0 ml / min and the temperature was 36 ° C. The mobile phase is 95: 5 20 mM K.2HPOFourPH 7.0-Methanol. Detection was performed with 254 nm UV light. The injection volume was 10 μL. A chromatogram showing optimal separation is shown in FIG.
[0072]
The following resins were used for SPE evaluation: Oasis® HLB batch # 6B, JJL03-143, JJL03-124 and JJL03-100. SPE was performed using 30 milligrams of absorbent each in 96-well plate form. The process is as follows. The cartridge / well was conditioned with 1 milliliter of methanol (-1 mL / min) and then equilibrated with 1 milliliter of water. A 1 milliliter sample consisting of spiked phosphate buffered saline or spiked porcine plasma was introduced. Samples were spiked with acetaminophen, toluamide, caffeine and procainamide to 10 μg / mL and with amphetamine, mesamphetamine and toluidine to 20 μg / mL. The introduced sample is washed with water containing 1 ml of 0.1 M HCl, then with 1 ml of methanol, and 2% NH.FourElute with 1/2 of 1 ml methanol containing OH. All fractions were collected after equilibration. 50 μL of 10 μg / mL ranitidine was added to each sample. This sample is placed in the heating block with N2Evaporated to dryness under a stream. The sample was then reconstituted with 1 milliliter of 20 mM phosphate buffer (pH 7.0).
[0073]
Initial SPE performance experiments were performed in phosphate-buffered saline. A complete mass balance was performed on the SPE fraction using sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone), batch # JJL03-143. Table 2 shows the results of recovery and mass balance.
[0074]
[Table 2]
Figure 0004883837
[0075]
Amphetamine, mesamphetamine and toluidine were not fully recovered in all cases. This is due to the fact that these compounds are semi-volatile and are lost through evaporation. In the experimental example where the sample was not dry, complete recovery was obtained. Saline was collected and examined, and no leakage occurred in the addition or HCl wash step in any case. All compounds eluted in a methanol wash against Oasis® HLB, but only neutral compounds eluted on all sulfonated resins. Basic compound is methanol / NHFourEluted completely with OH solution. For the sulfonated resin, most of the caffeine eluted with the first methanol wash. It was also found that the recovery of each fraction depends on the degree of sulfonation, and that the resin with minimal sulfonation has the maximum recovery after the first methanol wash. This unusual result is a pK of 13.9 caffeine.bThis is due to the fact that it is a weak base. According to another observation, acetaminophen showed a slight amount of leakage (-1%) in the methanol / base elution with respect to the sulfonated resin.
[0076]
Similar results were obtained when using plasma. Table 3 shows the recovery results obtained for Oasis® HLB batches 6B, JJL03-100 and JJL03-124 for three different absorbents.
[0077]
[Table 3]
Figure 0004883837
[0078]
Figure 0004883837
[0079]
Neutral material eluted in the methanol wash and base eluted in the methanol / ammonium hydroxide step. HPLC analysis of the unspiked plasma extract from the sulfonated resin is shown in FIGS. 5A and 5B, where ranitidine is the internal standard.
[0080]
The protein in the extract was weighed with Coomassie blue. Two different lots of plasma were tested. The results are shown in Table 4.
[0081]
[Table 4]
Figure 0004883837
[0082]
The protein in basified methanol was found to be similar for Oasis® HLB, JJL03-100 and JJL03-124. As a comparison, for Oasis® HLB cartridges (from the methanol elution step), these protein masses are the recommended SPE protocol (“Water Oasis® HLB extraction cartridges and plates” 1997 Waters Inc., 6 / 97WB025-US) about 5 times less than what is typically observed.
[0083]
At high sulfonated loadings, the plasma load through the resin was suspended. Related observations have shown that the flow rate decreases at high sulfonation loading. These observations result from the acidity of the resin. Most sulfonated resins have the highest acidity. Thus, passing plasma through the resin corresponds to the formation of an acidic precipitate, which makes the sample more suspended and plugs the frit and resin-containing packed bed.
Example 5:Poly (divinylbenzene-co-N-vinylpyrrolidone) porous
Chloromethylation of resin
Poly (divinylbenzene-co-N-vinylpyrrolidone), OASIS® HLB (Waters, Inc., Milford, Mass.) With hydrochloric acid (12 mol, 36.5-38%, ACS reagent, JTBaker, 9535) -03, Phillipsburgh, NJ) and paraformaldehyde (95%, Aldrich Chemical, 15,812-7, Milwaukee, WI). A 3 liter three-necked round bottom flask was equipped with a thermometer, stirrer, condenser, and reactor temperature controller. Hydrochloric acid was introduced into the flask (see Table 5 for the amount of hydrochloric acid). Stirring and temperature control were then performed. The stirrer was fixed by a ground glass shaft through a suitable Teflon bearing in the central opening at the top of the flask. The Teflon paddle was a single blade. The stirring speed was adjusted to obtain proper mixing. Poly (divinylbenzene-co-N-vinylpyrrolidone), OASIS® HLB was added (see Table 5 for the amount of OASIS® HLB). Paraformaldehyde was then added (see Table 5 for the amount of paraformaldehyde). The reaction mixture was stirred for a specified time at a constant temperature (see Table 5 for reaction time and temperature). The reaction mixture was cooled and the acid solution was filtered. Chloromethylated poly (divinylbenzene-co-N-vinylpyrrolidone) copolymer was collected and washed with water until the pH of the slurry was above 5.0. The filter cake of the chloromethylated poly (divinylbenzene-co-N-vinylpyrrolidone) copolymer was then washed twice with methanol (HPLC grade, JT Baker, 9535-03, Phillipsburgh, NJ) and in vacuo It dried at 80 degreeC for 15 hours. The degree of chloromethylation was determined by elemental chlorine analysis (Atlantic Microlab, Inc., Norcross, GA). Chloromethyl group (CH2The amount of Cl) is shown in Table 5.
[0084]
It has been found that the reaction time, reaction temperature, and molar concentration of hydrochloric acid all affect the amount of chloromethyl group imparted to the poly (divinylbenzene-co-N-vinylpyrrolidone) copolymer. Various combinations of these three variables and the resulting chloromethyl levels are shown in Table 5.
[0085]
[Table 5]
Figure 0004883837
[0086]
Example 6:Chloromethylated poly (divinylbenzene-co-N-vinylpyro
Lydon) Amination of porous resin
A chloromethylated poly (divinylbenzene-co-N-vinylpyrrolidone) porous resin prepared as described in Example 5 was converted to the following tertiary amines (all purchased from Aldrich Chemical, Milwaukee, Wis.): Trimethylamine (TMA, 40 wt% aqueous solution, 43, 326-8), triethylamine (TEA, 99%, 13, 206-3), N, N-dimethylethylamine (DMEA, 99%, 23, 935-6), N , N-diethylmethylamine (DEMA, 98%, D9, 820-3), N, N-dimethylbutylamine (DMBA, 99%, 36, 952-7), and N-methylpyrrolidone (NMP, 97%, M7) , 920-4). A general amination procedure is shown below. The chloromethylation load and steric size of reactive amine alkyl groups (Hirsch, JA, Topics in Stereochemistry, Volume 1, Allinger, NL; Eliel, ED, Eds. Wiley: New York, 1967, Chapter 1) It has been found that it normally affects the loading of ammonium groups onto the (divinylbenzene-co-N-vinylpyrrolidone) copolymer. The general reaction procedure is shown below. Various combinations of Step 1 chloromethyl loading, amine type, and reaction temperature, and the resulting quaternary amine loading are shown in Table 6.
[0087]
A 250 ml three-necked round bottom flask was equipped with a thermometer, stirrer, condenser, and reactor temperature controller. Trialkylamine was introduced into the flask (see Table 6 for the amount of each amine) and stirring and temperature control were started. The stirrer was fixed by a ground glass shaft through a suitable Teflon bearing in the central opening at the top of the flask. The Teflon paddle was a single blade. Chloromethylated poly (divinylbenzene-co-N-vinylpyrrolidone) was added (see Table 6 for resin amounts) and the stirring speed was adjusted to obtain sufficient mixing. The reaction mixture was stirred for a certain time at a constant temperature (see Table 6 for reaction time and temperature). The reaction mixture was cooled and the amine was filtered. The aminated poly (divinylbenzene-co-N-vinylpyrrolidone) copolymer was collected and washed with water until the pH of the slurry was below 5.5. The filter cake of the aminated poly (divinylbenzene-co-N-vinylpyrrolidone) copolymer was then washed twice with methanol (HPLC grade, JT Baker, 9535-03, Phillipsburgh, NJ) and 80% in vacuo. Dry at 15 ° C. for 15 hours. The degree of amination was determined by titration. Methylenetrialkylammonium group (CH2NRThree +Cl-) Is shown in Table 6.
[0088]
[Table 6]
Figure 0004883837
[0089]
In conclusion, the above experiments demonstrated that sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone) can be used in a conventional manner for SPE of basic compounds. It can also be used as a tool to achieve class separation of neutral and basic compounds.
[0090]
Those skilled in the art will be able to ascertain many equivalents of the above-described embodiments of the present invention using only routine experimentation. These and all equivalents are within the protection scope of the above-mentioned claims.
[Aspect of the Invention]
[1]
Chemical formula:
[Chemical 1]
Figure 0004883837
And the salt thereof, provided that the order of A, B and C is random, block, or a combination of random and block;
However,
[Chemical 2]
Figure 0004883837
However, A is
[Chemical Formula 3]
Figure 0004883837
Selected from the group consisting of
Where B is
[Formula 4]
Figure 0004883837
Where C is A or modified A, where modified A is
[Chemical formula 5]
Figure 0004883837
Selected from the group consisting of and
Where X is SO Three H, CH 2 CO 2 H, CH 2 CH (CO 2 H) 2 , CO 2 H, PO Three H 2 , PO 2 H 2 , CH 2 PO Three H 2 , CH 2 Cl, CH 2 NH 2 , CH 2 N [(CH 2 ) y CH Three ] 2 (Where y is an integer from 0 to 18), CH 2 N + [(CH 2 ) y = CH Three ] Three D - (Where y = is an integer from 0 to 18 and D - Is an anion), SO 2 NHR (where R is polyethyleneimine), and CH 2 The above compounds selected from the group consisting of NHR (where R is polyethyleneimine) and salts thereof.
[2]
X is one compound present at a concentration of about 0.1 to about 5.0 milliequivalents per gram of compound.
[3]
X is one compound present at a concentration of about 0.6 to about 3.2 milliequivalents per gram of compound.
[4]
X is one compound present at a concentration of about 0.8 to about 2.1 milliequivalents per gram of compound.
[5]
X is one compound present at a concentration of about 1.0 milliequivalent per gram of compound.
[6]
X is SO Three H, CH 2 PO Three H 2 And CH 2 CO 2 1 compound selected from the group consisting of H.
[7]
X is SO Three 6. The compound of 6, which is H.
[8]
At least one hydrophobic monomer and at least one hydrophilic monomer are copolymerized to form a copolymer, and the copolymer is sulfonated to form at least one ion exchange functional group, at least A porous resin for solid phase extraction or chromatography obtained by producing a sulfonated copolymer comprising one hydrophilic component and at least one hydrophobic component.
[9]
8. The porous resin according to 8, wherein the hydrophobic monomer is divinylbenzene.
[10]
8. The porous resin according to 8, wherein the hydrophilic monomer is N-vinylpyrrolidone.
[11]
8. The porous resin according to 8, wherein the copolymer is poly (divinylbenzene-co-N-vinylpyrrolidone).
[12]
8. The porous resin according to 8, wherein the porous resin is sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone).
[13]
The sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone) comprises 12 porous resins having sulfonate groups present at a concentration of about 0.1 to about 5.0 milliequivalents per gram of porous resin. .
[14]
A porous resin for solid phase extraction or chromatography comprising at least one ion exchange functional group, at least one hydrophilic component, and at least one hydrophobic component.
[15]
Treating a solution to isolate or remove a solute comprising contacting a solution having a solute with a porous resin under conditions such that the solute sorbs to the porous resin;
The porous resin comprises at least one ion exchange functional group, at least one hydrophilic polar component, and at least one hydrophobic component.
[16]
The ion exchange functional group is SO Three H, CH 2 CO 2 H, CH 2 CH (CO 2 H) 2 , CO 2 H, PO Three H 2 , PO 2 H 2 , CH 2 PO Three H 2 , CH 2 Cl, CH 2 NH 2 , CH 2 N [(CH 2 ) y CH Three ] 2 (Where y is an integer from 0 to 18), CH 2 N + [(CH 2 ) y = CH Three ] Three D - (Where y = is an integer from 0 to 18 and D - Is an anion), SO 2 NHR (where R is polyethyleneimine), and CH 2 14 methods selected from the group consisting of NHR, wherein R is polyethyleneimine.
[17]
The ion exchange functional group is SO Three H, CH 2 PO Three H 2 And CH 2 CO 2 16 methods selected from the group consisting of H.
[18]
The ion exchange functional group is SO Three 17 methods which are H.
[19]
15. The method of 15, wherein the ion exchange functional group is present at a concentration of about 0.1 to about 5.0 milliequivalents per gram of porous resin.
[20]
15. The method according to 15, wherein the hydrophilic polar component is selected from the group consisting of an amide group, an ester group, a carbonate group, a carbamate group, a urea group, a hydroxy group, and a pyridyl group.
[21]
15. The fifteen methods, wherein the porous resin comprises a copolymer having at least one ion exchange functional group, and the copolymer comprises at least one hydrophilic monomer and at least one hydrophobic monomer.
[22]
21. The method according to 21, wherein the hydrophilic monomer contains a heterocyclic group.
[23]
22. The method according to 22, wherein the heterocyclic group is a pyridyl group or a pyrrolidonyl group.
[24]
23. The method according to 23, wherein the pyridyl group is selected from the group consisting of 2-vinylpyridine, 3-vinylpyridine, and 4-vinylpyridine.
[25]
23 methods wherein the pyrrolidonyl group is N-vinylpyrrolidone.
[26]
The hydrophobic monomer is phenyl group, phenylene group, linear C 2 -C 18 -Alkyl groups and branched C 2 -C 18 21 methods comprising a group selected from the group consisting of alkyl groups.
[27]
26. The method according to 26, wherein the hydrophobic monomer is styrene or divinylbenzene.
[28]
26. The method according to 26, wherein the hydrophobic monomer is divinylbenzene.
[29]
21. The method of 21, wherein the copolymer is poly (divinylbenzene-co-N-vinylpyrrolidone).
[30]
15. The method according to 15, wherein the porous resin is a compound of formula I and salts thereof.
[31]
15. The method of 15, wherein the porous resin is sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone).
[32]
31. The method of 31, wherein the sulfonate group is present at a concentration of about 0.1 to about 5.0 milliequivalents per gram of porous resin.
[33]
31. The method of 31, wherein the porous resin comprises at least about 12 mole percent N-vinyl pyrrolidone.
[34]
31. The method of 31, wherein the porous resin comprises less than about 30 mole percent N-vinyl pyrrolidone.
[35]
15. The method according to 15, wherein the porous resin is in the form of beads.
[36]
35. The 35 methods, wherein the beads have an average size of about 3 to about 500 micrometers.
[37]
15. The method according to 15, wherein the porous resin is placed in a matrix.
[38]
15. The method according to 15, wherein the porous resin has a solid-phase extraction capability.
[39]
15. The method according to claim 15, wherein the solute is selected from the group consisting of drugs, agricultural chemicals, herbicides, biomolecules, poisons, pollutants, metabolites, and degradation products thereof.
[40]
15. The method of claim 15, wherein the solution is selected from the group consisting of water, an aqueous solution, water or a mixture of aqueous solutions, and a water-miscible polar organic solvent.
[41]
The solution consists of blood, plasma, urine, cerebrospinal fluid, synovial fluid, tissue extract, ground water, ground water, drinking water, soil extract, food material, food material extract, natural extract from plants and bouillon 15 methods selected from a group.
[42]
15. The method according to 15, wherein the porous resin is in an open container.
[43]
15. The method according to 15, further comprising the step of removing the solute from the porous resin.
[44]
A method for analytically determining the amount of a solute in a solution, wherein the solution having the solute is brought into contact with the porous resin under conditions such that the solute sorbs on the porous resin;
The porous resin comprises at least one ion exchange functional group, at least one hydrophilic polar component, and at least one hydrophobic component;
Washing the porous resin having the sorbed solute with a solvent under conditions that release the solute from the porous resin; and after the washing, the released solute present in the solvent. The above method comprising: determining the amount of by analysis.
[45]
44. The method according to 44, wherein the porous resin is a compound of formula I and salts thereof.
[46]
45. The method according to 45, wherein the porous resin is sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone).
[47]
A solid phase extraction cartridge comprising a porous resin packed in an open container, the porous resin comprising at least one ion exchange functional group, at least one hydrophilic polar component, and at least one hydrophobic component.
[48]
47. The solid phase extraction cartridge according to 47, wherein the porous resin is a compound of formula I and salts thereof.
[49]
48. A solid phase extraction cartridge according to claim 48, wherein the porous resin is sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone).
[Brief description of the drawings]
FIG. 1 shows the chemical formulas of exemplary compounds acetaminophen, p-toluamide, caffeine, procainamide, ranitidine, amphetamine, mesamphetamine and m-toluidine.
FIG. 2A is a graph showing the effect of ionic strength based on chromatographic retention on batch 6B of poly (divinylbenzene-co-N-vinylpyrrolidone). FIG. 2B shows a batch of sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone).JJL03-100It is a graph which shows the effect of the ionic strength based on the chromatographic holding power with respect to.
FIG. 3 is a graph showing the effect of sulfonation based on chromatographic retention of exemplary compounds for certain sulfonated resins of the present invention.
FIG. 4 SymmetryShield® RP82 is a chromatogram showing separation of exemplary compounds using a column.
FIG. 5A shows pigs using batch JJL03-124 and batch JJL03-100 of sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone) for solid phase extraction where ranitidine is the internal standard. Figure 2 is a chromatogram of methanol / ammonium hydroxide extract from plasma. FIG. 5B shows methanol from swine plasma using sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone) batch JJL03-124 and batch JJL03-100 for solid phase extraction with ranitidine as internal standard. / Chromatogram of ammonium hydroxide extract.

Claims (37)

化学式:
Figure 0004883837
の化合物又はその塩であって、 但し、A、B及びCの順番はランダム、ブロック、又はランダム及びブロックの組合せであり;
但し、
Figure 0004883837
但し、Aは
Figure 0004883837
から成る群から選ばれ、 但し、Bは
Figure 0004883837
であり、 但し、Cは修正されたAであり、ここで、修正されたAは
Figure 0004883837
から成る群から選ばれ、そして ここで、XはSO3H、CH2CO2H、CH2CH(CO2H)2、CO2H、PO32、PO22、CH2PO32、CH2Cl、CH2NH2、CH2N[(CH2yCH32(但しyは0〜18の整数である)、CH2+[(CH2y=CH33-(但しy=は0〜18の整数そしてD-はアニオンである)、SO2NHR(但しRはポリエチレンイミンである)、及びCH2NHR(但しRはポリエチレンイミンである)から成る群から選ばれる上記化合物又はその塩。
Chemical formula:
Figure 0004883837
Or a salt thereof, wherein the order of A, B and C is random, block, or a combination of random and block;
However,
Figure 0004883837
However, A is
Figure 0004883837
Where B is selected from the group consisting of
Figure 0004883837
Where C is the modified A, where the modified A is
Figure 0004883837
And wherein X is SO 3 H, CH 2 CO 2 H, CH 2 CH (CO 2 H) 2 , CO 2 H, PO 3 H 2 , PO 2 H 2 , CH 2 PO 3 H 2 , CH 2 Cl, CH 2 NH 2 , CH 2 N [(CH 2 ) y CH 3 ] 2 (where y is an integer from 0 to 18), CH 2 N + [(CH 2 ) y = CH 3 ] 3 D (where y = an integer from 0 to 18 and D is an anion), SO 2 NHR (where R is polyethyleneimine), and CH 2 NHR (where R is polyethyleneimine) Or the salt thereof selected from the group consisting of:
Xは化合物のグラム当り0.1〜5.0ミリ当量の濃度で存在する請求項1の化合物又はその塩。 The compound of claim 1 or a salt thereof, wherein X is present at a concentration of 0.1 to 5.0 milliequivalents per gram of compound. Xは化合物のグラム当り0.6〜3.2ミリ当量の濃度で存在する請求項1の化合物又はその塩。 The compound of claim 1 or a salt thereof, wherein X is present at a concentration of 0.6 to 3.2 milliequivalents per gram of compound. Xは化合物のグラム当り0.8〜2.1ミリ当量の濃度で存在する請求項1の化合物又はその塩。 2. The compound of claim 1 or a salt thereof, wherein X is present at a concentration of 0.8 to 2.1 milliequivalents per gram of compound. Xは化合物のグラム当り1.0ミリ当量の濃度で存在する請求項1の化合物又はその塩。 2. The compound of claim 1 or a salt thereof, wherein X is present at a concentration of 1.0 milliequivalent per gram of compound. XはSO3H、CH2PO32、及びCH2CO2Hから成る群から選ばれる請求項1の化合物又はその塩。The compound or a salt thereof according to claim 1, wherein X is selected from the group consisting of SO 3 H, CH 2 PO 3 H 2 , and CH 2 CO 2 H. XはSO3Hである請求項6の化合物又はその塩。The compound or a salt according to claim 6 X is SO 3 H. 少なくとも1つの疎水性単量体と少なくとも1つの親水性単量体を共重合させて共重合体を生成し、そして上記共重合体をスルホン化反応させて、少なくとも1つのイオン交換官能基、少なくとも1つの親水性成分、及び少なくとも1つの疎水性成分を含むスルホン化共重合体を生成することにより得られる固相抽出又はクロマトグラフィー用の多孔質樹脂であって、スルホン化共重合体が請求項1に記載の化合物又はその塩を含む、上記の多孔質樹脂。 At least one hydrophobic monomer and at least one hydrophilic monomer are copolymerized to form a copolymer, and the copolymer is sulfonated to form at least one ion exchange functional group, at least A porous resin for solid phase extraction or chromatography obtained by producing a sulfonated copolymer comprising one hydrophilic component and at least one hydrophobic component, wherein the sulfonated copolymer is claimed. The above porous resin comprising the compound according to 1 or a salt thereof. 上記疎水性単量体はジビニルベンゼンである請求項8の多孔質樹脂。 The porous resin according to claim 8, wherein the hydrophobic monomer is divinylbenzene. 上記共重合体はポリ(ジビニルベンゼン-co-N‐ビニルピロリドン)である請求項8の多孔質樹脂。 The porous resin according to claim 8, wherein the copolymer is poly (divinylbenzene-co-N-vinylpyrrolidone). 上記多孔質樹脂はスルホン化ポリ(ジビニルベンゼン‐co-N‐ビニルピロリドン)である請求項8の多孔質樹脂。 The porous resin according to claim 8, wherein the porous resin is sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone). 上記スルホン化ポリ(ジビニルベンゼン‐co-N‐ビニルピロリドン)は多孔質樹脂のグラム当り0.1〜5.0ミリ当量の濃度で存在するスルホン酸基を有する請求項11の多孔質樹脂。The porous resin of claim 11 wherein the sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone) has sulfonic acid groups present at a concentration of 0.1 to 5.0 milliequivalents per gram of porous resin. 少なくとも1つのイオン交換官能基、少なくとも1つの親水性成分、及び少なくとも1つの疎水性成分を含む固相抽出又はクロマトグラフィー用の多孔質樹脂であって、上記多孔質樹脂が請求項1に記載の化合物又はその塩を含む、上記多孔質樹脂。 2. A porous resin for solid phase extraction or chromatography comprising at least one ion exchange functional group, at least one hydrophilic component, and at least one hydrophobic component, wherein the porous resin is according to claim 1. The said porous resin containing a compound or its salt. 溶質を単離又は除去するために溶液を処理する方法であって、 溶質を有する溶液を多孔質樹脂と上記溶質が上記多孔質樹脂に収着するような条件下で接触させることを含み;
上記多孔質樹脂は少なくとも1つのイオン交換官能基、少なくとも1つの親水性極性成分、及び少なくとも1つの疎水性成分を含み、そして上記多孔質樹脂が請求項1に記載の化合物又はその塩を含む: 上記方法。
Treating a solution to isolate or remove a solute comprising contacting a solution having a solute with a porous resin under conditions such that the solute sorbs to the porous resin;
The porous resin comprises at least one ion exchange functional group, at least one hydrophilic polar component, and at least one hydrophobic component, and the porous resin comprises the compound of claim 1 or a salt thereof: The above method.
上記イオン交換官能基はSO3H、CH2CO2H、CH2CH(CO2H)2、CO2H、PO32、PO22、CH2PO32、CH2Cl、CH2NH2、CH2N[(CH2yCH32(但しyは0〜18の整数である)、CH2+[(CH2y=CH33-(但しy=は0〜18の整数そしてD-はアニオンである)、SO2NHR(但しRはポリエチレンイミンである)、及びCH2NHR(但しRはポリエチレンイミンである)から成る群から選ばれる請求項14の方法。The ion exchange functional groups are SO 3 H, CH 2 CO 2 H, CH 2 CH (CO 2 H) 2 , CO 2 H, PO 3 H 2 , PO 2 H 2 , CH 2 PO 3 H 2 , CH 2 Cl. , CH 2 NH 2 , CH 2 N [(CH 2 ) y CH 3 ] 2 (where y is an integer from 0 to 18), CH 2 N + [(CH 2 ) y = CH 3 ] 3 D ( Where y = is an integer from 0 to 18 and D is an anion), SO 2 NHR (where R is polyethyleneimine), and CH 2 NHR (where R is polyethyleneimine). The method of claim 14. 上記イオン交換官能基はSO3H、CH2PO32、及びCH2CO2Hから成る群から選ばれる請求項15の方法。The ion exchange functional groups are SO 3 H, CH 2 PO 3 H 2, and a method according to claim 15 selected from the group consisting of CH 2 CO 2 H. 上記イオン交換官能基はSO3Hである請求項16の方法。The method of claim 16 said ion exchange functional groups are SO 3 H. 上記イオン交換官能基は多孔質樹脂のグラム当り0.1〜5.0ミリ当量の濃度で存在する請求項14の方法。 15. The method of claim 14, wherein the ion exchange functional group is present at a concentration of 0.1 to 5.0 milliequivalents per gram of porous resin. 上記疎水性成分はスチレン又はジビニルベンゼン由来の構造である請求項14の方法。 15. The method of claim 14, wherein the hydrophobic component is a structure derived from styrene or divinylbenzene. 上記疎水性成分はジビニルベンゼン由来の構造である請求項14の方法。 15. The method of claim 14, wherein the hydrophobic component is a structure derived from divinylbenzene. 上記多孔質樹脂はスルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)である請求項14の方法。 The method of claim 14, wherein the porous resin is sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone). 上記多孔質樹脂のスルホン酸基は多孔質樹脂のグラム当り0.1〜5.0ミリ当量の濃度で存在する請求項21の方法。The method of claim 21, wherein the sulfonic acid groups of the porous resin are present at a concentration of 0.1 to 5.0 milliequivalents per gram of porous resin. 上記多孔質樹脂は少なくとも12モルパーセントのN‐ビニルピロリドン由来の構造を含む請求項21の方法。 The method of claim 21, wherein the porous resin comprises at least 12 mole percent N-vinylpyrrolidone derived structure. 上記多孔質樹脂は30モルパーセントより少ないN‐ビニルピロリドン由来の構造を含む請求項21の方法。 The method of claim 21, wherein the porous resin comprises less than 30 mole percent N-vinyl pyrrolidone derived structures. 上記多孔質樹脂はビーズの形状である請求項14の方法。 15. The method of claim 14, wherein the porous resin is in the form of beads. 上記ビーズは3〜500マイクロメーターの平均寸法を有する請求項25の方法。 26. The method of claim 25, wherein the beads have an average dimension of 3 to 500 micrometers. 上記多孔質樹脂はマトリックス中に入れられる請求項14の方法。 15. The method of claim 14, wherein the porous resin is placed in a matrix. 上記多孔質樹脂は固相抽出能力を有する請求項14の方法。 15. The method of claim 14, wherein the porous resin has a solid phase extraction capability. 上記溶質は薬剤、農薬、除草剤、生体分子、毒物、汚染物質、代謝物、及びこれらの分解生成物から成る群から選ばれる請求項14の方法。 15. The method of claim 14, wherein the solute is selected from the group consisting of drugs, pesticides, herbicides, biomolecules, toxicants, contaminants, metabolites, and degradation products thereof. 上記溶液は水、水溶液、水又は水溶液の混合物、及び水‐混和性極性有機溶媒から成る群から選ばれる請求項14の方法。 15. The method of claim 14, wherein the solution is selected from the group consisting of water, an aqueous solution, water or a mixture of aqueous solutions, and a water-miscible polar organic solvent. 上記溶液は血液、血漿、尿、髄液、滑液、組織抽出物、地下水、地上水、飲料水、土壌抽出物、食糧物質、食糧物質の抽出物、植物及びブイヨンからの天然抽出物から成る群から選ばれる請求項14の方法。 The solution consists of blood, plasma, urine, cerebrospinal fluid, synovial fluid, tissue extract, ground water, ground water, drinking water, soil extract, food material, food material extract, natural extract from plants and bouillon 15. The method of claim 14, selected from the group. 上記多孔質樹脂は開口容器内にある請求項14の方法。 15. The method of claim 14, wherein the porous resin is in an open container. 上記多孔質樹脂から上記溶質を除去する工程を更に含む請求項14の方法。 The method of claim 14, further comprising removing the solute from the porous resin. 溶液中の溶質の量を分析により決定する方法であって、 溶質を有する溶液を多孔質樹脂と上記溶質が上記多孔質樹脂に収着するような条件下で接触させ;
上記多孔質樹脂は少なくとも1つのイオン交換官能基、少なくとも1つの親水性極性成分、及び少なくとも1つの疎水性成分を含み、そして上記多孔質樹脂が請求項1に記載の化合物又はその塩を含み;
上記収着した溶質を有する上記多孔質樹脂を上記多孔質樹脂から上記溶質を放出するような条件下で溶媒を用いて洗浄し;そして 上記洗浄の後に、上記溶媒中に存在する上記放出した溶質の量を分析により決定する: ことを含む上記方法。
A method for analytically determining the amount of a solute in a solution, wherein the solution having the solute is brought into contact with the porous resin under conditions such that the solute sorbs on the porous resin;
The porous resin comprises at least one ion exchange functional group, at least one hydrophilic polar component, and at least one hydrophobic component, and the porous resin comprises the compound of claim 1 or a salt thereof;
Washing the porous resin having the sorbed solute with a solvent under conditions that release the solute from the porous resin; and after the washing, the released solute present in the solvent. The above method comprising: determining the amount of by analysis.
上記多孔質樹脂はスルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)である請求項34の方法。 35. The method of claim 34, wherein the porous resin is sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone). 開口容器内に詰められた多孔質樹脂を含み、上記多孔質樹脂は少なくとも1つのイオン交換官能基、少なくとも1つの親水性極性成分、及び少なくとも1つの疎水性成分を含み、上記多孔質樹脂が請求項1に記載の化合物又はその塩を含む、固相抽出カートリッジ。 A porous resin packed in an open container, the porous resin comprising at least one ion-exchange functional group, at least one hydrophilic polar component, and at least one hydrophobic component, wherein the porous resin is claimed Item 2. A solid phase extraction cartridge comprising the compound according to item 1 or a salt thereof. 上記多孔質樹脂はスルホン化ポリ(ジビニルベンゼン‐co‐N‐ビニルピロリドン)である請求項36の固相抽出カートリッジ。 The solid phase extraction cartridge according to claim 36, wherein the porous resin is sulfonated poly (divinylbenzene-co-N-vinylpyrrolidone).
JP2000553484A 1998-06-12 1999-06-10 A novel ion-exchange porous resin for solid-phase extraction and chromatography Expired - Lifetime JP4883837B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US8915398P 1998-06-12 1998-06-12
US60/089,153 1998-06-12
PCT/US1999/013241 WO1999064480A1 (en) 1998-06-12 1999-06-10 Novel ion exchange porous resins for solid phase extraction and chromatography

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009120385A Division JP2009215566A (en) 1998-06-12 2009-05-18 Novel ion exchange porous resin for solid phase extraction and chromatography

Publications (3)

Publication Number Publication Date
JP2002517574A JP2002517574A (en) 2002-06-18
JP2002517574A5 JP2002517574A5 (en) 2007-02-08
JP4883837B2 true JP4883837B2 (en) 2012-02-22

Family

ID=22215980

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2000553484A Expired - Lifetime JP4883837B2 (en) 1998-06-12 1999-06-10 A novel ion-exchange porous resin for solid-phase extraction and chromatography
JP2009120385A Pending JP2009215566A (en) 1998-06-12 2009-05-18 Novel ion exchange porous resin for solid phase extraction and chromatography

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009120385A Pending JP2009215566A (en) 1998-06-12 2009-05-18 Novel ion exchange porous resin for solid phase extraction and chromatography

Country Status (6)

Country Link
US (7) US6322695B1 (en)
EP (1) EP1091981B1 (en)
JP (2) JP4883837B2 (en)
AU (1) AU4437399A (en)
DE (1) DE69936920T2 (en)
WO (1) WO1999064480A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215566A (en) * 1998-06-12 2009-09-24 Waters Investments Ltd Novel ion exchange porous resin for solid phase extraction and chromatography

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7232520B1 (en) 1998-06-12 2007-06-19 Waters Investments Limited Ion exchange porous resins for solid phase extraction and chromatography
US6479300B1 (en) * 1999-03-15 2002-11-12 Millipore Corporation Metal loaded ligand bound membranes for metal ion affinity chromatography
US6759442B2 (en) * 2000-06-02 2004-07-06 Showa Denko Kabushiki Kaisha Packing material for solid phase extraction and solid phase extraction method
JP2001343378A (en) * 2000-06-02 2001-12-14 Showa Denko Kk Filler for solid-phase extraction and solid-phase extraction method
US6926823B2 (en) 2002-06-03 2005-08-09 Varian, Inc. Polymer with superior polar retention for sample pretreatment
US20040137419A1 (en) * 2003-01-15 2004-07-15 V.I. Technologies, Inc. Methods for removing microbicidal compounds from compositions
US7045059B2 (en) * 2003-07-28 2006-05-16 Sielc Technologies Corp Universal bonded phase material for chromatographic separation
JP4637533B2 (en) 2004-08-31 2011-02-23 信和化工株式会社 Separation agent for solid phase extraction
US20060134225A1 (en) * 2004-10-15 2006-06-22 Moerck Rudi E Phosphate binder with reduced pill burden
GB2424876B (en) * 2005-04-06 2011-03-23 Rhodia Uk Ltd Improved analysis of polymeric scale inhibitors
US7846188B2 (en) 2005-04-12 2010-12-07 Moskowitz Nathan C Bi-directional fixating transvertebral body screws, zero-profile horizontal intervertebral miniplates, total intervertebral body fusion devices, and posterior motion-calibrating interarticulating joint stapling device for spinal fusion
US9744052B2 (en) 2005-04-12 2017-08-29 Nathan C. Moskowitz Bi-directional fixating/locking transvertebral body screw/intervertebral cage stand-alone constructs
US9814601B2 (en) 2005-04-12 2017-11-14 Nathan C. Moskowitz Bi-directional fixating/locking transvertebral body screw/intervertebral cage stand-alone constructs
US11903849B2 (en) 2005-04-12 2024-02-20 Moskowitz Family Llc Intervertebral implant and tool assembly
US9532821B2 (en) 2005-04-12 2017-01-03 Nathan C. Moskowitz Bi-directional fixating/locking transvertebral body screw/intervertebral cage stand-alone constructs with vertical hemi-bracket screw locking mechanism
US7942903B2 (en) 2005-04-12 2011-05-17 Moskowitz Ahmnon D Bi-directional fixating transvertebral body screws and posterior cervical and lumbar interarticulating joint calibrated stapling devices for spinal fusion
US9848993B2 (en) 2005-04-12 2017-12-26 Nathan C. Moskowitz Zero-profile expandable intervertebral spacer devices for distraction and spinal fusion and a universal tool for their placement and expansion
US7311825B2 (en) * 2005-05-02 2007-12-25 Varian, Inc. Polymer modified porous substrate for solid phase extraction
US20060247361A1 (en) * 2005-05-02 2006-11-02 Varian, Inc. Polar functionalized polymer modified porous substrate for solid phase extraction
WO2006127973A2 (en) * 2005-05-24 2006-11-30 Waters Inverstments Limited Methods for separating and analyzing anionic compounds
CN101467036B (en) * 2006-06-06 2013-06-19 霍夫曼-拉罗奇有限公司 Differential hemolysis of whole blood sample
CA2649666C (en) * 2006-06-06 2011-07-05 F. Hoffmann-La Roche Ag Ready-to-use whole blood collection vessel
WO2008145270A1 (en) * 2007-05-25 2008-12-04 Merck Patent Gmbh Graft copolymer for cation-exchange chromatography
WO2009100165A2 (en) * 2008-02-06 2009-08-13 The Ohio State University Research Foundation High-purity fractionation of anthocyanins from fruits and vegetables
WO2009140394A1 (en) * 2008-05-13 2009-11-19 Cargill, Incorporated Separation of rebaudioside a from stevia glycosides using chromatography
CN102119179B (en) 2008-08-12 2013-10-30 和光纯药工业株式会社 Polymer for filler for preprocessing column
US7915318B2 (en) * 2008-09-09 2011-03-29 General Electric Company Aqueous ROMP-based monolith materials and methods for making
JP2010137207A (en) * 2008-12-15 2010-06-24 Hitachi High-Technologies Corp Mix mode-type adsorbent
EP2233206B1 (en) 2009-03-24 2015-07-29 Symrise AG Flavor extracting device for isolation or analysis of volatile compounds
US8658129B2 (en) * 2009-06-04 2014-02-25 General Electric Company Agents and methods for the imaging of myelin basic protein
JP5336340B2 (en) * 2009-12-09 2013-11-06 花王株式会社 Method for producing purified tea extract
EP2521612B1 (en) * 2010-01-08 2017-05-17 University Of Tasmania Use of porous polymer monoliths
BRPI1106072A2 (en) * 2010-02-09 2016-05-03 Chiyoda Corp method to produce acetic acid, and, vehicle to be used in a catalyst for methanol carbonylation reaction
JPWO2011136329A1 (en) * 2010-04-28 2013-07-22 株式会社日立ハイテクノロジーズ Adsorbent and method for producing the same
US8357302B2 (en) * 2010-08-02 2013-01-22 Ampac Fine Chemicals Llc Reaction systems with incorporated chromatography units for enhanced product recovery
EP2617760A4 (en) * 2010-09-14 2014-06-18 Univ Osaka Amidoxime-modified polyacrylonitrile porous medium
CN103109182B (en) * 2010-09-24 2015-07-01 通用电气健康护理生物科学股份公司 Wetting of a plastic bed support for a chromatography column
US9156879B1 (en) * 2010-10-29 2015-10-13 Merck Sharp & Dohme Corp. Chromatography media
WO2012091135A1 (en) * 2010-12-28 2012-07-05 花王株式会社 Method for producing purified tea extract
WO2013002909A1 (en) 2011-05-20 2013-01-03 Waters Technologies Corporation Porous materials for solid phase extraction and chromatography and processes for preparation and use thereof
EP2732283A4 (en) 2011-07-12 2015-02-25 Univ Tasmania Use of porous polymer materials for storage of biological samples
JP6266597B2 (en) * 2012-04-25 2018-01-24 ジーイー・ヘルスケア・バイオプロセス・アールアンドディ・アクチボラグ Separation method and separation matrix
US10466149B2 (en) 2013-08-05 2019-11-05 Triton Systems, Inc. Chemical sensing device
US10119944B2 (en) 2013-12-24 2018-11-06 Waters Technologies Corporation Materials for hydrophilic interaction chromatography and processes for preparation and use thereof for analysis of glycoproteins and glycopeptides
US10358641B2 (en) 2014-01-28 2019-07-23 Dice Molecules Sv, Llc Monoliths with attached recognition compounds, arrays thereof and uses thereof
CN107427742A (en) 2014-12-17 2017-12-01 水技术公司 Device and its application method for SPE
WO2017115841A1 (en) * 2015-12-29 2017-07-06 株式会社アイスティサイエンス Analysis preprocessing method for sample containing multiple constituents in significantly different concentrations
JPWO2018147393A1 (en) * 2017-02-10 2019-11-21 三菱ケミカル株式会社 Separation agent for purifying human insulin and method for purifying human insulin
EP4154975A1 (en) 2017-12-21 2023-03-29 Waters Technologies Corporation Solid phase extraction methods for enhanced removal of phospholipids from biological samples
CN113164910A (en) 2018-10-02 2021-07-23 沃特世科技公司 Adsorbents, devices, kits and methods useful for biological sample processing
US11912983B2 (en) 2019-12-05 2024-02-27 Waters Technologies Corporation Polyanionic acids to improve recovery and minimize system loss
CN116209757A (en) 2020-07-14 2023-06-02 沃特世科技公司 Compositions, kits and methods for separating oligonucleotides from matrix components
US20220362741A1 (en) 2021-04-29 2022-11-17 Waters Technologies Corporation Hydrolytically stable zwitterionic chromatographic materials
CN117396754A (en) 2021-06-04 2024-01-12 沃特世科技公司 Separation of nucleic acid component compounds on zwitterionic stationary phases

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865291A (en) * 1971-12-06 1973-09-08
JPS54135681A (en) * 1977-12-28 1979-10-22 Rohm & Haas Improved ion exchange resin

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2540985A (en) 1949-12-06 1951-02-06 Monsanto Chemicals Quaternary ammonium derivatives of vinylpyridine-polyinylbenzene copolymers
US2801224A (en) * 1953-03-30 1957-07-30 Permutit Co Quaternary ammonium anion exchange resins and method for preparing the same
US2788331A (en) * 1953-04-21 1957-04-09 Permutit Co Anion exchange resins from cross-linked halogenated polyvinylaromatic polymers
US2824844A (en) * 1953-05-20 1958-02-25 Pfaudler Permutit Inc Aminated ion exchange resins containing divinyl substituted heterocyclic comonomers as cross-linkers
NL241315A (en) 1958-07-18
DE1151124B (en) * 1961-10-26 1963-07-04 Wolfen Filmfab Veb Process for the production of abrasion-resistant basic anion exchange resins containing amino and / or ammonium groups based on polymerization
US3499960A (en) * 1965-01-25 1970-03-10 Merck & Co Inc Palatable coated particles of an anion exchange resin
US3954682A (en) * 1970-04-02 1976-05-04 Gaf Corporation Insoluble porous polymeric-phenolic complexes
US3985540A (en) * 1970-04-02 1976-10-12 Gaf Corporation Metal complexes of hydroxyquinoline and polymeric porous granules
LU65552A1 (en) * 1972-06-20 1973-12-27
CS171963B1 (en) * 1974-02-01 1976-11-29
CS187563B1 (en) * 1974-02-08 1979-02-28 Petr Strop Method of preparation of the hydrophilic homogeneous or macroporous annexes
US4000098A (en) * 1974-08-16 1976-12-28 Palo Alto Medical Research Foundation Separation of proteins by hydrophobic adsorption
JPS54101893A (en) * 1978-01-27 1979-08-10 Koei Chemical Co Preparation of porous resin having nitrogenncontaining heterocyclic structure
US4303531A (en) 1978-11-28 1981-12-01 Koei Chemical Co., Ltd. Method for adsorbing and recovering phenols
FR2490676B1 (en) 1980-09-19 1985-07-19 Rhone Poulenc Spec Chim PROCESS FOR PURIFYING SUGAR CANE JUICE
US4468330A (en) 1981-04-27 1984-08-28 Sekisui Kagaku Kogyo Kabushiki Kaisha Filler for liquid chromatography useful for separating a hemoglobin variant in blood
US5292818A (en) * 1982-07-20 1994-03-08 Sekisui Kagaku Kogyo Kabushiki Kaisha Method for producing a carrier for cation exchange liquid chromatography and a method for determining glycosylated hemoglobins using the carrier
CA2074177C (en) * 1990-11-21 1997-10-21 Kazuyuki Oishi Method for producing a carrier for cation exchange liquid chromatography and a method for determining glycosylated hemoglobins using the carrier
JPS5952754A (en) 1982-09-21 1984-03-27 Asahi Chem Ind Co Ltd Packing material for separation column
CH665565A5 (en) * 1983-10-22 1988-05-31 Mitsui Toatsu Chemicals METHOD FOR CONTROLLING THE CONCENTRATION OF AN AQUEOUS SOLUTION OR EMULSION CONTAINING A MACROMOLECULAR CONNECTION.
JPS60189742A (en) 1984-03-09 1985-09-27 Fuji Photo Film Co Ltd Photosensitive material
GB8506335D0 (en) 1985-03-12 1985-04-11 Streat M Immobilised extractants
US4758413A (en) * 1986-11-17 1988-07-19 The Dow Chemical Company Reactive resins useful for precious metal recovery
US4889632A (en) * 1987-12-10 1989-12-26 Ceskoslovenska Akademie Ved Macroporous polymeric membranes for the separation of polymers and a method of their application
US4933372A (en) * 1988-09-26 1990-06-12 Supelco, Inc. Porous rigid resins and process of preparation
US4954262A (en) 1988-11-08 1990-09-04 Asahi Glass Company Ltd. Method and apparatus for recovering sulfuric acid from a titanium sulfate waste liquor
US5238992A (en) 1989-08-30 1993-08-24 Edison Polymer Innovation Corporation Microemulsion polymer blends
US5030352A (en) * 1990-01-25 1991-07-09 Purdue Research Foundation Coated media for chromatography
US5230806A (en) * 1991-02-04 1993-07-27 Iowa State University Research Foundation, Inc. Modified resins for solid-phase extraction
WO1993007945A1 (en) * 1991-10-21 1993-04-29 Cornell Research Foundation, Inc. Column with macroporous polymer media
US5292828A (en) 1992-05-29 1994-03-08 Union Carbide Chemicals & Plastics Technology Corporation Polymers containing complex hydrophobic groups
US5906734A (en) * 1992-06-19 1999-05-25 Biosepra Inc. Passivated porous polymer supports and methods for the preparation and use of same
US5316680A (en) 1992-10-21 1994-05-31 Cornell Research Foundation, Inc. Multimodal chromatographic separation media and process for using same
US5278339A (en) 1993-03-01 1994-01-11 Eastman Kodak Company Process for the recovery of cyclohexanedicarboxylic acids
JP3899380B2 (en) 1994-05-05 2007-03-28 スリーエム カンパニー Chemically modified solid phase extraction particles and products containing the same
US5728457A (en) * 1994-09-30 1998-03-17 Cornell Research Foundation, Inc. Porous polymeric material with gradients
AU4486796A (en) * 1995-01-26 1996-08-14 Novartis Ag Imidazole derivatives, their preparation and their use as sadenosylmethionine decarboxylase (=samdc) inhibitors
US5587323A (en) * 1995-05-02 1996-12-24 United States Drug Testing Laboratories, Inc. Meconium assay procedure
US6117996A (en) * 1995-09-20 2000-09-12 Novo Nordisk A/S Triazine based ligands and use thereof
DE69727048T2 (en) * 1996-03-01 2004-11-11 Dionex Corp., Sunnyvale ANION EXCHANGE RESINS WITH AT LEAST TWO DIFFERENT NITROGENS, CONTAINING ION EXCHANGE GROUPS
US5882521A (en) * 1996-04-18 1999-03-16 Waters Investment Ltd. Water-wettable chromatographic media for solid phase extraction
US5935429A (en) 1997-01-03 1999-08-10 Bio-Rad Laboratories, Inc. Chromatography columns with continuous beds formed in situ from aqueous solutions
JP4883837B2 (en) 1998-06-12 2012-02-22 ウォーターズ・テクノロジーズ・コーポレーション A novel ion-exchange porous resin for solid-phase extraction and chromatography
US7232520B1 (en) * 1998-06-12 2007-06-19 Waters Investments Limited Ion exchange porous resins for solid phase extraction and chromatography
US6482867B1 (en) 1998-08-28 2002-11-19 Shiseido Co., Ltd. Polymer packing material for liquid chromatography and a producing method thereof
US6238565B1 (en) * 1998-09-16 2001-05-29 Varian, Inc. Monolithic matrix for separating bio-organic molecules
US6362245B1 (en) * 1998-10-02 2002-03-26 Showa Denko Kabushiki Kaisha Porous co-polymer particles, process for preparing the same and use of the same
US6686035B2 (en) * 1999-02-05 2004-02-03 Waters Investments Limited Porous inorganic/organic hybrid particles for chromatographic separations and process for their preparation
AT409095B (en) 1999-05-31 2002-05-27 Michael Rudolf Mag Buchmeiser METHOD FOR PRODUCING MONOLITHIC SUPPORT MATERIALS ON THE BASIS OF POLYMERS PRODUCED BY METATHESIS
JP2003526796A (en) * 2000-03-14 2003-09-09 ハメン・コーポレイション Composite matrix with intercalated polymer network
JP2001343378A (en) 2000-06-02 2001-12-14 Showa Denko Kk Filler for solid-phase extraction and solid-phase extraction method
US6759442B2 (en) * 2000-06-02 2004-07-06 Showa Denko Kabushiki Kaisha Packing material for solid phase extraction and solid phase extraction method
JP2002187904A (en) 2000-12-21 2002-07-05 Hitachi Chem Co Ltd Crosslinked copolymer particle and process for its preparation
WO2006127973A2 (en) * 2005-05-24 2006-11-30 Waters Inverstments Limited Methods for separating and analyzing anionic compounds

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865291A (en) * 1971-12-06 1973-09-08
JPS54135681A (en) * 1977-12-28 1979-10-22 Rohm & Haas Improved ion exchange resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215566A (en) * 1998-06-12 2009-09-24 Waters Investments Ltd Novel ion exchange porous resin for solid phase extraction and chromatography

Also Published As

Publication number Publication date
EP1091981A1 (en) 2001-04-18
DE69936920T2 (en) 2008-05-15
US20060021939A1 (en) 2006-02-02
US20120248033A1 (en) 2012-10-04
US20090139323A1 (en) 2009-06-04
US20100324159A1 (en) 2010-12-23
EP1091981A4 (en) 2003-04-02
US8574433B2 (en) 2013-11-05
US7790038B2 (en) 2010-09-07
EP1091981B1 (en) 2007-08-22
JP2002517574A (en) 2002-06-18
WO1999064480A1 (en) 1999-12-16
US20100300972A1 (en) 2010-12-02
US7731844B2 (en) 2010-06-08
US7442299B2 (en) 2008-10-28
AU4437399A (en) 1999-12-30
US8197692B2 (en) 2012-06-12
US20070205156A1 (en) 2007-09-06
JP2009215566A (en) 2009-09-24
DE69936920D1 (en) 2007-10-04
US6322695B1 (en) 2001-11-27

Similar Documents

Publication Publication Date Title
JP4883837B2 (en) A novel ion-exchange porous resin for solid-phase extraction and chromatography
JP4062637B2 (en) Water-wettable chromatography media for solid-phase extraction
US20200009545A1 (en) Porous materials for solid phase extraction and chromatography and processes for preparation and use thereof
US9459184B2 (en) Sorption of water from a sample using a polymeric drying agent
AU2006242643A1 (en) Polar functionized polymer modified porous substrate for solid phase extraction
CA2762628A1 (en) Porous polymeric separation material
US20210220814A1 (en) Porous materials for solid phase extraction and chromatography and processes for preparation and use thereof
US7232520B1 (en) Ion exchange porous resins for solid phase extraction and chromatography

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081117

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090217

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110318

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110617

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110624

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4883837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term