JP4881276B2 - Heat exchanger manufacturing method and heat exchanger - Google Patents

Heat exchanger manufacturing method and heat exchanger Download PDF

Info

Publication number
JP4881276B2
JP4881276B2 JP2007272475A JP2007272475A JP4881276B2 JP 4881276 B2 JP4881276 B2 JP 4881276B2 JP 2007272475 A JP2007272475 A JP 2007272475A JP 2007272475 A JP2007272475 A JP 2007272475A JP 4881276 B2 JP4881276 B2 JP 4881276B2
Authority
JP
Japan
Prior art keywords
pair
tube
extruded tube
heat exchanger
penetrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007272475A
Other languages
Japanese (ja)
Other versions
JP2009097838A (en
Inventor
聖一 端
浩司 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T.RAD CO., L T D.
Original Assignee
T.RAD CO., L T D.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T.RAD CO., L T D. filed Critical T.RAD CO., L T D.
Priority to JP2007272475A priority Critical patent/JP4881276B2/en
Publication of JP2009097838A publication Critical patent/JP2009097838A/en
Application granted granted Critical
Publication of JP4881276B2 publication Critical patent/JP4881276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、主として空調用の熱交換器であって、内部に気液二相状態の冷媒が流通するエバポレータやコンデンサの製造方法およびその熱交換器に関し、特に、熱交換器コアの両端に一対の集合タンクを有し、各タンクに仕切りを有して冷媒が各タンクおよびコアの各チューブ内を蛇行状に多パスに流通するものに関する。   TECHNICAL FIELD The present invention relates to a heat exchanger mainly for air conditioning, and relates to a method of manufacturing an evaporator and a condenser in which a gas-liquid two-phase refrigerant circulates and a heat exchanger thereof, and in particular, a pair at both ends of a heat exchanger core. And each tank has a partition, and the refrigerant circulates in multiple paths in a meandering manner in each tank and each tube of the core.

空調用熱交換器に利用されるコンデンサの一例として、図8に示す多パス型のものが知られている。その図8(A)はその縦断面図であり、同(B)は(A)のB−B断面図、(C)は(A)のC−C断面図である。この例は(A)に示す如く、多数のフィン17およびチューブ16からなるコア18の両端に一対の第1集合タンク23および第2集合タンク24を設け、コア18の各チューブ16の両端がそれらに連通する。その第1集合タンク23および第2集合タンク24は、夫々複数の横仕切板10が上下に離間して内部に配置され、それによって第1集合タンク23では小タンクd2,d4,d6を有し、第2集合タンク24では小タンクd1,d3,d5,d7を有する。   As an example of a capacitor used in an air conditioning heat exchanger, a multipass type shown in FIG. 8 is known. FIG. 8A is a longitudinal sectional view thereof, FIG. 8B is a sectional view taken along the line BB in FIG. 8A, and FIG. 8C is a sectional view taken along the line CC in FIG. In this example, as shown in (A), a pair of first and second collecting tanks 23 and 24 are provided at both ends of a core 18 composed of a large number of fins 17 and tubes 16, and both ends of each tube 16 of the core 18 are disposed at both ends. Communicate with. The first collective tank 23 and the second collective tank 24 are each provided with a plurality of horizontal partition plates 10 spaced apart in the vertical direction, whereby the first collective tank 23 has small tanks d2, d4, d6. The second collective tank 24 has small tanks d1, d3, d5, and d7.

そして、第2集合タンク24の小タンクd1と小タンクd7とに入口パイプ19,出口パイプ20が設けられ、入口パイプ19から冷媒21が流入し、それが2つのチューブ16内を図において左端から右端に流通し小タンクd2に至り、その小タンクd2内をUターンし、次いでこの例で4本のチューブ16内を右端から左端に流通して、小タンクd3に達し、次いで冷媒はその小タンクd3の内部を上昇し、小タンクd3の上部に位置する4本のチューブ16内を左端から右端に流通する。同様に各チューブを介して、冷媒は小タンクd4,d5,d6,d7と蛇行状に流通し、最後に小タンクd7の出口パイプ20から外部に流出する。   An inlet pipe 19 and an outlet pipe 20 are provided in the small tank d1 and the small tank d7 of the second collective tank 24, and the refrigerant 21 flows in from the inlet pipe 19, and the inside of the two tubes 16 from the left end in the figure. It circulates to the right end and reaches the small tank d2, makes a U-turn in the small tank d2, and then flows in the four tubes 16 from the right end to the left end in this example to reach the small tank d3. The inside of the tank d3 rises and flows through the four tubes 16 located at the upper part of the small tank d3 from the left end to the right end. Similarly, the refrigerant circulates in a meandering manner with the small tanks d4, d5, d6, and d7 through each tube, and finally flows out from the outlet pipe 20 of the small tank d7.

特開2001−304792号公報JP 2001-304792 A 特開平04−148195号公報Japanese Patent Laid-Open No. 04-148195

図8に示すような空調用熱交換器は、各小タンクに2列のチューブが存在する。近年、熱交換器の小型化の要請から冷媒圧力を高くし、それに伴い各小タンクは耐圧性を確保するため、その肉厚が大とならざるを得なくなっている。また、各小タンク内では冷媒が集合および分流を繰返すが、冷媒は気・液二相状態であって、重力や流速の影響でその液分量とガス分量が各チューブに均等に分流しがたい欠点があった。それに基づき、熱交換性能が低下していた。
そこで本発明は、比較的薄肉で耐圧性が高く、各チューブに液分量とガス分量が均等に分流することを課題とするとともに、製造容易でコンパクトな熱交換器を提供することを課題とする。
The air conditioner heat exchanger as shown in FIG. 8 has two rows of tubes in each small tank. In recent years, due to the demand for downsizing of heat exchangers, the refrigerant pressure has been increased, and accordingly, the small tanks have to have a large wall thickness in order to ensure pressure resistance. In each small tank, the refrigerant repeatedly collects and diverts, but the refrigerant is in a gas / liquid two-phase state, and it is difficult to evenly distribute the liquid volume and gas volume to each tube due to the influence of gravity and flow velocity. There were drawbacks. Based on this, the heat exchange performance was reduced.
Accordingly, the present invention has an object to provide a compact heat exchanger that is easy to manufacture and has a relatively thin wall and a high pressure resistance, and is capable of evenly distributing the liquid amount and the gas amount to each tube. .

請求項1に記載の本発明は、各横断面が同一の金属材の押し成形管よりなり、その幅方向両端部で断面内周が、それぞれその幅方向に対向するC字状に形成された一対の第1貫通部(1),第2貫通部(2)を有し、その一対のC字の開口が、その幅方向に直交する高さ方向に対向する一対の弧状部(3a)で互いに接続されて、そこに中間貫通部(3)が形成され且つ、各貫通部の境に一対づつの縦仕切挿入用の溝部(4)が形成された押出管(5)を用意する工程と、
前記押出管(5)の外面に、前記第1貫通部(1),第2貫通部(2)に連通するチューブ挿通孔(6)を互いに離間して多数穿設する穿設工程および、横仕切挿入用のスリット(7)をその第1貫通部(1),第2貫通部(2),中間貫通部(3)を横断するように形成するスリット形成工程と、
適宜位置に連通孔(8)が設けられた一対の縦仕切板(9)を、前記押出管(5)の前記一対づつの各溝部(4)の間に挿入する工程と、
一以上の横仕切板(10)に連通孔(11)を有し、各横仕切板(10)を前記押出管(5)の各スリット(7)に嵌着し、押出管(5)の両端に一対の端蓋(12)を被着して、前記各貫通部(1) (2)(3)と各横仕切板(10)および端蓋(12)と縦仕切板(9)とで囲まれた空間に、気液二相状態の冷媒が流通したとき、その分流・合流・混合を行う小タンクを多数形成する工程と、
チューブ(16)およびフィン(17)を組立ててコア(18)を形成し、そのコア(18)の各チューブ(16)を前記押出管(5)の前記チューブ挿通孔(6)に嵌着して熱交換器を組み立てる工程と、
組み立てられた各部品間を一体に且つ液密にろう付け固定する工程とを具備する熱交換器の製造方法である。
In the present invention described in claim 1, each cross-section is made of the same metal-made extruded tube, and the inner circumference of the cross-section is formed in a C-shape opposed to the width direction at both ends in the width direction. It has a pair of first penetrating parts (1) and a second penetrating part (2), and the pair of C-shaped openings is a pair of arcuate parts (3a) facing in the height direction orthogonal to the width direction. A step of preparing an extruded tube (5) which is connected to each other and has an intermediate through portion (3) formed therein and a pair of longitudinal partition insertion grooves (4) formed at the boundary of each through portion; ,
A drilling step in which a plurality of tube insertion holes (6) communicating with the first through-hole (1) and the second through-hole (2) are spaced apart from each other on the outer surface of the extruded tube (5); A slit forming step of forming a partition insertion slit (7) so as to cross the first penetration part (1), the second penetration part (2), and the intermediate penetration part (3);
Inserting a pair of vertical partition plates (9) provided with communication holes (8) at appropriate positions between the pair of grooves (4) of the pair of extruded tubes (5);
One or more horizontal partition plates (10) have communication holes (11), and each horizontal partition plate (10) is fitted into each slit (7) of the extruded tube (5), and the extruded tube (5) A pair of end lids (12) are attached to both ends, and each of the penetrating parts (1), (2), (3), the horizontal partition plates (10), the end lid (12), and the vertical partition plate (9) When a gas-liquid two-phase refrigerant circulates in the space surrounded by
The tube (16) and the fin (17) are assembled to form the core (18), and each tube (16) of the core (18) is fitted into the tube insertion hole (6) of the extruded tube (5). The process of assembling the heat exchanger,
And a step of brazing and fixing the assembled parts integrally and in a liquid-tight manner.

請求項2に記載の本発明は、各横断面が同一の金属材の押し成形管よりなり、その幅方向両端部で断面内周が、それぞれその幅方向に対向するC字状に形成された一対の第1貫通部(1),第2貫通部(2)を有し、その一対のC字の開口どうしが、互いに接続され且つ、両貫通部の境に縦仕切挿入用の一対の溝部(4)が形成された押出管(5)を用意する工程と、
前記押出管(5)の外面に、前記第1貫通部(1),第2貫通部(2)に連通するチューブ挿通孔(6)を互いに離間して多数穿設する穿設工程および、横仕切挿入用のスリット(7)をその第1貫通部(1),第2貫通部(2)を横断するように形成するスリット形成工程と、
縦仕切板(9)を、前記押出管(5)の前記一対の各溝部(4)の間に挿入する工程と、
一以上の横仕切板(10)に連通孔(11)を有し、その各横仕切板(10)を前記押出管(5)の各スリット(7)に嵌着し、押出管(5)の両端に一対の端蓋(12)を被着し、前記各貫通部(1) (2)と各横仕切板(10)および端蓋(12)と縦仕切板(9)とで囲まれた空間に、気液二相状態の冷媒が流通したとき、その分流・合流・混合を行う小タンクを多数形成する工程と、
チューブ(16)およびフィン(17)を組立ててコア(18)を形成し、そのコア(18)の各チューブ(16)を前記押出管(5)の前記チューブ挿通孔(6)に嵌着して熱交換器を組み立てる工程と、
組み立てられた各部品間を一体に且つ液密にろう付け固定する工程とを具備する熱交換器の製造方法である。
In the present invention according to claim 2, each cross-section is made of the same metal-made extruded tube, and the inner circumference of the cross-section is formed in a C-shape facing the width direction at both ends in the width direction. A pair of first penetrating portions (1) and a second penetrating portion (2), a pair of C-shaped openings are connected to each other, and a pair of grooves for inserting a vertical partition at the boundary of both penetrating portions Preparing an extruded tube (5) formed with (4);
A drilling step in which a plurality of tube insertion holes (6) communicating with the first through-hole (1) and the second through-hole (2) are spaced apart from each other on the outer surface of the extruded tube (5); A slit forming step of forming a slit (7) for partition insertion so as to cross the first penetrating portion (1) and the second penetrating portion (2);
Inserting the vertical partition plate (9) between the pair of grooves (4) of the extruded tube (5);
The one or more horizontal partition plates (10) have communication holes (11), and the respective horizontal partition plates (10) are fitted into the respective slits (7) of the extruded tube (5), and the extruded tube (5) A pair of end lids (12) are attached to both ends of each of the two, and are surrounded by each of the penetrating parts (1) (2), the horizontal partition plates (10), and the end lid (12) and the vertical partition plate (9). Forming a large number of small tanks for diverting, merging, and mixing when a refrigerant in a gas-liquid two-phase state flows through the space,
The tube (16) and the fin (17) are assembled to form the core (18), and each tube (16) of the core (18) is fitted into the tube insertion hole (6) of the extruded tube (5). The process of assembling the heat exchanger,
And a step of brazing and fixing the assembled parts integrally and in a liquid-tight manner.

請求項3に記載の本発明は、請求項1または請求項2の製造方法により形成された熱交換器である。   The present invention according to claim 3 is a heat exchanger formed by the manufacturing method according to claim 1 or claim 2.

請求項1に記載の熱交換器の製造方法は、流路断面がC字状の第1貫通部1,第2貫通部2,および一対の弧状部の中間貫通部3を有する押出管5にチューブ挿通孔6,スリット7を形成し、連通孔8を有する縦仕切板9を溝部4に挿入すると共に、連通孔11を有する横仕切板10をスリット7に嵌着したものである。そして気液二相状態の冷媒が流通したとき、分流・合流・混合を行う多数の小タンクを形成し、各部品間を一体にろう付け固定したものであるから、製造容易で耐圧性が高く、気液二相状態の冷媒を各小タンクで冷媒の分流・合流・混合を行い、夫々のチューブ16に液分量とガス分量とを均等に流通させ、熱交換性能の良い熱交換器を提供できる。   The manufacturing method of the heat exchanger according to claim 1 includes a first through part 1 having a C-shaped cross section, a second through part 2, and an extruded pipe 5 having a pair of arcuate intermediate through parts 3. A tube insertion hole 6 and a slit 7 are formed, a vertical partition plate 9 having a communication hole 8 is inserted into the groove portion 4, and a horizontal partition plate 10 having a communication hole 11 is fitted into the slit 7. And when the gas-liquid two-phase refrigerant flows, many small tanks that split, merge, and mix are formed, and each part is brazed and fixed integrally, so it is easy to manufacture and has high pressure resistance The refrigerant in the gas-liquid two-phase state is divided, merged, and mixed in each small tank, and the liquid amount and gas amount are evenly distributed through each tube 16 to provide a heat exchanger with good heat exchange performance. it can.

即ち、押出成形管からなる、流路断面がC字状の第1貫通部,第2貫通部および、断面が弧状部の中間貫通部を有し,それと縦仕切板、横仕切板のろう付け接合体で形成されるため耐圧性が高い。また、中間貫通部3内に形成された小室は、縦仕切板9の連通孔8及び横仕切板10の連通孔11から流入及び流出する気液二相状態の冷媒の混合を効果的に行い、熱交換性能を向上し得る。
しかも、加工が容易で所望の流路系を容易に製造することができる。即ち、縦仕切板9,横仕切板10に穿設する連通孔8,連通孔11の位置を変えることにより、容易に冷媒流路を変更することができ、各種目的に合わせた熱交換器を容易に製造し得る。
That is, it has a first through part and a second through part having a C-shaped cross section made of an extruded tube, and an intermediate through part having an arc-shaped cross section, and is brazed to the vertical partition plate and the horizontal partition plate. Since it is formed of a joined body, the pressure resistance is high. The small chamber formed in the intermediate through portion 3 effectively mixes the gas-liquid two-phase refrigerant flowing in and out from the communication hole 8 of the vertical partition plate 9 and the communication hole 11 of the horizontal partition plate 10. The heat exchange performance can be improved.
Moreover, processing is easy and a desired flow path system can be easily manufactured. That is, by changing the positions of the communication holes 8 and 11 formed in the vertical partition plate 9 and the horizontal partition plate 10, the refrigerant flow path can be easily changed, and a heat exchanger adapted to various purposes can be provided. It can be easily manufactured.

請求項2に記載の熱交換器の製造方法は、押出管5が対向するC字状の一対の第1貫通部1,第2貫通部2を有し、そのC字の開口どうしが接続され、そこに形成された溝部4に縦仕切板9を挿入すると共に、押出管5に設けた各スリット7に連通孔11を有する横仕切板10を嵌着してろう付け固定することにより、多数の小タンクを形成したものである。従って、耐圧性が高く組立て容易な熱交換器を提供できる。即ち、流路断面がC字状の押出管と、縦仕切板、横仕切板のろう付け接合体であるから、耐圧性が高い。また、横仕切板10の連通孔11等の位置を変えることにより、任意の流路を有する熱交換器を提供できる。それと共に、コンパクトで小スペースの熱交換器提供できる。   The manufacturing method of the heat exchanger according to claim 2 has a pair of C-shaped first through part 1 and second through part 2 with which the extruded tube 5 is opposed, and the C-shaped openings are connected to each other. The vertical partition plate 9 is inserted into the groove portion 4 formed therein, and the horizontal partition plate 10 having the communication hole 11 is fitted into each slit 7 provided in the extruded tube 5 to be fixed by brazing. The small tank is formed. Therefore, it is possible to provide a heat exchanger that has high pressure resistance and can be easily assembled. That is, since the cross section of the flow path is a C-shaped extruded tube, and a brazed assembly of a vertical partition plate and a horizontal partition plate, the pressure resistance is high. Further, a heat exchanger having an arbitrary flow path can be provided by changing the positions of the communication holes 11 and the like of the horizontal partition plate 10. At the same time, a compact and small space heat exchanger can be provided.

また、上記何れかの製造方法により形成された熱交換器は、耐圧性が高くコンパクトで省スペースの熱交換器となり得る。また、本熱交換器は各チューブ列毎に縦仕切板9によって仕切られているから、耐圧性の高いものとなる。   The heat exchanger formed by any one of the above manufacturing methods can be a compact and space-saving heat exchanger with high pressure resistance. Further, since the present heat exchanger is partitioned by the vertical partition plate 9 for each tube row, it has high pressure resistance.

次に図面に基づいて本発明の実施の形態につき説明する。図1は本発明の製造方法にかかる熱交換器の要部分解斜視図であり、図2は同熱交換器の縦断面図説明図、図3は図2のIII-III矢視断面図、図4は図2のIV-IV矢視断面図であり、図5は同熱交換器の冷媒流路の説明図である。
(第1実施例)
この熱交換器は、各部品がアルミニューム製のものであって、図1および図2に示すごとく、多数の断面円形なチューブ16とプレート型のフィン17との組立て体からなるコア18を有し、そのコア18の両側に一対の第1集合タンク23、第2集合タンク24を設けたものである。第1集合タンク23は図1に示すごとく、アルミニウム材の押出し成形管よりなる押出管5と、一対の縦仕切板9と複数の横仕切板10および一対の端蓋12からなる。押出管5は、横断面内周がそれぞれ幅方向に対向するC字状に形成された一対の第1貫通部1と第2貫通部2とを有し、その一対のC字状の開口どうしが、幅方向に直交する高さ方向に対向する一対の弧状部3aで互いに接続されて、そこに中間貫通部3が形成されている。それとともに、各貫通部の境に一対ずつの縦仕切挿入用の溝部4が高さ方向に対向して形成されている。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an exploded perspective view of a main part of a heat exchanger according to the manufacturing method of the present invention, FIG. 2 is a longitudinal sectional view of the heat exchanger, FIG. 3 is a sectional view taken along arrows III-III in FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 2, and FIG. 5 is an explanatory diagram of the refrigerant flow path of the heat exchanger.
(First embodiment)
This heat exchanger is made of aluminum and has a core 18 made up of an assembly of a large number of circular tubes 16 and plate-shaped fins 17 as shown in FIGS. In addition, a pair of a first collection tank 23 and a second collection tank 24 are provided on both sides of the core 18. As shown in FIG. 1, the first collecting tank 23 includes an extruded tube 5 made of an aluminum extruded tube, a pair of vertical partition plates 9, a plurality of horizontal partition plates 10, and a pair of end lids 12. The extruded tube 5 has a pair of first and second penetrating portions 1 and 2 that are formed in a C shape whose inner circumferences are opposed to each other in the width direction. Are connected to each other by a pair of arcuate portions 3a facing each other in the height direction orthogonal to the width direction, and an intermediate through portion 3 is formed there. At the same time, a pair of vertical partition insertion grooves 4 are formed in the height direction so as to be opposed to each through portion.

このような押出管5を用意し、図においてその正面側に適宜間隔でスリット7を複数(この例では5つ)形成する。一例として刃厚がスリット7に等しい回転するカッターでそれを切削加工することができる。このとき、スリット7の先端は押出管5の流路の底部を僅かに切削する(図1参照)。この例では、スリット7は各押出管5の全幅に渡って形成されている。そして、アルミニューム板のプレス成形体からなる一対の縦仕切板9および複数の横仕切板10ならびに端蓋12を用意する。横仕切板10には前記溝部4に整合する位置にスリット22が一対設けられている。これは縦仕切板9と干渉するのを避けるものである。各縦仕切板9にはその適宜位置に連通孔8を穿設する。また、適宜の横仕切板10にも連通孔11を穿設する。また押出管5の図において背面側(底部)には図3のごとく、多数のチューブ挿通孔6が、この例では第1貫通部1および第2貫通部2内において千鳥状に穿設される。なお、中間貫通部3にはチューブ挿通孔は存在しない。そして、押出管5の溝部4にそれぞれ一対の縦仕切板9を挿入すると共に、スリット7に横仕切板10を嵌着し、押出管5の上下両端に端蓋12を被着する。そして、コア18のチューブ16を各チューブ挿通孔6に挿入する。第2集合タンク24においても第1集合タンク23同様に行う。   Such an extruded tube 5 is prepared, and a plurality of slits 7 (five in this example) are formed at appropriate intervals on the front side in the drawing. As an example, it can be cut with a rotating cutter whose blade thickness is equal to the slit 7. At this time, the tip of the slit 7 slightly cuts the bottom of the flow path of the extruded tube 5 (see FIG. 1). In this example, the slit 7 is formed over the entire width of each extruded tube 5. Then, a pair of vertical partition plates 9 and a plurality of horizontal partition plates 10 and end lids 12 made of a press-formed body of an aluminum plate are prepared. The horizontal partition plate 10 is provided with a pair of slits 22 at positions aligned with the grooves 4. This is to avoid interference with the vertical partition plate 9. Each vertical partition plate 9 is provided with a communication hole 8 at an appropriate position. Further, a communication hole 11 is also formed in an appropriate horizontal partition plate 10. Further, in the drawing of the extruded tube 5, on the back side (bottom), as shown in FIG. 3, a large number of tube insertion holes 6 are formed in a staggered manner in the first through portion 1 and the second through portion 2 in this example. . There is no tube insertion hole in the intermediate through portion 3. Then, a pair of vertical partition plates 9 are inserted into the groove portions 4 of the extruded tube 5, a horizontal partition plate 10 is fitted into the slit 7, and end covers 12 are attached to the upper and lower ends of the extruded tube 5. Then, the tube 16 of the core 18 is inserted into each tube insertion hole 6. The same processing is performed in the second collective tank 24 as in the first collective tank 23.

このようにして組立てられた熱交換器は、予め互いに接触する少なくても一方側の表面にはろう材を被覆または配置しておき、高温の炉内で一体にろう付け固定する。この例では、第1集合タンク23の内部を横仕切板10によって図3の如く、上下方向に6分割し、一対の縦仕切板9によって、各段を横方向(幅方向)に3分割する。同様に第2集合タンク24はその内部を上下方向に6分割され、幅方向に縦仕切板9によって3分割される。この例では、各横仕切板10は下段から一つ置きに、図3、図2の如く、それぞれ横仕切板10に連通孔11を形成しておく。縦仕切板9には各小タンクごとに、連通孔8が穿設されている。   The heat exchanger assembled in this manner is coated or arranged with a brazing material on the surface of at least one side in contact with each other in advance, and is brazed and fixed integrally in a high-temperature furnace. In this example, the inside of the first collective tank 23 is divided into six in the vertical direction by the horizontal partition plate 10 as shown in FIG. 3, and each stage is divided into three in the horizontal direction (width direction) by the pair of vertical partition plates 9. . Similarly, the inside of the second collecting tank 24 is divided into six parts in the vertical direction, and is divided into three parts by the vertical partition plates 9 in the width direction. In this example, communication holes 11 are formed in the horizontal partition plates 10 as shown in FIG. 3 and FIG. A communication hole 8 is formed in the vertical partition plate 9 for each small tank.

第2集合タンク24においては、最下段の横仕切板10には孔が穿設されず、第2段目の横仕切板10に連通孔11が穿設され、以降1つ置き毎に連通孔11が穿設されている(図2,図4参照)。縦仕切板9には各小タンクごとに、連通孔8が穿設されている。これらの連通孔の位置、横仕切板の位置、数その他は各種条件に応じて任意に設計できる。このようにして、第1集合タンク23には、図3に示す如く、第1貫通部1側に第1小タンクa2〜a11が設けられ、第2貫通部2側に第2小タンクb2〜b11が設けられ、中間貫通部3内に中間小タンクc2〜c11が設けられている。また第2集合タンク24では、図4に示す如く、第1貫通部1内に第1小タンクa1〜a12が、第2貫通部2内に第2小タンクb1〜b12が、中間貫通部3内に中間小タンクc1〜c12が設けられている。そして、第2集合タンク24の中間小タンクc1とc12に入口パイプ19、出口パイプ20が取付けられる。   In the second collecting tank 24, no hole is drilled in the lowermost horizontal partition plate 10, but a communication hole 11 is drilled in the second horizontal partition plate 10, and thereafter every other one of the communication holes. 11 is drilled (see FIGS. 2 and 4). A communication hole 8 is formed in the vertical partition plate 9 for each small tank. The positions of these communication holes, the positions of the horizontal partition plates, the number, etc. can be arbitrarily designed according to various conditions. In this way, as shown in FIG. 3, the first collecting tank 23 is provided with the first small tanks a2 to a11 on the first penetrating portion 1 side, and the second small tanks b2 to b2 on the second penetrating portion 2 side. b11 is provided, and intermediate small tanks c2 to c11 are provided in the intermediate through portion 3. In the second collective tank 24, as shown in FIG. 4, the first small tanks a <b> 1 to a <b> 12 are in the first penetration part 1, the second small tanks b <b> 1 to b <b> 12 are in the second penetration part 2, and the intermediate penetration part 3. Inside, small intermediate tanks c1 to c12 are provided. An inlet pipe 19 and an outlet pipe 20 are attached to the intermediate small tanks c1 and c12 of the second collecting tank 24.

(作用)
このようにしてなる熱交換器は、一例として第2集合タンク24の入口パイプ19から冷媒21が中間小タンクc1内に流入し、図4においてその冷媒は一対の縦仕切板9の各連通孔8を介して第1小タンクa1、第2小タンクb1に流入し、そこから一対のチューブ16を介して、図2において左端から右端に流通し、第1集合タンク23の第1小タンクa2、第2小タンクb2に達する。そしてその冷媒は、図3に示す如く、縦仕切板9の各連通孔8を介して、中間小タンクc2に合流し、次いで横仕切板10の連通孔11から中間小タンクc3内に流入し、それらの間に冷媒は混合される。そして、中間小タンクc3内の一対の縦仕切板9の各連通孔8から第1小タンクa3、第2小タンクb3に流入し、それぞれに連通した2本ずつのチューブ16を図2において、右端から左端へ流通し、第2集合タンク24の第1小タンクa4、第2小タンクb4に達する(図4)。
(Function)
In the heat exchanger constructed as described above, as an example, the refrigerant 21 flows from the inlet pipe 19 of the second collecting tank 24 into the intermediate small tank c1, and in FIG. 8 flows into the first small tank a1 and the second small tank b1 through 8 and flows from there through the pair of tubes 16 from the left end to the right end in FIG. The second small tank b2 is reached. Then, as shown in FIG. 3, the refrigerant merges into the intermediate small tank c2 through the communication holes 8 of the vertical partition plate 9, and then flows into the intermediate small tank c3 from the communication holes 11 of the horizontal partition plate 10. The refrigerant is mixed between them. 2 flows into the first small tank a3 and the second small tank b3 from the communication holes 8 of the pair of vertical partition plates 9 in the intermediate small tank c3. It flows from the right end to the left end and reaches the first small tank a4 and the second small tank b4 of the second collecting tank 24 (FIG. 4).

同様に、これが図5に示す如く、繰返されて、冷媒は最終的に第2集合タンク24の第1小タンクa12、第2小タンクb12より中間小タンクc12に流入し、出口パイプ20よりそれが流出する。そして、その間、各第1小タンクa1〜a12、第2小タンクb1〜b12に出入することによって、冷媒がそのたびに混合されるとともに、各中間小タンクc1〜c12で更に混合され、気成分と液成分とが各チューブに均等に分流する。そして、コア18の厚み方向に流通する図示しない空気と冷媒とが熱交換される。なお、図5は冷媒21の流通経路の説明的略図を示すものである。   Similarly, this is repeated as shown in FIG. 5 so that the refrigerant finally flows into the intermediate small tank c12 from the first small tank a12 and the second small tank b12 of the second collective tank 24, and from the outlet pipe 20 Leaks. In the meantime, by entering and exiting the first small tanks a1 to a12 and the second small tanks b1 to b12, the refrigerant is mixed each time and further mixed in each of the intermediate small tanks c1 to c12. And liquid components are evenly distributed to each tube. Then, heat is exchanged between the refrigerant (not shown) flowing in the thickness direction of the core 18 and the refrigerant. FIG. 5 shows an explanatory schematic diagram of the flow path of the refrigerant 21.

(第2実施例)
次に、図6は本発明の第2のアルミニューム製熱交換器の要部分解斜視図である。
この押出管5は、前記同様にアルミニウムの押出し管からなり、一対の第1貫通部1、第2貫通部2を有する。第1貫通部1、第2貫通部2はそれぞれ横断面C字状に形成され、それが互いに幅対向し、C字状の開口部が一体に形成され、その境に一対の溝部4が厚み方向(管の高さ方向)に対向して設けられている。このようにしてなる押出管5の適宜位置に横仕切板10挿入用のスリット7が形成される。また、溝部4には適宜位置に連通孔8が設けられた縦仕切板9が挿入される。また、適宜な横仕切板10には連通孔11が穿設される。
(Second embodiment)
Next, FIG. 6 is an exploded perspective view of the main part of the second aluminum heat exchanger of the present invention.
This extruded tube 5 is made of an aluminum extruded tube, as described above, and has a pair of first through portion 1 and second through portion 2. The first penetrating portion 1 and the second penetrating portion 2 are each formed in a C-shaped cross section, are opposed to each other in width, are integrally formed with a C-shaped opening, and a pair of groove portions 4 are thick at the boundary. It is provided facing the direction (the height direction of the pipe). A slit 7 for inserting the horizontal partition plate 10 is formed at an appropriate position of the extruded tube 5 thus formed. Further, a vertical partition plate 9 provided with a communication hole 8 at an appropriate position is inserted into the groove portion 4. In addition, a communication hole 11 is formed in an appropriate horizontal partition plate 10.

この例が、図1のそれと異なる点は押出管5に中間貫通部3が存在しない点および、図1では一対の縦仕切板9が設けられたが、図6では1つのみの縦仕切板9が設けられている点である。またこの例では、スリット7は第2貫通部2または第1貫通部1のみを横断するように形成されている。そして第1貫通部1、第2貫通部2の背面側には図7に示すチューブ挿通孔6が設けられ、そのチューブ挿通孔6にコア18のチューブ16が挿通される。この図7は、図3および図4に対応して描かれ、第1集合タンク23、第2集合タンク24をコア18対して、90度回転して図示している。   This example differs from that of FIG. 1 in that there is no intermediate through portion 3 in the extruded tube 5 and in FIG. 1 a pair of vertical partition plates 9 is provided, but in FIG. 6 only one vertical partition plate is provided. 9 is provided. In this example, the slit 7 is formed so as to cross only the second penetrating portion 2 or the first penetrating portion 1. A tube insertion hole 6 shown in FIG. 7 is provided on the back side of the first penetration part 1 and the second penetration part 2, and the tube 16 of the core 18 is inserted into the tube insertion hole 6. FIG. 7 is drawn corresponding to FIGS. 3 and 4, and shows the first collective tank 23 and the second collective tank 24 rotated 90 degrees with respect to the core 18.

第1集合タンク23、第2集合タンク24の第1貫通部1には、第1小タンクa1〜a8が設けられ、各集合タンクの第2貫通部2には第2小タンクb1〜b4が設けられている。この例の第1集合タンク23および第2集合タンク24の各第1貫通部1の横仕切板10は、三つ設けられ、第1集合タンク23では上下両端の横仕切板10に連通孔11が形成され、第2集合タンク24では中間の横仕切板10のみに連通孔11が設けられている。これらの横仕切板の位置、数および連通孔は必要に応じて任意に設計可能である。
第2集合タンク24の縦仕切板9には上端部に連通孔8が穿設され、第1集合タンク23の縦仕切板9には、連通孔8は穿設されていない。この連通孔8の位置も必要に応じて、任意の位置に穿設できる。なお、この例でもチューブ挿通孔6は、第1実施例と同様に、第1集合タンク23、第2集合タンク24に千鳥状に穿設されている。そして、第1小タンクa1および第2小タンクb4に入口パイプ19、出口パイプ20が設けられる。このようにして組み立てられた熱交換器は高温の炉内で一体的にろう付け固定される。
First small tanks a1 to a8 are provided in the first penetrating portion 1 of the first collective tank 23 and the second collective tank 24, and second small tanks b1 to b4 are provided in the second penetrating portion 2 of each collective tank. Is provided. In this example, three horizontal partition plates 10 of each first through portion 1 of the first collective tank 23 and the second collective tank 24 are provided. In the first collective tank 23, the communication holes 11 are formed in the horizontal partition plates 10 at both the upper and lower ends. In the second collecting tank 24, the communication hole 11 is provided only in the intermediate horizontal partition plate 10. The position, number and communication holes of these horizontal partition plates can be arbitrarily designed as necessary.
The vertical partition plate 9 of the second collection tank 24 is provided with a communication hole 8 at the upper end, and the communication hole 8 is not provided in the vertical partition plate 9 of the first collection tank 23. The position of the communication hole 8 can also be drilled at an arbitrary position as required. In this example as well, the tube insertion holes 6 are formed in a staggered manner in the first and second collection tanks 23 and 24, as in the first embodiment. An inlet pipe 19 and an outlet pipe 20 are provided in the first small tank a1 and the second small tank b4. The heat exchanger assembled in this manner is integrally brazed and fixed in a high-temperature furnace.

(作用)
第2集合タンク24の入口パイプ19から流入した冷媒21は、図7に示すごとく、第1小タンクa1から二本のチューブ16を介して、第1集合タンク23の第1小タンクa2に流入し、第1小タンクa2内の横仕切板10の連通孔11を介して第1小タンクa3に流入し、その第1小タンクa3から、それぞれチューブ16を介して、第1小タンクa4、a5、a6、a7、a8に至り、第2集合タンク24の第1小タンクa8の縦仕切板9の連通孔8を介して第2小タンクb1に流入する。そして第2小タンクb1から、それぞれチューブ16を介してb2、b3、第1小タンクb4に流通し、出口パイプ20からそれを外部に流出させ、コア18の厚み方向に流通する空気と冷媒との間で熱交換される。
(Function)
The refrigerant 21 flowing in from the inlet pipe 19 of the second collective tank 24 flows into the first small tank a2 of the first collective tank 23 from the first small tank a1 through the two tubes 16 as shown in FIG. Then, it flows into the first small tank a3 through the communication hole 11 of the horizontal partition plate 10 in the first small tank a2, and the first small tank a4, a5, a6, a7, a8, and flows into the second small tank b1 through the communication hole 8 of the vertical partition plate 9 of the first small tank a8 of the second collective tank 24. The air flows from the second small tank b 1 to b 2, b 3 and the first small tank b 4 through the tubes 16, flows out from the outlet pipe 20, and flows in the thickness direction of the core 18. Heat exchange between.

本発明の第1の熱交換器の要部分解斜視図。The principal part disassembled perspective view of the 1st heat exchanger of this invention. 同熱交換器の縦断面説明図。Explanatory drawing of the longitudinal cross-section of the same heat exchanger. 図2のIII-III矢視断面図。III-III arrow sectional drawing of FIG. 図2のIV-IV矢視断面図。FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 2.

同熱交換器の冷媒21の流路の説明図。Explanatory drawing of the flow path of the refrigerant | coolant 21 of the same heat exchanger. 本発明の第2の熱交換器の要部分解斜視図。The principal part disassembled perspective view of the 2nd heat exchanger of this invention. 同熱交換器の冷媒の流れを示す説明図。Explanatory drawing which shows the flow of the refrigerant | coolant of the same heat exchanger. 従来型熱交換器の縦断面図およびB−B、C−C矢視断面図。The longitudinal cross-sectional view and BB, CC arrow sectional drawing of a conventional heat exchanger.

符号の説明Explanation of symbols

1 第1貫通部
2 第2貫通部
3 中間貫通部
3a 弧状部
4 溝部
5 押出管
6 チューブ挿通孔
7 スリット
8 連通孔
9 縦仕切板
10 横仕切板
1 1st penetration part 2 2nd penetration part 3 middle penetration part
3a Arc-shaped part 4 Groove part 5 Extruded pipe 6 Tube insertion hole 7 Slit 8 Communication hole 9 Vertical partition plate
10 Horizontal divider

11 連通孔
12 端蓋
13 合流室
14 分流室
15 混合室
16 チューブ
17 フィン
18 コア
19 入口パイプ
20 出口パイプ
21 冷媒
22 スリット
11 Communication hole
12 End lid
13 Junction room
14 Branch room
15 Mixing chamber
16 tubes
17 fins
18 core
19 Inlet pipe
20 outlet pipe
21 Refrigerant
22 Slit

23 第1集合タンク
24 第2集合タンク
a1〜a12 第1小タンク
b1〜b12 第2小タンク
c1〜c12 中間小タンク
d1〜d7 小タンク
23 First tank
24 2nd collective tank a1 to a12 1st small tank b1 to b12 2nd small tank c1 to c12 Intermediate small tank d1 to d7 Small tank

Claims (3)

各横断面が同一の金属材の押し成形管よりなり、その幅方向両端部で断面内周が、それぞれその幅方向に対向するC字状に形成された一対の第1貫通部(1),第2貫通部(2)を有し、その一対のC字の開口が、その幅方向に直交する高さ方向に対向する一対の弧状部(3a)で互いに接続されて、そこに中間貫通部(3)が形成され且つ、各貫通部の境に一対づつの縦仕切挿入用の溝部(4)が形成された押出管(5)を用意する工程と、
前記押出管(5)の外面に、前記第1貫通部(1),第2貫通部(2)に連通するチューブ挿通孔(6)を互いに離間して多数穿設する穿設工程および、横仕切挿入用のスリット(7)をその第1貫通部(1),第2貫通部(2),中間貫通部(3)を横断するように形成するスリット形成工程と、
適宜位置に連通孔(8)が設けられた一対の縦仕切板(9)を、前記押出管(5)の前記一対づつの各溝部(4)の間に挿入する工程と、
一以上の横仕切板(10)に連通孔(11)を有し、各横仕切板(10)を前記押出管(5)の各スリット(7)に嵌着し、押出管(5)の両端に一対の端蓋(12)を被着して、前記各貫通部(1) (2)(3)と各横仕切板(10)および端蓋(12)と縦仕切板(9)とで囲まれた空間に、気液二相状態の冷媒が流通したとき、その分流・合流・混合を行う小タンクを多数形成する工程と、
チューブ(16)およびフィン(17)を組立ててコア(18)を形成し、そのコア(18)の各チューブ(16)を前記押出管(5)の前記チューブ挿通孔(6)に嵌着して熱交換器を組み立てる工程と、
組み立てられた各部品間を一体に且つ液密にろう付け固定する工程とを具備する熱交換器の製造方法。
A pair of first penetrating portions (1), each of which has a cross-sectional inner circumference formed of the same metal-made extruded tube, and whose inner circumferences are formed in C-shapes facing each other in the width direction. A pair of C-shaped openings having a second penetrating part (2) are connected to each other by a pair of arcuate parts (3a) facing in the height direction orthogonal to the width direction, and there is an intermediate penetrating part there. A step of preparing an extruded tube (5) in which (3) is formed and a pair of longitudinal partition insertion grooves (4) is formed at the boundary of each penetrating portion;
A drilling step in which a plurality of tube insertion holes (6) communicating with the first through-hole (1) and the second through-hole (2) are spaced apart from each other on the outer surface of the extruded tube (5); A slit forming step of forming a partition insertion slit (7) so as to cross the first penetration part (1), the second penetration part (2), and the intermediate penetration part (3);
Inserting a pair of vertical partition plates (9) provided with communication holes (8) at appropriate positions between the pair of grooves (4) of the pair of extruded tubes (5);
One or more horizontal partition plates (10) have communication holes (11), and each horizontal partition plate (10) is fitted into each slit (7) of the extruded tube (5), and the extruded tube (5) A pair of end lids (12) are attached to both ends, and each of the penetrating parts (1), (2), (3), the horizontal partition plates (10), the end lid (12), and the vertical partition plate (9) When a gas-liquid two-phase refrigerant circulates in the space surrounded by
The tube (16) and the fin (17) are assembled to form the core (18), and each tube (16) of the core (18) is fitted into the tube insertion hole (6) of the extruded tube (5). The process of assembling the heat exchanger,
A method of manufacturing a heat exchanger, comprising: integrally and liquid-tightly brazing and fixing each assembled part.
各横断面が同一の金属材の押し成形管よりなり、その幅方向両端部で断面内周が、それぞれその幅方向に対向するC字状に形成された一対の第1貫通部(1),第2貫通部(2)を有し、その一対のC字の開口どうしが、互いに接続され且つ、両貫通部の境に縦仕切挿入用の一対の溝部(4)が形成された押出管(5)を用意する工程と、
前記押出管(5)の外面に、前記第1貫通部(1),第2貫通部(2)に連通するチューブ挿通孔(6)を互いに離間して多数穿設する穿設工程および、横仕切挿入用のスリット(7)をその第1貫通部(1),第2貫通部(2)を横断するように形成するスリット形成工程と、
縦仕切板(9)を、前記押出管(5)の前記一対の各溝部(4)の間に挿入する工程と、
一以上の横仕切板(10)に連通孔(11)を有し、その各横仕切板(10)を前記押出管(5)の各スリット(7)に嵌着し、押出管(5)の両端に一対の端蓋(12)を被着し、前記各貫通部(1) (2)と各横仕切板(10)および端蓋(12)と縦仕切板(9)とで囲まれた空間に、気液二相状態の冷媒が流通したとき、その分流・合流・混合を行う小タンクを多数形成する工程と、
チューブ(16)およびフィン(17)を組立ててコア(18)を形成し、そのコア(18)の各チューブ(16)を前記押出管(5)の前記チューブ挿通孔(6)に嵌着して熱交換器を組み立てる工程と、
組み立てられた各部品間を一体に且つ液密にろう付け固定する工程とを具備する熱交換器の製造方法。
A pair of first penetrating portions (1), each of which has a cross-sectional inner circumference formed of the same metal-made extruded tube, and whose inner circumferences are formed in C-shapes facing each other in the width direction. An extruded tube having a second penetration part (2), a pair of C-shaped openings connected to each other, and a pair of groove parts (4) for inserting a vertical partition formed at the boundary between both penetration parts ( 5) preparing a process;
A drilling step in which a plurality of tube insertion holes (6) communicating with the first through-hole (1) and the second through-hole (2) are spaced apart from each other on the outer surface of the extruded tube (5); A slit forming step of forming a slit (7) for partition insertion so as to cross the first penetrating portion (1) and the second penetrating portion (2);
Inserting the vertical partition plate (9) between the pair of grooves (4) of the extruded tube (5);
The one or more horizontal partition plates (10) have communication holes (11), and the respective horizontal partition plates (10) are fitted into the respective slits (7) of the extruded tube (5), and the extruded tube (5) A pair of end lids (12) are attached to both ends of each of the two, and are surrounded by each of the penetrating parts (1) (2), the horizontal partition plates (10), and the end lid (12) and the vertical partition plate (9). Forming a large number of small tanks for diverting, merging, and mixing when a refrigerant in a gas-liquid two-phase state flows through the space,
The tube (16) and the fin (17) are assembled to form the core (18), and each tube (16) of the core (18) is fitted into the tube insertion hole (6) of the extruded tube (5). The process of assembling the heat exchanger,
A method of manufacturing a heat exchanger, comprising: integrally and liquid-tightly brazing and fixing each assembled part.
請求項1または請求項2の製造方法により形成された熱交換器。   The heat exchanger formed by the manufacturing method of Claim 1 or Claim 2.
JP2007272475A 2007-10-19 2007-10-19 Heat exchanger manufacturing method and heat exchanger Active JP4881276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007272475A JP4881276B2 (en) 2007-10-19 2007-10-19 Heat exchanger manufacturing method and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007272475A JP4881276B2 (en) 2007-10-19 2007-10-19 Heat exchanger manufacturing method and heat exchanger

Publications (2)

Publication Number Publication Date
JP2009097838A JP2009097838A (en) 2009-05-07
JP4881276B2 true JP4881276B2 (en) 2012-02-22

Family

ID=40701003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007272475A Active JP4881276B2 (en) 2007-10-19 2007-10-19 Heat exchanger manufacturing method and heat exchanger

Country Status (1)

Country Link
JP (1) JP4881276B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8851158B2 (en) * 2009-02-17 2014-10-07 Hamilton Sundstrand Corporation Multi-chamber heat exchanger header and method of making
US9555687B2 (en) 2011-05-04 2017-01-31 Hanon Systems Cold-storage heat exchanger
KR101826365B1 (en) * 2012-05-04 2018-03-22 엘지전자 주식회사 A heat exchanger
DE102012211187A1 (en) * 2012-06-28 2014-01-02 Behr Gmbh & Co. Kg Heat exchanger, particularly heat body for use in motor vehicle, has collection boxes with multiple longitudinal partition walls that are lesser in number than vents, which divide collection boxes into longitudinal chambers
JP2014055736A (en) * 2012-09-13 2014-03-27 Denso Corp Heat exchanger
CN103256757B (en) * 2013-03-28 2015-07-15 广东美的制冷设备有限公司 Heat exchanger and air conditioner
WO2016016999A1 (en) * 2014-07-31 2016-02-04 三菱電機株式会社 Refrigeration cycle device
JP6434786B2 (en) * 2014-11-26 2018-12-05 サンデンホールディングス株式会社 Heat exchanger
JP6145189B1 (en) * 2016-02-29 2017-06-07 三菱重工業株式会社 Heat exchanger and air conditioner
US11181328B2 (en) * 2017-03-27 2021-11-23 Daikin Industries, Ltd. Heat exchanger and air conditioner
WO2021234962A1 (en) * 2020-05-22 2021-11-25 三菱電機株式会社 Heat exchanger
JPWO2022244091A1 (en) * 2021-05-18 2022-11-24

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07305990A (en) * 1994-05-16 1995-11-21 Sanden Corp Multitubular type heat exchanger
US6745827B2 (en) * 2001-09-29 2004-06-08 Halla Climate Control Corporation Heat exchanger
JP2004293874A (en) * 2003-03-26 2004-10-21 Calsonic Kansei Corp Heat exchanger
DE10315371A1 (en) * 2003-04-03 2004-10-14 Behr Gmbh & Co. Kg Heat exchanger
KR100590658B1 (en) * 2004-04-28 2006-06-19 모딘코리아 유한회사 Header Pipe of Evaporator for Automobile
JP2006064202A (en) * 2004-08-24 2006-03-09 Calsonic Kansei Corp Joining structure of header tank and tube in heat exchanger

Also Published As

Publication number Publication date
JP2009097838A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
JP4881276B2 (en) Heat exchanger manufacturing method and heat exchanger
US9557121B2 (en) Heat exchanger
JP5376010B2 (en) Heat exchanger
CN101644512B (en) Heat exchanger
US6523606B1 (en) Heat exchanger tube block with multichamber flat tubes
JP5046771B2 (en) Refrigerant evaporator
JP2013137193A (en) Heat exchanger
JP2013137193A5 (en)
US20080023183A1 (en) Heat exchanger assembly
JP6583141B2 (en) Parallel flow heat exchanger
EP1691161A1 (en) Evaporator for carbon dioxide air-conditioner
EP3971508B1 (en) Heat exchanger
EP3301394B1 (en) Heat exchanger, header for the same and manufacturing method thereof
JP3214272B2 (en) Condenser
JPH0682038B2 (en) Heat exchanger
JP2016176615A (en) Parallel flow type heat exchanger
JPH09189498A (en) Header with thermal medium flow dividing promotion mechanism and its forming method
JP2004271143A (en) Heat exchanger
JP2005195318A (en) Evaporator
JP4536459B2 (en) Heat exchanger tubes and heat exchangers
CN114623702B (en) Heat Exchanger
WO2022121768A1 (en) Heat exchanger
JP2008180479A (en) Heat exchanger
JPH0645188Y2 (en) Heat exchanger
JP2011163621A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111202

R150 Certificate of patent or registration of utility model

Ref document number: 4881276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250