JP4880719B2 - Liquid crystal panel and liquid crystal display device - Google Patents

Liquid crystal panel and liquid crystal display device Download PDF

Info

Publication number
JP4880719B2
JP4880719B2 JP2009096213A JP2009096213A JP4880719B2 JP 4880719 B2 JP4880719 B2 JP 4880719B2 JP 2009096213 A JP2009096213 A JP 2009096213A JP 2009096213 A JP2009096213 A JP 2009096213A JP 4880719 B2 JP4880719 B2 JP 4880719B2
Authority
JP
Japan
Prior art keywords
liquid crystal
film
polarizing plate
polarizer
crystal panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009096213A
Other languages
Japanese (ja)
Other versions
JP2009157392A (en
Inventor
忠幸 亀山
直樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2009096213A priority Critical patent/JP4880719B2/en
Publication of JP2009157392A publication Critical patent/JP2009157392A/en
Application granted granted Critical
Publication of JP4880719B2 publication Critical patent/JP4880719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Description

本発明は、偏光板と輝度向上フィルムを積層した高輝度偏光板に関する。本発明の高輝度偏光板は、これ単独でまたは他の光学フィルムと組み合わせて、液晶表示装置、有機EL表示装置、PDPなどの各種の画像表示装置に適用できる。   The present invention relates to a high-brightness polarizing plate in which a polarizing plate and a brightness enhancement film are laminated. The high-intensity polarizing plate of the present invention can be applied to various image display devices such as liquid crystal display devices, organic EL display devices, and PDPs alone or in combination with other optical films.

従来、液晶表示装置に用いられていたバックライトから出射された自然光は、自然光のまま液晶セルに入射されていた。最近では、液晶表示装置の大型化、高精細化によりバックライトの輝度を向上させる必要があった。また、バックライトからの光を偏光化する技術も多く採用されようとしている。   Conventionally, natural light emitted from a backlight used in a liquid crystal display device has been incident on the liquid crystal cell as natural light. Recently, it has been necessary to improve the brightness of the backlight by increasing the size and definition of the liquid crystal display device. In addition, many techniques for polarizing light from a backlight are being adopted.

たとえば、液晶セルの裏側サイドには、偏光板と輝度向上フィルムとを貼り合わせた高輝度偏光板が設けられている。輝度向上フィルムは、液晶表示装置などのバックライトや裏側からの反射などにより自然光が入射すると所定偏光軸の直線偏光または所定方向の円偏光を反射し、他の光は透過する特性を示すもので、輝度向上フィルムを偏光板と積層した偏光板は、バックライト等の光源からの光を入射させて所定偏光状態の透過光を得ると共に、前記所定偏光状態以外の光は透過せずに反射される。この輝度向上フィルム面で反射した光を更にその後ろ側に設けられた反射層等を介し反転させて輝度向上フィルムに再入射させ、その一部又は全部を所定偏光状態の光として透過させて輝度向上フィルムを透過する光の増量を図ると共に、偏光子に吸収させにくい偏光を供給して液晶表示画像表示等に利用しうる光量の増大を図ることにより輝度を向上させうるものである。すなわち、輝度向上フィルムを使用せずに、バックライトなどで液晶セルの裏側から偏光子を通して光を入射した場合には、偏光子の偏光軸に一致していない偏光方向を有する光は、ほとんど偏光子に吸収されてしまい、偏光子を透過してこない。すなわち、用いた偏光子の特性によっても異なるが、およそ50%の光が偏光子に吸収されてしまい、その分、液晶画像表示当に利用しうる光量が減少し、画像が暗くなる。輝度向上フィルムは、偏光子に吸収されるような偏光方向を有する光を偏光子に入射させずに輝度向上フィルムで一旦反射させ、更にその後ろ側に設けられた反射層等を介して反転させて輝度向上フィルムに再入射させることを繰り返し、この両者間で反射、反転している光の偏光方向が偏光子を通過し得るような偏光方向になった偏光のみを、輝度向上フィルムは透過させて偏光子に供給するので、バックライトなどの光を効率的に液晶表示装置の画像の表示に使用でき、画面を明るくすることができる。   For example, a high brightness polarizing plate in which a polarizing plate and a brightness enhancement film are bonded together is provided on the back side of the liquid crystal cell. The brightness enhancement film reflects a linearly polarized light with a predetermined polarization axis or a circularly polarized light in a predetermined direction when natural light is incident due to a backlight such as a liquid crystal display device or reflection from the back side, and transmits other light. In addition, a polarizing plate in which a brightness enhancement film is laminated with a polarizing plate allows light from a light source such as a backlight to enter to obtain transmitted light in a predetermined polarization state, and reflects light without transmitting the light other than the predetermined polarization state. The The light reflected on the surface of the brightness enhancement film is further inverted through a reflective layer or the like provided behind the brightness enhancement film and re-incident on the brightness enhancement film, and part or all of the light is transmitted as light having a predetermined polarization state. Luminance can be improved by increasing the amount of light transmitted through the enhancement film and increasing the amount of light that can be used for liquid crystal display image display or the like by supplying polarized light that is difficult to be absorbed by the polarizer. That is, when light is incident through the polarizer from the back side of the liquid crystal cell without using a brightness enhancement film, light having a polarization direction that does not coincide with the polarization axis of the polarizer is almost polarized. It is absorbed by the polarizer and does not pass through the polarizer. That is, although depending on the characteristics of the polarizer used, approximately 50% of the light is absorbed by the polarizer, and the amount of light that can be used for liquid crystal image display is reduced, and the image becomes dark. The brightness enhancement film allows light having a polarization direction that is absorbed by the polarizer to be reflected once by the brightness enhancement film without being incident on the polarizer, and further inverted through a reflective layer provided on the rear side thereof. Repeatedly re-enter the brightness enhancement film, and the brightness enhancement film transmits only polarized light whose polarization direction is such that the polarization direction of light reflected and inverted between the two can pass through the polarizer. Therefore, light such as a backlight can be efficiently used for displaying an image on the liquid crystal display device, and the screen can be brightened.

前記輝度向上フィルムとしては、例えば誘電体の多層薄膜や屈折率異方性が相違する薄膜フィルムの多層積層体の如き、所定偏光軸の直線偏光を透過して他の光は反射する特性を示すもの、コレステリック液晶ポリマーの配向フィルムやその配向液晶層をフィルム基材上に支持したものの如き、左回り又は右回りのいずれか一方の円偏光を反射して他の光は透過する特性を示すものなどの適宜なものを用いうる。   The brightness enhancement film has a characteristic of transmitting linearly polarized light having a predetermined polarization axis and reflecting other light, such as a multilayer thin film of dielectric material or a multilayer laminate of thin film films having different refractive index anisotropy. Such as a cholesteric liquid crystal polymer alignment film or a film substrate whose alignment liquid crystal layer is supported on a film substrate, reflecting either left-handed or right-handed circularly polarized light and transmitting other light Appropriate things such as can be used.

従って、前記した所定偏光軸の直線偏光を透過させるタイプの輝度向上フィルムでは、その透過光をそのまま偏光板に偏光軸を揃えて入射させることにより、偏光板による吸収ロスを抑制しつつ効率よく透過させることができる。一方、コレステリック液晶層の如く円偏光を透過するタイプの輝度向上フィルムでは、そのまま偏光子に入射させることもできるが、吸収ロスを抑制する点よりその円偏光を位相差板を介し直線偏光化して偏光板に入射させることが好ましい。その位相差板としてはλ/4板を用いることにより、円偏光を直線偏光に変換することができる。   Therefore, in the brightness enhancement film of the type that transmits linearly polarized light having the predetermined polarization axis as described above, the transmitted light is incident on the polarizing plate with the polarization axis aligned as it is, thereby efficiently transmitting while suppressing absorption loss due to the polarizing plate. Can be made. On the other hand, in a brightness enhancement film of a type that transmits circularly polarized light such as a cholesteric liquid crystal layer, it can be directly incident on a polarizer. It is preferable to enter the polarizing plate. By using a λ / 4 plate as the retardation plate, circularly polarized light can be converted into linearly polarized light.

なお、導光板自体がプリズム構造を有し、かつそれにプリズムタイプの集光シートなどを用いると、バックライトからも若干ではあるが偏光が出射される。その偏光能は5%以上、好ましくは10%以上、好ましくは15%以上が良く出射方向はバックライト面に対して法線方向でなくてもよい。また、前記偏光能は、偏光能=(最大輝度−最小輝度)/(最大輝度+最小輝度)、で表される。偏光能の測定は、バックライトから出射される光をグラントンプソンプリズムを介して、その偏光軸方向で輝度変化(最大輝度、最小輝度)を測定することにより行う。   If the light guide plate itself has a prism structure and a prism type light collecting sheet or the like is used for the light guide plate, polarized light is emitted from the backlight to some extent. Its polarization ability is 5% or more, preferably 10% or more, preferably 15% or more, and the emission direction may not be the normal direction to the backlight surface. Further, the polarization ability is represented by polarization ability = (maximum luminance−minimum luminance) / (maximum luminance + minimum luminance). The polarization ability is measured by measuring the change in luminance (maximum luminance, minimum luminance) in the direction of the polarization axis of the light emitted from the backlight via the Glan-Thompson prism.

これらの輝度向上フィルムを用いる場合には、これまでカラーシフト量が問題になっていた。かかるカラーシフト量を低減させる各種方法が提案されている(たとえば、特許文献1、特許文献2、特許文献3、特許文献4等参照。)。これら文献では、液晶表示装置全体としてのカラーシフト量を低減することが検討されている。特許文献1、特許文献2では、輝度向上フィルムのカラーシフト量を低減することが検討されている。また特許文献3、特許文献4では、輝度向上フィルムと液晶パネルとの組み合わせによりカラーシフト量を低減することが検討されている。しかし、偏光板と輝度向上フィルムとを貼り合わせた高輝度偏光板では、カラーシフト量を十分に低減できていない。   When these brightness enhancement films are used, the color shift amount has been a problem until now. Various methods for reducing the color shift amount have been proposed (see, for example, Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, and the like). In these documents, it is studied to reduce the color shift amount of the entire liquid crystal display device. In Patent Document 1 and Patent Document 2, it is studied to reduce the color shift amount of the brightness enhancement film. In Patent Document 3 and Patent Document 4, it is studied to reduce the color shift amount by combining a brightness enhancement film and a liquid crystal panel. However, the color shift amount cannot be sufficiently reduced in a high-brightness polarizing plate in which a polarizing plate and a brightness enhancement film are bonded together.

また、多層干渉積層体と延伸されたポリビニルアルコール系フィルムとの複合フィルムに、ヨウ素を含浸させて、輝度向上フィルムと偏光子とを複合化した高輝度偏光板が知られている(たとえば、特許文献5参照。)。かかる高輝度偏光板は、カラーシフト量をある程度低減できるが、偏光子の染色ムラがひどく、液晶表示装置の画像表示装置の用途に使用できない。前記ポリビニルアルコール系フィルムは、3倍以上(4倍以上さらには5倍以上)に延伸され、かつ水分率を10%以下に制御されたものであるため、これにヨウ素を含有させるとポリビニルアルコール系フィルムの配向状態の幅方向のバラツキ、厚みの幅方向のバラツキ、結晶化度の幅方向のバラツキにより、ヨウ素の染色速度が異なり、厚い部分はより濃く薄い部分はより薄く染まる傾向が著しい。そのため、偏光子に染色ムラが生じ、面内ムラにより黒表示時においても輝度が十分に低下しない。このような複合化フィルムは液晶表示装置等での応用は事実上困難である。   In addition, a high-brightness polarizing plate is known in which a composite film of a multilayer interference laminate and a stretched polyvinyl alcohol film is impregnated with iodine to combine a brightness enhancement film and a polarizer (for example, a patent Reference 5). Such a high-intensity polarizing plate can reduce the amount of color shift to some extent, but the dyeing unevenness of the polarizer is so severe that it cannot be used for an image display device of a liquid crystal display device. Since the polyvinyl alcohol film is stretched 3 times or more (4 times or more, and further 5 times or more) and the moisture content is controlled to 10% or less, when it contains iodine, the polyvinyl alcohol system The dyeing speed of iodine differs depending on the variation in the width direction of the orientation state of the film, the variation in the width direction of the thickness, and the variation in the width direction of the crystallinity, and the thicker and darker portions tend to be dyed lighter. For this reason, uneven coloring occurs in the polarizer, and the luminance is not sufficiently reduced even during black display due to in-plane unevenness. Such a composite film is practically difficult to apply in a liquid crystal display device or the like.

特開平11−248941号公報Japanese Patent Laid-Open No. 11-248941 特開平11−248942号公報JP 11-248942 A 特開平11−64840号公報Japanese Patent Laid-Open No. 11-64840 特開平11−64841号公報Japanese Patent Application Laid-Open No. 11-64841 特表平9−507308号公報、第12頁JP-T 9-507308, page 12

本発明は、偏光板と輝度向上フィルムとを貼り合わせた高輝度偏光板であって、カラーシフト量が少ないものを提供することを目的とする。   An object of the present invention is to provide a high-intensity polarizing plate in which a polarizing plate and a brightness enhancement film are bonded to each other with a small amount of color shift.

また本発明は、当該高輝度偏光板を用いた液晶パネル、さらには液晶表示装置等の画像表示装置を提供することを目的とする。   It is another object of the present invention to provide a liquid crystal panel using the high-intensity polarizing plate and an image display device such as a liquid crystal display device.

本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、以下に示す高輝度偏光板により前記目的を達成できることを見出し本発明を完成するに至った。すなわち本発明は、以下に示す通りである。   As a result of intensive studies to solve the above problems, the present inventors have found that the above object can be achieved by the following high-intensity polarizing plate, and have completed the present invention. That is, the present invention is as follows.

1.液晶セルの少なくとも一方の面に、高輝度偏光板が貼合されている液晶パネルであって、
前記高輝度偏光板は、偏光子の片面または両面に保護フィルムが設けられている偏光板と、輝度向上フィルムとが、前記保護フィルムを挟んで粘着剤層を介して積層されているものであり、
前記高輝度偏光板は、液晶表示装置において液晶セルとバックライトの間に、前記高輝度偏光板中の偏光板が液晶セル側になるように配置されており、かつ、
前記保護フィルムが、面内屈折率が最大となる方向をX軸、X軸に垂直な方向をY軸、フィルムの厚さ方向をZ軸とし、それぞれの軸方向の屈折率をnx、ny、nz、保護フィルムの厚さをd(nm)とした場合に、
面内位相差Re=(nx−ny)×dが、0〜10nmであり、
かつ厚み方向位相差Rth={(nx+ny)/2−nz)×d)が、−30〜10nmであることを特徴とする液晶パネル。

1. A liquid crystal panel in which a high-intensity polarizing plate is bonded to at least one surface of a liquid crystal cell,
The high-intensity polarizing plate is a polarizing plate in which a protective film is provided on one side or both sides of a polarizer, and a luminance enhancement film are laminated via an adhesive layer with the protective film interposed therebetween. ,
The high-intensity polarizing plate is disposed between a liquid crystal cell and a backlight in a liquid crystal display device so that the polarizing plate in the high-intensity polarizing plate is on the liquid crystal cell side, and
In the protective film, the direction in which the in-plane refractive index is the maximum is the X axis, the direction perpendicular to the X axis is the Y axis, the thickness direction of the film is the Z axis, and the refractive indexes in the respective axial directions are nx, ny, nz, when the thickness of the protective film is d (nm),
In-plane retardation Re = (nx−ny) × d is 0 to 10 nm,
And a thickness direction retardation Rth = {(nx + ny) / 2−nz) × d) is −30 to 10 nm.

2.保護フィルムが、(A)側鎖に置換および/または非置換イミド基を有する熱可塑性樹脂と、(B)側鎖に置換および/または非置換フェニル基およびニトリル基を有する熱可塑性樹脂を含有してなることを特徴とする上記1記載の液晶パネル。   2. The protective film contains (A) a thermoplastic resin having a substituted and / or unsubstituted imide group in the side chain, and (B) a thermoplastic resin having a substituted and / or unsubstituted phenyl group and a nitrile group in the side chain. 2. The liquid crystal panel as described in 1 above, wherein

3.保護フィルムが、二軸延伸されたフィルムであることを特徴とする上記1または2記載の液晶パネル。   3. 3. The liquid crystal panel as described in 1 or 2 above, wherein the protective film is a biaxially stretched film.

4.偏光子が、ヨウ素を含有するポリビニルアルコール系フィルムであることを特徴とする上記1〜3のいずれかに記載の液晶パネル。   4). 4. The liquid crystal panel as described in any one of 1 to 3 above, wherein the polarizer is a polyvinyl alcohol film containing iodine.

5.輝度向上フィルムが、異方性反射偏光子であることを特徴とする上記1〜4のいずれかに記載の液晶パネル。   5. 5. The liquid crystal panel as described in any one of 1 to 4 above, wherein the brightness enhancement film is an anisotropic reflective polarizer.

6.異方性反射偏光子が、コレステリック液晶層とλ/4板の複合体であることを特徴とする上記5記載の液晶パネル。   6). 6. The liquid crystal panel as described in 5 above, wherein the anisotropic reflective polarizer is a composite of a cholesteric liquid crystal layer and a λ / 4 plate.

7.異方性反射偏光子が、一方の振動方向の直線偏光を透過し、他方の振動方向の直線偏光を反射する異方性多重薄膜であることを特徴とする上記5記載の液晶パネル。   7). 6. The liquid crystal panel as described in 5 above, wherein the anisotropic reflective polarizer is an anisotropic multiple thin film that transmits linearly polarized light in one vibration direction and reflects linearly polarized light in the other vibration direction.

8.異方性反射偏光子が、反射グリッド偏光子であることを特徴とする上記5記載の液晶パネル。   8). 6. The liquid crystal panel as described in 5 above, wherein the anisotropic reflective polarizer is a reflective grid polarizer.

9.輝度向上フィルムが、異方性散乱偏光子であることを特徴とする上記1〜4のいずれかに記載の液晶パネル。   9. 5. The liquid crystal panel as described in any one of 1 to 4 above, wherein the brightness enhancement film is an anisotropic scattering polarizer.

10.高輝度偏光板に、さらに少なくとも1枚の光学フィルムが組み合わされていることを特徴とする上記1〜9のいずれかに記載の液晶パネル。   10. 10. The liquid crystal panel as described in any one of 1 to 9 above, wherein at least one optical film is further combined with the high-intensity polarizing plate.

11.上記1〜10のいずれかに記載の液晶パネルが用いられていることを特徴とする液晶表示装置。   11. 11. A liquid crystal display device using the liquid crystal panel according to any one of 1 to 10 above.

偏光板と輝度向上フィルムとが積層されている高輝度偏光板では、輝度向上フィルムから出射される光はほぼ直線偏光に変換されており、それが偏光板に入射する。この場合、輝度向上フィルムの偏光軸方向と偏光板の透過軸方向はほぼ平行になるように配置される。   In a high-brightness polarizing plate in which a polarizing plate and a brightness enhancement film are laminated, light emitted from the brightness enhancement film is converted into substantially linearly polarized light, which is incident on the polarization plate. In this case, it arrange | positions so that the polarization axis direction of a brightness enhancement film and the transmission axis direction of a polarizing plate may become substantially parallel.

また前記偏光板としては、偏光子に保護フィルムを設けたものが、通常、用いられる。前記保護フィルムとしては、輝度向上フィルムから出射された直線偏光をそのまま透過できるように、面内位相差Reが概0nmのものが用いられていた。しかし、従来の保護フィルムは面内位相差Reが概0nmであっても、厚み方向に位相差があるものが用いられていた。たとえば、トリアセチルセルロースフィルムは、フィルム厚み80μmの場合には厚み方向の位相差が−60nm、フィルム厚み40μmの場合には厚み方向の位相差が−35nmであった。また保護フィルムとしては、面内に複屈折性を有するものが用いられる場合があった。かかる保護フィルムを用いた場合にも、輝度向上フィルムの偏光軸方向と偏光板の透過軸方向は平行または直交に設定される場合が多い。本発明者らは、このような厚み方向の位相差を有する保護フィルムを用いた偏光板と輝度向上フィルムを積層した高輝度偏光板は、カラーシフト量が大きくなることを見出した。   Moreover, as the polarizing plate, a polarizing plate provided with a protective film is usually used. As the protective film, a film having an in-plane retardation Re of approximately 0 nm was used so that the linearly polarized light emitted from the brightness enhancement film can be transmitted as it is. However, a conventional protective film having a retardation in the thickness direction is used even if the in-plane retardation Re is approximately 0 nm. For example, the triacetyl cellulose film had a thickness direction retardation of −60 nm when the film thickness was 80 μm, and the thickness direction retardation of −35 nm when the film thickness was 40 μm. Moreover, as a protective film, what has birefringence in a surface may be used. Even when such a protective film is used, the polarization axis direction of the brightness enhancement film and the transmission axis direction of the polarizing plate are often set parallel or orthogonal. The present inventors have found that a high luminance polarizing plate in which a polarizing plate using a protective film having a retardation in the thickness direction and a luminance enhancement film are laminated has a large color shift amount.

ところで、偏光子の偏光の発現は二色性色素(ヨウ素や有機染料、ライオトロピック液晶など)の複素屈折率の虚部の値(ke,ko)から導かれる。
E=EoExp(ik・z)
k=(ne+no)+i(ke+ko)
つまり、どの可視光領域の波長においても、正面方向からの同一の比率の光強度の光が、どの方位からも二色性色素に対して垂直に直線偏光が入射されればカラーシフト量を低減することができる。
By the way, the expression of the polarization of the polarizer is derived from the value of the imaginary part (ke, ko) of the complex refractive index of the dichroic dye (iodine, organic dye, lyotropic liquid crystal, etc.).
E = EoExp (ik · z)
k = (ne + no) + i (ke + ko)
In other words, at any wavelength in the visible light region, the amount of color shift can be reduced if linearly polarized light is incident on the dichroic dye perpendicularly to the dichroic dye from any direction at the same ratio. can do.

すなわち、保護フィルムの光軸と二色性色素のkeの方向が垂直の場合、例えば光学軸方向が厚み方向(Z軸方向)、ke軸;面内の任意の方向(X−Y面内)や光学軸方向が面内方向(X軸方向)、ke軸;面内のY軸方向または光学軸方向が面内方向(X軸方向)、ke軸;厚み方向(Z軸方向)などの場合には、面内X、Y方向から45°傾いた位置から仰角を変えると見かけの直交関係が崩れる。したがって、輝度向上フィルムによって作られた直線偏光は、全方位楕円偏光に変換しない方が望ましい。そのため、ke軸と保護フィルムの光軸が平行になっているか、直交していてもその位相差の影響を受けない大きさであることが望まれる。   That is, when the optical axis of the protective film and the ke direction of the dichroic dye are perpendicular, for example, the optical axis direction is the thickness direction (Z-axis direction), the ke axis; any in-plane direction (in the XY plane) Or optical axis direction is in-plane direction (X-axis direction), ke-axis; in-plane Y-axis direction or optical-axis direction is in-plane direction (X-axis direction), ke-axis; thickness direction (Z-axis direction) If the elevation angle is changed from a position inclined 45 ° from the in-plane X and Y directions, the apparent orthogonal relationship is broken. Therefore, it is desirable that the linearly polarized light produced by the brightness enhancement film is not converted to omnidirectional elliptically polarized light. Therefore, it is desired that the ke axis and the optical axis of the protective film are parallel or orthogonal to each other even if they are orthogonal to each other.

以上のような状況から、本発明者らは、偏光板と輝度向上フィルムとに挟まれる、前記偏光板の保護フィルムとして、概0nm、すなわち、面内位相差Reが10nm以下であり、かつ厚み方向位相差Rthが、−30〜10nmであるものを用いた。かかる保護フィルムには、輝度向上フィルムから出射された直交偏光に影響を及ぼさないため、液晶表示装置等の白表示時に視覚によるカラーシフト量を低減できる。前記面内位相差Reは概0nmであるのが好ましく、10nm以下、さらに好ましくは5nm以下である。また厚み方向位相差Rthは、好ましくは−10nm〜10nm、より好ましくは−5〜5nm、さらに好ましくは−3〜3nmである。   From the situation as described above, the present inventors, as a protective film for the polarizing plate sandwiched between the polarizing plate and the brightness enhancement film, have a thickness of approximately 0 nm, that is, an in-plane retardation Re of 10 nm or less, and a thickness. The one having a directional phase difference Rth of −30 to 10 nm was used. Since such a protective film does not affect the orthogonally polarized light emitted from the brightness enhancement film, it is possible to reduce the amount of color shift visually when displaying white in a liquid crystal display device or the like. The in-plane retardation Re is preferably about 0 nm, preferably 10 nm or less, more preferably 5 nm or less. The thickness direction retardation Rth is preferably −10 nm to 10 nm, more preferably −5 to 5 nm, and further preferably −3 to 3 nm.

また本発明の高輝度偏光板では偏光板と輝度向上フィルムが粘着剤により貼り合わされている。一般的に、偏光板と輝度向上フィルムを用いる場合、その間に空気界面を介するか否かで光学特性に影響を及ぼす。通常、空気界面を介するときに比べ、介さない場合は輝度向上率が1〜3%向上する。しかし、この場合にはカラーシフト量が1〜10%程度上昇する。これらの光学特性は用いられるバックライトシステムにも依存する。本発明では、偏光子と輝度向上フィルムの間に介在する前記保護フィルムを用いることにより、粘着剤層により界面での反射を防止することで、白表示時の輝度を向上し、しかもカラーシフト量の低減を両立させることができる。   Moreover, in the high-intensity polarizing plate of the present invention, the polarizing plate and the brightness enhancement film are bonded together with an adhesive. In general, when a polarizing plate and a brightness enhancement film are used, the optical characteristics are influenced by whether or not an air interface is interposed between them. In general, the luminance improvement rate is improved by 1 to 3% when the air interface is not used as compared to when the air interface is used. However, in this case, the color shift amount increases by about 1 to 10%. These optical properties also depend on the backlight system used. In the present invention, by using the protective film interposed between the polarizer and the brightness enhancement film, the adhesive layer prevents reflection at the interface, thereby improving the brightness at the time of white display and the color shift amount. Can be reduced at the same time.

輝度向上フィルムとして、コレステリック液晶層とλ/4板の複合体の異方性反射偏光子を用いた場合には、コレステリック液晶層から出射される円偏光成分がλ/4板によって90%程度の偏光しか変換されていない。そのために、保護フィルムの厚み方向位相差Rthは若干正の値のほうが好ましい。λ/4板のさらなる設計によっては保護フィルムの厚み方向位相差Rthを変えることができる。   When an anisotropic reflective polarizer of a composite of a cholesteric liquid crystal layer and a λ / 4 plate is used as the brightness enhancement film, the circularly polarized component emitted from the cholesteric liquid crystal layer is about 90% by the λ / 4 plate. Only polarized light has been converted. Therefore, the thickness direction retardation Rth of the protective film is preferably a slightly positive value. Depending on the further design of the λ / 4 plate, the thickness direction retardation Rth of the protective film can be changed.

なお、本発明の高輝度偏光板は、偏光子の片面または両面に保護フィルムが設けられている偏光板と輝度向上フィルムとの積層物を用いている。かかる本発明の偏光板の偏光子は、ポリビニルアルコール系フィルム等に任意に膨潤、染色処理、架橋処理、延伸処理、水洗処理等の各工程を施す従来と同様の技術で得られたものが通常用いられる。したがって、かかる本発明の高輝度偏光板は、特許文献5に示される、複合化した高輝度偏光板のような、偏光子の染色ムラによる面内ムラなく、液晶表示装置等の黒表示時における輝度は低い。   In addition, the high-intensity polarizing plate of this invention uses the laminated body of the polarizing plate by which the protective film is provided in the single side | surface or both surfaces of the polarizer, and a brightness improvement film. The polarizer of the polarizing plate of the present invention is usually obtained by a technique similar to the conventional one in which each step such as swelling, dyeing treatment, crosslinking treatment, stretching treatment, water washing treatment, etc. is arbitrarily applied to a polyvinyl alcohol film or the like. Used. Therefore, the high-intensity polarizing plate of the present invention has no in-plane unevenness due to uneven dyeing of the polarizer, as in the composite high-intensity polarizing plate shown in Patent Document 5, and at the time of black display of a liquid crystal display device or the like. The brightness is low.

本発明の高輝度偏光板の断面図である。It is sectional drawing of the high-intensity polarizing plate of this invention. 本発明の高輝度偏光板の断面図である。It is sectional drawing of the high-intensity polarizing plate of this invention. 本発明の液晶表示装置の断面図である。It is sectional drawing of the liquid crystal display device of this invention.

1,1′ 偏光板
1a 偏光子
1b,1b′ 保護フィルム
2 輝度向上フィルム
2a λ/4板
2b コレステリック液晶層
A 粘着剤層
B バックライト
C 液晶セル
D 拡散板
E 反射板
DESCRIPTION OF SYMBOLS 1,1 'Polarizing plate 1a Polarizer 1b, 1b' Protective film 2 Brightness enhancement film 2a λ / 4 plate 2b Cholesteric liquid crystal layer A Adhesive layer B Backlight C Liquid crystal cell D Diffusion plate E Reflector

以下に図面を参照しながら本発明を説明する。図1は高輝度偏光板の断面図であり、偏光子(1a)の片面に保護フィルム(1b)、もう一方に片面に保護フィルム(1b′)が設けられている偏光板(1)と、輝度向上フィルム(2)とが、前記保護フィルム(1b)を挟んで粘着剤層(A)を介して積層されている。保護フィルム(1b)は、面内位相差Reが、10nm以下、厚み方向位相差Rthが、−30〜10nmを満足するものである。図2は、輝度向上フィルム(2)が、コレステリック液晶層(2b)とλ/4板(2a)の複合体である場合の例である。かかる複合体の場合には、λ/4板(2a)が偏光板(1)側に配置される。   The present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a high-intensity polarizing plate, a polarizing plate (1) provided with a protective film (1b) on one side of a polarizer (1a) and a protective film (1b ′) on one side; A brightness enhancement film (2) is laminated via an adhesive layer (A) with the protective film (1b) in between. The protective film (1b) satisfies an in-plane retardation Re of 10 nm or less and a thickness direction retardation Rth of −30 to 10 nm. FIG. 2 shows an example in which the brightness enhancement film (2) is a composite of a cholesteric liquid crystal layer (2b) and a λ / 4 plate (2a). In the case of such a composite, the λ / 4 plate (2a) is disposed on the polarizing plate (1) side.

図3は、液晶セル(C)の出射側に偏光板(1′)、入射側に偏光板(1)と輝度向上フィルム(2)からなる高輝度偏光板が設けられ、さらにバックライト(B)、拡散板(D)、反射板(E)が配置されている液晶表示装置の断面図である。図3において、粘着剤層(A)は省略している。なお、出射側に配置した偏光板(1′)としては偏光子(1a)の片面または両面に保護フィルム(1b′)が設けられたものを用いることができる。保護フィルム(1b′)は、上記保護フィルム(1b)と同様の面内位相差Re、厚み方向位相差Rthを有するものに制限されるものではない。ただし、保護フィルム(1b′)も保護フィルム(1b)と同様のものが好ましい。   In FIG. 3, a polarizing plate (1 ') is provided on the exit side of the liquid crystal cell (C), a high-intensity polarizing plate comprising a polarizing plate (1) and a brightness enhancement film (2) is provided on the incident side, and a backlight (B ), A diffusion plate (D), and a reflection plate (E) are cross-sectional views of the liquid crystal display device. In FIG. 3, the pressure-sensitive adhesive layer (A) is omitted. In addition, as a polarizing plate (1 ') arrange | positioned at the output side, what provided the protective film (1b') on the single side | surface or both surfaces of the polarizer (1a) can be used. The protective film (1b ′) is not limited to those having the same in-plane retardation Re and thickness direction retardation Rth as the protective film (1b). However, the protective film (1b ') is preferably the same as the protective film (1b).

偏光子(1a)は、特に制限されず、各種のものを使用できる。偏光子としては、たとえば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等のポリエン系配向フィルム等があげられる。これらのなかでもポリビニルアルコール系フィルムを延伸して二色性色素(ヨウ素、染料)を吸着・配向したものが好適に用いられる。偏光子の厚さも特に制限されないが、5〜80μm程度が一般的である。   The polarizer (1a) is not particularly limited, and various types can be used. Examples of the polarizer include hydrophilic polymer films such as polyvinyl alcohol film, partially formalized polyvinyl alcohol film, and ethylene / vinyl acetate copolymer partially saponified film, and two colors such as iodine and dichroic dye. And polyene-based oriented films such as those obtained by adsorbing a volatile substance and uniaxially stretched, polyvinyl alcohol dehydrated products and polyvinyl chloride dehydrochlorinated products. Among these, a film obtained by stretching a polyvinyl alcohol film and adsorbing and orienting a dichroic dye (iodine, dye) is preferably used. The thickness of the polarizer is not particularly limited, but is generally about 5 to 80 μm.

ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、たとえば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3〜7倍に延伸することで作製することができる。必要に応じてホウ酸やヨウ化カリウムなどの水溶液に浸漬することもできる。さらに必要に応じて染色の前にポリビニルアルコール系フィルムを水に浸漬して膨潤、水洗してもよい。ポリビニルアルコール系フィルムを水洗することでポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるほかに、ポリビニルアルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果もある。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸してもよいし、また延伸してからヨウ素で染色してもよい。ホウ酸やヨウ化カリウムなどの水溶液中や水浴中でも延伸することができる。   A polarizer obtained by dyeing a polyvinyl alcohol film with iodine and uniaxially stretching it can be produced, for example, by dyeing polyvinyl alcohol in an aqueous solution of iodine and stretching it 3 to 7 times the original length. If necessary, it can be immersed in an aqueous solution of boric acid or potassium iodide. Further, if necessary, the polyvinyl alcohol film may be immersed in water to swell and be washed before dyeing. In addition to washing the polyvinyl alcohol film surface with dirt and anti-blocking agents by washing the polyvinyl alcohol film with water, it also has the effect of preventing unevenness such as uneven coloring by swelling the polyvinyl alcohol film. is there. Stretching may be performed after dyeing with iodine, or may be performed while dyeing, or may be performed with dyeing after iodine. The film can be stretched in an aqueous solution of boric acid or potassium iodide or in a water bath.

黒表示時の偏光子の含有ヨウ素の染色ムラ(バラツキ)による表示ムラなどを解消するためには、ポリビニルアルコール系フィルム等を膨潤、染色処理(染色浴にはヨウ素等の二色性色素のほかに、ヨウ化カリウム等を含有してもよい)、架橋処理(架橋浴にはホウ酸等の架橋剤のほかにヨウ化カリウム等が入っていてもよい等)、延伸処理(延伸浴にはホウ酸、ヨウ化カリウム等が入っていてもよい)、水洗等の各工程を施すのが好ましい。   In order to eliminate display unevenness due to uneven dyeing (dispersion) of iodine contained in the polarizer during black display, the polyvinyl alcohol film is swollen and dyed (in addition to dichroic dyes such as iodine in the dyeing bath) May contain potassium iodide, etc.), cross-linking treatment (cross-linking bath may contain potassium iodide etc. in addition to cross-linking agent such as boric acid), stretching treatment (stretching bath contains Boric acid, potassium iodide or the like may be contained), and each step such as washing with water is preferably performed.

なお、染色ムラの要因としては、ポリビニルアルコール系フィルムの原反厚みバラツキに原因がある(特開2000−216380号公報,特開2002−31720号公報)。それを改善し、または大きなレンジ(面内範囲50cm以上、好ましくは75cm以上、好ましくは100cm以上のレンジ)で厚みがばらついていても、通常の偏光板用途においては表示ムラを発見しがたい。黒表示時のムラを観察するには偏光子または偏光板上で5cm〜20cmの間で輝度の濃淡のピークがあればムラを認識するが、それを超えると顕著な表示ムラを認識しない。またそれが5mm程度、またはそれよりも小さくバラツキ、ヨウ素の染色ムラの濃淡が存在する場合には平均的に黒輝度が上昇しているだけである。ヨウ素の吸着配向はポリビニルアルコール系フィルムの厚みに依存しやすく厚みが厚いほうが吸着量が多く配向も高い。   In addition, as a cause of dyeing | staining unevenness, there exists a cause in the raw fabric thickness variation of a polyvinyl alcohol-type film (Unexamined-Japanese-Patent No. 2000-216380, Unexamined-Japanese-Patent No. 2002-31720). Even if it is improved or the thickness varies in a large range (in-plane range of 50 cm or more, preferably 75 cm or more, preferably 100 cm or more), it is difficult to find display unevenness in a normal polarizing plate application. In order to observe unevenness during black display, unevenness is recognized if there is a peak in brightness between 5 cm and 20 cm on the polarizer or polarizing plate, but noticeable display unevenness is not recognized if the peak is exceeded. In addition, when there is a variation of about 5 mm or less, and there is a density of uneven coloring of iodine, the black luminance only increases on average. The adsorption orientation of iodine tends to depend on the thickness of the polyvinyl alcohol film, and the thicker the thickness, the higher the adsorption amount and the higher the orientation.

偏光子の作製方法は、厚みバラツキの少ないポリビニルアルコール系フィルム原反を用いるのが好ましい。当該原反は面内100〜400mmの範囲内で厚みの極大値、極小値が存在し、その差が5μm以下、好ましくは3μm以下、好ましくは1μm以下であることの方が望ましい。またバラツキがそれよりも大きい場合には、純水またはイオン交換水中での膨潤工程(15〜40℃、50〜180秒間、延伸倍率2〜3.8倍)、染色工程(ヨウ素とヨウ化カリウムがそれぞれ1:6〜1:50の割合で溶解している水溶液中に10〜60秒間、濃度はその時の設計したい透過率と偏光度特性に依存するが0.05%〜3%、延伸倍率1.2〜2倍)、ホウ酸架橋処理(25〜45℃では、延伸倍率1.1〜2倍,ヨウ化カリウム濃度0〜5%)、さらに延伸処理(ホウ酸濃度2〜8%,ヨウ化カリウム濃度0〜10%,温度30〜65℃中で延伸倍率1.7〜3倍)、水洗処理(ヨウ化カリウム濃度2〜10%)を行い、トータルで5〜6.5倍まで延伸するのが好ましい。得られた延伸フィルムの幅はx倍延伸した際には厚み、フィルム幅ともに1/√x倍が望ましい。厚みはそれよりも10%低く、悪くとも25%程度低くても構わない。幅はそれよりも10%広く、悪くとも25%広くても構わない。それを25〜40℃で30〜300秒間の乾燥を行い、水分率を12%〜28%(好ましくは14〜25%)に制御するのが好ましい。   For the production method of the polarizer, it is preferable to use a polyvinyl alcohol film original having little thickness variation. The original fabric has a maximum value and a minimum value of thickness within the range of 100 to 400 mm in the plane, and the difference is 5 μm or less, preferably 3 μm or less, preferably 1 μm or less. When the variation is larger than that, a swelling process in pure water or ion-exchanged water (15 to 40 ° C., 50 to 180 seconds, stretch ratio 2 to 3.8 times), dyeing process (iodine and potassium iodide) Are dissolved in an aqueous solution in a ratio of 1: 6 to 1:50, respectively, for 10 to 60 seconds, the concentration depends on the transmittance and polarization degree characteristics desired to be designed at that time, but is 0.05% to 3%. 1.2 to 2 times), boric acid cross-linking treatment (at 25 to 45 ° C., draw ratio 1.1 to 2 times, potassium iodide concentration 0 to 5%), and further stretching treatment (boric acid concentration 2 to 8%, Potassium iodide concentration 0-10%, temperature 30-65 ° C, draw ratio 1.7-3 times), water washing treatment (potassium iodide concentration 2-10%), total up to 5-6.5 times It is preferable to stretch. The width of the obtained stretched film is desirably 1 / √x times when both the thickness and the film width are stretched x times. The thickness may be 10% lower than that and about 25% lower. The width may be 10% wider than that, or 25% wider at the worst. It is preferable to dry it at 25 to 40 ° C. for 30 to 300 seconds and control the moisture content to 12% to 28% (preferably 14 to 25%).

保護フィルム(1b)を形成する材料は、特に制限されないが、(A)側鎖に置換および/または非置換イミド基を有する熱可塑性樹脂と、(B)側鎖に置換および/または非置換フェニル基およびニトリル基を有する熱可塑性樹脂を含有してなるものを好ましく使用できる。かかる熱可塑性樹脂(A)、(B)を含有する保護フィルムは、位相差が生じにくく、延伸処理した場合にも面内位相差Re、厚み方向位相差Rthを小さく制御することができる。かかる熱可塑性樹脂(A)、(B)を含有する保護フィルムは、たとえば、WO01/37007、特開2002−328233号公報に記載されている。なお、保護フィルムは、熱可塑性樹脂(A)、(B)を主成分とする場合にも他の樹脂を含有することもできる。   The material for forming the protective film (1b) is not particularly limited, but (A) a thermoplastic resin having a substituted and / or unsubstituted imide group in the side chain, and (B) a substituted and / or unsubstituted phenyl in the side chain. What comprises the thermoplastic resin which has a group and a nitrile group can be used preferably. The protective films containing such thermoplastic resins (A) and (B) are less likely to cause a retardation, and the in-plane retardation Re and the thickness direction retardation Rth can be controlled to be small even when subjected to a stretching treatment. Such protective films containing the thermoplastic resins (A) and (B) are described in, for example, WO01 / 37007 and JP-A-2002-328233. The protective film can also contain other resins even when the thermoplastic resins (A) and (B) are the main components.

熱可塑性樹脂(A)は、側鎖に置換および/または非置換イミド基を有するものであり、主鎖は任意の熱可塑性樹脂である。主鎖は、例えば、炭素のみからなる主鎖であってもよく、または炭素以外の原子が炭素間に挿入されていてもよい。また炭素以外の原子からなっていてもよい。主鎖は好ましく炭化水素またはその置換体である。主鎖は、例えば付加重合により得られる。具体的には例えば、ポリオレフィンまたはポリビニルである。また主鎖は縮合重合により得られる。例えばエステル結合、アミド結合などで得られる。主鎖は好ましくは置換ビニルモノマーを重合させて得られるポリビニル骨格である。   The thermoplastic resin (A) has a substituted and / or unsubstituted imide group in the side chain, and the main chain is an arbitrary thermoplastic resin. The main chain may be, for example, a main chain composed only of carbon, or atoms other than carbon may be inserted between carbons. Moreover, you may consist of atoms other than carbon. The main chain is preferably a hydrocarbon or a substituted product thereof. The main chain is obtained, for example, by addition polymerization. Specifically, for example, polyolefin or polyvinyl. The main chain is obtained by condensation polymerization. For example, it can be obtained by an ester bond or an amide bond. The main chain is preferably a polyvinyl skeleton obtained by polymerizing a substituted vinyl monomer.

熱可塑性樹脂(A)に置換および/または非置換のイミド基を導入する方法としては、従来公知の任意の方法を採用できる。例えば、前記イミド基を有するモノマーを重合する方法、各種モノマーを重合して主鎖を形成した後、前記イミド基を導入する方法、前記イミド基を有する化合物を側鎖にグラフトさせる方法等があげられる。イミド基の置換基としては、イミド基の水素を置換し得る従来公知の置換基が使用可能である。例えば、アルキル基などがあげられる。   Any conventionally known method can be adopted as a method for introducing a substituted and / or unsubstituted imide group into the thermoplastic resin (A). For example, a method of polymerizing a monomer having the imide group, a method of polymerizing various monomers to form a main chain, and then introducing the imide group, a method of grafting the compound having the imide group to a side chain, etc. It is done. As the substituent of the imide group, a conventionally known substituent that can replace the hydrogen of the imide group can be used. For example, an alkyl group etc. are mention | raise | lifted.

熱可塑性樹脂(A)は、少なくとも1種のオレフィンから誘導される繰り返し単位と少なくとも1種の置換および/または非置換マレイミド構造を有する繰り返し単位とを含有する二元またはそれ以上の多元共重合体であるのが好ましい。上記オレフィン・マレイミド共重合体は、オレフィンとマレイミド化合物から、公知の方法で合成できる。合成法は、例えば、特開平5−59193号公報、特開平5−195801号公報、特開平6−136058号公報および特開平9−328523号公報に記載されている。   The thermoplastic resin (A) is a binary copolymer having at least one repeating unit derived from at least one olefin and at least one repeating unit having a substituted and / or unsubstituted maleimide structure. Is preferred. The olefin / maleimide copolymer can be synthesized from an olefin and a maleimide compound by a known method. The synthesis method is described, for example, in JP-A-5-59193, JP-A-5-195801, JP-A-6-1336058 and JP-A-9-328523.

オレフィンとしては、たとえば、イソブテン、2−メチル−1−ブテン、2−メチル−1−ペンテン、2−メチル−1−へキセン、2−メチル−1−ヘプテン、2−メチル−1−へプテン、1−イソオクテン、2−メチル−1−オクテン、2−エチル−1−ペンテン、2−エチル−2−ブテン、2−メチル−2−ペンテン、2−メチル−2−へキセン等があげられる。これらのなかでもイソブテンが好ましい。これらのオレフィンは単独で用いてもよく、2種以上を組合せてもよい。   Examples of the olefin include isobutene, 2-methyl-1-butene, 2-methyl-1-pentene, 2-methyl-1-hexene, 2-methyl-1-heptene, 2-methyl-1-heptene, Examples thereof include 1-isooctene, 2-methyl-1-octene, 2-ethyl-1-pentene, 2-ethyl-2-butene, 2-methyl-2-pentene, 2-methyl-2-hexene and the like. Of these, isobutene is preferred. These olefins may be used alone or in combination of two or more.

マレイミド化合物としては、マレイミド、N−メチルマレイミド、N−エチルマレイミド、N−n−プロピルマレイミド、N−i−プロピルマレイミド、N−n−ブチルマレイミド、N−s−ブチルマレイミド、N−t−ブチルマレイミド、N−n−ペンチルマレイミド、N−n−ヘキシルマレイミド、N−n−へプチルマレイミド、N−n−オクチルマレイミド、N−ラウリルマレイミド、N−ステアリルマレイミド、N−シクロプロピルマレイミド、N−シクロブチルマレイミド、N−シクロペンチルマレイミド、N−シクロヘキシルマレイミド、N−シクロヘプチルマレイミド、N−シクロオクチルマレイミド等があげられる。これらのなかでもN−メチルマレイミドが好ましい。これらマレイミド化合物は単独で用いてもよく、または2種以上を組み合わせてもよい。   As maleimide compounds, maleimide, N-methylmaleimide, N-ethylmaleimide, Nn-propylmaleimide, Ni-propylmaleimide, Nn-butylmaleimide, Ns-butylmaleimide, Nt-butyl Maleimide, Nn-pentylmaleimide, Nn-hexylmaleimide, Nn-heptylmaleimide, Nn-octylmaleimide, N-laurylmaleimide, N-stearylmaleimide, N-cyclopropylmaleimide, N-cyclo Examples thereof include butyl maleimide, N-cyclopentyl maleimide, N-cyclohexyl maleimide, N-cycloheptyl maleimide, N-cyclooctyl maleimide and the like. Of these, N-methylmaleimide is preferred. These maleimide compounds may be used alone or in combination of two or more.

オレフィン・マレイミド共重合体において、オレフィンの繰り返し単位の含有量は特に制限されないが、熱可塑性樹脂(A)の総繰り返し単位の20〜70モル%程度、好ましくは40〜60モル%、さらに好ましくは45〜55モル%である。マレイミド構造の繰り返し単位の含有量は30〜80モル%程度、好ましくは40〜60モル%、さらに好ましくは45〜55モル%である。   In the olefin / maleimide copolymer, the content of the repeating unit of the olefin is not particularly limited, but is about 20 to 70 mol%, preferably 40 to 60 mol%, more preferably about the total repeating unit of the thermoplastic resin (A). It is 45 to 55 mol%. The content of repeating units having a maleimide structure is about 30 to 80 mol%, preferably 40 to 60 mol%, and more preferably 45 to 55 mol%.

熱可塑性樹脂(A)は前記オレフィンの繰り返し単位とマレイミド構造の繰り返し単位を含有し、これらの単位のみにより形成することができる。また前記以外に、他のビニル系単量体の繰り返し単位を50モル%以下の割合で含んでいてもよい。他のビニル系単量体としてはアクリル酸メチル、アクリル酸ブチル等のアクリル酸系単量体、メタクリル酸メチル、メタクリル酸シクロヘキシル等のメタクリル酸系単量体、酢酸ビニル等のビニルエステル単量体、メチルビニルエーテル等のビニルエーテル単量体、無水マレイン酸のような酸無水物、スチレン、α−メチルスチレン、p−メトキシスチレン等のスチレン系単量体等があげられる。   A thermoplastic resin (A) contains the repeating unit of the said olefin and the repeating unit of a maleimide structure, and can be formed only with these units. In addition to the above, repeating units of other vinyl monomers may be contained in a proportion of 50 mol% or less. Other vinyl monomers include acrylic acid monomers such as methyl acrylate and butyl acrylate, methacrylic acid monomers such as methyl methacrylate and cyclohexyl methacrylate, and vinyl ester monomers such as vinyl acetate. And vinyl ether monomers such as methyl vinyl ether, acid anhydrides such as maleic anhydride, and styrene monomers such as styrene, α-methylstyrene and p-methoxystyrene.

熱可塑性樹脂(A)の重量平均分子量は特に制限されないが、1×10〜5×10程度である。前記重量平均分子量は1×10以上が好ましく、5×10以下が好ましい。熱可塑性樹脂(A)のガラス転移温度は80℃以上、好ましくは100℃以上、さら好ましくは130℃以上である。 The weight average molecular weight of the thermoplastic resin (A) is not particularly limited, but is about 1 × 10 3 to 5 × 10 6 . The weight average molecular weight is preferably 1 × 10 4 or more, and more preferably 5 × 10 5 or less. The glass transition temperature of the thermoplastic resin (A) is 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 130 ° C. or higher.

また熱可塑性樹脂(A)としては、グルタルイミド系熱可塑性樹脂を用いることができる。グルタルイミド系樹脂は、特開平2−153904号公報等に記載されている。グルタルイミド系樹脂は、グルタルイミド構造単位とアクリル酸メチルまたはメタクリル酸メチル構造単位を有する。グルタルイミド系樹脂中にも前記他のビニル系単量体を導入できる。   Moreover, as a thermoplastic resin (A), a glutarimide type thermoplastic resin can be used. Glutarimide resins are described in JP-A-2-153904. The glutarimide-based resin has a glutarimide structural unit and a methyl acrylate or methyl methacrylate structural unit. The other vinyl monomers can also be introduced into the glutarimide resin.

熱可塑性樹脂(B)は、置換および/または非置換フェニル基とニトリル基とを側鎖に有する熱可塑性樹脂である。熱可塑性樹脂(B)の主鎖は、熱可塑性樹脂(A)と同様のものを例示できる。   The thermoplastic resin (B) is a thermoplastic resin having a substituted and / or unsubstituted phenyl group and a nitrile group in the side chain. The main chain of a thermoplastic resin (B) can illustrate the thing similar to a thermoplastic resin (A).

熱可塑性樹脂(B)に前記フェニル基を導入する方法としては、例えば、前記フェニル基を有するモノマーを重合する方法、各種モノマーを重合して主鎖を形成した後、フェニル基を導入する方法、フェニル基を有する化合物を側鎖にグラフトする方法等があげられる。フェニル基の置換基としては、フェニル基の水素を置換し得る従来公知の置換基が使用可能である。例えば、アルキル基などがあげられる。熱可塑性樹脂(B)にニトリル基を導入する方法もフェニル基の導入法と同様の方法を採用できる。   Examples of the method of introducing the phenyl group into the thermoplastic resin (B) include a method of polymerizing the monomer having the phenyl group, a method of introducing a phenyl group after polymerizing various monomers to form a main chain, Examples thereof include a method of grafting a compound having a phenyl group onto a side chain. As the substituent of the phenyl group, a conventionally known substituent that can replace hydrogen of the phenyl group can be used. For example, an alkyl group etc. are mention | raise | lifted. The method for introducing a nitrile group into the thermoplastic resin (B) can be the same as the method for introducing a phenyl group.

熱可塑性樹脂(B)は、不飽和ニトリル化合物から誘導される繰り返し単位(ニトリル単位)とスチレン系化合物から誘導される繰り返し単位(スチレン系単位)とを含む二元または三元以上の多元共重合体であるのが好ましい。たとえばアクリロニトリル・スチレン系の共重合体を好ましく用いることができる。   The thermoplastic resin (B) is a binary or ternary multi-copolymer comprising a repeating unit derived from an unsaturated nitrile compound (nitrile unit) and a repeating unit derived from a styrene compound (styrene unit). It is preferably a coalescence. For example, an acrylonitrile / styrene copolymer can be preferably used.

不飽和ニトリル化合物としては、シアノ基および反応性二重結合を有する任意の化合物があげられる。例えば、アクリロニトリル、メタクリロニトリル等のα−置換不飽和ニトリル、フマロニトリル等のα,β−二置換オレフィン性不飽和結合を有するニトリル化合物等があげられる。   The unsaturated nitrile compound includes any compound having a cyano group and a reactive double bond. Examples thereof include α-substituted unsaturated nitriles such as acrylonitrile and methacrylonitrile, and nitrile compounds having an α, β-disubstituted olefinically unsaturated bond such as fumaronitrile.

スチレン系化合物としては、フェニル基および反応性二重結合を有する任意の化合物があげられる。例えば、スチレン、ビニルトルエン、メトキシスチレン、クロロスチレン等の非置換または置換スチレン系化合物、α−メチルスチレン等のα−置換スチレン系化合物があげられる。   Examples of the styrenic compound include any compound having a phenyl group and a reactive double bond. Examples thereof include unsubstituted or substituted styrene compounds such as styrene, vinyl toluene, methoxystyrene, and chlorostyrene, and α-substituted styrene compounds such as α-methylstyrene.

熱可塑性樹脂(B)中のニトリル単位の含有量は特に制限されないが、総繰り返し単位を基準として、10〜70重量%程度、好ましくは20〜60重量%、さらに好ましくは20〜50重量%である。特に20〜40重量%、20〜30重量%が好ましい。スチレン系単位は、30〜80重量%程度、好ましくは40〜80重量%、さらに好ましくは50〜80重量%である。特に60〜80重量%、70〜80重量%が好ましい。   The content of the nitrile unit in the thermoplastic resin (B) is not particularly limited, but is about 10 to 70% by weight, preferably 20 to 60% by weight, more preferably 20 to 50% by weight based on the total repeating units. is there. 20 to 40 weight% and 20 to 30 weight% are especially preferable. The styrenic unit is about 30 to 80% by weight, preferably 40 to 80% by weight, and more preferably 50 to 80% by weight. 60 to 80 weight% and 70 to 80 weight% are especially preferable.

熱可塑性樹脂(B)は前記ニトリル単位とスチレン系単位を含有し、これらの単位のみにより形成することができる。また前記以外に他のビニル系単量体の繰り返し単位を50モル%以下の割合で含んでいてもよい。他のビニル系単量体としては熱可塑性樹脂(A)に例示したもの、オレフィンの繰り返し単位、マレイミド、置換マレイミドの繰り返し単位等があげられる。かかる熱可塑性樹脂(B)としてはAS樹脂、ABS樹脂、ASA樹脂等があげられる。   A thermoplastic resin (B) contains the said nitrile unit and a styrene-type unit, and can be formed only with these units. In addition to the above, repeating units of other vinyl monomers may be contained in a proportion of 50 mol% or less. Examples of the other vinyl monomers include those exemplified for the thermoplastic resin (A), olefin repeating units, maleimide, substituted maleimide repeating units, and the like. Examples of the thermoplastic resin (B) include AS resin, ABS resin, ASA resin, and the like.

熱可塑性樹脂(B)の重量平均分子量は特に制限されないが、1×10〜5×10程度である。好ましくは1×10以上、5×10以下である。 The weight average molecular weight of the thermoplastic resin (B) is not particularly limited, but is about 1 × 10 3 to 5 × 10 6 . It is preferably 1 × 10 4 or more and 5 × 10 5 or less.

熱可塑性樹脂(A)と熱可塑性樹脂(B)の比率は、保護フィルムに求められる位相差に応じて調整される。前記配合比は、一般的には熱可塑性樹脂(A)の含有量がフィルム中の樹脂の総量のうちの50〜95重量%であることが好ましく、60〜95重量%であることがより好ましく、さらに好ましくは、65〜90重量%である。熱可塑性樹脂(B)の含有量は、フィルム中の樹脂の総量のうちの5〜50重量%であることが好ましく、より好ましくは5〜40重量%であり、さらに好ましくは、10〜35重量%である。熱可塑性樹脂(A)と熱可塑性樹脂(B)はこれらを熱溶融混練することにより混合されフィルム化される。また熱可塑性樹脂(A)と熱可塑性樹脂(B)は、これらを溶液とし、この溶液を流延法等によりフィルム化することができる。   The ratio of the thermoplastic resin (A) and the thermoplastic resin (B) is adjusted according to the retardation required for the protective film. In general, the content of the thermoplastic resin (A) is preferably 50 to 95% by weight, more preferably 60 to 95% by weight, based on the total amount of the resin in the film. More preferably, it is 65 to 90% by weight. The content of the thermoplastic resin (B) is preferably 5 to 50% by weight of the total amount of the resin in the film, more preferably 5 to 40% by weight, and still more preferably 10 to 35% by weight. %. The thermoplastic resin (A) and the thermoplastic resin (B) are mixed and formed into a film by hot-melt kneading them. Further, the thermoplastic resin (A) and the thermoplastic resin (B) can be used as a solution, and the solution can be formed into a film by a casting method or the like.

また保護フィルムを形成する材料としては、ノルボルネン系樹脂などの光弾性係数の低いものがあげられる。ノルボルネン系樹脂を含有する保護フィルムは、寸法変化による応力を受けた場合にも位相差が生じにくく、偏光子との貼り合せ、輝度向上フィルムとの貼り合せ時に保護フィルムが光学的に歪むことによる位相差の発生を抑えられる。ノルボルネン系樹脂としては、熱可塑性飽和ノルボルネン系樹脂が好適である。熱可塑性飽和ノルボルネン系樹脂は、シクロオレフィンを主骨格とてなり、炭素−炭素二重結合を実質的に有しないものである。熱可塑性飽和ノルボルネン系樹脂としては、日本ゼオン(株)製のゼオネックス、ゼオノア、JSR(株)製のアートン等があげられる。   Examples of the material for forming the protective film include materials having a low photoelastic coefficient such as norbornene resins. A protective film containing a norbornene-based resin is less likely to cause a phase difference even when subjected to stress due to dimensional change, and the protective film is optically distorted when bonded to a polarizer or a brightness enhancement film. Generation of phase difference can be suppressed. As the norbornene-based resin, a thermoplastic saturated norbornene-based resin is preferable. The thermoplastic saturated norbornene resin has a cycloolefin as a main skeleton and has substantially no carbon-carbon double bond. Examples of the thermoplastic saturated norbornene resin include ZEONEX, ZEONOR manufactured by Nippon Zeon Co., Ltd., and ARTON manufactured by JSR Co., Ltd.

また前記保護フィルムは、延伸処理されたフィルムとして用いることができる。一般的に、フィルム材料は延伸することにより強度を向上させることができ、より強靭な機械特性を得ることができる。多くの材料では延伸処理により位相差が発生するため、偏光子の保護フィルムとして使用できない。熱可塑性樹脂(A)、(B)の混合物、ノルボルネン系樹脂を主成分として含有する透明性フィルムは延伸処理した場合にも前記面内位相差Re、厚み方向位相差Rthを満足できる。延伸処理は一軸延伸、二軸延伸のいずれでもよい。特に二軸延伸処理されたフィルムが好ましい。   The protective film can be used as a stretched film. Generally, a film material can be improved in strength by stretching, and tougher mechanical properties can be obtained. In many materials, a retardation is generated by the stretching treatment, so that it cannot be used as a protective film for a polarizer. A transparent film containing a mixture of the thermoplastic resins (A) and (B) and a norbornene resin as a main component can satisfy the in-plane retardation Re and the thickness direction retardation Rth even when stretched. The stretching treatment may be either uniaxial stretching or biaxial stretching. In particular, a biaxially stretched film is preferred.

前記以外の保護フィルムを形成する材料としては、透明性、機械的強度、熱安定性、水分遮蔽性、等方性などに優れるものが好ましい。例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系ポリマー、ジアセチルセルロースやトリアセチルセルロース等のセルロース系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー、ポリカーボネート系ポリマーなどがあげられる。また、ポリエチレン、ポリプロピレン、シクロ系ないしはノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、または前記ポリマーのブレンド物なども前記保護フィルムを形成するポリマーの例としてあげられる。保護フィルムは、アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型、紫外線硬化型の樹脂の硬化層として形成することもできる。   As a material for forming a protective film other than the above, a material excellent in transparency, mechanical strength, thermal stability, moisture shielding property, isotropy and the like is preferable. For example, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose, acrylic polymers such as polymethyl methacrylate, styrene such as polystyrene and acrylonitrile / styrene copolymer (AS resin) -Based polymer, polycarbonate-based polymer and the like. In addition, polyethylene, polypropylene, polyolefins having a cyclo or norbornene structure, polyolefin polymers such as ethylene / propylene copolymers, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, sulfone polymers , Polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer, or the above Polymer blends and the like are also examples of polymers that form the protective film. The protective film can also be formed as a cured layer of an acrylic, urethane, acrylic urethane, epoxy, silicone, or other thermosetting or ultraviolet curable resin.

前記保護フィルムの偏光子を接着させない面には、ハードコート層や反射防止処理、スティッキング防止や、拡散ないしアンチグレアを目的とした処理を施したものであってもよい。   The surface of the protective film to which the polarizer is not adhered may be subjected to a treatment for the purpose of hard coat layer, antireflection treatment, antisticking, diffusion or antiglare.

ハードコート処理は偏光板表面の傷付き防止などを目的に施されるものであり、例えばアクリル系、シリコーン系などの適宜な紫外線硬化型樹脂による硬度や滑り特性等に優れる硬化皮膜を保護フィルムの表面に付加する方式などにて形成することができる。反射防止処理は偏光板表面での外光の反射防止を目的に施されるものであり、従来に準じた反射防止膜などの形成により達成することができる。また、スティッキング防止処理は隣接層との密着防止を目的に施される。   Hard coat treatment is performed for the purpose of preventing scratches on the surface of the polarizing plate. It can be formed by a method of adding to the surface. The antireflection treatment is performed for the purpose of preventing reflection of external light on the surface of the polarizing plate, and can be achieved by forming an antireflection film or the like according to the conventional art. Further, the anti-sticking treatment is performed for the purpose of preventing adhesion with an adjacent layer.

またアンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を阻害することの防止等を目的に施されるものであり、例えばサンドブラスト方式やエンボス加工方式による粗面化方式や透明微粒子の配合方式などの適宜な方式にて保護フィルムの表面に微細凹凸構造を付与することにより形成することができる。前記表面微細凹凸構造の形成に含有させる微粒子としては、例えば平均粒径が0.5〜50μmのシリカ、アルミナ、チタニア、ジルコニア、酸化錫、酸化インジウム、酸化カドミウム、酸化アンチモン等からなる導電性のこともある無機系微粒子、架橋又は未架橋のポリマー等からなる有機系微粒子などの透明微粒子が用いられる。表面微細凹凸構造を形成する場合、微粒子の使用量は、表面微細凹凸構造を形成する透明樹脂100重量部に対して一般的に2〜50重量部程度であり、5〜25重量部が好ましい。アンチグレア層は、偏光板透過光を拡散して視角などを拡大するための拡散層(視角拡大機能など)を兼ねるものであってもよい。   The anti-glare treatment is applied for the purpose of preventing the outside light from being reflected on the surface of the polarizing plate and obstructing the visibility of the light transmitted through the polarizing plate. For example, the surface is roughened by a sandblasting method or an embossing method. It can be formed by imparting a fine concavo-convex structure to the surface of the protective film by an appropriate method such as a blending method of transparent fine particles. The fine particles to be included in the formation of the surface fine concavo-convex structure are, for example, conductive materials made of silica, alumina, titania, zirconia, tin oxide, indium oxide, cadmium oxide, antimony oxide or the like having an average particle size of 0.5 to 50 μm. In some cases, transparent fine particles such as inorganic fine particles, organic fine particles composed of a crosslinked or uncrosslinked polymer, and the like are used. When forming a surface fine uneven structure, the amount of fine particles used is generally about 2 to 50 parts by weight, preferably 5 to 25 parts by weight, based on 100 parts by weight of the transparent resin forming the surface fine uneven structure. The antiglare layer may also serve as a diffusion layer (viewing angle expanding function or the like) for diffusing the light transmitted through the polarizing plate to expand the viewing angle.

なお、前記反射防止層、スティッキング防止層、拡散層やアンチグレア層等は、保護フィルムそのものに設けることができるほか、別途光学層として保護フィルムとは別体のものとして設けることもできる。   The antireflection layer, antisticking layer, diffusion layer, antiglare layer, and the like can be provided on the protective film itself, or can be provided separately from the protective film as an optical layer.

前記偏光子と保護フィルムとの接着処理には、イソシアネート系接着剤、ポリビニルアルコール系接着剤、ゼラチン系接着剤、ビニル系ラテックス系、水系ポリエステル等が用いられる。これらのなかでもポリビニルアルコール系接着剤が好ましい。前記接着剤には、耐久性を向上させるために、架橋剤を含有させることができる。ポリビニルアルコール系接着剤には金属塩、グリオキザール、アルコール系溶剤、キトサン、キチン、メラミンなどの架橋剤を添加することができる。偏光子と保護フィルムとの接着処置は、これらを前記接着剤により貼り合わせ、30〜90℃程度、1〜5分間乾燥することにより行う。これにより偏光板が得られる。   For the adhesive treatment between the polarizer and the protective film, an isocyanate adhesive, a polyvinyl alcohol adhesive, a gelatin adhesive, a vinyl latex, an aqueous polyester, or the like is used. Among these, a polyvinyl alcohol-based adhesive is preferable. The adhesive may contain a crosslinking agent in order to improve durability. A crosslinking agent such as a metal salt, glyoxal, alcohol solvent, chitosan, chitin, and melamine can be added to the polyvinyl alcohol adhesive. The adhesive treatment between the polarizer and the protective film is performed by pasting them together with the adhesive and drying at about 30 to 90 ° C. for 1 to 5 minutes. Thereby, a polarizing plate is obtained.

輝度向上フィルムとしては、光源(バックライト)からの出射光を透過偏光と反射偏光または散乱偏光に分離するような機能を有する偏光変換素子が用いられる。かかる輝度向上フィルムは、反射偏光または散乱偏光のバックライトからの再帰光を利用して、直線偏光の出射効率を向上できる。   As the brightness enhancement film, a polarization conversion element having a function of separating outgoing light from a light source (backlight) into transmitted polarized light, reflected polarized light, or scattered polarized light is used. Such a brightness enhancement film can improve the output efficiency of linearly polarized light by using retroreflected light from a reflected or scattered polarized backlight.

輝度向上フィルムとしては、たとえば、異方性反射偏光子があげられる。異方性反射偏光子としては、一方の振動方向の直線偏光を透過し、他方の振動方向の直線偏光を反射する異方性多重薄膜があげられる。異方性多重薄膜としては、たとえば、3M製のDBEFがあげられる(たとえば、特開平4−268505号公報等参照。)。また異方性反射偏光子としては、コレステリック液晶層とλ/4板の複合体があげられる。かかる複合体としては、日東電工製のPCFがあげられる(特開平11−231130号公報等参照。)。また異方性反射偏光子としては、反射グリッド偏光子があげられる。反射グリッド偏光子としては、金属に微細加工を施し可視光領域でも反射偏光を出すような金属格子反射偏光子(米国特許第6288840号明細書等参照。)、金属の微粒子を高分子マトリック中に入れて延伸したようなもの(特開平8−184701号公報等参照。)があげられる。   An example of the brightness enhancement film is an anisotropic reflective polarizer. An example of the anisotropic reflective polarizer is an anisotropic multiple thin film that transmits linearly polarized light in one vibration direction and reflects linearly polarized light in the other vibration direction. An example of the anisotropic multi-thin film is DBM manufactured by 3M (see, for example, JP-A-4-268505). An example of the anisotropic reflective polarizer is a composite of a cholesteric liquid crystal layer and a λ / 4 plate. An example of such a composite is PCF manufactured by Nitto Denko (see JP-A-11-231130, etc.). An example of the anisotropic reflective polarizer is a reflective grid polarizer. As a reflective grid polarizer, a metal grid reflective polarizer (see US Pat. No. 6,288,840, etc.) that finely processes metal to produce reflected polarized light even in the visible light region, and metal fine particles in a polymer matrix. And a stretched one (see JP-A-8-184701, etc.).

また輝度向上フィルムとしては、異方性散乱偏光子があげられる。異方性散乱偏光子としては、3M製のDRPがあげられる(米国特許第5825543号明細書参照。)。   An example of the brightness enhancement film is an anisotropic scattering polarizer. An example of the anisotropic scattering polarizer is DRP made by 3M (see US Pat. No. 5,825,543).

また輝度向上フィルムとしては、ワンパスで偏光変換できるような偏光素子があげられる。たとえば、スメクテイックC*を用いたものなどがあげられる(特開2001−201635号公報等参照。)。また輝度向上フィルムとしては、異方性回折格子を用いることができる。   Examples of the brightness enhancement film include a polarizing element that can perform polarization conversion in one pass. For example, one using a smectic C * can be cited (see JP 2001-201635 A). An anisotropic diffraction grating can be used as the brightness enhancement film.

偏光板と輝度向上フィルムとは貼り合わせる粘着剤としては特に制限されない。例えばアクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリビニルエーテル、酢酸ビニル/塩化ビニルコポリマー、変性ポリオレフィン、エポキシ系、フッ素系、天然ゴム、合成ゴム等のゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく用いうる。   The polarizing plate and the brightness enhancement film are not particularly limited as an adhesive to be bonded. For example, acrylic polymer, silicone polymer, polyester, polyurethane, polyamide, polyvinyl ether, vinyl acetate / vinyl chloride copolymer, modified polyolefin, epoxy-based, fluorine-based, natural rubber, synthetic rubber and other rubber-based polymers Can be appropriately selected and used. In particular, those excellent in optical transparency, exhibiting appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties and excellent in weather resistance, heat resistance and the like can be preferably used.

前記粘着剤にはベースポリマーに応じた架橋剤を含有させることができる。また粘着剤には、例えば天然物や合成物の樹脂類、特に、粘着性付与樹脂や、ガラス繊維、ガラスビーズ、金属粉、その他の無機粉末等からなる充填剤や顔料、着色剤、酸化防止剤などの添加剤を含有していてもよい。また微粒子を含有して光拡散性を示す粘着剤層などであってもよい。   The pressure-sensitive adhesive can contain a crosslinking agent corresponding to the base polymer. The pressure-sensitive adhesives include, for example, natural and synthetic resins, in particular, tackifier resins, fillers and pigments made of glass fibers, glass beads, metal powders, other inorganic powders, coloring agents, and antioxidants. An additive such as an agent may be contained. Moreover, the adhesive layer etc. which contain microparticles | fine-particles and show light diffusibility may be sufficient.

粘着剤は、通常、ベースポリマーまたはその組成物を溶剤に溶解又は分散させた固形分濃度が10〜50重量%程度の粘着剤溶液として用いられる。溶剤としては、トルエンや酢酸エチル等の有機溶剤や水等の粘着剤の種類に応じたものを適宜に選択して用いることができる。   The pressure-sensitive adhesive is usually used as a pressure-sensitive adhesive solution having a solid content concentration of about 10 to 50% by weight in which a base polymer or a composition thereof is dissolved or dispersed in a solvent. As the solvent, an organic solvent such as toluene or ethyl acetate or a solvent suitable for the type of pressure-sensitive adhesive such as water can be appropriately selected and used.

前記偏光板は、位相差板を積層された楕円偏光板または円偏光板として用いることができる。前記楕円偏光板または円偏光板について説明する。これらは位相差板により直線偏光を楕円偏光または円偏光に変えたり、楕円偏光または円偏光を直線偏光に変えたり、あるいは直線偏光の偏光方向を変える。特に、直線偏光を円偏光に変えたり、円偏光を直線偏光に変える位相差板としては、いわゆる1/4波長板が用いられる。1/2波長板は、通常、直線偏光の偏光方向を変える場合に用いられる。   The polarizing plate can be used as an elliptically polarizing plate or a circularly polarizing plate on which retardation plates are laminated. The elliptically polarizing plate or the circularly polarizing plate will be described. These change the linearly polarized light into elliptically polarized light or circularly polarized light, change the elliptically polarized light or circularly polarized light into linearly polarized light, or change the polarization direction of the linearly polarized light. In particular, a so-called quarter-wave plate is used as a retardation plate that changes linearly polarized light into circularly polarized light or changes circularly polarized light into linearly polarized light. The half-wave plate is usually used when changing the polarization direction of linearly polarized light.

楕円偏光板はスーパーツイストネマチック(STN)型液晶表示装置の液晶層の複屈折により生じた着色(青又は黄)を補償(防止)して、前記着色のない白黒表示する場合などに有効に用いられる。更に、三次元の屈折率を制御したものは、液晶表示装置の画面を斜め方向から見た際に生じる着色も補償(防止)することができて好ましい。円偏光板は、例えば画像がカラー表示になる反射型液晶表示装置の画像の色調を整える場合などに有効に用いられ、また、反射防止の機能も有する。   The elliptically polarizing plate is effectively used for black and white display without the above color by compensating (preventing) the coloration (blue or yellow) generated by the birefringence of the liquid crystal layer of the super twist nematic (STN) type liquid crystal display device. It is done. Further, the one in which the three-dimensional refractive index is controlled is preferable because it can compensate (prevent) coloring that occurs when the screen of the liquid crystal display device is viewed from an oblique direction. The circularly polarizing plate is effectively used, for example, when adjusting the color tone of an image of a reflective liquid crystal display device in which an image is displayed in color, and also has an antireflection function.

位相差板には、例えば各種波長板や液晶層の複屈折による着色や視角等の補償を目的としたものなどを使用することができ、また使用目的に応じた適宜な位相差を有する2種以上の位相差板を積層して位相差等の光学特性を制御することができる。かかる位相差板には前記例示のものを使用できるほか、本発明のホメオトロピック配向液晶フィルムを単独でまたは他のフィルムと組み合わせて用いることができる。   As the phase difference plate, for example, various wavelength plates or those for the purpose of compensating for coloring or viewing angle due to birefringence of the liquid crystal layer can be used, and two types having an appropriate phase difference according to the purpose of use. Optical properties such as retardation can be controlled by laminating the above retardation plates. As such a retardation plate, those exemplified above can be used, and the homeotropic alignment liquid crystal film of the present invention can be used alone or in combination with other films.

また前記位相差板は、視角補償フィルムとして偏光板に積層して広視野角偏光板として用いられる。視角補償フィルムは、液晶表示装置の画面を、画面に垂直でなくやや斜めの方向から見た場合でも、画像が比較的鮮明にみえるように視野角を広げるためのフィルムである。   The retardation plate is laminated on a polarizing plate as a viewing angle compensation film and used as a wide viewing angle polarizing plate. The viewing angle compensation film is a film for widening the viewing angle so that an image can be seen relatively clearly even when the screen of the liquid crystal display device is viewed from a slightly oblique direction rather than perpendicular to the screen.

このような視角補償位相差板としては、他に二軸延伸処理や直交する二方向に延伸処理等された複屈折を有するフィルム、傾斜配向フィルムのような二方向延伸フィルムなどが用いられる。傾斜配向フィルムとしては、例えばポリマーフィルムに熱収縮フィルムを接着して加熱によるその収縮力の作用下にポリマーフィルムを延伸処理又は/及び収縮処理したものや、液晶ポリマーを斜め配向させたものなどが挙げられる。視角補償フィルムは、液晶セルによる位相差に基づく視認角の変化による着色等の防止や良視認の視野角の拡大などを目的として適宜に組み合わせることができる。   As such a viewing angle compensation retardation plate, a birefringent film that has been biaxially stretched or stretched in two orthogonal directions, a bidirectionally stretched film such as a tilted orientation film, and the like are used. Examples of the inclined alignment film include a film obtained by bonding a heat shrink film to a polymer film and stretching or / and shrinking the polymer film under the action of the contraction force by heating, and a film obtained by obliquely aligning a liquid crystal polymer. Can be mentioned. The viewing angle compensation film can be appropriately combined for the purpose of preventing coloring or the like due to a change in viewing angle based on a phase difference caused by a liquid crystal cell or increasing the viewing angle for good viewing.

また良視認の広い視野角を達成する点などより、液晶ポリマーの配向層、特にディスコティック液晶ポリマーの傾斜配向層からなる光学的異方性層をトリアセチルセルロースフィルムにて支持した光学補償位相差板が好ましく用いうる。   Also, from the viewpoint of achieving a wide viewing angle with good visibility, an optically compensated phase difference in which a liquid crystal polymer alignment layer, in particular an optically anisotropic layer composed of a discotic liquid crystal polymer gradient alignment layer, is supported by a triacetylcellulose film. A plate can be preferably used.

前記のほか実用に際して積層される光学層については特に限定はないが、例えば反射板や半透過板などの液晶表示装置等の形成に用いられることのある光学層を1層または2層以上用いることができる。特に、楕円偏光板または円偏光板に、更に反射板または半透過反射板が積層されてなる反射型偏光板または半透過型偏光板があげられる。   In addition to the above, the optical layer laminated in practical use is not particularly limited. For example, one or more optical layers that may be used for forming a liquid crystal display device such as a reflective plate or a transflective plate are used. Can do. In particular, a reflective polarizing plate or a semi-transmissive polarizing plate in which a reflecting plate or a semi-transmissive reflecting plate is further laminated on an elliptical polarizing plate or a circular polarizing plate can be given.

反射型偏光板は、偏光板に反射層を設けたもので、視認側(表示側)からの入射光を反射させて表示するタイプの液晶表示装置などを形成するためのものであり、バックライト等の光源の内蔵を省略できて液晶表示装置の薄型化を図りやすいなどの利点を有する。反射型偏光板の形成は、必要に応じ透明保護層等を介して偏光板の片面に金属等からなる反射層を付設する方式などの適宜な方式にて行うことができる。   A reflective polarizing plate is a polarizing plate provided with a reflective layer, and is used to form a liquid crystal display device or the like that reflects incident light from the viewing side (display side). Such a light source can be omitted, and the liquid crystal display device can be easily thinned. The reflective polarizing plate can be formed by an appropriate method such as a method in which a reflective layer made of metal or the like is attached to one surface of the polarizing plate via a transparent protective layer or the like as necessary.

反射型偏光板の具体例としては、必要に応じマット処理した保護フィルムの片面に、アルミニウム等の反射性金属からなる箔や蒸着膜を付設して反射層を形成したものなどがあげられる。また前記保護フィルムに微粒子を含有させて表面微細凹凸構造とし、その上に微細凹凸構造の反射層を有するものなどもあげられる。前記した微細凹凸構造の反射層は、入射光を乱反射により拡散させて指向性やギラギラした見栄えを防止し、明暗のムラを抑制しうる利点などを有する。また微粒子含有の保護フィルムは、入射光及びその反射光がそれを透過する際に拡散されて明暗ムラをより抑制しうる利点なども有している。保護フィルムの表面微細凹凸構造を反映させた微細凹凸構造の反射層の形成は、例えば真空蒸着方式、イオンプレーティング方式、スパッタリング方式等の蒸着方式やメッキ方式などの適宜な方式で金属を透明保護層の表面に直接付設する方法などにより行うことができる。   Specific examples of the reflective polarizing plate include those in which a reflective layer is formed by attaching a foil or vapor-deposited film made of a reflective metal such as aluminum on one surface of a protective film matted as necessary. In addition, the protective film may contain fine particles to form a surface fine concavo-convex structure and a reflective layer having a fine concavo-convex structure thereon. The reflective layer having the fine concavo-convex structure has an advantage that incident light is diffused by irregular reflection to prevent directivity and glaring appearance and to suppress unevenness in brightness and darkness. Moreover, the protective film containing fine particles also has an advantage that incident light and its reflected light are diffused when passing through it and light and dark unevenness can be further suppressed. The reflective layer with a fine concavo-convex structure reflecting the surface fine concavo-convex structure of the protective film is transparently protected by an appropriate method such as a vapor deposition method such as a vacuum deposition method, an ion plating method, a sputtering method, or a plating method. It can be performed by a method of attaching directly to the surface of the layer.

反射板は前記の偏光板の保護フィルムに直接付与する方式に代えて、その透明フィルムに準じた適宜なフィルムに反射層を設けてなる反射シートなどとして用いることもできる。なお反射層は、通常、金属からなるので、その反射面が保護フィルムや偏光板等で被覆された状態の使用形態が、酸化による反射率の低下防止、ひいては初期反射率の長期持続の点や、保護層の別途付設の回避の点などより好ましい。   The reflective plate can be used as a reflective sheet in which a reflective layer is provided on an appropriate film according to the transparent film, instead of the method of directly imparting to the protective film of the polarizing plate. Since the reflective layer is usually made of metal, the usage form in which the reflective surface is covered with a protective film, a polarizing plate or the like is used to prevent a decrease in reflectance due to oxidation, and thus the long-term sustainability of the initial reflectance. More preferable is the point of avoiding the additional attachment of the protective layer.

なお、半透過型偏光板は、上記において反射層で光を反射し、かつ透過するハーフミラー等の半透過型の反射層とすることにより得ることができる。半透過型偏光板は、通常液晶セルの裏側に設けられ、液晶表示装置などを比較的明るい雰囲気で使用する場合には、視認側(表示側)からの入射光を反射させて画像を表示し、比較的暗い雰囲気においては、半透過型偏光板のバックサイドに内蔵されているバックライト等の内蔵光源を使用して画像を表示するタイプの液晶表示装置などを形成できる。すなわち、半透過型偏光板は、明るい雰囲気下では、バックライト等の光源使用のエネルギーを節約でき、比較的暗い雰囲気下においても内蔵光源を用いて使用できるタイプの液晶表示装置などの形成に有用である。   The semi-transmissive polarizing plate can be obtained by using a semi-transmissive reflective layer such as a half mirror that reflects and transmits light with the reflective layer. A transflective polarizing plate is usually provided on the back side of a liquid crystal cell, and displays an image by reflecting incident light from the viewing side (display side) when a liquid crystal display device is used in a relatively bright atmosphere. In a relatively dark atmosphere, a liquid crystal display device or the like that displays an image using a built-in light source such as a backlight built in the back side of the transflective polarizing plate can be formed. In other words, the transflective polarizing plate is useful for forming a liquid crystal display device of a type that can save energy of using a light source such as a backlight in a bright atmosphere and can be used with a built-in light source even in a relatively dark atmosphere. It is.

また、偏光板は、上記の偏光分離型偏光板の如く、偏光板と2層又は3層以上の光学層とを積層したものからなっていてもよい。従って、上記の反射型偏光板や半透過型偏光板と位相差板を組み合わせた反射型楕円偏光板や半透過型楕円偏光板などであってもよい。   Further, the polarizing plate may be formed by laminating a polarizing plate and two or three or more optical layers like the above-described polarization separation type polarizing plate. Therefore, a reflective elliptical polarizing plate or a semi-transmissive elliptical polarizing plate in which the above-mentioned reflective polarizing plate or transflective polarizing plate and a retardation plate are combined may be used.

上記の楕円偏光板や反射型楕円偏光板は、偏光板又は反射型偏光板と位相差板を適宜な組合せで積層したものである。かかる楕円偏光板等は、(反射型)偏光板と位相差板の組合せとなるようにそれらを液晶表示装置の製造過程で順次別個に積層することよって形成することができるが、予め積層して楕円偏光板等の光学フィルムとしたものは、品質の安定性や積層作業性等に優れて液晶表示装置などの製造効率を向上させうる利点がある。   The elliptically polarizing plate and the reflective elliptical polarizing plate are obtained by laminating a polarizing plate or a reflective polarizing plate and a retardation plate in an appropriate combination. Such an elliptical polarizing plate can be formed by sequentially laminating them in the manufacturing process of the liquid crystal display device so as to be a combination of a (reflective) polarizing plate and a retardation plate. An optical film such as an elliptically polarizing plate has an advantage that it can improve the production efficiency of a liquid crystal display device and the like because of excellent quality stability and lamination workability.

本発明の高輝度偏光板には、粘着層を設けることもできる。粘着層は、液晶セルへの貼着に用いることができる他、光学層の積層に用いられる。前記高輝度偏光板の接着に際し、それらの光学軸は目的とする位相差特性などに応じて適宜な配置角度とすることができる。   The high-intensity polarizing plate of the present invention can be provided with an adhesive layer. The pressure-sensitive adhesive layer can be used for adhering to a liquid crystal cell and also used for laminating optical layers. When bonding the high-brightness polarizing plates, their optical axes can be arranged at an appropriate angle according to the target phase difference characteristics.

粘着層を形成する粘着剤は特に制限されないが、前記例示のものと同様のものを例示できる。また、同様の方式にて設けることができる。   The pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is not particularly limited, and examples thereof can be the same as those exemplified above. Moreover, it can provide by the same system.

粘着層は、異なる組成又は種類等のものの重畳層として偏光板や光学フィルムの片面又は両面に設けることもできる。また両面に設ける場合に、偏光板や光学フィルムの表裏において異なる組成や種類や厚さ等の粘着層とすることもできる。粘着層の厚さは、使用目的や接着力などに応じて適宜に決定でき、一般には1〜500μmであり、5〜200μmが好ましく、特に10〜100μmが好ましい。   The pressure-sensitive adhesive layer can be provided on one side or both sides of a polarizing plate or an optical film as a superimposed layer of different compositions or types. Moreover, when providing in both surfaces, it can also be set as the adhesion layers of a different composition, a kind, thickness, etc. in the front and back of a polarizing plate or an optical film. The thickness of the pressure-sensitive adhesive layer can be appropriately determined according to the purpose of use and adhesive force, and is generally 1 to 500 μm, preferably 5 to 200 μm, particularly preferably 10 to 100 μm.

粘着層の露出面に対しては、実用に供するまでの間、その汚染防止等を目的にセパレータが仮着されてカバーされる。これにより、通例の取扱状態で粘着層に接触することを防止できる。セパレータとしては、上記厚さ条件を除き、例えばプラスチックフィルム、ゴムシート、紙、布、不織布、ネット、発泡シートや金属箔、それらのラミネート体等の適宜な薄葉体を、必要に応じシリコーン系や長鎖アルキル系、フッ素系や硫化モリブデン等の適宜な剥離剤でコート処理したものなどの、従来に準じた適宜なものを用いうる。   On the exposed surface of the adhesive layer, a separator is temporarily attached and covered for the purpose of preventing contamination until it is put to practical use. Thereby, it can prevent contacting an adhesion layer in the usual handling state. As the separator, except for the above thickness conditions, for example, a suitable thin leaf body such as a plastic film, rubber sheet, paper, cloth, non-woven fabric, net, foam sheet, metal foil, laminate thereof, and the like, silicone type or Appropriate conventional ones such as those coated with an appropriate release agent such as long-chain alkyl, fluorine-based, or molybdenum sulfide can be used.

なお本発明において、上記した偏光板を形成する偏光子や保護フィルムや光学フィルム等、また粘着層などの各層には、例えばサリチル酸エステル系化合物やベンゾフェノール系化合物、ベンゾトリアゾール系化合物やシアノアクリレート系化合物、ニッケル錯塩系化合物等の紫外線吸収剤で処理する方式などの方式により紫外線吸収能をもたせたものなどであってもよい。   In the present invention, the polarizer, protective film, optical film, etc. that form the polarizing plate described above, and each layer such as an adhesive layer include, for example, salicylic acid ester compounds, benzophenol compounds, benzotriazole compounds, and cyanoacrylate compounds. A compound or a compound having ultraviolet absorbing ability by a method such as a method of treating with a UV absorber such as a nickel complex salt compound may be used.

輝度向上フィルムと反射層等の間に拡散板を設けることもできる。輝度向上フィルムによって反射した偏光状態の光は上記反射層等に向かうが、設置された拡散板は通過する光を均一に拡散すると同時に偏光状態を解消し、非偏光状態となる。すなわち、拡散板は偏光を元の自然光状態にもどす。この非偏光状態、すなわち自然光状態の光が反射層等に向かい、反射層等を介して反射し、再び拡散板を通過して輝度向上フィルムに再入射することを繰り返す。このように輝度向上フィルムと上記反射層等の間に、偏光を元の自然光状態にもどす拡散板を設けることにより表示画面の明るさを維持しつつ、同時に表示画面の明るさのむらを少なくし、均一で明るい画面を提供することができる。かかる拡散板を設けることにより、初回の入射光は反射の繰り返し回数が程よく増加し、拡散板の拡散機能と相俟って均一の明るい表示画面を提供することができたものと考えられる。   A diffusion plate may be provided between the brightness enhancement film and the reflective layer. The polarized light reflected by the brightness enhancement film is directed to the reflective layer or the like, but the installed diffuser plate uniformly diffuses the light passing therethrough and simultaneously cancels the polarized state and becomes a non-polarized state. That is, the diffuser plate returns the polarized light to the original natural light state. The light in the non-polarized state, that is, the natural light state is directed toward the reflection layer and the like, reflected through the reflection layer and the like, and again passes through the diffusion plate and reenters the brightness enhancement film. Thus, while maintaining the brightness of the display screen by providing a diffuser plate that returns polarized light to the original natural light state between the brightness enhancement film and the reflective layer, etc., the brightness unevenness of the display screen is reduced at the same time, A uniform and bright screen can be provided. By providing such a diffuser plate, it is considered that the first incident light has a moderate increase in the number of repetitions of reflection, and in combination with the diffusion function of the diffuser plate, a uniform bright display screen can be provided.

本発明の高輝度偏光板は液晶表示装置等の各種装置の形成などに好ましく用いることができる。液晶表示装置の形成は、従来に準じて行いうる。すなわち液晶表示装置は一般に、液晶セルと高輝度偏光板、及び必要に応じての照明システム等の構成部品を適宜に組立てて駆動回路を組込むことなどにより形成されるが、本発明の高輝度偏光板を用いる点を除いて特に限定はなく、従来に準じうる。液晶セルについても、例えばTN型やSTN型、π型などの任意なタイプのものを用いうる。   The high-intensity polarizing plate of the present invention can be preferably used for forming various devices such as a liquid crystal display device. The liquid crystal display device can be formed according to the conventional method. That is, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell, a high-intensity polarizing plate, and an illumination system as necessary, and incorporating a drive circuit. There is no limitation in particular except the point which uses a board, and it can apply to the former. As the liquid crystal cell, any type such as a TN type, an STN type, or a π type can be used.

液晶セルの片側又は両側に偏光板、光学フィルムを配置した液晶表示装置や、照明システムにバックライトあるいは反射板を用いたものなどの適宜な液晶表示装置を形成することができる。その場合、本発明による光学フィルムは液晶セルの片側又は両側に設置することができる。なお、液晶セルの両側の偏光板は同じものであってもよいし、異なるものであってもよい。さらに、液晶表示装置の形成に際しては、例えば拡散板、アンチグレア層、反射防止膜、保護板、プリズムアレイ、レンズアレイシート、光拡散板、バックライトなどの適宜な部品を適宜な位置に1層又は2層以上配置することができる。バックライトにおいては、拡散板、プリズムシート、導光板、冷陰極管ランプハウスなどを使用してよい。拡散板とプリズムシーとの配置順序及び枚数は特に制限されない。   An appropriate liquid crystal display device such as a liquid crystal display device in which a polarizing plate or an optical film is disposed on one side or both sides of a liquid crystal cell, or a backlight or a reflector used in an illumination system can be formed. In that case, the optical film according to the present invention can be installed on one side or both sides of the liquid crystal cell. The polarizing plates on both sides of the liquid crystal cell may be the same or different. Further, when forming a liquid crystal display device, for example, a single layer or a suitable part such as a diffusing plate, an antiglare layer, an antireflection film, a protective plate, a prism array, a lens array sheet, a light diffusing plate, a backlight, etc. Two or more layers can be arranged. In the backlight, a diffusion plate, a prism sheet, a light guide plate, a cold cathode tube lamp house, or the like may be used. The arrangement order and the number of the diffusion plate and the prism sheet are not particularly limited.

次いで有機エレクトロルミネセンス装置(有機EL表示装置)について説明する。一般に、有機EL表示装置は、透明基板上に透明電極と有機発光層と金属電極とを順に積層して発光体(有機エレクトロルミネセンス発光体)を形成している。ここで、有機発光層は、種々の有機薄膜の積層体であり、例えばトリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性の有機固体からなる発光層との積層体や、あるいはこのような発光層とペリレン誘導体等からなる電子注入層の積層体や、またあるいはこれらの正孔注入層、発光層、および電子注入層の積層体等、種々の組み合わせをもった構成が知られている。   Next, an organic electroluminescence device (organic EL display device) will be described. Generally, in an organic EL display device, a transparent electrode, an organic light emitting layer, and a metal electrode are sequentially laminated on a transparent substrate to form a light emitter (organic electroluminescent light emitter). Here, the organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative and the like and a light emitting layer made of a fluorescent organic solid such as anthracene, Alternatively, a structure having various combinations such as a laminate of such a light emitting layer and an electron injection layer composed of a perylene derivative or the like, or a laminate of these hole injection layer, light emitting layer, and electron injection layer is known. It has been.

有機EL表示装置は、透明電極と金属電極とに電圧を印加することによって、有機発光層に正孔と電子とが注入され、これら正孔と電子との再結合によって生じるエネルギーが蛍光物資を励起し、励起された蛍光物質が基底状態に戻るときに光を放射する、という原理で発光する。途中の再結合というメカニズムは、一般のダイオードと同様であり、このことからも予想できるように、電流と発光強度は印加電圧に対して整流性を伴う強い非線形性を示す。   In organic EL display devices, holes and electrons are injected into the organic light-emitting layer by applying a voltage to the transparent electrode and the metal electrode, and the energy generated by recombination of these holes and electrons excites the phosphor material. Then, light is emitted on the principle that the excited fluorescent material emits light when returning to the ground state. The mechanism of recombination in the middle is the same as that of a general diode, and as can be predicted from this, the current and the emission intensity show strong nonlinearity with rectification with respect to the applied voltage.

有機EL表示装置においては、有機発光層での発光を取り出すために、少なくとも一方の電極が透明でなくてはならず、通常酸化インジウムスズ(ITO)などの透明導電体で形成した透明電極を陽極として用いている。一方、電子注入を容易にして発光効率を上げるには、陰極に仕事関数の小さな物質を用いることが重要で、通常Mg−Ag、Al−Liなどの金属電極を用いている。   In an organic EL display device, in order to extract light emitted from the organic light emitting layer, at least one of the electrodes must be transparent, and a transparent electrode usually formed of a transparent conductor such as indium tin oxide (ITO) is used as an anode. It is used as. On the other hand, in order to facilitate electron injection and increase luminous efficiency, it is important to use a material having a small work function for the cathode, and usually metal electrodes such as Mg—Ag and Al—Li are used.

このような構成の有機EL表示装置において、有機発光層は、厚さ10nm程度ときわめて薄い膜で形成されている。このため、有機発光層も透明電極と同様、光をほぼ完全に透過する。その結果、非発光時に透明基板の表面から入射し、透明電極と有機発光層とを透過して金属電極で反射した光が、再び透明基板の表面側へと出るため、外部から視認したとき、有機EL表示装置の表示面が鏡面のように見える。   In the organic EL display device having such a configuration, the organic light emitting layer is formed of a very thin film having a thickness of about 10 nm. For this reason, the organic light emitting layer transmits light almost completely like the transparent electrode. As a result, light that is incident from the surface of the transparent substrate at the time of non-light emission, passes through the transparent electrode and the organic light emitting layer, and is reflected by the metal electrode is again emitted to the surface side of the transparent substrate. The display surface of the organic EL display device looks like a mirror surface.

電圧の印加によって発光する有機発光層の表面側に透明電極を備えるとともに、有機発光層の裏面側に金属電極を備えてなる有機エレクトロルミネセンス発光体を含む有機EL表示装置において、透明電極の表面側に偏光板を設けるとともに、これら透明電極と偏光板との間に位相差板を設けることができる。   In an organic EL display device comprising an organic electroluminescent light emitting device comprising a transparent electrode on the surface side of an organic light emitting layer that emits light upon application of a voltage and a metal electrode on the back side of the organic light emitting layer, the surface of the transparent electrode While providing a polarizing plate on the side, a retardation plate can be provided between the transparent electrode and the polarizing plate.

位相差板および偏光板は、外部から入射して金属電極で反射してきた光を偏光する作用を有するため、その偏光作用によって金属電極の鏡面を外部から視認させないという効果がある。特に、位相差板を1/4波長板で構成し、かつ偏光板と位相差板との偏光方向のなす角をπ/4に調整すれば、金属電極の鏡面を完全に遮蔽することができる。   Since the retardation plate and the polarizing plate have a function of polarizing light incident from the outside and reflected by the metal electrode, there is an effect that the mirror surface of the metal electrode is not visually recognized by the polarization action. In particular, the mirror surface of the metal electrode can be completely shielded by configuring the retardation plate with a quarter-wave plate and adjusting the angle formed by the polarization direction of the polarizing plate and the retardation plate to π / 4. .

すなわち、この有機EL表示装置に入射する外部光は、偏光板により直線偏光成分のみが透過する。この直線偏光は位相差板により一般に楕円偏光となるが、とくに位相差板が1/4波長板でしかも偏光板と位相差板との偏光方向のなす角がπ/4のときには円偏光となる。   That is, only the linearly polarized light component of the external light incident on the organic EL display device is transmitted by the polarizing plate. This linearly polarized light becomes generally elliptically polarized light by the phase difference plate, but becomes circularly polarized light particularly when the phase difference plate is a quarter wavelength plate and the angle formed by the polarization direction of the polarizing plate and the phase difference plate is π / 4. .

この円偏光は、透明基板、透明電極、有機薄膜を透過し、金属電極で反射して、再び有機薄膜、透明電極、透明基板を透過して、位相差板に再び直線偏光となる。そして、この直線偏光は、偏光板の偏光方向と直交しているので、偏光板を透過できない。その結果、金属電極の鏡面を完全に遮蔽することができる。   This circularly polarized light is transmitted through the transparent substrate, the transparent electrode, and the organic thin film, is reflected by the metal electrode, is again transmitted through the organic thin film, the transparent electrode, and the transparent substrate, and becomes linearly polarized light again on the retardation plate. And since this linearly polarized light is orthogonal to the polarization direction of a polarizing plate, it cannot permeate | transmit a polarizing plate. As a result, the mirror surface of the metal electrode can be completely shielded.

以下に本発明を実施例および比較例をあげて具体的に説明する。なお、各例中%は重量%である。 The present invention will be specifically described below with reference to examples and comparative examples. In each example,% is% by weight.

(偏光子の作製)
面内の100mmの範囲内において、厚みバラツキの極大値と極小値との差の最大値が1.2μmのポリビニルアルコール系フィルム原反((株)クラレ製,ビニロンフィルムVF−9P75RS)を用いた。当該原反に対し、まず、膨潤工程を施した。膨潤工程は、30℃の純水中に120秒間浸漬しながら、延伸倍率2倍で延伸しながら行った。次いで、染色工程を施した。染色工程は、染色浴(ヨウ素とヨウ化カリウムがそれぞれ1:10の割合(重量)で解かした水溶液,濃度は最終単体透過率が44.0%になるように調整。)に50秒間浸漬しながら、延伸倍率1.5倍で延伸しながら行った。次いで、ホウ酸架橋工程を施した。ホウ酸架橋工程は、ホウ酸架橋浴(30℃,ホウ酸濃度5%,ヨウ化カリウム濃度2%)に浸漬しながら延伸倍率1.1倍で延伸しながら行った。次いで、延伸工程を施した。延伸工程は延伸浴(60℃,ホウ酸濃度5%,ヨウ化カリウム濃度5%)に浸漬しながら延伸倍率1.8倍で延伸しながら行った。次いで、水洗工程を施した。水洗工程は、水洗浴(ヨウ化カリウム濃度5%)に5秒間浸漬しながら、トータルの延伸倍率が6.1倍になるように延伸しながら行った。次いで、水分率が20%になるように制御しながら乾燥した。得られた延伸フィルム(偏光子)は、原反に対し、42%、厚みは39%であった。
(Production of polarizer)
Within the in-plane range of 100 mm, a polyvinyl alcohol film original fabric (manufactured by Kuraray Co., Ltd., vinylon film VF-9P75RS) having a maximum difference between thickness maximum and minimum values of 1.2 μm was used. . First, a swelling process was performed on the original fabric. The swelling process was performed while being stretched at a stretch ratio of 2 while being immersed in pure water at 30 ° C. for 120 seconds. Next, a dyeing process was performed. The dyeing process is carried out for 50 seconds in a dyeing bath (an aqueous solution in which iodine and potassium iodide are dissolved at a ratio (weight) of 1:10, respectively, and the concentration is adjusted so that the final simple substance transmittance is 44.0%). However, it was carried out while stretching at a stretch ratio of 1.5. Next, a boric acid crosslinking step was performed. The boric acid crosslinking step was carried out while being stretched at a draw ratio of 1.1 times while being immersed in a boric acid crosslinking bath (30 ° C., boric acid concentration 5%, potassium iodide concentration 2%). Subsequently, the extending | stretching process was performed. The stretching process was performed while stretching at a stretching ratio of 1.8 times while being immersed in a stretching bath (60 ° C., boric acid concentration 5%, potassium iodide concentration 5%). Subsequently, the water washing process was performed. The water washing step was performed while being soaked in a water washing bath (potassium iodide concentration 5%) for 5 seconds while stretching so that the total stretching ratio was 6.1 times. Subsequently, it dried, controlling so that a moisture content might be 20%. The obtained stretched film (polarizer) was 42% and the thickness was 39% with respect to the original fabric.

(保護フィルムA)
イソブテンおよびN−メチルマレイミドからなる交互共重合体(N−メチルマレイミド含量50モル%、ガラス転移温度157℃)100重量部(60重量%)と、アクリロニトリルおよびスチレンの含量がそれぞれ27重量%および73重量%であるスチレンおよびアクリルニトリルからなる熱可塑性共重合体67重量部(40重量%)とを溶融混練してペレットを作製した。Tダイを備えた溶融押出機にこのペレットを供給して、厚さ100μmの原反フィルムを得た。この原反フィルムを延伸速度100cm/分、延伸倍率1.45倍、延伸温度162℃の条件で自由端縦一軸で延伸し、次いで同様の延伸条件で先の延伸方法とは直交する方向に自由端一軸延伸を行って厚さ49μmの延伸フィルム(保護フィルムA)を得た。保護フィルムAの面内位相差Reは1.1nm、厚み方向位相差Rthは−2.8nmであった。なお、保護フィルムの面内位相差Re、厚み方向位相差Rthは、590nmにおける屈折率nx、ny、nzを自動複屈折測定装置(王子計測機器株式会社製,自動複屈折計KOBRA21ADH)により計測した値から算出した。
(Protective film A)
An alternating copolymer composed of isobutene and N-methylmaleimide (N-methylmaleimide content 50 mol%, glass transition temperature 157 ° C.) 100 parts by weight (60% by weight), and acrylonitrile and styrene contents 27% by weight and 73%, respectively Pellets were prepared by melting and kneading 67% by weight (40% by weight) of a thermoplastic copolymer composed of styrene and acrylonitrile in an amount of% by weight. The pellets were supplied to a melt extruder equipped with a T die to obtain a raw film having a thickness of 100 μm. The original film was stretched uniaxially at the free end under the conditions of a stretching speed of 100 cm / min, a stretching ratio of 1.45 times, and a stretching temperature of 162 ° C., and then free in the direction perpendicular to the previous stretching method under the same stretching conditions. Uniaxial stretching was performed to obtain a stretched film (protective film A) having a thickness of 49 μm. The in-plane retardation Re of the protective film A was 1.1 nm, and the thickness direction retardation Rth was −2.8 nm. The in-plane retardation Re and the thickness direction retardation Rth of the protective film were measured with an automatic birefringence measuring device (manufactured by Oji Scientific Instruments, automatic birefringence meter KOBRA21ADH) at 590 nm. Calculated from the values.

また保護フィルムAの光弾性係数の絶対値は1.9×10−13cm/dyeであった。なお、光弾性係数はフィルムに応力をかけたときの位相差により測定される値である。光弾性係数の測定は、具体的には、東京都立科学技術大学紀要第10巻(1996.12)第54頁〜第56頁に記載の測定法に基づく。 Moreover, the absolute value of the photoelastic coefficient of the protective film A was 1.9 * 10 < -13 > cm < 2 > / dye. The photoelastic coefficient is a value measured by a phase difference when stress is applied to the film. Specifically, the measurement of the photoelastic coefficient is based on the measurement method described in Tokyo Metropolitan University of Science and Technology Bulletin 10 (1996.12), pages 54-56.

当該保護フィルムAを、40℃で濃度5%の水酸化ナトリウム水溶液で2分間浸漬し、さらに純水により30℃で1分間水洗した後、100℃間2分間乾燥したケン化処理して用いた。   The protective film A was immersed in a 5% strength aqueous sodium hydroxide solution at 40 ° C. for 2 minutes, further washed with pure water at 30 ° C. for 1 minute, and then dried for 2 minutes at 100 ° C. and used for saponification treatment. .

(保護フィルムB)
厚さ80μmのトリアセチルセルロースフィルム(富士写真フィルム製,TD−80U)を40℃で濃度5%の水酸化ナトリウム水溶液で2分間浸漬し、さらに純水により30℃で1分間水洗した後、100℃間2分間乾燥したケン化処理して用いた。当該保護フィルムBの面内位相差Reは3nm、厚み方向位相差Rthは−60nmであった。
(Protective film B)
An 80 μm thick triacetylcellulose film (manufactured by Fuji Photo Film, TD-80U) was immersed in an aqueous sodium hydroxide solution at a concentration of 5% at 40 ° C. for 2 minutes, and further washed with pure water at 30 ° C. for 1 minute. It was used after saponification treatment which was dried for 2 minutes between ° C. The protective film B had an in-plane retardation Re of 3 nm and a thickness direction retardation Rth of −60 nm.

(輝度向上フィルムA)
3M社製のDBEF(異方性多重薄膜)を用いた。
(Brightness enhancement film A)
DBEF (anisotropic multiple thin film) manufactured by 3M was used.

(輝度向上フィルムB)
日東電工社製のPCF400(コレステリック液晶とλ/4板の積層物)を用いた。
(Brightness enhancement film B)
PCF400 (a laminate of cholesteric liquid crystal and λ / 4 plate) manufactured by Nitto Denko Corporation was used.

実施例1
上記偏光子の両面に保護フィルムAを、ポリビニルアルコール(日本合成化学社製,NH−18)75部とグリオキザール25部を含有する濃度5%水溶液により貼合し、50℃5分間乾燥させて偏光板を得た。当該偏光板と輝度向上フィルムAとを、アクリル系の透明粘着剤で貼合わせ、図1に示す高輝度偏光板を得た。高輝度偏光板において、偏光板の吸収軸と輝度向上フィルムAの透過軸は直交するように貼合わせた。
Example 1
The protective film A is bonded to both sides of the polarizer with a 5% strength aqueous solution containing 75 parts of polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Co., Ltd., NH-18) and 25 parts of glyoxal, and dried by polarization at 50 ° C. for 5 minutes. I got a plate. The said polarizing plate and the brightness improvement film A were bonded together with the acrylic transparent adhesive, and the high-intensity polarizing plate shown in FIG. 1 was obtained. In the high-brightness polarizing plate, the polarizing plate was bonded so that the absorption axis of the polarizing plate and the transmission axis of the brightness enhancement film A were orthogonal.

実施例2
上記偏光子の両面に保護フィルムAを、ポリビニルアルコール(日本合成化学社製,NH−18)75部とグリオキザール25部を含有する濃度5%水溶液により貼合し、50℃5分間乾燥させて偏光板を得た。当該偏光板と輝度向上フィルムAとを、アクリル系の透明粘着剤で貼合わせ、図2に示す高輝度偏光板を得た。高輝度偏光板において、偏光板の吸収軸に対し、輝度向上フィルムBのλ/4板の遅相軸を45°傾けて貼合わせた。輝度向上フィルムBは、λ/4板の側を偏光板に貼合わせた。
Example 2
The protective film A is bonded to both sides of the polarizer with a 5% strength aqueous solution containing 75 parts of polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Co., Ltd., NH-18) and 25 parts of glyoxal. I got a plate. The said polarizing plate and the brightness improvement film A were bonded together with the acrylic transparent adhesive, and the high-intensity polarizing plate shown in FIG. 2 was obtained. In the high-brightness polarizing plate, the slow axis of the λ / 4 plate of the brightness enhancement film B was bonded to the absorption axis of the polarizing plate by 45 °. The brightness enhancement film B was bonded to the polarizing plate on the side of the λ / 4 plate.

比較例1
実施例1において、保護フィルムAを保護フィルムBに変えたこと以外は実施例1と同様にして、高輝度偏光板を得た。
Comparative Example 1
In Example 1, except having changed the protective film A into the protective film B, it carried out similarly to Example 1, and obtained the high-intensity polarizing plate.

比較例2
実施例2において、保護フィルムAを保護フィルムBに変えたこと以外は実施例2と同様にして、高輝度偏光板を得た。
Comparative Example 2
In Example 2, a high-intensity polarizing plate was obtained in the same manner as in Example 2 except that the protective film A was changed to the protective film B.

実施例および比較例で得られた高輝度偏光板に付いて下記評価を行った。結果を表1に示す。   The following evaluation was performed on the high-intensity polarizing plates obtained in Examples and Comparative Examples. The results are shown in Table 1.

(色度変化の測定)
高輝度偏光板の輝度向上フィルム側を、ラミネーターによりガラス板に貼合した。それを、輝度向上フィルム側がバックライト側になるようにバックライト上に配置した。バックライトとしては、IBM社製のThinkPat A30に用いられるLCD用バックライトを用いた。高輝度偏光板の正面に対し、法線方向(0°)と、法線方向に対し傾斜した方向(70°)との色度変化を測定した。色度変化の測定はTOPCON社製のBM−7により行った。
(Measurement of chromaticity change)
The brightness enhancement film side of the high-intensity polarizing plate was bonded to a glass plate with a laminator. It was placed on the backlight so that the brightness enhancement film side was the backlight side. As the backlight, an LCD backlight used for ThinkPat A30 manufactured by IBM was used. The change in chromaticity between the normal direction (0 °) and the direction inclined with respect to the normal direction (70 °) with respect to the front surface of the high-intensity polarizing plate was measured. The change in chromaticity was measured with BM-7 manufactured by TOPCON.

Figure 0004880719
Figure 0004880719

シフト量は、正面(0°)と斜め(70°)のX軸、Y軸の色度値の算出したものである。これらは絶対値で評価する。実施例1と比較例1、実施例2と比較例2について、シフト量をそれぞれ対比すると、実施例のシフト量は比較例のシフト量よりも明らかに小さいことが分かる。   The shift amount is calculated from the chromaticity values of the front (0 °) and diagonal (70 °) X and Y axes. These are evaluated as absolute values. When the shift amounts of Example 1 and Comparative Example 1 and Example 2 and Comparative Example 2 are compared, it can be seen that the shift amount of the Example is clearly smaller than the shift amount of the Comparative Example.

Claims (11)

液晶セルの少なくとも一方の面に、高輝度偏光板が貼合されている液晶パネルであって、
前記高輝度偏光板は、偏光子の片面または両面に保護フィルムが設けられている偏光板と、輝度向上フィルムとが、前記保護フィルムを挟んで粘着剤層を介して積層されているものであり、
前記高輝度偏光板は、液晶表示装置において液晶セルとバックライトの間に、前記高輝度偏光板中の偏光板が液晶セル側になるように配置されており、かつ、
前記保護フィルムが、面内屈折率が最大となる方向をX軸、X軸に垂直な方向をY軸、フィルムの厚さ方向をZ軸とし、それぞれの軸方向の屈折率をnx、ny、nz、保護フィルムの厚さをd(nm)とした場合に、
面内位相差Re=(nx−ny)×dが、0〜10nmであり、
かつ厚み方向位相差Rth={(nx+ny)/2−nz)×d)が、−30〜10nmであることを特徴とする液晶パネル。
A liquid crystal panel in which a high-intensity polarizing plate is bonded to at least one surface of a liquid crystal cell,
The high-intensity polarizing plate is a polarizing plate in which a protective film is provided on one side or both sides of a polarizer, and a luminance enhancement film are laminated via an adhesive layer with the protective film interposed therebetween. ,
The high-intensity polarizing plate is disposed between a liquid crystal cell and a backlight in a liquid crystal display device so that the polarizing plate in the high-intensity polarizing plate is on the liquid crystal cell side, and
In the protective film, the direction in which the in-plane refractive index is the maximum is the X axis, the direction perpendicular to the X axis is the Y axis, the thickness direction of the film is the Z axis, and the refractive indexes in the respective axial directions are nx, ny, nz, when the thickness of the protective film is d (nm),
In-plane retardation Re = (nx−ny) × d is 0 to 10 nm,
And a thickness direction retardation Rth = {(nx + ny) / 2−nz) × d) is −30 to 10 nm.
保護フィルムが、(A)側鎖に置換および/または非置換イミド基を有する熱可塑性樹脂と、(B)側鎖に置換および/または非置換フェニル基およびニトリル基を有する熱可塑性樹脂を含有してなることを特徴とする請求項1記載の液晶パネル。   The protective film contains (A) a thermoplastic resin having a substituted and / or unsubstituted imide group in the side chain, and (B) a thermoplastic resin having a substituted and / or unsubstituted phenyl group and a nitrile group in the side chain. The liquid crystal panel according to claim 1, wherein 保護フィルムが、二軸延伸されたフィルムであることを特徴とする請求項1または2記載の液晶パネル。   The liquid crystal panel according to claim 1, wherein the protective film is a biaxially stretched film. 偏光子が、ヨウ素を含有するポリビニルアルコール系フィルムであることを特徴とする請求項1〜3のいずれかに記載の液晶パネル。   The liquid crystal panel according to claim 1, wherein the polarizer is a polyvinyl alcohol film containing iodine. 輝度向上フィルムが、異方性反射偏光子であることを特徴とする請求項1〜4のいずれかに記載の液晶パネル。   The liquid crystal panel according to claim 1, wherein the brightness enhancement film is an anisotropic reflective polarizer. 異方性反射偏光子が、コレステリック液晶層とλ/4板の複合体であることを特徴とする請求項5記載の液晶パネル。   6. The liquid crystal panel according to claim 5, wherein the anisotropic reflective polarizer is a composite of a cholesteric liquid crystal layer and a λ / 4 plate. 異方性反射偏光子が、一方の振動方向の直線偏光を透過し、他方の振動方向の直線偏光を反射する異方性多重薄膜であることを特徴とする請求項5記載の液晶パネル。   6. The liquid crystal panel according to claim 5, wherein the anisotropic reflection polarizer is an anisotropic multiple thin film that transmits linearly polarized light in one vibration direction and reflects linearly polarized light in the other vibration direction. 異方性反射偏光子が、反射グリッド偏光子であることを特徴とする請求項5記載の液晶パネル。   6. The liquid crystal panel according to claim 5, wherein the anisotropic reflective polarizer is a reflective grid polarizer. 輝度向上フィルムが、異方性散乱偏光子であることを特徴とする請求項1〜4のいずれかに記載の液晶パネル。   The liquid crystal panel according to claim 1, wherein the brightness enhancement film is an anisotropic scattering polarizer. 高輝度偏光板に、さらに少なくとも1枚の光学フィルムが組み合わされていることを特徴とする請求項1〜9のいずれかに記載の液晶パネル。   The liquid crystal panel according to claim 1, wherein at least one optical film is further combined with the high-intensity polarizing plate. 請求項1〜10のいずれかに記載の液晶パネルが用いられていることを特徴とする液晶表示装置。   A liquid crystal display device using the liquid crystal panel according to claim 1.
JP2009096213A 2009-04-10 2009-04-10 Liquid crystal panel and liquid crystal display device Expired - Lifetime JP4880719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009096213A JP4880719B2 (en) 2009-04-10 2009-04-10 Liquid crystal panel and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009096213A JP4880719B2 (en) 2009-04-10 2009-04-10 Liquid crystal panel and liquid crystal display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003061766A Division JP4676678B2 (en) 2003-03-07 2003-03-07 High brightness polarizing plate

Publications (2)

Publication Number Publication Date
JP2009157392A JP2009157392A (en) 2009-07-16
JP4880719B2 true JP4880719B2 (en) 2012-02-22

Family

ID=40961401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009096213A Expired - Lifetime JP4880719B2 (en) 2009-04-10 2009-04-10 Liquid crystal panel and liquid crystal display device

Country Status (1)

Country Link
JP (1) JP4880719B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220116023A (en) 2019-12-18 2022-08-19 스미또모 가가꾸 가부시키가이샤 Composite Polarizer and Liquid Crystal Display

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101696970B1 (en) 2014-03-31 2017-01-17 제일모직주식회사 Polarizing plate, method for manufacturing the same and optical display comprising the same
JP2016018021A (en) * 2014-07-07 2016-02-01 コニカミノルタ株式会社 Circularly polarizing plate, organic electroluminescence display device, and manufacturing method for circularly polarizing plate
JP6462254B2 (en) * 2014-07-11 2019-01-30 住友化学株式会社 Polarizing plate, high-intensity polarizing plate, and IPS mode liquid crystal display device
KR102163901B1 (en) * 2014-08-13 2020-10-12 엘지디스플레이 주식회사 Liquid crystal display device having reflective polarizer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303725A (en) * 2001-04-06 2002-10-18 Nitto Denko Corp Polarizing film, optical film and liquid crystal display device both using the polarizing film
JP2002328233A (en) * 2001-05-02 2002-11-15 Kanegafuchi Chem Ind Co Ltd Transparent film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220116023A (en) 2019-12-18 2022-08-19 스미또모 가가꾸 가부시키가이샤 Composite Polarizer and Liquid Crystal Display

Also Published As

Publication number Publication date
JP2009157392A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
JP4676678B2 (en) High brightness polarizing plate
JP4583982B2 (en) Polarizing plate, optical film and image display device
JP4017156B2 (en) Adhesive polarizing plate with optical compensation layer and image display device
JP3921155B2 (en) Manufacturing method of polarizing plate
WO2006054597A1 (en) Optical compensation layer-carrying polarizing plate, liquid crystal panel, liquid crystal display unit, image display unit and production method of optical compensation layer-carrying polarizing plate
JP3960520B2 (en) Polarizer, polarizing plate and image display device
JP2004184809A (en) Method for manufacturing polarizing plate, polarizing plate, and image display device using the same
JP2006099076A (en) Polarizer, polarizing plate, optical film and image display device
JP3724801B2 (en) Polarizer, optical film, and image display device
JP2005266696A (en) Circular polarizing plate, optical film and image display device
WO2003091761A1 (en) Light-diffusing sheet, optical element, and image display
JP2005283800A (en) Elliptical polarizing plate, optical film and picture display device
JP4880719B2 (en) Liquid crystal panel and liquid crystal display device
JP2005037890A (en) Method for manufacturing polarizer, polarizer, optical film and image display apparatus
JP3779723B2 (en) Polarizer, optical film, and image display device
JP2004177781A (en) Elliptically polarized plate and image display
JP2006039211A (en) Laminated retardation plate, polarizer with the retardation plate, image display device, and liquid crystal display
JP2005292719A (en) Polarizer, polarizing plate, optical film and picture display device
JP2005283839A (en) Optical film and image display apparatus
JP2004020672A (en) Polarizing plate and its manufacturing method
JP4197239B2 (en) Polarizer, production method thereof, polarizing plate, optical film, and image display device
JP2004126355A (en) Polarizing plate, optical film, and picture display apparatus
JP2004094191A (en) Light diffusing sheet, optical element, and image display device
JP4233443B2 (en) Optical film and image display device
JP2005202368A (en) Polarizing plate, optical film, and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111201

R150 Certificate of patent or registration of utility model

Ref document number: 4880719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term