JP4878079B2 - Water treatment sludge treatment method and treatment apparatus - Google Patents

Water treatment sludge treatment method and treatment apparatus Download PDF

Info

Publication number
JP4878079B2
JP4878079B2 JP2001014085A JP2001014085A JP4878079B2 JP 4878079 B2 JP4878079 B2 JP 4878079B2 JP 2001014085 A JP2001014085 A JP 2001014085A JP 2001014085 A JP2001014085 A JP 2001014085A JP 4878079 B2 JP4878079 B2 JP 4878079B2
Authority
JP
Japan
Prior art keywords
sludge
heating
dehydrator
preheating
filtrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001014085A
Other languages
Japanese (ja)
Other versions
JP2002210499A (en
JP2002210499A5 (en
Inventor
崇 越智
陽一 山根
宏紀 青柳
利浩 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP2001014085A priority Critical patent/JP4878079B2/en
Publication of JP2002210499A publication Critical patent/JP2002210499A/en
Publication of JP2002210499A5 publication Critical patent/JP2002210499A5/ja
Application granted granted Critical
Publication of JP4878079B2 publication Critical patent/JP4878079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、上水道の処理場で発生する汚泥の処理において、加温により脱水性能の向上を図るとともに熱回収を行うシステムに関するものである。
【0002】
【従来の技術】
従来、上水汚泥等の脱水は、無薬注あるいは消石灰等の脱水助剤を添加して加圧脱水等により処理されている。最近では、脱水ケーキの再利用を目的に無薬注で脱水するのが主流である。
【0003】
無薬注で脱水する場合、通常の加圧脱水機では、難脱水性汚泥を処理することが困難となるので、これに対応するため、特開昭62−57622号および64−30614号公報に示される電気浸透脱水方式や、汚泥を加温槽で加温して脱水性を向上させた後に加圧脱水機に供給して無加温で脱水する方式が採用されている。
【0004】
しかしながら、電気浸透脱水方式は、脱水機の構造が複雑であり、電気設備容量および使用電力量が増大するという欠点がある。また、汚泥を加温槽で加温した後に加圧脱水機に供給して無加温で脱水する方式の場合は、加温槽での加温熱量が膨大なものとなるという欠点がある。
【0005】
一方、従来、脱水機にて無加温で脱水した脱水ケーキをロータリーキルン乾燥機(場合によりスチームチューブドライヤー、パドルミキサー型ドライヤーを使用する)により加熱乾燥させたものを園芸用土または建設資材用土として利用することがある。この乾燥機にかける理由は、汚泥に混入する雑草種子を不活性化させることにより、園芸用土または建設資材用土とした場合における雑草の発芽を防止するためである。
【0006】
しかしながら、この乾燥のために外部から与える熱量は膨大であり、また、大型の乾燥機も必要となる。しかも、乾燥機で乾燥する場合には、乾燥特性のばらつきにより脱水ケーキの表面をたとえば約80℃程度にしたとしても、内部は60℃程度である場合もある。殆どの雑草種子を完全に死滅させるまたは不活性化させるためには、種子全体が80℃以上に加熱することが好ましいとされており、従来の乾燥機による乾燥では、脱水ケーキ中に存在する雑草種子を完全に死滅または不活性化させることは不十分である。
【0007】
【発明が解決しようとする課題】
上記の諸問題に鑑みて、本発明者らは、汚泥を加温しつつ脱水することが可能な加圧脱水機(以下、加温しつつ脱水可能な加圧脱水機を単に「加温脱水機」とも称する)を、特開2000−334221号および特開2000−334222号として提案した。この加温脱水機を用いた汚泥の処理方法は、脱水機内部で汚泥を加温しつつ脱水するため必要とする熱量が少なく、さらに過大な電力設備および熱源設備を必要としないという点で、非常に効果的な汚泥の処理方法である。また、脱水時に加温されるので、後に乾燥機で乾燥することなく、雑草種子の死滅が図られる点でも優れている。
【0008】
しかるに、加温脱水機を用いた処理方法における熱回収システムについてはいまだ構築されておらず、先の提案においても何等開示するところがない。本発明者らは、加温脱水機を用いた汚泥処理方法について研究を重ね、きわめて効率的な熱回収を図るシステムを構築することにより、濾過効率および熱効率をより向上させることが可能であることを知見した。
【0009】
そこで、本発明の第1の課題は、加温脱水機を用いた、上水汚泥の無薬注脱水において、わずかな設備の付加により、より有効な熱利用システムを構築するとともに、脱水効率および濾過速度を高めることにある。第2の課題は、園芸用土を得るシステムにおいて、雑草種子の死滅または不活性化を図るとともに、乾燥機を用いることなく有効な熱利用システムを構築することにある。
【0010】
【課題を解決するための手段】
上記課題を解決した本発明は次記のとおりである。なお、本発明の加圧脱水機における加温対象は、汚泥スラリー及び脱水ケーキの両者を含む意味である。
<請求項1項記載の発明>
上水汚泥を予熱加温した後、機内で汚泥を加温可能な加圧脱水機を用いて脱水するとともに、濾液のもっている熱を前記予熱加温に用いる上水汚泥の処理方法であって、
濾過時間より圧搾時間の方が長い脱水操作を行う下で、前記加圧脱水機による汚泥の加温を圧搾時のみとし、
圧搾前に排出される濾過濾液を用いて汚泥を予熱加温することはせず、その圧搾時に排出される濾液を用いて汚泥を予熱加温することを特徴とする上水汚泥の処理方法。
【0011】
<作用効果>
本発明に従って上水汚泥を予熱加温することで、脱水ケーキの含水率の低減、加圧脱水機での濾過・圧搾時間の短縮、脱水ケーキの剥離性の向上を図ることができる。その結果、加圧脱水機の処理量が向上する。これらの効果は、機内で汚泥を加温可能な加圧脱水機を用いることで、より顕著なものとしてあらわれる。濾液のもっている熱を汚泥の予熱加温に用いるのに十分な熱量を有する。したがって、濾液のもっている熱を汚泥の予熱加温に用いることにより、システム全体として後述の熱収支に示すようにきわめて優れたものとなる。
そして、水質の悪化に起因する難脱水性の上水汚泥であっても無薬注で脱水が可能である。
汚泥の予熱温度及び加圧脱水機内での加熱温度は、適宜選択できるが、汚泥を70℃以上に加温しつつ脱水することによって、汚泥に混入する、クリプトスポリジウム、および消毒抵抗性の強い細菌、ウィルス等の病原性微生物を確実に死滅させ、また汚泥中の雑草種子を不活性化させることができ、乾燥機にて乾燥することなく園芸用土または建設資材用土として利用することが可能となる。
さらに、濾過時間(たとえば5〜10分)より圧搾時間(15〜30分)の方が長い脱水操作を行う下では、濾過濾液より圧搾濾液の温度が高くなる。したがって、たとえば圧搾時に排出される圧搾濾液を用いて汚泥を予熱加温する場合の加圧脱水機に供給する燃料量を1とすると、濾過濾液を用いて汚泥を予熱加温する場合の加圧脱水機に供給する燃料量は1.3であり、使用燃料を低減できる。
【0012】
<請求項2項記載の発明>
前記加圧脱水機からの脱水ケーキを乾燥機にて乾燥することなく園芸用土または建設資材用土として利用する請求項1記載の上水汚泥の処理方法。
【0013】
<作用効果>
汚泥を十分な温度まで加温しておけば、加圧脱水機からの脱水ケーキは、乾燥機にて乾燥することなく園芸用土または建設資材用土として利用できる。
【0014】
<請求項3項記載の発明>
予熱用熱交換器と、機内で汚泥を加温可能な加圧脱水機とを上水汚泥の処理経路として順に備え、前記加圧脱水機の濾液が前記予熱用熱交換器に通され、前記汚泥の予熱加温に用いられる上水汚泥の処理装置であって、
濾過時間より圧搾時間の方が長い脱水操作を行う下で、前記加圧脱水機による汚泥の加温を圧搾時のみとし、
圧搾前に排出される濾過濾液を用いて汚泥を予熱加温することはせず、その圧搾時に排出される濾液を用いて汚泥を予熱加温することを特徴とする上水汚泥の処理装置。
【0015】
<作用効果>
請求項1記載の作用効果と同じ作用効果を奏する。
【0016】
【0017】
【0018】
【0019】
【0020】
【0021】
【0022】
【0023】
【0024】
【0025】
【0026】
【0027】
【0028】
なお、本発明にかかる加温脱水機は、特開2000−334221号および特開2000−334222号に開示される加温脱水機が好適ではあるが、これに限定されるものではない。
【0029】
【発明の実施の形態】
以下、比較例及び本発明の実施の形態を図面参照しながら以下に詳説する。
(比較例1)
比較例1のフローシートを図1に示す。上水汚泥S1は第1貯留槽10に貯留された後ポンプPによって、汚泥予熱用熱交換器20を通って第2貯留槽30に一時貯留される。次いで、この第2貯留槽からは、加温された汚泥S2がポンプPによって加温脱水機40に供給され、ここで加温用熱源50たとえばボイラによってたとえば60℃に加温しつつ脱水する。ここで、加温脱水機40における汚泥の加温温度および加温時間は対象汚泥などによって適宜変更させることができる。
【0030】
この加温脱水機40からの濾液Rは、濾液槽60で受けて、前記汚泥予熱用熱交換器20に流通させ汚泥Sの予熱加温に用いる。この予熱加温により汚泥Sの粘度が低下し、加温脱水機40での脱水処理性が向上する。さらに、加温脱水機40によって、汚泥が加温されつつ脱水されるので、濾液温度を高い温度で回収できる。さらに、加熱源が蒸気であることより処理系内は水のみが存在するので、無薬注脱水を行うことができる。最終的に排濾液R'は、排水沈殿池などに導く。
【0031】
得られる脱水ケーキCを、乾燥機を通すことなく脱水ケーキの全量または一部をそのまま他の用途、特に建設資材用土または園芸用土として外販する場合には、雑草種子を死滅または不活性化させるために、加温脱水機40における加温温度を60℃以上、より望ましくは70℃以上、特に80℃以上にするのが好適である。また、汚泥に混入する、クリプトスポリジウム、および消毒抵抗性の強い細菌、ウィルス等の病原性微生物などを確実に死滅させることができる。加温脱水機40内での汚泥の沸騰を防止し、円滑な汚泥の加温供給を行うために、前記加温温度は95℃が上限である。95℃以上の温度より過度に高い温度としても、必要な熱量の増大を招くのみであるために、一般には80〜85℃の温度範囲が好ましい。この場合において、汚泥の少なくとも加温時間は15分以上、特に30分以上が好ましい。
【0032】
(比較例2)
比較例2のフローシートを図2に示す。上水汚泥S1は第1貯留槽10に貯留された後、ポンプPによって、汚泥予熱用熱交換器20を通されて加温槽30hに貯留される。ここで加温用熱源50たとえばボイラで発生させた蒸気を直接噴き込んで加温汚泥S2をさらに40℃にまで加温した後、ポンプPによって加温脱水機40に供給する。ついで、この加温汚泥S3を加温脱水機40にて、前記ボイラの熱によって、さらに60℃に加温しつつ脱水する。ここで、加温脱水機40および加温槽30hにおける汚泥の加温温度および加温時間は対象汚泥などによって適宜変更させることができる。
【0033】
(実施の形態)
実施の形態は請求項1記載の発明の実施の形態である。そのフローシートを図3に示す。この実施の形態では、加温脱水機40における加温を圧搾時のみとし、その圧搾時に排出される圧搾濾液R2のみを、汚泥Sの予熱加温に用いる。圧搾前に排出される打込み(濾過)濾液R1は原水に混入する。その他の構成は比較例1と同様である。
【0034】
一般に、脱水機では、いわゆる打込み濾液R1が圧搾濾液R2とほぼ同量排出される。しかるに、濾過時間は短いために、打込み濾液R1は十分な熱量を持っていない。そこで、汚泥S2の予熱加温を圧搾時のみとし、圧搾濾液R2のみを汚泥予熱用熱交換器20に供給することでさらに熱効率が高まる。
【0035】
予熱加温を圧搾時のみに限定することなく、濾過開始時から予熱加温を開始してもよい。脱水機の濾室の保温性が高い場合には、熱効率の低下はさほど大きくはならない。濾過時間は5分程度、圧搾時間を10〜30分程度するのが望ましい。
【0036】
さらに、好適な例を一つあげれば、脱水機の濾室内を負圧化する手段を備え、圧搾前または圧搾時に汚泥の水分量を減少させることが可能な加温脱水機を用いる。かかる加温脱水機を用いて、まず、吸引によって汚泥S2の水分量を減少させ、その後に加温しつつ圧搾脱水する。このようにすると、短時間で汚泥の水分量を減少させることができ、予熱加温された汚泥の温度低下が少なくてすむとともに、汚泥の水分量も少なくなるので加温に必要となる熱量も少なくてすむようになる。
【0037】
(比較例3)
この比較例のフローシートを図4に示す。すなわち、汚泥予熱用熱交換器20と、外部熱源による汚泥加温槽30hと、機内で汚泥を加温可能な加温脱水機40とを上水汚泥の処理経路として順に備え、かつ濾液が流通される洗浄水予熱用熱交換器70を備えるものである。
【0038】
加温脱水機40の濾液は、汚泥予熱用熱交換器20に通され、汚泥の予熱加温に用いられ、かつ汚泥予熱用熱交換器20を流通した後の濾液が洗浄水予熱用熱交換器70に流通され、予熱後の洗浄水が加温脱水機40の(濾布)洗浄水として利用される構成としたものである。
【0039】
(比較例4)
この比較例のフローシートを図5に示す。すなわち、汚泥予熱用第1熱交換器21と、外部熱源による汚泥加温槽30hと、汚泥予熱用第2熱交換器22と、機内で汚泥を加温可能な加温脱水機40とを上水汚泥の処理経路として順に備え、かつ濾液が流通される洗浄水予熱用熱交換器70を備えるものである。
【0040】
加温脱水機40の濾液は、汚泥予熱用第2熱交換器22及び汚泥予熱用第1熱交換器21に順に通され、汚泥の予熱加温に用いられ、かつ汚泥予熱用第1熱交換器21を流通した後の濾液が洗浄水予熱用熱交換器70に流通され、予熱後の洗浄水が加温脱水機40の(濾布)洗浄水として利用される構成としたものである。
【0041】
(比較例及び従来例)
ここで、比較例1および比較例2と、従来例1および従来例2とを比較した結果を表1に示す。従来例1は、汚泥を加温せずに無薬注で脱水する処理方法。従来例2は、加温槽で加温して、脱水機では加温せずに脱水する処理方法である。
【0042】
【表1】

Figure 0004878079
【0043】
本発明の比較例1および2は、従来例と比較して優れた結果となっており、特に加温槽と加温脱水機とを組み合わせた比較例2では、従来例1および2と比較して、ランニングコストはほとんど変わらないものの、濾過速度は1.5倍以上向上し、脱水ケーキの水分は5%低減され、脱水機の必要濾過面積も25%低減されている。
【0044】
他方、図1〜図3に併せて熱収支例を示してあるように、また、図4及び図5には各部位での温度のみを示してあるように、本発明の実施の形態は熱効率においてきわめて優れたものであることが判明しよう。
【0045】
(装置例)
以下に図面を参照しながら本発明にかかる装置例を示す。なお、本発明は下記の装置の使用に限定されるものではない。本発明に好適な脱水機の例を図6および7に示す。
【0046】
加温脱水機40は、図示しない主梁上に図面の上左右方向に移動自在に配列された濾板を有するものである。各濾布4がわ面にダイアフラム2Eをそれぞれ設けた濾板2(以下、圧搾濾板ともいう)と、ダイアフラムを設けていない濾板3(以下、加温濾板ともいう)とを、水平方向に交互に配列しており、濾板の配列形態からは水平型に属するものである。また、この脱水機は、いわゆる凹版型に属するものであり、各濾板2,3には隣の濾板3,2と対向する面に凹部2a,3aがそれぞれ形成されており、隣り合う濾板2,3間に、1対の濾布4,4…がそれぞれ吊り下げられている。これら濾板2,3…は、水平方向に伸縮するシリンダーにより相互間隔が調節されるように構成されており、シリンダーの伸張により隣り合う濾板2,3が接触し、締め付けられ、隣り合う濾板2,3間において1対の濾布4,4により取り囲まれた濾室6が形成される。この濾室6内にはスラッジ供給路がそれぞれ通じている。
【0047】
このうち、各圧搾濾板2における濾布4,4外面と対面する凹部2a,2aには、表面に濾液溝2e,2e…が形成されたダイアフラム2E,2Eがそれぞれ配され、このダイアフラム2E,2Eと圧搾濾板2外面との各間に流体室2D,2Dがそれぞれ形成されている。各流体室2D,2D内には、内部流体給排路2Fがそれぞれ通じている。したがって、流体室2D,2D内への流体Fの供給・排出が可能なようになっている。また、ダイアフラム2E,2Eの濾液溝2e,2e…とこれに対面する濾布4外面との隙間SP1(濾液溝2e,2e…内含む)には、その下端部おいて内部濾液排出路2H,2Hがそれぞれ通じており、上端部において内部圧気供給路2Jがそれぞれ通じている。
【0048】
一方、加温濾板3は、濾布4,4外面と対面する凹部3a,3a表面に濾液溝3e,3e…がそれぞれ形成されており、圧搾濾板2のように、対向する濾布4外面との間にダイアフラムが配されていない。また加温濾板3は、外縁部を除く部分が中空3sとされている。この中空スペース3sは加温流体の流通路となる。さらに、濾液溝3e,3e…とこれに対面する濾布4外面との隙間SP2(濾液溝3e,3e…内含む)には、その下端部おいて内部濾液排出路3Hがそれぞれ通じており、上端部において内部圧気供給路3Jがそれぞれ通じている。
【0049】
かくして、本加温脱水機40では、濾室6を挟んで一方側の濾板2とこれと対向する濾布4外面との間には、濾布内面がわ4Sに供給したスラッジを圧搾するダイアフラム2Eを配し、このダイアフラム2Eと一方側の濾板2との間を流体室2Dとなす一方で、他方側の濾板3とこれと対向する濾布4外面との間にはダイアフラムを配さず、かつ他方側の濾板3には、濾布内面がわ4Sに供給したスラッジを加温する加温手段(3sは加温手段を構成する)を設けた構成となっており、濾室6内に供給された汚泥Sが加温されつつ加圧脱水される。
【0050】
さらに本脱水機40は、図示はしないが、濾液槽に真空ポンプが連結され、この真空ポンプにより、濾液槽、濾液排出路2H,3Hを介して、濾液溝2e,3eと濾布2B外面との隙間SP1,SP2を負圧にできるように構成されている。しかも、圧気供給路2J,3Jおよび図示しない上部吸引路を介して、濾液溝2e,3eと濾布2B外面との隙間SP1,SP2を隙間上部から吸引し負圧にできるようにされており、被脱水物の高効率かつ均等な脱水が可能となっている。
【0051】
本発明にかかる熱交換器としては、多管式熱交換器、コイル式熱交換器、多重効用蒸発器、多段フラッシュ蒸発等を含めた広義の設備をいう。所定温度までの加熱加温熱源としては、浄水場に設置されたまたは設置するボイラ、コージェネ排気熱、焼却廃熱、ソーラ温水等を利用することができる。
【0052】
本発明において、加温脱水機の前段に加温槽を配設する場合には、図8に示す蒸気吹込み設備を用いるのが最適である。すなわち、加温槽30hにボイラ50からの発生蒸気を蒸気調整弁50bを通して直接汚泥S2に吹込むものである。この場合において、汚泥は攪拌機Mにより攪拌しながら、その温度を温度計T1により検出し、温度調節計T2により蒸気調整弁50bを通る蒸気量を調節するものである。
【0053】
【発明の効果】
以上のとおり、本発明によれば、上水汚泥の無薬注脱水において、わずかな設備の付加により、優れた熱利用システムを構築することができるとともに、脱水効率および濾過速度を高めることができるなどの利点がもたらされる。
【図面の簡単な説明】
【図1】 比較例1のフローシートである。
【図2】 比較例2のフローシートである。
【図3】 実施の形態のフローシートである。
【図4】 比較例3のフローシートである。
【図5】 比較例4のフローシートである。
【図6】 本発明にかかる脱水機の要部概要図である。
【図7】 その脱水機の要部拡大図である。
【図8】 加温例の概要図である。
【符号の説明】
10…第1貯留槽、20…汚泥予熱用熱交換器、21…汚泥予熱用第1熱交換器、22…汚泥予熱用第2熱交換器、30…第2貯留槽、30h…加温槽、40…機内で汚泥を加温可能な加式圧脱水機(加温脱水機)、50…ボイラ、70…洗浄水予熱用熱交換器、R,R1,R2…濾液、S1…原汚泥,S2,S3…加温汚泥。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a system for improving the dewatering performance by heating and recovering heat in the treatment of sludge generated at a waterworks treatment plant.
[0002]
[Prior art]
Conventionally, dewatering of clean water sludge and the like has been processed by pressure dehydration or the like by adding a dehydrating aid such as non-chemical injection or slaked lime. In recent years, the mainstream is dehydration without chemical injection for the purpose of reusing dehydrated cake.
[0003]
In the case of dehydrating without chemical injection, it is difficult to treat the hardly dewatering sludge with a normal pressure dehydrator. To cope with this, Japanese Patent Application Laid-Open Nos. 62-57622 and 64-30614 disclose An electroosmotic dehydration method shown in the drawing, or a method in which sludge is heated in a heating tank to improve dehydration and then supplied to a pressure dehydrator to dehydrate without heating.
[0004]
However, the electroosmotic dehydration method has a drawback that the structure of the dehydrator is complicated, and the capacity of electric equipment and the amount of power used increase. Further, in the case of a system in which sludge is heated in a heating tank and then supplied to a pressure dehydrator and dehydrated without heating, there is a disadvantage that the amount of heat heated in the heating tank becomes enormous.
[0005]
On the other hand, the dehydrated cake that has been dehydrated without heating by a dehydrator has been heated and dried by a rotary kiln dryer (in some cases using a steam tube dryer or paddle mixer type dryer) and used as soil for gardening or construction materials. There are things to do. The reason for applying this dryer is to prevent weeds from germinating in the case of horticultural soil or construction material soil by inactivating the weed seeds mixed in the sludge.
[0006]
However, the amount of heat given from the outside for this drying is enormous, and a large dryer is also required. Moreover, when drying with a dryer, even if the surface of the dehydrated cake is set to about 80 ° C. due to variations in drying characteristics, the inside may be about 60 ° C. in some cases. In order to completely kill or inactivate most of the weed seeds, it is considered preferable to heat the whole seeds to 80 ° C. or higher. In the case of drying with a conventional dryer, weeds present in the dehydrated cake It is insufficient to completely kill or inactivate the seed.
[0007]
[Problems to be solved by the invention]
In view of the above problems, the present inventors simply referred to a pressure dehydrator capable of dewatering while sludge is heated (hereinafter, a pressure dehydrator capable of being dehydrated while being heated). Have also been proposed as JP 2000-334221 and JP 2000-334222. The sludge treatment method using this heating dehydrator requires less heat for dewatering while heating the sludge inside the dehydrator, and does not require excessive power equipment and heat source equipment. It is a very effective sludge treatment method. Moreover, since it heats at the time of dehydration, it is excellent also in the point at which weed seeds can be killed without drying with a drier later.
[0008]
However, the heat recovery system in the processing method using the heating dehydrator has not yet been constructed, and there is no disclosure in the previous proposal. The inventors of the present invention have been able to further improve the filtration efficiency and the heat efficiency by researching the sludge treatment method using the heating dehydrator and constructing a system for extremely efficient heat recovery. I found out.
[0009]
Therefore, the first problem of the present invention is to construct a more effective heat utilization system by adding a few facilities in the non-chemical dehydration of water sludge using a warming dehydrator, as well as dewatering efficiency and The purpose is to increase the filtration rate. The second problem is to establish an effective heat utilization system without using a dryer while killing or inactivating weed seeds in a system for obtaining horticultural soil.
[0010]
[Means for Solving the Problems]
The present invention that has solved the above problems is as follows. In addition, the heating object in the pressure dehydrator of the present invention is meant to include both sludge slurry and dehydrated cake.
<Invention of Claim 1>
After preheating and heating the water sludge, it is dewatered using a pressure dehydrator capable of heating the sludge in the machine, and the heat of the filtrate is used for the preheating and heating method. ,
Under the dehydration operation with a longer squeezing time than the filtration time, the heating of the sludge by the pressure dehydrator is only during squeezing,
Not be preheated heating the sludge using a filter filtrate discharged prior to expression, processing method of clean water sludge, characterized in that the preheating heating the sludge with the filtrate discharged at the time of pressing.
[0011]
<Effect>
By preheating and warming the water sludge according to the present invention, it is possible to reduce the moisture content of the dehydrated cake, shorten the filtration / squeezing time in the pressure dehydrator, and improve the peelability of the dehydrated cake. As a result, the throughput of the pressure dehydrator is improved. These effects appear more prominently by using a pressure dehydrator that can heat sludge in the machine. It has enough heat to use the heat of the filtrate for sludge preheating. Therefore, by using the heat of the filtrate for the preheating and heating of the sludge, the entire system becomes extremely excellent as shown in the heat balance described later.
And even if it is the hard dewatering clean water sludge resulting from deterioration of water quality, it can dehydrate without a chemical injection.
The preheating temperature of the sludge and the heating temperature in the pressure dehydrator can be selected as appropriate. Cryptosporidium mixed with sludge by dehydrating while heating the sludge to 70 ° C. or more, and bacteria with strong disinfection resistance It is possible to reliably kill pathogenic microorganisms such as viruses and inactivate weed seeds in sludge, and it can be used as soil for gardening or construction materials without drying with a dryer. .
Furthermore, the temperature of the pressed filtrate becomes higher than that of the filtrate under a dehydration operation in which the pressing time (15 to 30 minutes) is longer than the filtering time (for example, 5 to 10 minutes). Therefore, for example, when the amount of fuel supplied to the pressure dehydrator when preheating and heating the sludge using the pressed filtrate discharged during pressing is 1, the pressure when preheating and heating the sludge using the filtrate The amount of fuel supplied to the dehydrator is 1.3, and the fuel used can be reduced.
[0012]
<Invention of Claim 2>
The method of treating the water sludge according to claim 1, wherein the dewatered cake from the pressure dehydrator is used as horticultural soil or construction material soil without drying with a dryer.
[0013]
<Effect>
If the sludge is heated to a sufficient temperature, the dehydrated cake from the pressure dehydrator can be used as horticultural soil or construction material soil without drying with a dryer.
[0014]
<Invention of Claim 3>
A preheat heat exchanger and a pressure dehydrator capable of heating sludge in the machine are sequentially provided as a treatment path for water sludge, and the filtrate of the pressure dehydrator is passed through the preheat heat exchanger, A treatment apparatus for water sludge used for preheating and heating sludge,
Under the dehydration operation with a longer squeezing time than the filtration time, the heating of the sludge by the pressure dehydrator is only during squeezing,
An apparatus for treating water sludge, wherein the sludge is not preheated using the filtrate discharged before pressing , but the sludge is preheated using the filtrate discharged during the pressing.
[0015]
<Effect>
The same effect as the effect of Claim 1 is produced.
[0016]
[0017]
[0018]
[0019]
[0020]
[0021]
[0022]
[0023]
[0024]
[0025]
[0026]
[0027]
[0028]
In addition, the heating dehydrator according to the present invention is preferably the heating dehydrator disclosed in JP 2000-334221 A and JP 2000-334222 A, but is not limited thereto.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a comparative example and an embodiment of the present invention will be described in detail with reference to the drawings.
(Comparative Example 1)
The flow sheet of Comparative Example 1 is shown in FIG. After the water sludge S 1 is stored in the first storage tank 10, it is temporarily stored in the second storage tank 30 by the pump P through the sludge preheating heat exchanger 20. Next, the heated sludge S 2 is supplied from the second storage tank to the warming dehydrator 40 by a pump P, and dehydrated while being heated to, for example, 60 ° C. by a heating heat source 50 such as a boiler. . Here, the heating temperature and heating time of the sludge in the heating dehydrator 40 can be appropriately changed depending on the target sludge and the like.
[0030]
The filtrate R from the warming dehydrator 40 is received in the filtrate tank 60 and is passed through the sludge preheating heat exchanger 20 to be used for preheating and warming the sludge S. Due to this preheating and heating, the viscosity of the sludge S is lowered, and the dewatering property in the heating and dehydrator 40 is improved. Further, since the sludge is dehydrated while being heated by the heating dehydrator 40, the filtrate temperature can be recovered at a high temperature. Furthermore, since only water exists in the processing system because the heating source is steam, non-chemical dehydration can be performed. Finally, the drained filtrate R ′ is guided to a drainage sedimentation basin or the like.
[0031]
In order to kill or inactivate weed seeds when the entire amount or a part of the dehydrated cake C is sold as it is for other uses, in particular as construction material soil or horticultural soil, without passing through a dryer. In addition, the heating temperature in the heating dehydrator 40 is preferably 60 ° C. or higher, more preferably 70 ° C. or higher, and particularly preferably 80 ° C. or higher. In addition, Cryptosporidium mixed with sludge and pathogenic microorganisms such as bacteria and viruses having strong resistance to disinfection can be surely killed. In order to prevent the sludge from boiling in the warming dehydrator 40 and to smoothly supply the sludge, 95 ° C. is the upper limit. Even if the temperature is excessively higher than 95 ° C. or higher, the temperature range of 80 to 85 ° C. is generally preferable because it only increases the amount of heat required. In this case, at least the heating time of the sludge is preferably 15 minutes or longer, particularly preferably 30 minutes or longer.
[0032]
(Comparative Example 2)
The flow sheet of Comparative Example 2 is shown in FIG. After the water sludge S 1 is stored in the first storage tank 10, it is passed through the sludge preheating heat exchanger 20 by the pump P and stored in the heating tank 30h. After warming up to here it was generated by warming the heat source 50 for example a boiler steam further 40 ° C. The heated sludge S 2 crowded Spray directly supplied to the heating dehydrator 40 by the pump P. Next, the heated sludge S 3 is dehydrated by the heating dehydrator 40 while being further heated to 60 ° C. by the heat of the boiler. Here, the heating temperature and heating time of the sludge in the heating dehydrator 40 and the heating tank 30h can be appropriately changed depending on the target sludge and the like.
[0033]
(Embodiment)
The embodiment is an embodiment of the invention described in claim 1. The flow sheet is shown in FIG. In this embodiment, heating in the warming dehydrator 40 is performed only during pressing, and only the compressed filtrate R 2 discharged during the pressing is used for preheating and heating the sludge S. The driving (filtering) filtrate R 1 discharged before pressing is mixed into the raw water. Other configurations are the same as those of the first comparative example.
[0034]
Generally, in the dehydrator, so-called driving filtrate R 1 is discharged in substantially the same amount as the pressed filtrate R 2 . However, since the filtration time is short, the driving filtrate R 1 does not have a sufficient amount of heat. Therefore, the thermal efficiency is further increased by preheating and heating the sludge S 2 only during pressing and supplying only the pressed filtrate R 2 to the sludge preheating heat exchanger 20.
[0035]
You may start preheating heating from the time of filtration start, without limiting preheating heating only to the time of pressing. When the heat retention of the filter chamber of the dehydrator is high, the decrease in thermal efficiency is not so great. It is desirable that the filtration time is about 5 minutes and the pressing time is about 10 to 30 minutes.
[0036]
Furthermore, as one suitable example, a heating dehydrator is provided that includes a means for negative pressure in the filter chamber of the dehydrator and can reduce the moisture content of the sludge before or during the compression. Using such a warming dehydrator, first, the amount of water in the sludge S 2 is reduced by suction, and then the pressure dehydration is performed while heating. In this way, the amount of water in the sludge can be reduced in a short time, the temperature of the preheated sludge can be reduced, and the amount of heat required for heating can be reduced because the amount of water in the sludge is reduced. It will be less.
[0037]
(Comparative Example 3)
The flow sheet of this comparative example is shown in FIG. That is, a sludge preheating heat exchanger 20, a sludge heating tank 30h by an external heat source, and a heating and dehydrator 40 capable of heating sludge in the machine are sequentially provided as a treatment path for water sludge, and the filtrate is circulated. The washing water preheating heat exchanger 70 is provided.
[0038]
The filtrate of the warming dehydrator 40 is passed through the sludge preheating heat exchanger 20, used for preheating and heating the sludge, and the filtrate after passing through the sludge preheating heat exchanger 20 is used for heat exchange for washing water preheating. The wash water after preheating is used as the (filter cloth) wash water of the warming dehydrator 40.
[0039]
(Comparative Example 4)
The flow sheet of this comparative example is shown in FIG. That is, the first heat exchanger 21 for sludge preheating, the sludge heating tank 30h by an external heat source, the second heat exchanger 22 for sludge preheating, and the heating dehydrator 40 capable of heating sludge in the machine are provided. It is provided with a heat exchanger 70 for washing water preheating, which is provided in order as a treatment path for water sludge and through which the filtrate is circulated.
[0040]
The filtrate of the warming dehydrator 40 is sequentially passed through the second heat exchanger 22 for sludge preheating and the first heat exchanger 21 for sludge preheating, used for preheating and heating the sludge, and first heat exchange for sludge preheating. The filtrate after flowing through the vessel 21 is passed to the washing water preheating heat exchanger 70, and the washing water after the preheating is used as the (filter cloth) washing water for the warming dehydrator 40.
[0041]
(Comparative example and conventional example)
Here, Table 1 shows the result of comparison between Comparative Example 1 and Comparative Example 2, and Conventional Example 1 and Conventional Example 2. Conventional Example 1 is a treatment method in which sludge is dehydrated without chemical injection without heating. Conventional Example 2 is a treatment method in which the water is heated in a heating tank and dehydrated without being heated by a dehydrator.
[0042]
[Table 1]
Figure 0004878079
[0043]
Comparative Examples 1 and 2 of the present invention are excellent results as compared with the conventional example. In particular, Comparative Example 2 in which a heating tank and a heating dehydrator are combined is compared with Conventional Examples 1 and 2. Although the running cost is hardly changed, the filtration speed is improved by 1.5 times or more, the moisture of the dewatered cake is reduced by 5%, and the necessary filtration area of the dehydrator is also reduced by 25%.
[0044]
On the other hand, as shown in FIG. 1 to FIG. 3 together with examples of heat balance, and in FIG. 4 and FIG. 5 only the temperature at each part is shown, the embodiment of the present invention is a thermal efficiency. It turns out to be very good.
[0045]
(Example of equipment)
Examples of the apparatus according to the present invention will be described below with reference to the drawings. In addition, this invention is not limited to use of the following apparatus. Examples of dehydrators suitable for the present invention are shown in FIGS.
[0046]
The warming dehydrator 40 has a filter plate arranged on a main beam (not shown) so as to be movable in the horizontal direction of the drawing. A filter plate 2 (hereinafter also referred to as a pressed filter plate) provided with a diaphragm 2E on each side of each filter cloth 4 and a filter plate 3 (hereinafter also referred to as a heated filter plate) provided with no diaphragm are horizontally disposed. They are arranged alternately in the direction and belong to the horizontal type from the arrangement form of the filter plates. The dehydrator belongs to a so-called intaglio type, and each filter plate 2 and 3 is formed with recesses 2a and 3a on the surface facing the adjacent filter plates 3 and 2, respectively. A pair of filter cloths 4, 4... Are suspended between the plates 2 and 3, respectively. These filter plates 2, 3... Are configured such that their mutual spacing is adjusted by a cylinder that expands and contracts in the horizontal direction. A filter chamber 6 surrounded by a pair of filter cloths 4 and 4 is formed between the plates 2 and 3. Sludge supply paths communicate with the filter chamber 6.
[0047]
Among these, the recesses 2a, 2a facing the outer surfaces of the filter cloths 4, 4 in each of the compression filter plates 2 are respectively provided with diaphragms 2E, 2E having filtrate grooves 2e, 2e ... formed on the surfaces thereof. Fluid chambers 2D and 2D are formed between 2E and the outer surface of the compression filter plate 2, respectively. An internal fluid supply / discharge passage 2F communicates with each fluid chamber 2D, 2D. Therefore, the fluid F can be supplied to and discharged from the fluid chambers 2D and 2D. Further, the gap SP1 (including the filtrate grooves 2e, 2e,...) Between the filtrate grooves 2e, 2e,... Of the diaphragms 2E, 2E and the outer surface of the filter cloth 4 facing the diaphragm grooves 2E, 2E. 2H communicates with each other, and the internal pressurized air supply path 2J communicates with each other at the upper end.
[0048]
On the other hand, in the heated filter plate 3, filtrate grooves 3e, 3e... Are formed on the surfaces of the recesses 3a, 3a facing the outer surfaces of the filter cloths 4, 4, respectively. There is no diaphragm between the outer surface. Further, the heated filter plate 3 has a hollow portion 3s excluding the outer edge portion. This hollow space 3s serves as a flow path for the heated fluid. Furthermore, in the gap SP2 (including the filtrate grooves 3e, 3e, ...) between the filtrate grooves 3e, 3e ... and the outer surface of the filter cloth 4 facing this, the internal filtrate discharge passage 3H is connected to the lower end portion thereof, respectively. The internal pressurized air supply path 3J communicates with the upper end portion.
[0049]
Thus, in this warming dehydrator 40, the sludge supplied to the wadding 4S is squeezed between the filter plate 2 on one side and the outer surface of the filter cloth 4 facing the filter chamber 6 with the filter chamber 6 interposed therebetween. A diaphragm 2E is disposed, and a fluid chamber 2D is formed between the diaphragm 2E and the filter plate 2 on one side, while a diaphragm is provided between the filter plate 3 on the other side and the outer surface of the filter cloth 4 facing the diaphragm 2E. The filter plate 3 on the other side is provided with a heating means for heating the sludge that the filter cloth inner surface has supplied to the wrinkles 4S (3s constitutes the heating means), The sludge S supplied into the filter chamber 6 is pressurized and dehydrated while being heated.
[0050]
Further, although not shown, the dehydrator 40 is connected to a filtrate tank with a vacuum pump, and this vacuum pump allows the filtrate grooves 2e and 3e and the outer surface of the filter cloth 2B to pass through the filtrate tank and the filtrate discharge paths 2H and 3H. The gaps SP1 and SP2 are configured to be negative pressure. Moreover, the gaps SP1 and SP2 between the filtrate grooves 2e and 3e and the outer surface of the filter cloth 2B can be sucked from the upper part of the gap through the pressurized air supply paths 2J and 3J and the upper suction path (not shown) so as to be negative pressure. Highly efficient and uniform dehydration of the material to be dehydrated is possible.
[0051]
The heat exchanger according to the present invention refers to equipment in a broad sense including a multi-tube heat exchanger, a coil heat exchanger, a multi-effect evaporator, a multistage flash evaporator, and the like. As a heating and heating heat source up to a predetermined temperature, a boiler, a cogeneration exhaust heat, incineration waste heat, solar hot water or the like installed or installed in a water purification plant can be used.
[0052]
In the present invention, when the heating tank is disposed in the front stage of the heating dehydrator, it is optimal to use the steam blowing equipment shown in FIG. That, in which blowing the steam generated from the boiler 50 directly to the sludge S 2 through the steam regulating valve 50b to the heating tank 30h. In this case, sludge while stirring by a stirrer M, the temperature detected by the thermometer T 1, is intended to adjust the amount of steam through the steam regulating valve 50b by temperature controller T 2.
[0053]
【Effect of the invention】
As described above, according to the present invention, it is possible to construct an excellent heat utilization system and improve the dewatering efficiency and the filtration speed with the addition of a small amount of equipment in the non-chemical injection dewatering of the water sludge. And so on.
[Brief description of the drawings]
1 is a flow sheet of Comparative Example 1. FIG.
FIG. 2 is a flow sheet of Comparative Example 2.
FIG. 3 is a flow sheet according to the embodiment.
4 is a flow sheet of Comparative Example 3. FIG.
5 is a flow sheet of Comparative Example 4. FIG.
FIG. 6 is a schematic diagram of a main part of a dehydrator according to the present invention.
FIG. 7 is an enlarged view of a main part of the dehydrator.
FIG. 8 is a schematic diagram of a heating example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... 1st storage tank, 20 ... Heat exchanger for sludge preheating, 21 ... 1st heat exchanger for sludge preheating, 22 ... 2nd heat exchanger for sludge preheating, 30 ... 2nd storage tank, 30h ... Heating tank 40 ... Pressure-type pressure dehydrator (heating dehydrator) capable of heating sludge in the machine, 50 ... Boiler, 70 ... Heat exchanger for preheating washing water, R, R 1 , R 2 ... Filtrate, S 1 ... Raw sludge, S 2 , S 3 ... heated sludge.

Claims (3)

上水汚泥を予熱加温した後、機内で汚泥を加温可能な加圧脱水機を用いて脱水するとともに、濾液のもっている熱を前記予熱加温に用いる上水汚泥の処理方法であって、
濾過時間より圧搾時間の方が長い脱水操作を行う下で、前記加圧脱水機による汚泥の加温を圧搾時のみとし、
圧搾前に排出される濾過濾液を用いて汚泥を予熱加温することはせず、その圧搾時に排出される濾液を用いて汚泥を予熱加温することを特徴とする上水汚泥の処理方法。
After preheating and heating the water sludge, it is dewatered using a pressure dehydrator capable of heating the sludge in the machine, and the heat of the filtrate is used for the preheating and heating method. ,
Under the dehydration operation with a longer squeezing time than the filtration time, the heating of the sludge by the pressure dehydrator is only during squeezing,
Not be preheated heating the sludge using a filter filtrate discharged prior to expression, processing method of clean water sludge, characterized in that the preheating heating the sludge with the filtrate discharged at the time of pressing.
前記加圧脱水機からの脱水ケーキを乾燥機にて乾燥することなく園芸用土または建設資材用土として利用する請求項1記載の上水汚泥の処理方法。The method of treating the water sludge according to claim 1, wherein the dewatered cake from the pressure dehydrator is used as horticultural soil or construction material soil without drying with a dryer. 予熱用熱交換器と、機内で汚泥を加温可能な加圧脱水機とを上水汚泥の処理経路として順に備え、前記加圧脱水機の濾液が前記予熱用熱交換器に通され、前記汚泥の予熱加温に用いられる上水汚泥の処理装置であって、
濾過時間より圧搾時間の方が長い脱水操作を行う下で、前記加圧脱水機による汚泥の加温を圧搾時のみとし、
圧搾前に排出される濾過濾液を用いて汚泥を予熱加温することはせず、その圧搾時に排出される濾液を用いて汚泥を予熱加温することを特徴とする上水汚泥の処理装置。
A preheat heat exchanger and a pressure dehydrator capable of heating sludge in the machine are sequentially provided as a treatment path for water sludge, and the filtrate of the pressure dehydrator is passed through the preheat heat exchanger, A treatment apparatus for water sludge used for preheating and heating sludge,
Under the dehydration operation with a longer squeezing time than the filtration time, the heating of the sludge by the pressure dehydrator is only during squeezing,
An apparatus for treating water sludge, wherein the sludge is not preheated using the filtrate discharged before pressing , but the sludge is preheated using the filtrate discharged during the pressing.
JP2001014085A 2001-01-23 2001-01-23 Water treatment sludge treatment method and treatment apparatus Expired - Fee Related JP4878079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001014085A JP4878079B2 (en) 2001-01-23 2001-01-23 Water treatment sludge treatment method and treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001014085A JP4878079B2 (en) 2001-01-23 2001-01-23 Water treatment sludge treatment method and treatment apparatus

Publications (3)

Publication Number Publication Date
JP2002210499A JP2002210499A (en) 2002-07-30
JP2002210499A5 JP2002210499A5 (en) 2007-11-08
JP4878079B2 true JP4878079B2 (en) 2012-02-15

Family

ID=18880820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001014085A Expired - Fee Related JP4878079B2 (en) 2001-01-23 2001-01-23 Water treatment sludge treatment method and treatment apparatus

Country Status (1)

Country Link
JP (1) JP4878079B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103964662A (en) * 2014-05-07 2014-08-06 大连理工大学 Continuous sludge dewatering method based on hydro-thermal treatment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261096B2 (en) * 2008-09-17 2013-08-14 水ing株式会社 Silicon recovery method and silicon recovery apparatus
JP2012183453A (en) * 2011-03-03 2012-09-27 Kurita Water Ind Ltd Method of operating electro-osmotic dewatering apparatus
CN103508648B (en) * 2013-09-28 2014-10-15 大连理工大学 Sludge substance deep dehydrating method based on thermal conditioning coupling filter pressing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3154933B2 (en) * 1995-03-13 2001-04-09 月島機械株式会社 Water treatment sludge treatment method and treatment equipment
JP2000334221A (en) * 1999-06-02 2000-12-05 Tsukishima Kikai Co Ltd Filter press device and method for dehydrating sludge as well as filter plate for filter press

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103964662A (en) * 2014-05-07 2014-08-06 大连理工大学 Continuous sludge dewatering method based on hydro-thermal treatment
CN103964662B (en) * 2014-05-07 2015-10-28 大连理工大学 A kind of continous way mud dewatering method based on hydrothermal treatment consists

Also Published As

Publication number Publication date
JP2002210499A (en) 2002-07-30

Similar Documents

Publication Publication Date Title
CA2200164C (en) Process and system for treatment of pig and swine manure for environmental enhancement
JP4878079B2 (en) Water treatment sludge treatment method and treatment apparatus
JP2002210499A5 (en)
CN105174683A (en) Sludge reduction combined treatment system and method
JP4097030B2 (en) Dehydration drying apparatus and method
JP4751739B2 (en) Dehydration drying apparatus and dehydration drying method
JP3154933B2 (en) Water treatment sludge treatment method and treatment equipment
JP3773164B2 (en) Filter press device, filter plate for filter press device, and sludge dewatering method
JP3773192B2 (en) Sludge dewatering method
KR200209352Y1 (en) Dehydration and drying system
JP3766220B2 (en) Filter press apparatus and sludge dewatering method
JP2011218334A (en) System for treating food-industry wastewater
JP3326784B2 (en) Dewatering method of slurry in filter press
JP3812908B2 (en) Cryptosporidium inactivation method and water treatment equipment in water treatment
JP2001232109A (en) Device and method for dehydrating and drying sludge
JP2003225516A (en) Concentrator, continuous pressure dehydrator using the same and moving dehydration vehicle
CN209816553U (en) Recycling device for papermaking drying tail gas
JP2005238051A (en) Heating type filter press and its dewatering and drying method
JP3773193B2 (en) Filter press apparatus and sludge dewatering method
JP4179928B2 (en) Dehydration drying apparatus and method
KR100368682B1 (en) Dehydration and drying system
JP2904378B2 (en) Dehydration drying method of filter press
JP3794554B2 (en) Continuous pressure dehydrator
JP2005238236A (en) Apparatus for dehydrating/drying sludge
JP2002037685A (en) Method and apparatus for sludge treatment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111125

R150 Certificate of patent or registration of utility model

Ref document number: 4878079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees