JP4875660B2 - Iii−v族窒化物半導体装置 - Google Patents

Iii−v族窒化物半導体装置 Download PDF

Info

Publication number
JP4875660B2
JP4875660B2 JP2008125250A JP2008125250A JP4875660B2 JP 4875660 B2 JP4875660 B2 JP 4875660B2 JP 2008125250 A JP2008125250 A JP 2008125250A JP 2008125250 A JP2008125250 A JP 2008125250A JP 4875660 B2 JP4875660 B2 JP 4875660B2
Authority
JP
Japan
Prior art keywords
layer
type gan
gan layer
electrode
schottky
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008125250A
Other languages
English (en)
Other versions
JP2008227536A (ja
Inventor
清輝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2008125250A priority Critical patent/JP4875660B2/ja
Publication of JP2008227536A publication Critical patent/JP2008227536A/ja
Application granted granted Critical
Publication of JP4875660B2 publication Critical patent/JP4875660B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

本発明は、半導体装置に関し、特に、耐圧が高くオン抵抗が低いGaN系半導体装置およびIII−V族窒化物半導体装置に関する。
半導体装置からなる電子デバイスは公知であり、例えば、高耐圧のバイポーラトランジスタによって構成された電力変換装置用スイッチング素子が知られている。この様な大電力用スイッチング素子には耐圧が高いことに加えてオン抵抗が低いことが求められる。このため、近年、バイポーラトランジスタに代えて、オン抵抗の低いパワーMOSFET(Metal Oxide Semiconductor FET)や、バイポーラトランジスタとMOSFETとを複合したIGBT(Insulated Gate Bipolar Transistor;絶縁ゲート型のバイポーラトランジスタ)がスイッチング素子として使用されている(例えば、特許文献1参照。)。
特開平10−242165号公報
耐圧が高く且つオン抵抗が低い半導体装置としてGaN系半導体装置などのIII−V族窒化物半導体装置が知られており、III−V族窒化物半導体装置の利点の更なる向上やその利点を活かした電子デバイスへの具体的な応用が望まれている。
本発明の目的は、耐圧が高く且つオン電圧の低いGaN系半導体装置およびIII−V族窒化物半導体装置を提供することにある。
請求項1に記載の発明は、表面の一部が凸部形状をなすIII−V族窒化物半導体層と、前記凸部の側面に形成され、前記III−V族窒化物半導体層よりもバンドギャップエネルギーの大きい他のIII−V族窒化物半導体層と、前記III−V族窒化物半導体層の前記凸部の上面にショットキー接合する第1アノード電極と、前記第1アノード電極に電気的に接続され、前記III−V族窒化物半導体層の前記凸部の側面にショットキー接合する第2アノード電極とを備え、前記第1アノード電極と前記III−V族窒化物半導体層との間で形成されるショットキーバリアの高さが0.8eVより低く、前記第2アノード電極と前記III−V族窒化物半導体層との間で形成されるショットキーバリアの高さが0.8eVより高いことを特徴とする。
好ましくは、請求項に記載の発明は、請求項1記載のIII−V族窒化物半導体装置において、前記III−V族窒化物半導体層及び前記他のIII−V族窒化物半導体層は、GaN、AlGaN、InGaN、AlInGaN及びAlInGaNPのうちのいずれか2つが組み合わされ、ヘテロ接合を形成することを特徴とする。
請求項1に記載の発明に係るIII−V族窒化物半導体装置によれば、表面の一部が凸部形状をなすIII−V族窒化物半導体層と、凸部の側面に形成され、III−V族窒化物半導体層よりもバンドギャップエネルギーの大きい他のIII−V族窒化物半導体層と、III−V族窒化物半導体層の凸部の上面にショットキー接合する第1アノード電極と、第1アノード電極に電気的に接続され、III−V族窒化物半導体層の凸部の側面に他のIII−V族窒化物半導体層を介してショットキー接合する第2アノード電極とを備え、第1アノード電極とIII−V族窒化物半導体層との間で形成されるショットキーバリアの高さが0.8eVより低く、第2アノード電極とIII−V族窒化物半導体層との間で形成されるショットキーバリアの高さが0.8eVより高いので、半導体装置のオン抵抗の低減および耐圧向上を図ることができる。
請求項に記載の発明によれば、III−V族窒化物半導体層及び他のIII−V族窒化物半導体層は、GaNAlGaN、InGaN、AlInGaN及びAlInGaNPのうちのいずれか組み合わされ、ヘテロ接合を形成するので、請求項1における2次元電子ガスによる効果と同じ効果を奏することができる。
以下、本発明の第1実施形態によるIII−V族窒化物半導体装置を説明する。図1に示すように、第1実施形態の半導体装置は、横型のGaN系ショットキーダイオード10として構成されている。このショットキーダイオード10は、例えば絶縁性又は半絶縁性のサファイア基板12と、基板12上に形成された厚さ50nmのGaNバッファ層14と、バッファ層14上に形成された2000nm厚のn+ 型GaN層16とを備えている。そして、GaN層16上にはn型GaN層18が形成されている。このGaN層18は、厚さ500nmの平坦部18aとこの平坦部18aの表面中央部に設けられた凸部18bとを有し、凸部18bは2000nm幅で高さが2000nmである。GaNバッファ層14の不純物濃度が約5×1019cm-3と高い一方、n型GaN層18の不純物濃度は好ましくは2×1017cm-3以下たとえば約2×1017cm-3と低いものになっている。これは、以降説明するように、このGaN系ショットキーダイオードに逆バイアスを加えるとn型GaN層18内に空乏層が広がるが、不純物濃度が高すぎると、空乏層が広がらず、ピンチオフ状態を実現できないためである。
更に、ショットキーダイオード10は、n型GaN層18の平坦部18aの表面及び凸部18bの側面を被覆し且つn型GaN層18よりもバンドギャップエネルギーの大きい厚さ30nmのアンドープのAl0.2Ga0.8N層22と、n型GaN層18の凸部18bの上面にショットキー接合して凸部上面に形成され且つ第1アノード電極として機能するTi(チタン)電極26と、Ti電極26上及びAl0.2Ga0.8N層22上に形成され且つ第2アノード電極として機能するPt(白金)電極28とを備えている。Pt電極28は、Ti電極26に電気的に接続されると共にn型GaN層18の凸部側面にAl0.2Ga0.8N層22を介してショットキー接合し、また、Ti電極26と共同して複合アノード電極30を構成している。
そして、Pt電極28、Al0.2Ga0.8N層22およびn型GaN層18の平坦部18aの各側面とn+ 型GaN層16の表面の内方部分は、SiO2 膜32によって被覆されている。また、n+ 型GaN層16の表面の外方部分(SiO2 膜32に形成された開口部内)には、TaSi層からなり且つn+ 型GaN層16にオーミック接合するカソード電極34が設けられている。
上記構成のショットキーダイオード10において、n型GaN層18とAl0.2Ga0.8N層22はヘテロ接合され、そのヘテロ接合面近傍には図1中に破線で模式的に示すように2次元電子ガスが発生する。また、Ti電極26とGaN層18との接触面には高さ0.3eVのショットキーバリアが形成される。本実施形態のPt電極28はn型GaN層18に直接にはショットキー接合していないが、Pt電極28をGaN層18に直接にショットキー接合させた構成では両者の接触面に1.0eVのショットキーバリアが形成されることになる。
なお、第1アノード電極をなす材質はTiに限定されず、例えばW(タングステン)やAg(銀)等の、n型GaN層18に対して0.8eVより低いショットキーバリアを形成する金属であればよい。また、第2アノード電極をなす材質はPtに限定されず、例えばNi(ニッケル)やPd(パラジウム)やAu(金)等の、n型GaN層18に対して0.8eVより高いショットキーバリアを形成する金属であればよい。
次に、図1のGaN系ショットキーダイオード10の電流−電圧特性を説明する。 複合アノード電極30とカソード電極34との間に順方向バイアスを印加したところ、0.1〜0.3Vのオン電圧で順方向電流が急激に増大する良好な立ち上りが観測された。この様な良好な順方向電流立ち上り特性が得られた理由は次のように考えられる。
互いにショットキー接合したTi電極とn型GaN層との間に順方向バイアスを印加した場合、順方向電流の立ち上りに必要なオン電圧は一般には0.3〜0.5V程度である。一方、Pt電極とn型GaN層とをショットキー接合させた場合のオン電圧は一般に1.0〜1.5V程度である。
本実施形態に係るGaN系ショットキーダイオード10において、順方向電流の立ち上りの最初の段階では、複合アノード電極30のうち、n型GaN層18とショットキー接合するTi電極26がアノード電極として主に機能する。このため、ショットキーダイオード10のオン電圧は、n型GaN層とショットキー接合するPt電極に対応する約1.0〜1.5Vよりもn型GaN層とショットキー接合するTi電極に対応する約0.3〜0.5Vに近い値となる。更に、n型GaN層18とAl0.2Ga0.8N層22とのヘテロ接合面近傍に発生する2次元電子ガスがキャリアとなって順方向電流の増大に寄与するので、オン電圧は、Al0.2Ga0.8N層22を設けない場合の約0.3〜0.5Vよりも低い0.1〜0.3Vになり、これにより良好な順方向電流立ち上がり特性が奏されるのである。そして、順方向バイアスが1.0〜1.5V程度になった段階で、Ti電極26及びPt電極28の双方がアノード電極として機能するようになる。
また、複合アノード電極30とカソード電極34間に逆方向バイアスを印加したところ、約500Vという大きな耐圧が観測された。この様な高耐圧が得られた理由は、次のように考えられる。
互いにショットキー接合したTi電極とn型GaN層との間に−10Vの逆方向バイアスを印加した場合、一般に10-6〜10-5A程度の逆方向リーク電流が発生する。一方、Pt電極とn型GaN層とをショットキー接合させた場合の逆方向リーク電流はそれよりも遙に小さく、約500Vの耐圧が得られる。
本実施形態に係るGaN系ショットキーダイオード10に逆方向バイアスを印加すると、Ti電極26にショットキー接合しているn型GaN層18の凸部18bの上面付近に第1空乏層が広がり、また、Al0.2Ga0.8N層22を介してPt電極28にショットキー接合している凸部18bの側面付近には第2空乏層が広がる。
逆方向バイアス電圧が−10Vより小さい段階では、凸部18bの側面に形成される第2空乏層を通り抜ける逆方向リーク電流は殆どないが、凸部18bの上面に形成される第1空乏層を通り抜ける逆方向リーク電流は逆方向バイアスの増大につれて徐々に増大する。そして、凸部上面とTi電極26とのショットキー接合による第1空乏層の広がりの程度よりも、凸部側面とPt電極28とのショットキー接合による第2空乏層の広がりの程度の方が大きくなる。そして、Pt電極28と凸部18bの側面間にはn型GaN層18よりもバンドギャップエネルギーが大きなAl0.2Ga0.8N層22が介在しているため、第2空乏層の広がりは更に大きくなる。その結果、逆方向バイアス電圧が約−10Vまで増大すると、凸部18bの両側面から広がる第2空乏層が互いに接触してピンチオフ状態となる。このため、n型GaN層18の凸部18bの上面近傍の第1空乏層を通り抜ける逆方向リーク電流は阻止される。そして、これ以上に逆方向バイアスが増大すると、複合アノード電極30のうちのPt電極28のみがアノード電極として機能し、従って、500V程度という良好な耐圧特性が得られる。
以下、図2(a)〜図2(e)及び図3(a)〜図3(c)を参照して、図1のショットキーダイオード10の製造方法の一例を説明する。
先ず、絶縁性又は半絶縁性のサファイア基板12上に、超真空成長装置を用いた例えばガスソースMBE(Molecular Beam Epitaxy;分子線エピタキシャル成長)法により、例えば成長温度640℃において一連の結晶成長を行う。
即ち、原料ガスとして分圧6.65×10-5PaのGa(ガリウム)とラジカル化した分圧4.0×10-4PaのN(窒素)を用い、GaNバッファ層14を厚さ50nmに成長させる。連続して、例えば分圧1.33×10-4PaのGaと分圧6.65×10-4PaのNH3 (アンモニア)と分圧1.33×10-6PaのドーパントとしてのSi(シリコン)を用いて、5×1019cm-3程度の高不純物濃度のn+ 型GaN層16を厚さ2000nmに成長させる。更に連続して、例えば分圧1.33×10-4PaのGaと分圧6×10-4PaのNH3 と分圧2×10-7PaのドーパントとしてのSiを用いて、2×1017cm-3程度の低不純物濃度のn型GaN層18を厚さ2500nmに成長させる。こうして、サファイア基板12上に、GaNバッファ層14、n+ 型GaN層16およびn型GaN層18が順に積層された第1中間体を形成する(図2(a)参照)。
次いで、第1中間体を超真空成長装置から一旦取り出した後、例えばプラズマCVD(Chemical Vapor Deposition ;化学的気相成長)法により、n型GaN層18上にSiO2 膜を形成する。なお、SiO2 膜の代わりに例えばSiNX 膜やAlN膜を形成してもよい。続いて、例えばBHFを用いたウエットエッチング法又はCF4 を用いたドライエッチング法によりSiO2 膜をパターニングして、例えば2μm幅のSiO2 パターン20を形成する(図2(b)参照)。
次いで、例えばメタン系ガスを用いたECR(Electron Cyclotron Resonance;電子サイクロトロン共鳴)プラズマエッチング法又はRIBE(Reactive Ion Beam Etching;反応性イオンビームエッチング)法により、SiO2 パターン20をマスクとしてn型GaN層18を選択的に除去し、n型GaN層18の平坦部(図1に符号18aで示す)の表面中央部に高さ2000nmの凸部(図1に符号18bで示す)を形成する。こうして、平坦部と凸部とを有したGaN層18を備えた第2中間体を形成する(図2(c)参照)。
次いで、第2中間体を再び超真空成長装置内に装填する。そして、SiO2 パターン20をマスクとし、例えば分圧6.65×10-5PaのGaと分圧2.66×10-5PaのAlと分圧6.65×10-4PaのNH3 を原料ガスとして、厚さ30nmのアンドープのAl0.2Ga0.8N層22をn型GaN層18上に選択成長させる。こうして、n型GaN層18の平坦部の表面及び凸部の側面がAl0.2Ga0.8N層22によって被覆された第3中間体を形成する(図2(d)参照)。
次いで、第3中間体を超真空成長装置から取り出した後、SiO2 パターン20を除去する。続いて、第3中間体の全面にSiO2 膜(図示せず)を形成した後、フォトリソグラフィ技術とエッチング技術を用いてパターニングして、n型GaN層18の凸部の上面及びAl0.2Ga0.8N層22の表面の内方部分を被覆するSiO2 パターン24を形成する(図2(e)参照)。
次いで、例えばメタン系ガスを用いたECRプラズマエッチング法又はRIBE法により、SiO2 パターン24をマスクとして、Al0.2Ga0.8N層22及びn型GaN層18を選択的に除去し、n+ 型GaN層16の表面の外方部分を露出させる(図3(a)参照)。
次いで、SiO2 パターン24を除去する。続いて、リフトオフ法により、n型GaN層18の凸部上面にショットキー接合するTi電極26を形成する。具体的には、n型GaN層18の凸部上面ならびにAl0.2Ga0.8N層22及びn+ 型GaN層16の各表面を全面的に被覆するレジスト膜(図示せず)を塗布した後、フォトリソグラフィ技術を用いて、n型GaN層18の凸部上面が露出する開口部をレジスト膜に形成するパターニングを行う。続いて、蒸着法により、Ti膜をレジスト膜上及び開口部内に堆積させる。その後、レジスト膜上のTi膜をレジスト膜と共に除去する。こうして、n型GaN層18の凸部の上面上にTi膜を残存させ、Ti電極26を形成する(図3(b)参照)。
次いで、図3(b)に示す工程段階と同様に、リフトオフ法により、Ti電極26上及びAl0.2Ga0.8N層22上にPt層を選択的に形成する。こうして、Ti電極26に電気的に接続すると共にn型GaN層18の凸部側面にAl0.2Ga0.8N層22を介してショットキー接合するPt電極28を形成し、Ti電極26とPt電極28とから複合アノード電極30を構成する(図3(c)参照)。
次いで、Pt電極28、Al0.2Ga0.8N層22、n型GaN層18およびn+ 型GaN層16の表面や側面を被覆するSiO2 膜32(図1)を形成する。
その後、フォトリソグラフィ技術とエッチング技術を用いてSiO2 膜32を選択的に除去し、Pt電極28の表面を露出させると共にn+ 型GaN層16の表面の外方部分を露出させる。続いて、リフトオフ法により、n+ 型GaN層16の露出部分の上にTaSi層を形成する。こうして、n+ 型GaN層16上にオーミック接合し且つTaSi層からなるカソード電極34を形成する。以上のような一連の工程を経て、図1に示すショットキーダイオード10を作製する。
次に、図1のショットキーダイオード10の製造方法の他の例を説明する。先ず、図2(a)に示す工程と略同様にして、サファイア基板12上にGaNバッファ層14及びn+ 型GaN層16を順に積層した後、n+ 型GaN層16上に、図2(a)のn型GaN層18と同じ成膜条件でn型GaN層18a(図4(a))を厚さ500nmに積層する。
次いで、例えばプラズマCVD法により、n型GaN層18a上にSiO2 膜36を形成する。なお、このSiO2 膜36の代わりに、SiNX 膜やAlN膜を形成してもよい。続いて、例えばBHFを用いたウエットエッチング法又はCF4 を用いたドライエッチング法によりSiO2 膜36を選択的にエッチングして、幅2μmの開口部を形成する(図4(a)参照)。
次いで、SiO2 膜36をマスクとして、開口部内のn型GaN層18a上に、n型GaN層18aと同じ成膜条件で、厚さ2000nmのn型GaN層18bを成長させる。n型GaN層18a、18bは、表面中央部に高さ2000nmの凸部を有したn型GaN層18を構成する(図4(b)参照)。
次いで、図2(d)、図2(e)及び図3(a)〜図(c)に示す諸工程と同様の諸工程を経て、図1に示すショットキーダイオード10を作製する。
ショットキーダイオード10は、n型GaN層18の凸部上面にショットキー接合するTi電極26と凸部側面にショットキー接合するPt電極28との組み合わせからなる複合アノード電極30を有して、低いオン電圧と高い耐圧とを同時に達成するものになっている。
更に、n型GaN層18の凸部の側面とPt電極28との間にバンドギャップエネルギーの大きなアンドープのAl0.2Ga0.8N層22が設けられているため、n型GaN層18とAl0.2Ga0.8N層22とのヘテロ接合面近傍に2次元電子ガスを発生させて順方向電流を増大させ順方向電流の良好な立ち上り特性を更に向上させることができ、また、n型GaN層18の凸部側面とPt電極28とのショットキー接合により空乏層を広げて良好な耐圧特性を更に向上させることができる。
なお、n型GaN層18の凸部18bの幅は第1実施形態では2000nmの値になっているが、ショットキーダイオード10に要求される特性によって変化するものである。即ち、凸部18bの幅は、順方向電流を増大させるためには広い方が好ましい一方、凸部18bの両側面から広がる空乏層同士が接触するピンチオフ状態を達成して凸部18bの上面の空乏層を通り抜ける逆方向リーク電流を阻止するに必要な逆方向バイアスを可能な限り小さくするためには狭い方が好ましい。従って、実際には、トレードオフの関係になる2つの特性(順方向電流特性および逆方向リーク電流特性)に対する要求を勘案して、n型GaN層18の凸部の幅が決定される。以上のことは、後述の実施形態や変形例においても同様である。
上記第1実施形態のショットキーダイオード10は種々に変形可能である。例えば、ショットキーダイオード10におけるAl0.2Ga0.8N層22の代わりに厚さ50nmのアンドープのGaN層を設け、このGaN層をn型GaN層18の凸部側面とPt電極28との間に介在させても良い。この第1変形例に係るショットキーダイオードは、第1実施形態のものと略同様に製造可能であるので、その製造方法の説明を省略する。後述の変形例についても同様である。
第1変形例に係るショットキーダイオードでは、複合アノード電極30とカソード電極34との間に逆方向バイアスを印加する際に、n型GaN層18の凸部の側面に形成される空乏層の広がり方がアンドープGaN層の存在によってより大きくなる。このため、第1実施形態の場合と同様に低いオン電圧と高い耐圧とが同時に達成されることはもとより、アンドープGaN層とPt電極28とのショットキー接合により空乏層の広がり方が更に大きくなり、良好な耐圧特性を更に向上させることができる。
図5は、第1実施形態の第2変形例に係るGaN系ショットキーダイオード10Aを示す。このショットキーダイオード10Aは、第1実施形態のショットキーダイオード10(図1)に比べてAl0.2Ga0.8N層22を除去した点が異なり、Pt電極28はn型GaN層18の凸部側面に直接にショットキー接合している。ショットキーダイオード10AはAl0.2Ga0.8N層22が不要な分だけ構造が簡易であり、その製造プロセスを簡略化することができる。
図6は、第1実施形態の第3変形例に係るショットキーダイオード10Bを示す。このショットキーダイオード10Bは、ショットキーダイオード10(図1)に比べてn型GaN層18の表面に凸部を2個形成した点が主に異なる。そして、Al0.2Ga0.8N層22はn型GaN層18の平坦部の表面及び2つの凸部の側面に形成され、また、2つのTi電極26が2つの凸部の上面にそれぞれ形成され、Pt電極28は2つのTi電極26及びAl0.2Ga0.8N層22上に形成されている。
ショットキーダイオード10Bは、ショットキーダイオード10に比べて、電流経路となる凸部の数が1個から2個に増加しているため、複合アノード電極30とカソード電極34との間に順方向バイアスを印加した際の順方向電流が更に増大するという効果を奏する。
なお、ショットキーダイオード10Bによれば、凸部の幅をショットキーダイオード10のものよりも狭くして、より小さな逆方向バイアスで凸部上面に沿って形成される空乏層を通り抜ける逆方向リーク電流を阻止し、耐圧特性を向上することができる。即ち、凸部の数を増加させると共に凸部の幅を狭くすることにより、上述のようにトレードオフの関係になる順方向電流特性および逆方向リーク電流特性を同時に満たすことが可能になる。n型GaN層18の凸部の数は、2つに限定されず、3つ以上であってもよい。以上のことは、後述の実施形態や変形例においても同様である。
次に、第1実施形態の第4変形例に係るショットキーダイオードでは、第3変形例のショットキーダイオード10B(図6)におけるAl0.2Ga0.8N層22の代わりに第1変形例で述べたアンドープGaN層が設けられる。この様に、第4変形例に係るショットキーダイオードは、第1および第3変形例を組み合わせた構成となっているため、良好な耐圧性を有すると共に順方向電流を増大させることができる。
図7は、第1実施形態の第5変形例に係るショットキーダイオード10Cを示す。このショットキーダイオード10Cは、第3変形例によるショットキーダイオード10B(図6)に比べてAl0.2Ga0.8N層22を除去した点が異なり、Pt電極28は、第2変形例の場合と同様にGaN層18の凸部側面に直接にショットキー接合している。この様に、ショットキーダイオード10Cは、第2及び第3変形例を組み合わせた構成となっているため、構成が簡易で簡単な製造プロセスにより製造可能であり、また、順方向電流を増大させることができるという効果を奏する。
以下、本発明の第2実施形態に係る縦型のGaN系ショットキーダイオードを説明する。
図8に示すように、第2実施形態のショットキーダイオード40は、第1実施形態に係る横型のショットキーダイオード10(図1)のサファイア基板12、GaNバッファ層14及びn+型GaN層16の代わりに、例えば、導電性のn型SiC基板42を備えると共に、図1に示すカソード電極34に代えて、SiC基板42の裏面にオーミック接合するTaSi層からなるカソード電極44を形成して、縦型構造としたものである。
SiC基板42上には、GaN層18、アンドープのAl0.2Ga0.8N層22、Ti電極26、Pt電極28およびSiO2 膜32が設けられ、電極26,28により複合電極30が構成されている。要素18,22、26、28及び32は、第1実施形態のショットキーダイオード10のものと構成および作用が同一であるので、説明を省略する。
ショットキーダイオード40は、第1実施形態のものと略同一の電流−電圧特性を備えている。すなわち、複合アノード電極30とカソード電極44との間に順方向バイアスを印加したところ、第1実施形態の場合と略同様に、0.1〜0.3Vのオン電圧で順方向電流が急激に増大する良好な立ち上りが観測された。また、複合アノード電極30とカソード電極44との間に逆方向バイアスを印加したところ、約500Vという大きな耐圧が観測された。第1実施形態について述べた理由と同様の理由で、ショットキーダイオード40が低いオン電圧と高い耐圧を有するものと考えられる。
ショットキーダイオード40は、第1実施形態のものと略同様に製造可能である。簡略に説明すれば、超真空成長装置を用いた例えばガスソースMBE法により、導電性のn型SiC基板42上にn型GaN層18を成長させ、次いで、n型GaN層18を選択的にエッチング除去して凸部18bを形成し、更に、アンドープのAl0.2Ga0.8N層22を成長させる。続いて、n型GaN層44の凸部の上面および側面にTi電極26およびPt電極28を形成し、更に、SiO2 膜32を形成する。最後に、n型SiC基板42の裏面にカソード電極44を形成し、これによりショットキーダイオード40の作製を終了する。
第2実施形態のショットキーダイオード40が縦型構造である一方、第1実施形態のショットキーダイオード10が横型構造であるという差異はあるものの、両ショットキーダイオードは、n型GaN層18の凸部上面にショットキー接合するTi電極26と凸部側面にAl0.2Ga0.8N層22を介してショットキー接合するPt電極28とからから構成された複合アノード電極30を有した共通の基本構造を有する。従って、ショットキーダイオード40は、ショットキーダイオード10と同様の効果を奏する。
上記第2実施形態のショットキーダイオード40は種々に変形可能である。第2実施形態の下記第1〜第5変形例は第1実施形態の第1〜第5変形例にそれぞれ対応する。各変形例のショットキーダイオードは、第1実施形態の変形例の対応するものにおけるサファイア基板12の代わりにn型SiC基板(図8に42で示す)を備えると共にSiC基板42の裏面に形成されたカソード電極(図8に44で示す)を備える。換言すれば、各ショットキーダイオードは、第1実施形態の対応する変形例のものを横型構造から縦型構造に更に変形したものであり、当該対応する変形例のものと同様の特性を備え、同様に製造可能である。
すなわち、第2実施形態の第1変形例によるショットキーダイオードは、ショットキーダイオード40におけるAl0.2Ga0.8N層22の代わりに設けられたアンドープGaN層を備え、このアンドープGaN層をn型GaN層18の凸部側面とPt電極28との間に介在させ、これにより耐圧特性が向上する。図9を参照すると、第2実施形態の第2変形例に係るショットキーダイオード40Aは、第2実施形態のショットキーダイオード(図8に符号40で示す)に比べてAl0.2Ga0.8N層22を除去した点が異なり、構造が簡易である。
図10に示すように、第2実施形態の第3変形例に係るショットキーダイオード40Bは、ショットキーダイオード40に比べてn型GaN層18の表面に凸部を2個形成した点が主に異なり、複合アノード電極30とカソード電極44との間に順方向バイアスを印加した際の順方向電流を増大可能である。
第2実施形態の第4変形例に係るショットキーダイオードは、図10に示すショットキーダイオード40BにおけるAl0.2Ga0.8N層22の代わりに設けられたアンドープGaN層を備え、これにより耐圧性を向上すると共に順方向電流を増大可能である。
図11を参照すると、第2実施形態の第5変形例に係る縦型のGaN系ショットキーダイオード40Cは、図10のショットキーダイオード40Bに比べてAl0.2Ga0.8N層22を除去した点が異なり、これにより構成を簡易にしたものである。
以下、本発明の第3実施形態に係る縦型のGaN系ショットキーゲートFETを説明する。
図12に示すように、このショットキーゲートFET60は、例えば導電性のn型SiC基板62と、基板62上に形成されたn型GaN層64とを備え、n型GaN層64は、500nm厚の平坦部64aと平坦部の表面中央部に形成され2000nm幅でかつ2000nm高さの凸部64bとを有している。n型GaN層64の不純物濃度は2×1017cm-3以下たとえば2×1017cm-3である。
n型GaN層64の凸部64bの上面には50nm厚で且つ約5×1019cm-3と高不純物濃度のn+ 型GaN層66が形成されている。そして、n型GaN層64の平坦部の表面及び凸部の両側面並びn+ 型GaN層66の側面は、n型GaN層64よりもバンドギャップエネルギーの大きい厚さ30nmのアンドープのAl0.2Ga0.8N層70によって被覆され、n型GaN層64とAl0.2Ga0.8N層70はヘテロ接合をなし、このヘテロ接合面近傍には図12中に破線で模式的に表した2次元電子ガスが発生する。
後述のように、n型GaN層64の凸部64bはドレイン電流ID が縦方向に流れるチャネル領域を構成し、このチャネル領域をドレイン電流ID が流れる際に2次元電子ガスがキャリアとして寄与する。即ち、ショットキーゲートFET60は、一種の縦型のHEMT構造となっている。
また、n+ 型GaN層66にはTaSi層からなるソース電極72が形成されている。即ち、ソース電極72が、n+ 型GaN層66を介してn型GaN層64の凸部64bの上面にオーミック接合している。また、凸部64bの側面にはAl0.2Ga0.8N層70を介して同側面にショットキー接合し且つPt層からなるショットキーゲート電極74が形成されている。なお、ショットキーゲート電極74をなす材料は、Ptに限定されず、例えばTi、Ni、W、Ag、Pd、Au等の、n型GaN層64に対してショットキーバリアを形成する金属であれば良く、好ましくは、より高いショットキーバリアを形成する金属でショットキーゲート電極74を構成する。また、n型SiC基板62の裏面には同裏面にオーミック接合するTaSi層からなるドレイン電極76が形成されている。
次に、図12のショットキーゲートFET60の電流−電圧特性について説明する。n型GaN層64の凸部の側面にはAl0.2Ga0.8N層70を介してショットキーゲート電極74が形成されているため、ショットキーゲート電極74に印加するゲート電圧VG が零ボルトであっても、凸部の両側面近傍には空乏層が形成されている。この状態でソース電極72とドレイン電極76との間に所定のドレイン電圧VD を印加すると、ドレイン電流ID が、n型GaN層64の凸部の両側面の空乏層に挟まれた領域をチャネルとして縦方向に流れる。ドレイン電圧VD を増大するとチャネルの幅が増大して、ドレイン電流ID も増大する。
また、ゲート電圧VG の大きさを増減すると、n型GaN層64の凸部の両側面の空乏層の広がりが大きくなったり小さくなったりして、2方向から広がる空乏層に挟まれたチャネルの幅が変化する。このため、ゲート電圧VG によってチャネルの幅が制御され、そこを流れるドレイン電流ID が制御される。
このとき、n型GaN層64とAl0.2Ga0.8N層70とのヘテロ接合面近傍に発生する2次元電子ガスがキャリアとしてドレイン電流ID に寄与するため、小さなドレイン電圧VD でドレイン電流ID が急速に立ち上る良好な立ち上り特性が得られる。
また、ショットキーゲート電極74とn型GaN層64の凸部の側面との間には、n型GaN層64のバンドギャップエネルギーよりも大きいバンドギャップエネルギーを有するアンドープのAl0.2Ga0.8N層70が介在しているため、小さなゲート電圧VG でも空乏層は大きく広がる。その結果、ゲート電圧VG によるドレイン電流ID の制御性が向上する。
次に、図13(a)〜図13(d)、図14(a)及び図14(b)を参照して、図12のショットキーゲートFET60の製造方法の一例を説明する。
先ず、導電性のn型SiC基板62上に、超真空成長装置を用いた例えばガスソースMBE法により、一連の結晶成長を行う。
即ち、原料ガスとして例えば分圧1.33×10-5PaのGaと分圧6.65×10-4PaのNH3 と分圧2×10-7PaのドーパントとしてのSiを用いて、2×1017cm-3程度の低不純物濃度のn型GaN層64を厚さ2500nmに成長させる。連続して、例えば分圧1.33×10-5PaのGaと分圧6.65×10-4PaのNH3 と分圧1.33×10-6PaのドーパントとしてのSiを用いて、5×1019cm-3程度の高不純物濃度のn+ 型GaN層66を厚さ50nmに成長させる(図13(a)参照)。
次いで、例えばプラズマCVD法により、n+ 型GaN層66上にSiO2 膜を形成する。続いて、例えばBHFを用いたウエットエッチング法又はCF4 を用いたドライエッチング法によりSiO2 膜をパターニングして、例えば幅2μmをもつSiO2 パターン68を形成する(図13(b)参照)。
次いで、例えばメタン系ガスを用いたECRプラズマエッチング法又はRIBE法により、SiO2 パターン68をマスクとしてn+ 型GaN層66及びn型GaN層64を選択的に除去する。こうして、n型GaN層18の表面中央部に高さ2000nm、幅2000nmの凸部を形成すると共に、凸部上面にn+ 型GaN層66を残存させる(図13(c)参照)。
次いで、SiO2 パターン68をマスクとすると共に例えば分圧6.65×10-5PaのGaと分圧2.66×10-5PaのAlと分圧6.65×10-4PaのNH3 を原料ガスとして、アンドープのAl0.2Ga0.8N層70を厚さ30nmに選択成長させる。こうして、n型GaN層64の平坦部の表面及び凸部の側面並びにn+ 型GaN層66の側面をAl0.2Ga0.8N層70によって被覆する(図13(d)参照)。
次いで、SiO2 パターン68を除去する。続いて、リフトオフ法により、n+ 型GaN層66の上面上にTaSi層を選択的に形成する。こうして、n型GaN層18の凸部の上面にn+ 型GaN層66を介してオーミック接合するTaSi層からなるソース電極72を形成する(図14(a)参照)。
次いで、リフトオフ法により、Al0.2Ga0.8N層70上にPt層を選択的に形成する。こうして、n型GaN層64の凸部の側面にAl0.2Ga0.8N層70を介してショットキー接合するPt層からなるショットキーゲート電極74を形成する(図14(b)参照)。
次いで、n型SiC基板62の裏面にオーミック接合するTaSi層からなるドレイン電極76(図12)を形成する。以上のような一連の工程を経て、図12に示すショットキーゲートFET60の作製を完了する。
第3実施形態によれば、チャネル領域をなすn型GaN層64の凸部の上面にソース電極72がオーミック接合し、凸部側面にショットキーゲート電極74がショットキー接合し、n型SiC基板62の裏面にドレイン電極76がオーミック接合した基本構造をもつ縦型のGaN系ショットキーゲートFET60を実現することができる。
更に、n型GaN層64の凸部の側面とショットキーゲート電極74との間にバンドギャップエネルギーの大きなアンドープのAl0.2Ga0.8N層70が設けられているため、次のような効果を奏する。即ち、n型GaN層64とAl0.2Ga0.8N層70とのヘテロ接合面近傍に発生する2次元電子ガスがドレイン電流ID に寄与するため、ドレイン電流ID の良好な立ち上り特性が得られる。また、ショットキーゲート電極74とn型GaN層64の凸部側面とのショットキー接合により空乏層の広がり方が更に大きくなるため、ゲート電圧VG によるドレイン電流ID の制御性を向上させることができる。
上記第3実施形態のショットキーゲートFET60は種々に変形可能である。例えば、ショットキーゲートFET60におけるAl0.2Ga0.8N層70の代わりに厚さ50nmのアンドープのGaN層を設け、このGaN層をn型GaN層64の凸部の側面とショットキーゲート電極74との間に介在させても良く、これにより、空乏層の広がり方が更に大きくなり、ドレイン電流ID の制御性を向上させることができる。
図15は、第3実施形態の第2変形例に係る縦型のGaN系ショットキーゲートFET60Aを示し、このFET60Aは、図12のFET60に比べてAl0.2Ga0.8N層70を除去して、n型GaN層64の凸部の側面にショットキーゲート電極74を直接にショットキー接合させて構成を簡易化した点が異なる。
上記第1、第2及び第3実施形態およびその変形例において、n型GaN層18、44、64の凸部の幅は2000nmとなっているが、例えば5nm〜10μmの範囲内にあればよく、好ましくは10nm〜5μmの範囲内に、更に好ましくは50nm〜3μmの範囲内にあればよい。また、GaN系III−V族窒化物半導体層を結晶成長する際にガスソースMBE法に代えて例えばMOCVD法やハイドライド気相成長法等を用いてもよい。また、2次元電子ガスを発生させるヘテロ接合構造として、n型GaN層18、64とAlGaN層22、70の組み合わせによるGaN/AlGaN接合に代えて、例えばInGaN、AlInGaN、AlInGaNP、AlGaN、AlGaN等のIII−V族窒化物半導体層を組み合わせたヘテロ接合を用いてもよい。
また、第2及び第3実施形態ならびにその変形例においては、導電性のn型SiC基板42、62を用いているが、例えばSiC、Si、GaN、AlN、GaAs、GaP等からなる半導体基板を用いてもよい。
以下、本発明の第4実施形態に係る横型のGaN系ショットキーダイオードを説明する。
n型GaN層の表面の一部を凸部形状に形成した上記第1〜第3実施形態に係るショットキーダイオードに比べ、第4実施形態のショットキーダイオードは、n型GaN層の表面を平坦にした点が主に異なり、これにより製造工程が簡略になると共に、凸部側面の加工精度による電流−電圧特性への影響がなくなる。
図16に示すように、第4実施形態の横型のGaN系ショットキーダイオード300は、例えば絶縁性又は半絶縁性のサファイア基板312と、基板312上に形成された厚さ50nmのGaNバッファ層314と、バッファ層314上に形成された2000nm厚のn+ 型GaN層316とを備えている。そして、GaN層16上には、所定の幅D(好ましくは6ミクロン以下たとえば6ミクロン)を有する厚さ1000nmのn型GaN層318が形成されている。n型GaN層318の不純物濃度は好ましくは2×1017cm-3以下たとえば約2×1017cm-3と低いものになっている。
更に、ショットキーダイオード300は、n型GaN層318の幅Dよりも狭い幅d(好ましくは0.3〜2ミクロンたとえば2ミクロン)でn型GaN層318の上面にショットキー接合し且つ第1アノード電極として機能するTi電極326と、Ti電極326で覆われた部分以外のn型GaN層318の表面にショットキー接合して形成されたPt電極328とを備えている。Pt電極328は、Ti電極326に電気的に接続されており、第2アノード電極として機能し、また、Ti電極326と共同して複合アノード電極330を構成している。そして、n+ 型GaN層316の表面の外方部分には、TaSi層からなり且つn+ 型GaN層316にオーミック接合するカソード電極334が設けられている。
上記構成のショットキーダイオード10において、第1〜第3実施形態の場合と同様、Ti電極326とGaN層318との間で形成されるショットキーバリアの高さは、Pt電極328とGaN層318との間で形成されるショットキーバリアの高さよりも低い。
なお、第1アノード電極をなす材質はTiに限定されず、例えばWやAg等のn型GaN層318に対して0.8eVより低いショットキーバリアを形成する金属であればよい。また、第2アノード電極をなす材質はPtに限定されず、例えばAu等のn型GaN層318に対して0.8eVより高いショットキーバリアを形成する金属であればよい。
次に、図16のGaN系ショットキーダイオード300の電流−電圧特性を説明する。複合アノード電極330とカソード電極334との間に順方向バイアスを印加したところ、0.1〜0.3Vのオン電圧で順方向電流が急激に増大する良好な立ち上りが観測された。この様な良好な順方向電流立ち上り特性が得られた理由は上記第1〜第3実施形態の場合と同様であると考えられる。
また、複合アノード電極330とカソード電極334間に逆方向バイアスを印加したところ、約500Vという大きな耐圧が観測された。この様な高耐圧が得られた理由は、次のように考えられる。
第4実施形態に係るショットキーダイオード300に逆方向バイアスを印加すると、第1及び第2アノード電極(Ti電極326及びPt電極328)に接触するn型GaN層318の界面からn+GaN層316に向かって空乏層が広がり、所定以上の逆方向バイアスでn型GaN層318全体が空乏化されピンチオフ状態になる。このため、第1〜第3実施形態のショットキーダイオードと同様に高い耐圧を得ることができる。
第4実施形態のショットキーダイオード300(図16)は、第1実施形態に係るショットキーダイオード10(図1)と同様の製造方法により製造することができる。
簡略に説明すれば、先ず、図2(a)に示す工程と略同様にして、サファイア基板312上にGaNバッファ層314及びn+ 型GaN層316を順に積層した後、n+ 型GaN層316上に、図2(a)のn型GaN層18と同じ成膜条件でn型GaN層318(図16)を厚さ1000nmに積層する。次いで、図2(e)及び図3(a)〜図3(c)に示す諸工程と同様の諸工程を実施してTi電極326及びPt電極328を形成し、更に、n+ 型GaN層316上にカソード電極334を形成することにより、図16に示すショットキーダイオード300を作製する。
ショットキーダイオード300は、n型GaN層318にショットキー接合するTi電極326及びPt電極328の組み合わせからなる複合アノード電極330を有して、低いオン電圧と高い耐圧とを同時に達成するものになっている。
上記第4実施形態のショットキーダイオード300は、上記第1〜第3実施形態の場合と同様、種々に変形可能である。
例えば、n型GaN層318とPt電極328との間にバンドギャップエネルギーの大きなアンドープのAl0.2Ga0.8N層(図示略)やアンドープのGaN層(図示略)を設けて順方向電流の立ち上り特性や耐圧特性を向上させることができる。
第4実施形態では、n型GaN層318をn+型GaN層316の上に積層したが、図17に示すように、n+型GaN層316の表面の一部にイオンを打ち込んでn型GaN層318として利用しても良い。この変形例によれば、半導体面を平面化することができるので、集積化に有利である。n+型GaN層316をn型GaN層318にするには特開2001−210657号公報に記載されているようにn+型GaN層316の表面にマスクをかけ、n型GaN層318が形成される部分に開口を設け、開口部にC、Mg、Znをイオン注入して補償すればよい。
本発明の第1実施形態に係る横型のGaN系ショットキーダイオードを示す概略断面図である。 図1のGaN系ショットキーダイオードの製造方法の工程段階を示す概略断面図であり、(a)ないし(e)は同製造方法の第1ないし第5工程段階を示す。 図2に続く工程段階を示す断面図であり、(a)ないし(c)は第6ないし第8工程段階を示す。 図1のGaN系ショットキーダイオードの別の製造方法の工程段階を示す概略断面図であり、(a)及び(b)は、同製造方法の第2及び第3工程段階を示す。 第1実施形態の第2変形例に係るショットキーダイオードを示す概略断面図である。 第1実施形態の第3変形例に係るショットキーダイオードの概略断面図である。 第1実施形態の第5変形例に係るショットキーダイオードの概略断面図である。 本発明の第2実施形態に係る縦型のGaN系ショットキーダイオードを示す概略断面図である。 第2実施形態の第2変形例に係るショットキーダイオードの概略断面図である。 第2実施形態の第3変形例に係るショットキーダイオードの概略断面図である。 第2実施形態の第5変形例に係るショットキーダイオードの概略断面図である。 本発明の第3実施形態に係る縦型のGaN系ショットキーゲートFETを示す概略断面図である。 図12のショットキーゲートFETの製造方法の工程段階を示す断面図であり、(a)ないし(d)は同製造方法の第1ないし第4工程段階を示す。 図13に示す工程段階に続く工程段階を示す断面図であり、(a)および(b)は第5及び第6工程段階を示す。 第3実施形態の第2変形例に係る縦型のGaN系ショットキーゲートFETを示す概略断面図である。 本発明の第4実施形態によるGaN系ショットキーダイオードを示す概略断面図である。 図16のショットキーダイオードの変形例を示す概略断面図である。
符号の説明
10 GaN系ショットキーダイオード
12 サファイア基板
14 GaNバッファ層
16 n+ 型GaN層
18 n型GaN層
18b 凸部
22 Al0.2Ga0.8N層
26 Ti電極
28 Pt電極
30 複合アノード電極
34 カソード電極
62 導電性のn型SiC基板
64 n型GaN層
70 Al0.2Ga0.8N層
72 ソース電極
74 ゲート電極
76 ドレイン電極
318 n型GaN層
326 Ti電極
328 Pt電極

Claims (2)

  1. 表面の一部が凸部形状をなすIII−V族窒化物半導体層と、前記凸部の側面に形成され、前記III−V族窒化物半導体層よりもバンドギャップエネルギーの大きい他のIII−V族窒化物半導体層と、
    前記III−V族窒化物半導体層の前記凸部の上面にショットキー接合する第1アノード電極と、
    前記第1アノード電極に電気的に接続され、前記III−V族窒化物半導体層の前記凸部の側面に前記他のIII−V族窒化物半導体層を介してショットキー接合する第2アノード電極とを備え、
    前記第1アノード電極と前記III−V族窒化物半導体層との間で形成されるショットキーバリアの高さが0.8eVより低く、前記第2アノード電極と前記III−V族窒化物半導体層との間で形成されるショットキーバリアの高さが0.8eVより高いことを特徴とするIII−V族窒化物半導体装置。
  2. 前記III−V族窒化物半導体層及び前記他のIII−V族窒化物半導体層は、GaN、AlGaN、InGaN、AlInGaN及びAlInGaNPのうちのいずれか2つが組み合わされ、ヘテロ接合を形成することを特徴とする請求項1記載のIII−V族窒化物半導体装置。
JP2008125250A 2002-04-30 2008-05-12 Iii−v族窒化物半導体装置 Expired - Lifetime JP4875660B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008125250A JP4875660B2 (ja) 2002-04-30 2008-05-12 Iii−v族窒化物半導体装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002129183 2002-04-30
JP2002129183 2002-04-30
JP2008125250A JP4875660B2 (ja) 2002-04-30 2008-05-12 Iii−v族窒化物半導体装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003013740A Division JP4177124B2 (ja) 2002-04-30 2003-01-22 GaN系半導体装置

Publications (2)

Publication Number Publication Date
JP2008227536A JP2008227536A (ja) 2008-09-25
JP4875660B2 true JP4875660B2 (ja) 2012-02-15

Family

ID=39845685

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2008125250A Expired - Lifetime JP4875660B2 (ja) 2002-04-30 2008-05-12 Iii−v族窒化物半導体装置
JP2008176180A Pending JP2008244506A (ja) 2002-04-30 2008-07-04 GaN系半導体装置及びIII−V族窒化物半導体装置
JP2008176179A Expired - Lifetime JP5065186B2 (ja) 2002-04-30 2008-07-04 GaN系半導体装置及びIII−V族窒化物半導体装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2008176180A Pending JP2008244506A (ja) 2002-04-30 2008-07-04 GaN系半導体装置及びIII−V族窒化物半導体装置
JP2008176179A Expired - Lifetime JP5065186B2 (ja) 2002-04-30 2008-07-04 GaN系半導体装置及びIII−V族窒化物半導体装置

Country Status (1)

Country Link
JP (3) JP4875660B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5056883B2 (ja) 2010-03-26 2012-10-24 サンケン電気株式会社 半導体装置
CN103168362B (zh) 2010-10-20 2016-10-12 富士通株式会社 半导体装置及其制造方法
KR101204609B1 (ko) 2010-12-09 2012-11-23 삼성전기주식회사 질화물계 반도체 소자
KR102170211B1 (ko) * 2013-12-20 2020-10-26 엘지이노텍 주식회사 전력 반도체 소자 및 이를 포함하는 전력 반도체 회로
CN112563317B (zh) * 2019-09-26 2022-03-08 东南大学 氮化镓功率器件及其制造方法
CN112331720B (zh) * 2020-11-07 2022-12-09 东南大学 一种具有高阈值稳定性型氮化镓功率半导体器件

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52101970A (en) * 1976-02-20 1977-08-26 Sumitomo Electric Ind Ltd Semiconductor element having schottoky barriercontact
JPS5586166A (en) * 1978-12-20 1980-06-28 Ibm Schottky barrier diode
JPH07263717A (ja) * 1994-03-23 1995-10-13 Nippon Telegr & Teleph Corp <Ntt> 整流素子およびその製造方法
JPH08116072A (ja) * 1994-10-17 1996-05-07 Murata Mfg Co Ltd ショットキーバリア半導体装置
JP3747391B2 (ja) * 1997-03-14 2006-02-22 富士通株式会社 化合物半導体装置及びその製造方法
US5945701A (en) * 1997-12-19 1999-08-31 Northrop Grumman Corporation Static induction transistor
JP2000196107A (ja) * 1998-12-25 2000-07-14 Fuji Electric Co Ltd ショットキ―バリアダイオ―ド
JP2000208813A (ja) * 1999-01-18 2000-07-28 Mitsubishi Cable Ind Ltd GaN系半導体素子およびその製造方法
JP3921862B2 (ja) * 1999-02-05 2007-05-30 富士電機ホールディングス株式会社 炭化けい素縦形fetの製造方法
JP4850993B2 (ja) * 2000-01-25 2012-01-11 古河電気工業株式会社 半導体装置およびその製造方法
JP3630068B2 (ja) * 2000-03-24 2005-03-16 松下電器産業株式会社 半導体装置の製造方法
US6774434B2 (en) * 2001-11-16 2004-08-10 Koninklijke Philips Electronics N.V. Field effect device having a drift region and field shaping region used as capacitor dielectric

Also Published As

Publication number Publication date
JP2008227536A (ja) 2008-09-25
JP2008244506A (ja) 2008-10-09
JP2008244505A (ja) 2008-10-09
JP5065186B2 (ja) 2012-10-31

Similar Documents

Publication Publication Date Title
JP4177124B2 (ja) GaN系半導体装置
CN108807527B (zh) 具有栅极堆叠中的隧道二极管的iiia族氮化物hemt
US6768146B2 (en) III-V nitride semiconductor device, and protection element and power conversion apparatus using the same
JP4177048B2 (ja) 電力変換装置及びそれに用いるGaN系半導体装置
US8692292B2 (en) Semiconductor device including separated gate electrode and conductive layer
US7417267B2 (en) Non-planar III-nitride power device having a lateral conduction path
JP5675084B2 (ja) 窒化物系ダイオード
US8716756B2 (en) Semiconductor device
US8405125B2 (en) Semiconductor device and method for producing the same
JPWO2003071607A1 (ja) GaN系電界効果トランジスタ
KR20120120828A (ko) 질화물 반도체 소자 및 그 제조방법
US9680001B2 (en) Nitride semiconductor device
JP4474292B2 (ja) 半導体装置
KR20120120825A (ko) 질화물 반도체 소자 및 그 제조방법
JP4875660B2 (ja) Iii−v族窒化物半導体装置
JP2010171416A (ja) 半導体装置、半導体装置の製造方法および半導体装置のリーク電流低減方法
JP4904299B2 (ja) 電力変換装置用GaN系半導体装置
JP4875577B2 (ja) Iii−v族窒化物半導体装置
JP5355927B2 (ja) 半導体装置および半導体装置の製造方法
JP2006237430A (ja) 窒化物半導体装置
JP2015119028A (ja) 半導体装置、電界効果トランジスタ、およびダイオード
JP4925596B2 (ja) 窒化物半導体装置
JP2009060065A (ja) 窒化物半導体装置
JP2007088186A (ja) 半導体装置及びその製造方法
KR102113253B1 (ko) 질화물계 반도체 소자

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100816

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100816

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101227

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4875660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term