JP4874074B2 - Aluminum alloy clad material for heat exchanger - Google Patents

Aluminum alloy clad material for heat exchanger Download PDF

Info

Publication number
JP4874074B2
JP4874074B2 JP2006328210A JP2006328210A JP4874074B2 JP 4874074 B2 JP4874074 B2 JP 4874074B2 JP 2006328210 A JP2006328210 A JP 2006328210A JP 2006328210 A JP2006328210 A JP 2006328210A JP 4874074 B2 JP4874074 B2 JP 4874074B2
Authority
JP
Japan
Prior art keywords
mass
sacrificial anode
core material
contained
anode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006328210A
Other languages
Japanese (ja)
Other versions
JP2008138278A (en
Inventor
大谷良行
田中哲
鈴木義和
柿本信行
兒島洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2006328210A priority Critical patent/JP4874074B2/en
Publication of JP2008138278A publication Critical patent/JP2008138278A/en
Application granted granted Critical
Publication of JP4874074B2 publication Critical patent/JP4874074B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Description

本発明は、例えばカーエアコン用コンデンサ、エバポレータ、ラジエータ、ヒーターコアなどの熱交換器の構造部材、特にチューブ材として適用されるアルミニウム合金クラッド材に関するものである。   The present invention relates to a structural member of a heat exchanger such as a condenser for an air conditioner, an evaporator, a radiator, a heater core, and particularly to an aluminum alloy clad material applied as a tube material.

アルミニウム合金は軽量で熱伝導性に優れること、適切処理により高耐食性が実現できること、およびブレージングシートを利用したろう付けで効率的な接合が可能であることから、自動車用などの熱交換器用材料として重用されてきた。しかし、近年、自動車の高性能化あるいは環境対応として、より軽量で高い耐久性を持つよう熱交換器の性能向上が求められており、これに対応できるアルミニウム合金材料技術が要求されている。   Aluminum alloy is lightweight and has excellent thermal conductivity, high corrosion resistance can be realized by appropriate treatment, and brazing using a brazing sheet enables efficient joining, so it can be used as a heat exchanger material for automobiles. Has been heavily used. However, in recent years, there has been a demand for improving the performance of heat exchangers so as to have lighter weight and higher durability in order to improve the performance of automobiles or to cope with the environment, and there is a demand for aluminum alloy material technology that can cope with this.

このような要求に対して、芯材が、Mn:0.3−2.0mass%、Cu:0.25−0.8mass%、Si:0.05−1.0mass%、Mg:0.5mass%以下、Ti:0.35以下を含有し、残部Alと不可避不純物からなるアルミニウム合金で構成され、該芯材の片面に、複合された犠牲陽極材がMg:1.0−2.5mass%、Si:0.05−0.20mass%、Zn:3.0mass%以下を含有し、残部Alと不可避不純物で構成され、発明の効果を損なわない範囲で、犠牲陽極材にFe、Cu、Mn、Ti、Cr、Zrなどが含まれてよく、かつ、前記芯材の他の片面に複合された犠牲陽極材がAl−Si系合金のろう材で構成されたことを特徴とする熱交換器用高強度高耐食性アルミニウム合金クラッド材が提案されている(特許文献1)。   In response to such requirements, the core material is Mn: 0.3-2.0 mass%, Cu: 0.25-0.8 mass%, Si: 0.05-1.0 mass%, Mg: 0.5 mass. %, Ti: 0.35 or less, composed of an aluminum alloy composed of the balance Al and inevitable impurities, and a composite sacrificial anode material formed on one side of the core material is Mg: 1.0-2.5 mass%. , Si: 0.05-0.20 mass%, Zn: 3.0 mass% or less, composed of the balance Al and inevitable impurities, and without sacrificing the effects of the invention, the sacrificial anode material is Fe, Cu, Mn , Ti, Cr, Zr, etc., and the sacrificial anode material composited on the other side of the core material is made of an Al—Si alloy brazing material. High strength and high corrosion resistance aluminum alloy cladding There has been proposed (Patent Document 1).

また、芯材の片面に犠牲陽極材、他の面にろう材をクラッドしてなるアルミニウム合金クラッド材において、芯材が、Mn:0.3−2.0mass%、Cu:0.25−1.5mass%、Si:0.2−1.0mass%、Ti:0.1−0.35mass%、必要に応じてMn:0.2mass%以下を含有し、残部Alおよび不可避不純物からなるアルミニウム合金で構成され、犠牲陽極材が、Mg:1.0−2.5mass%、Zn:0.1−0.6mass%、Si:0.1−1mass%を含有し、さらにIn:0.01−0.1mass%、Sn:0.01−0.1mass%のうち1種または2種を含有し、発明の効果を損なわない範囲で、犠牲陽極材にFe、Cu、Mn、Ti、Cr、Zrなどが含まれてよく、残部Alおよび不可避不純物からなるアルミニウム合金で構成されるアルミニウム合金クラッド材も提案されている(特許文献2)。   Further, in an aluminum alloy clad material obtained by clad a sacrificial anode material on one side of the core material and a brazing material on the other surface, the core material is Mn: 0.3-2.0 mass%, Cu: 0.25-1. Aluminum alloy containing 0.5 mass%, Si: 0.2-1.0 mass%, Ti: 0.1-0.35 mass%, and optionally Mn: 0.2 mass% or less, the balance being Al and inevitable impurities The sacrificial anode material contains Mg: 1.0-2.5 mass%, Zn: 0.1-0.6 mass%, Si: 0.1-1 mass%, and In: 0.01- Fe, Cu, Mn, Ti, Cr, Zr as a sacrificial anode material as long as it contains one or two of 0.1 mass% and Sn: 0.01-0.1 mass% and does not impair the effects of the invention. Etc., and the remainder A And an aluminum alloy composed of an aluminum alloy clad material consisting of unavoidable impurities has been proposed (Patent Document 2).

さらに、芯材の片面にAl−Si系合金のろう材を、他の面に犠牲陽極材をクラッドしたアルミニウム合金クラッド材において、犠牲陽極材がMg:0.5−4.0mass%、In:0.005−1.0mass%、Zn:0.1−4.0mass%を含有し、さらに各々0.005−0.1mass%のTi、Ga、および0.01−1.0mass%のNiのうち1種または2種以上を含有し、残部Alと不可避的不純物からなるアルミニウム合金で構成され、芯材がSi:0.2−1.5mass%、Cu:0.1−1.0mass%、Mn:0.1−2.0mass%、Mg:0.2以下を含有し、さらに各々0.01−0.5mass%のCr、Ti、Zr、および0.01−0.2mass%のNiのうち1種または2種以上を含有し、残部Alと不可避的不純物からなるアルミニウム合金で構成されることを特徴とする、熱交換器用高強度高耐食性アルミニウム合金クラッド材が提案されている(特許文献3)が、不可避的不純物であるFeの晶出物によって耐食性が阻害され、犠牲陽極材の寿命が短いという問題がある。   Furthermore, in an aluminum alloy clad material in which a brazing material of an Al—Si alloy is clad on one side of the core material and a sacrificial anode material is clad on the other side, the sacrificial anode material is Mg: 0.5-4.0 mass%, In: 0.005-1.0 mass%, Zn: 0.1-4.0 mass%, further 0.005-0.1 mass% of Ti, Ga, and 0.01-1.0 mass% of Ni, respectively. Among them, it contains one or two or more, and is composed of an aluminum alloy composed of the balance Al and inevitable impurities, and the core material is Si: 0.2-1.5 mass%, Cu: 0.1-1.0 mass%, Mn: 0.1-2.0 mass%, Mg: 0.2 or less, and 0.01-0.5 mass% of Cr, Ti, Zr, and 0.01-0.2 mass% of Ni, respectively. 1 type or 2 types or more A high-strength, high-corrosion-resistant aluminum alloy clad material for heat exchangers, characterized in that it is composed of an aluminum alloy composed of the balance Al and the inevitable impurities, has been proposed (Patent Document 3). There is a problem that corrosion resistance is hindered by a certain crystallized product of Fe, and the life of the sacrificial anode material is short.

特開平05−230577号公報Japanese Patent Laid-Open No. 05-230577 特開平09−227977号公報Japanese Patent Application Laid-Open No. 09-227977 特開平06−158208号公報Japanese Patent Laid-Open No. 06-158208

特許文献1及び特許文献2のアルミニウム合金クラッド材では、ろう付加熱時に、犠牲陽極材のMgと非腐食性フラックスが反応し、ろう付不良を起こす可能性があり、犠牲陽極材にMgを添加しない場合では、Si含有量によっては、十分な強度が得られない。さらに、特に合金成分のバランスを図ることなく犠牲防食効果を向上させた場合には、犠牲陽極材の寿命が短くなってしまい、一方、犠牲陽極材の寿命を長くする観点から合金成分を調整した場合には犠牲防食効果が不十分となるという問題があった。   In the aluminum alloy clad material of Patent Document 1 and Patent Document 2, Mg of the sacrificial anode material reacts with non-corrosive flux during brazing heat, and brazing failure may occur, and Mg is added to the sacrificial anode material. If not, sufficient strength cannot be obtained depending on the Si content. Furthermore, when the sacrificial anticorrosion effect was improved without particularly balancing the alloy components, the life of the sacrificial anode material was shortened, while the alloy components were adjusted from the viewpoint of increasing the life of the sacrificial anode material. In some cases, the sacrificial anticorrosive effect is insufficient.

また特許文献3の熱交換器用高強度高耐食性アルミニウム合金クラッド材についても不可避的不純物であるFeの晶出物によって、犠牲陽極材の寿命が短いことが予想される。   Further, the high-strength, high-corrosion-resistant aluminum alloy clad material for heat exchanger of Patent Document 3 is also expected to have a short life of the sacrificial anode material due to the crystallized Fe that is an inevitable impurity.

本発明は、以上の事情を背景としてなされたもので、優れた耐食性を有すると共に犠牲陽極材の寿命の長い熱交換器用アルミニウム合金クラッド材を提供することを目的とする。   The present invention has been made against the background described above, and an object thereof is to provide an aluminum alloy clad material for a heat exchanger having excellent corrosion resistance and a long sacrificial anode material life.

前述の課題を解決すべく本発明者らがアルミニウム合金クラッド材の耐食性や強度と、合金成分組成との関係について詳細に実験・検討を重ねた結果、合金元素としてのSi、Fe、Mn、Cu、Tiの添加量を特に、犠牲防食効果を向上すると共に犠牲陽極材の寿命を長くするという要請を用途に応じて適切に調整して合金成分の全体バランスを図る観点から、(犠牲陽極材に含有されるZnのmass%)+(芯材に含有されるCuのmass%)の値、もしくは(犠牲陽極材に含有されるZnのmass%)−(1/3)・(犠牲陽極材に含有されるMnのmass%)+(芯材に含有されるCuのmass%)+(1/3)・(芯材に含有されるMnのmass%)の値を所定の範囲内とすることによって、十分な耐食性を確保しつつ、犠牲陽極材の長寿命化を達成できることを見出した。本発明はこの知見に基づきなされるに至ったのである。   In order to solve the above-mentioned problems, the present inventors have conducted detailed experiments and examinations on the relationship between the corrosion resistance and strength of the aluminum alloy clad material and the alloy component composition. As a result, Si, Fe, Mn, Cu as alloy elements From the viewpoint of improving the sacrificial anti-corrosion effect and extending the life of the sacrificial anode material appropriately in accordance with the purpose of adjusting the overall balance of the alloy components, (Mass% of Zn contained) + (mass% of Cu contained in the core material) or (mass% of Zn contained in the sacrificial anode material) − (1/3) · (sacrificial anode material The value of (mass% of Mn contained) + (mass% of Cu contained in the core material) + (1/3) · (mass% of Mn contained in the core material) should be within a predetermined range. To ensure sufficient corrosion resistance Found that can achieve a long life of the sacrificial anode material. The present invention has been made based on this finding.

すなわち、本発明の熱交換器用アルミニウム合金クラッド材は、Si:0.5−1.2mass%、Cu:0.05−1.0mass%、Mn:0.2−1.6mass%、Ti:0.05−0.2mass%を含有し、残りがAlおよび不可避不純物からなるAl合金芯材の片面に、犠牲陽極材として、Mn:0.2−1.6mass%、Zn:0.5−1.4mass%を含有し、残りがAlおよび不可避不純物からなり、かつ、0.8≦(犠牲陽極材に含有されるZnのmass%)+(芯材に含有されるCuのmass%)≦1.8を満たすAl−Zn系合金をクラッドし、該芯材の他方の片面に、Al−Si系合金ろう材をクラッドしたことを特徴とする。   That is, the aluminum alloy clad material for a heat exchanger according to the present invention has Si: 0.5-1.2 mass%, Cu: 0.05-1.0 mass%, Mn: 0.2-1.6 mass%, Ti: 0. .05-0.2 mass%, with the balance of Al and inevitable impurities on one side of the Al alloy core material, as a sacrificial anode material, Mn: 0.2-1.6 mass%, Zn: 0.5-1 .4 mass%, the remainder is made of Al and inevitable impurities, and 0.8 ≦ (mass% of Zn contained in the sacrificial anode material) + (mass% of Cu contained in the core material) ≦ 1 8 is clad with an Al—Zn alloy satisfying .8, and the other surface of the core material is clad with an Al—Si alloy brazing material.

犠牲陽極材として、1.0≦(犠牲陽極材に含有されるZnのmass%)+(芯材に含有されるCuのmass%)≦1.5を満たすAl−Zn系合金をクラッドするのがさらに好ましい。   As a sacrificial anode material, an Al—Zn alloy satisfying 1.0 ≦ (mass% of Zn contained in the sacrificial anode material) + (mass% of Cu contained in the core material) ≦ 1.5 is clad. Is more preferable.

また本発明の熱交換器用アルミニウム合金クラッド材は、Si:0.5−1.2mass%、Cu:0.05−1.0mass%、Mn:0.2−1.6mass%、Ti:0.05−0.2mass%を含有し、残りがAlおよび不可避不純物からなるAl合金芯材の片面に、犠牲陽極材として、Mn:0.2−1.6mass%、Zn:0.5−1.4mass%を含有し、残りがAlおよび不可避不純物からなり、かつ、1.0≦(犠牲陽極材に含有されるZnのmass%)−(1/3)・(犠牲陽極材に含有されるMnのmass%)+(芯材に含有されるCuのmass%)+(1/3)・(芯材に含有されるMnのmass%)≦2.4を満たすAl−Zn系合金をクラッドし、該芯材の他方の片面に、Al−Si系合金ろう材をクラッドしたことを特徴とする。   Moreover, the aluminum alloy clad material for heat exchangers of the present invention has Si: 0.5-1.2 mass%, Cu: 0.05-1.0 mass%, Mn: 0.2-1.6 mass%, Ti: 0.00. As a sacrificial anode material on one side of an Al alloy core material containing 05-0.2 mass% and the remainder consisting of Al and inevitable impurities, Mn: 0.2-1.6 mass%, Zn: 0.5-1. 4 mass%, the remainder is made of Al and inevitable impurities, and 1.0 ≦ (mass% of Zn contained in the sacrificial anode material) − (1/3) · (Mn contained in the sacrificial anode material) Mass%) + (mass% of Cu contained in the core material) + (1/3) · (mass% of Mn contained in the core material) ≦ 2.4 The other side of the core material has an Al-Si alloy brazing The characterized in that the cladding.

犠牲陽極材として、1.2≦(犠牲陽極材に含有されるZnのmass%)−(1/3)・(犠牲陽極材に含有されるMnのmass%)+(芯材に含有されるCuのmass%)+(1/3)・(芯材に含有されるMnのmass%)≦1.8を満たすAl−Zn系合金をクラッドするのがさらに好ましい。   As the sacrificial anode material, 1.2 ≦ (mass% of Zn contained in the sacrificial anode material) − (1/3) · (mass% of Mn contained in the sacrificial anode material) + (contained in the core material) It is more preferable to clad an Al—Zn alloy satisfying Cu mass%) + (1/3) · (Mn mass% contained in core material) ≦ 1.8.

本発明のアルミニウム合金クラッド材は、腐食環境下でも極めて良好な耐食性を示すと共に、犠牲陽極材の長寿命化を達成することができ、従って熱交換器の構造部材として、薄肉化しても十分な耐久性を示すことができ、過酷な腐食環境下にさらされる熱交換器の構造部材として最適である。   The aluminum alloy clad material of the present invention exhibits extremely good corrosion resistance even in a corrosive environment, and can achieve a long life of the sacrificial anode material. Therefore, even if it is thinned as a structural member of a heat exchanger, it is sufficient. It can exhibit durability and is optimal as a structural member for heat exchangers exposed to harsh corrosive environments.

以下に本発明で限定する事項について説明する。
本発明のアルミニウム合金クラッド材において、犠牲陽極材に含有されるZn、Mnおよび芯材に含有されるCu、Mnは、次の条件i又は条件iiを充足するものとされる。
(条件i)0.8≦(犠牲陽極材に含有されるZnのmass%)+(芯材に含有されるCuのmass%)≦1.8
(条件ii)1.0≦(犠牲陽極材に含有されるZnのmass%)−(1/3)・(犠牲陽極材に含有されるMnのmass%)+(芯材に含有されるCuのmass%)+(1/3)・(芯材に含有されるMnのmass%)≦2.4
The matter limited by this invention is demonstrated below.
In the aluminum alloy clad material of the present invention, Zn and Mn contained in the sacrificial anode material and Cu and Mn contained in the core material satisfy the following condition i or condition ii.
(Condition i) 0.8 ≦ (mass% of Zn contained in sacrificial anode material) + (mass% of Cu contained in core material) ≦ 1.8
(Condition ii) 1.0 ≦ (mass% of Zn contained in sacrificial anode material) − (1/3) · (mass% of Mn contained in sacrificial anode material) + (Cu contained in core material) Mass%) + (1/3). (Mass% of Mn contained in core material) ≦ 2.4

さらに本発明のアルミニウム合金クラッド材において、犠牲陽極材に含有されるZn、Mnおよび芯材に含有されるCu、Mnは、条件iを充足するものについてはさらに次の条件iii、条件iiを充足するものについてはさらに次の条件ivを充足するものとすることが好ましい。
(条件iii)1.0≦(犠牲陽極材に含有されるZnのmass%)+(芯材に含有されるCuのmass%)≦1.5
(条件iv)1.2≦(犠牲陽極材に含有されるZnのmass%)−(1/3)・(犠牲陽極材に含有されるMnのmass%)+(芯材に含有されるCuのmass%)+(1/3)・(芯材に含有されるMnのmass%)≦1.8
Furthermore, in the aluminum alloy clad material of the present invention, Zn and Mn contained in the sacrificial anode material and Cu and Mn contained in the core material satisfy the following conditions iii and ii for those satisfying the condition i. It is preferable to satisfy the following condition iv.
(Condition iii) 1.0 ≦ (mass% of Zn contained in sacrificial anode material) + (mass% of Cu contained in core material) ≦ 1.5
(Condition iv) 1.2 ≦ (mass% of Zn contained in sacrificial anode material) − (1/3) · (mass% of Mn contained in sacrificial anode material) + (Cu contained in core material) Mass%) + (1/3). (Mass% of Mn contained in core material) ≦ 1.8

以上のように本発明のアルミニウム合金クラッド材において、犠牲陽極材に含有されるZn、Mnおよび芯材に含有されるCu、Mnを条件i〜条件ivの少なくとも一を充足するものとするのは次の理由による。
芯材を犠牲陽極材によって効果的に防食するためには、犠牲陽極材と芯材の電位差を大きくする必要がある。犠牲陽極材と芯材の電位差を大きくするための手法は、犠牲陽極材Znを増加させて表面の電位を卑にすること、および、芯材Cuを増加させて芯材の電位を貴にすることがある。したがって条件iを充足する様に、(犠牲陽極材に含有されるZnのmass%)+(芯材に含有されるCuのmass%)を0.8以上とすれば、犠牲陽極材と芯材の電位差が大きくなり、芯材が犠牲陽極材によって効果的に防食される。
As described above, in the aluminum alloy clad material of the present invention, Zn, Mn contained in the sacrificial anode material and Cu, Mn contained in the core material satisfy at least one of the conditions i to iv. For the following reason.
In order to effectively protect the core material with the sacrificial anode material, it is necessary to increase the potential difference between the sacrificial anode material and the core material. In order to increase the potential difference between the sacrificial anode material and the core material, the sacrificial anode material Zn is increased to lower the surface potential, and the core material Cu is increased to increase the core material potential. Sometimes. Therefore, if (mass% of Zn contained in the sacrificial anode material) + (mass% of Cu contained in the core material) is 0.8 or more so as to satisfy the condition i, the sacrificial anode material and the core material And the core material is effectively prevented from being corroded by the sacrificial anode material.

一方、犠牲陽極材に含有されるMnによって形成されるAl−Mn系金属間化合物は、Feを取り込んでFeによる耐食性阻害効果を抑制し、その結果、犠牲材が長寿命化する。また、条件iiを充足する様に、(犠牲陽極材に含有されるZnのmass%)−(1/3)・(犠牲陽極材に含有されるMnのmass%)+(芯材に含有されるCuのmass%)+(1/3)・(芯材に含有されるMnのmass%)を1.0以上とすれば、犠牲陽極材と芯材の電位差が大きくなり、芯材が犠牲陽極材によって効果的に防食される。  On the other hand, the Al—Mn intermetallic compound formed by Mn contained in the sacrificial anode material takes in Fe and suppresses the corrosion resistance inhibition effect by Fe, and as a result, the sacrificial material has a long life. Further, to satisfy the condition ii, (mass% of Zn contained in the sacrificial anode material) − (1/3) · (mass% of Mn contained in the sacrificial anode material) + (contained in the core material) Cu mass%) + (1/3). (Mn mass% contained in the core material) is 1.0 or more, the potential difference between the sacrificial anode material and the core material increases, and the core material is sacrificed. It is effectively protected by the anode material.

一方、犠牲陽極材と芯材の電位差が大きくなりすぎると、犠牲陽極材の消費が促進され、寿命が短くなる。したがって条件i又は条件iiを充足する様に、(犠牲陽極材に含有されるZnのmass%)+(芯材に含有されるCuのmass%)を1.8以下、もしくは、(犠牲陽極材に含有されるZnのmass%)−(1/3)・(犠牲陽極材に含有されるMnのmass%)+(芯材に含有されるCuのmass%)+(1/3)・(芯材に含有されるMnのmass%)を2.4以下とすれば、犠牲陽極材と芯材の電位差が大きくなりすぎず、犠牲陽極材が長寿命化する。 On the other hand, if the potential difference between the sacrificial anode material and the core material becomes too large, consumption of the sacrificial anode material is promoted and the life is shortened. Therefore, so as to satisfy condition i or condition ii, (mass% of Zn contained in sacrificial anode material) + (mass% of Cu contained in core material) is 1.8 or less, or (sacrificial anode material (Mass% of Zn contained)-(1/3) .multidot. (Mass% of Mn contained in sacrificial anode material) + (mass% of Cu contained in core material) + (1/3). ( If the mass% of Mn contained in the core material is 2.4 or less, the potential difference between the sacrificial anode material and the core material does not become too large, and the life of the sacrificial anode material is extended.

本発明のアルミニウム合金クラッド材の犠牲陽極材において、Mnは0.2−1.6mass%含有される。MnはAl−Mn系金属間化合物として晶出又は析出して、ろう付加熱後の強度の向上に寄与し、強度を向上させる元素である。また、Al−Mn系金属間化合物は、Feを取り込むために、Feによる耐食性阻害効果を抑制する働きがあり、この効果のために犠牲陽極材にMnを添加した。これらの効果を確実に得るためには、0.2mass%以上のMnを添加する必要がある。但し、Mn量が1.6mass%を超えれば、巨大な金属間化合物が晶出し、製造性を阻害するおそれがあり、したがって、Mn量の上限は1.6mass%とした。Mnのより好ましい添加範囲は、0.2−1.0mass%以下である。   In the sacrificial anode material of the aluminum alloy clad material of the present invention, Mn is contained in an amount of 0.2 to 1.6 mass%. Mn is an element that crystallizes or precipitates as an Al—Mn-based intermetallic compound, contributes to improvement in strength after brazing addition heat, and improves strength. Further, the Al—Mn intermetallic compound has a function of suppressing the corrosion resistance inhibiting effect by Fe in order to incorporate Fe, and Mn is added to the sacrificial anode material for this effect. In order to reliably obtain these effects, it is necessary to add 0.2 mass% or more of Mn. However, if the amount of Mn exceeds 1.6 mass%, a huge intermetallic compound may be crystallized, which may impair manufacturability. Therefore, the upper limit of the amount of Mn is set to 1.6 mass%. A more preferable addition range of Mn is 0.2 to 1.0 mass% or less.

本発明のアルミニウム合金クラッド材の犠牲陽極材において、Znは0.5−1.4mass%含有される。犠牲陽極材のZnは、犠牲防食効果を向上させる働きがあり、この効果を確実に得るためには、0.5mass%以上のZnを添加する必要がある。一方、Znが1.4mass%を越えると、犠牲陽極材の消費が促進され、寿命が短くなる。したがって、Zn量の上限は1.4mass%とした。Znのより好ましい添加範囲は、0.5−1.0mass%以下である。   In the sacrificial anode material of the aluminum alloy clad material of the present invention, Zn is contained in an amount of 0.5 to 1.4 mass%. Zn of the sacrificial anode material has a function of improving the sacrificial anticorrosive effect. To obtain this effect with certainty, it is necessary to add 0.5 mass% or more of Zn. On the other hand, if Zn exceeds 1.4 mass%, the consumption of the sacrificial anode material is promoted and the life is shortened. Therefore, the upper limit of the Zn content is set to 1.4 mass%. A more preferable addition range of Zn is 0.5 to 1.0 mass% or less.

本発明のアルミニウム合金クラッド材の犠牲陽極材において、以上の各成分の残部は、Al及び不可避不純物とすればよい。Si、Fe、Cu、Mg、Tiは発明の効果を損なわない範囲で含まれても良いが、Si、FeおよびCuは、犠牲陽極材の消費を促進するため、それぞれ、0.5mass%以下、0.3mass%以下および0.2mass%以下にするのが好ましく、さらに好ましい範囲として0.1mass%以下、0.15mass%以下および0.05mass%以下にするのが望ましい。   In the sacrificial anode material of the aluminum alloy clad material of the present invention, the balance of the above components may be Al and inevitable impurities. Si, Fe, Cu, Mg, and Ti may be included within a range that does not impair the effects of the invention. However, since Si, Fe, and Cu promote consumption of the sacrificial anode material, respectively, 0.5 mass% or less, It is preferable to set it to 0.3 mass% or less and 0.2 mass% or less, and it is desirable to set it as 0.1 mass% or less, 0.15 mass% or less, and 0.05 mass% or less as a more preferable range.

本発明のアルミニウム合金クラッド材の犠牲陽極材において、犠牲陽極材の厚さは特に限定されないが、ろう付加熱によって芯材から犠牲陽極材表面までCuが拡散した場合、犠牲陽極材の消費が促進される。このため、犠牲陽極材は、芯材から犠牲陽極材表面までCuが拡散してこない厚さであることが好ましく、具体的には30μm以上とするのが望ましい。   In the sacrificial anode material of the aluminum alloy clad material of the present invention, the thickness of the sacrificial anode material is not particularly limited. However, when Cu diffuses from the core material to the surface of the sacrificial anode material due to brazing addition heat, consumption of the sacrificial anode material is promoted. Is done. For this reason, it is preferable that the sacrificial anode material has a thickness that prevents Cu from diffusing from the core material to the surface of the sacrificial anode material.

本発明のアルミニウム合金クラッド材の芯材において、Siは0.5−1.2mass%含有される。Siは、マトリックスに固溶したり、Al−Mn−Si系金属間化合物を生成することによって、ろう付後の強度を向上させる元素である。さらに、Siの添加は、芯材の電位を貴にして、芯材と犠牲陽極材の電位差を大きくする働きがあり、これにより耐食性が向上する。これらのSi添加の効果を得るためには、0.5mass%以上のSiの含有が必要である。一方、過剰にSiが含有されれば、単独で晶出したSiにより耐食性を低下させるおそれがあると共に、合金の融点を低下させてろう付時に材料の溶融を招いてしまう。これら過剰なSiの含有による悪影響を回避するためには、Si量の上限は1.2mass%とする必要がある。Siのより好ましい添加範囲は、0.5−1.0mass%以下である。   In the core material of the aluminum alloy clad material of the present invention, Si is contained in an amount of 0.5 to 1.2 mass%. Si is an element that improves the strength after brazing by forming a solid solution in a matrix or generating an Al—Mn—Si intermetallic compound. Furthermore, the addition of Si serves to increase the potential difference between the core material and the sacrificial anode material by making the potential of the core material noble, thereby improving the corrosion resistance. In order to obtain these effects of adding Si, it is necessary to contain Si of 0.5 mass% or more. On the other hand, if Si is excessively contained, the corrosion resistance may be lowered by Si crystallized alone, and the melting point of the alloy is lowered to cause melting of the material during brazing. In order to avoid the adverse effects caused by the excessive Si content, the upper limit of the Si amount needs to be 1.2 mass%. A more preferable addition range of Si is 0.5 to 1.0 mass% or less.

本発明のアルミニウム合金クラッド材の芯材において、Cuは0.05−1.0mass%含有される。Cuはマトリックスに固溶してろう付後の強度を向上させる。さらに芯材の電位を貴にして、芯材と犠牲陽極材の電位差を大きくする働きがあり、これにより耐食性が向上する。これらのCu添加の効果を得るためには、0.3mass%以上のCuの含有がより好ましい。しかしながら、Cuを多量に添加した場合、芯材と犠牲陽極材の電位差を大きくなりすぎて、犠牲陽極材の消費が促進され、寿命が短くなる。したがって、Cu量の上限は1.0mass%とした。Cuの更に好ましい添加範囲は、0.4−1.0mass%である。さらに好ましい添加範囲として、0.5−0.8mass%が望ましい。   In the core material of the aluminum alloy clad material of the present invention, Cu is contained in an amount of 0.05 to 1.0 mass%. Cu dissolves in the matrix and improves the strength after brazing. Furthermore, it has the function of making the potential of the core material noble and increasing the potential difference between the core material and the sacrificial anode material, thereby improving the corrosion resistance. In order to obtain the effect of these Cu additions, it is more preferable to contain 0.3 mass% or more of Cu. However, when a large amount of Cu is added, the potential difference between the core material and the sacrificial anode material becomes too large, so that consumption of the sacrificial anode material is promoted and the life is shortened. Therefore, the upper limit of the amount of Cu is set to 1.0 mass%. The more preferable addition range of Cu is 0.4-1.0 mass%. As a more preferable addition range, 0.5 to 0.8 mass% is desirable.

本発明のアルミニウム合金クラッド材の芯材において、Mnは0.2−1.6mass%含有される。MnはAl−Mn系金属間化合物として晶出又は析出して、ろう付後の強度の向上に寄与し、また、Siと共存することによりAl−Mn−Si系の金属間化合物を生成して強度を向上させる元素である。また、Al−Mn系金属間化合物は、Feを取り込むために、Feによる耐食性阻害効果を抑制する働きもある。さらに、Mnの添加は芯材の電位を貴にして、芯材と犠牲陽極材の電位差を大きくする働きがあり、これにより耐食性が向上する。これらの効果を確実に得るためには、0.2mass%以上のMnを添加する必要があり、好ましくは0.8mass%以上のMnを添加する。但し、Mn量が1.6mass%を超えれば、巨大な金属間化合物が晶出し、製造性を阻害するおそれがあり、したがって、Mn量の上限は1.6mass%とした。   In the core material of the aluminum alloy clad material of the present invention, Mn is contained in an amount of 0.2 to 1.6 mass%. Mn crystallizes or precipitates as an Al-Mn intermetallic compound, contributes to the improvement of strength after brazing, and also forms an Al-Mn-Si intermetallic compound by coexisting with Si. It is an element that improves strength. In addition, since the Al—Mn-based intermetallic compound takes in Fe, it also has a function of suppressing the corrosion resistance inhibition effect by Fe. Further, the addition of Mn serves to increase the potential difference between the core material and the sacrificial anode material by making the potential of the core material noble, thereby improving the corrosion resistance. In order to reliably obtain these effects, it is necessary to add 0.2 mass% or more of Mn, and preferably 0.8 mass% or more of Mn. However, if the amount of Mn exceeds 1.6 mass%, a huge intermetallic compound may be crystallized, which may impair manufacturability. Therefore, the upper limit of the amount of Mn is set to 1.6 mass%.

本発明のアルミニウム合金クラッド材の芯材において、Tiは0.05−0.2mass%含有される。Tiは、耐食性、特に耐孔食性の向上に寄与する。すなわち、アルミニウム合金中に添加されたTiは、その濃度の高い領域と濃度の低い領域とに分かれ、それらが板厚方向に交互に積層状に分布する。そして、Ti濃度の低い領域がTi濃度の高い領域よりも優先的に腐食することにより、腐食形態が層状となり、その結果板厚方向への腐食の進行が妨げられ、耐孔食性が向上する。このような耐孔食性向上の効果を十分に得るためには、0.05mass%以上のTiが必要であり、好ましくは0.1mass%以上のTiを添加する。一方、Ti添加量が0.2mass%を超えれば、鋳造時に粗大な化合物が生成されて製造性を阻害するおそれがあり、したがって、Ti量の上限は0.2mass%とした。   In the core material of the aluminum alloy clad material of the present invention, Ti is contained in an amount of 0.05 to 0.2 mass%. Ti contributes to improvement of corrosion resistance, particularly pitting corrosion resistance. That is, Ti added to the aluminum alloy is divided into a high-concentration region and a low-concentration region, and these are alternately distributed in the thickness direction. And the area | region where Ti density | concentration corrodes preferentially over the area | region where Ti density | concentration is high, and a corrosion form becomes a layer form, As a result, progress of corrosion to a plate | board thickness direction is prevented, and pitting corrosion resistance improves. In order to sufficiently obtain such an effect of improving pitting corrosion resistance, 0.05 mass% or more of Ti is necessary, and preferably 0.1 mass% or more of Ti is added. On the other hand, if the amount of Ti added exceeds 0.2 mass%, a coarse compound may be generated during casting, which may impair manufacturability. Therefore, the upper limit of Ti amount is set to 0.2 mass%.

本発明のアルミニウム合金クラッド材の芯材において、以上の各成分の残部は、Al及び不可避不純物とすればよいが、Fe、Mgは発明の効果を損なわない範囲で含まれても良いが、Feは、犠牲陽極材の消費を促進するため、0.3mass%以下にするのが好ましく、さらに好ましい範囲として0.15mass%以下にするのが望ましい。   In the core material of the aluminum alloy clad material of the present invention, the balance of the above components may be Al and inevitable impurities, but Fe and Mg may be included within a range not impairing the effects of the invention. In order to promote consumption of the sacrificial anode material, the content is preferably set to 0.3 mass% or less, and more preferably set to 0.15 mass% or less.

尚、本発明のアルミニウム合金クラッド材の合金組成は、犠牲陽極作用により防食される芯材と犠牲陽極材とがクラッドされている状態を考慮して所望の電位差を得るために規定したものであり、例えば熱交換器においてベアチューブ材とベアチューブを防食するための犠牲陽極フィン材とがろう付されて使用されるような場合に設定される電位差とは異なるものである。すなわち、材料を防食する場合、一定の犠牲防食効果を得るためには、防食する材料と防食される材料の距離に比例させて電位差を変える必要がある。前記ろう付されたベアチューブ材と犠牲陽極フィン材の場合には、犠牲陽極フィン材から近いところにあるベアチューブ材は小さい電位差でも防食できるが、犠牲陽極フィン材から離れたところにあるベアチューブ材を防食するためにはより大きな電位差が必要となり、結果として電位差を大きく設計することになる。   The alloy composition of the aluminum alloy clad material of the present invention is specified in order to obtain a desired potential difference in consideration of the state in which the core material sacrificial by the sacrificial anode action and the sacrificial anode material are clad. This is different from the potential difference set when, for example, the bare tube material and the sacrificial anode fin material for preventing corrosion of the bare tube are brazed and used in a heat exchanger. That is, when the material is anticorrosive, in order to obtain a certain sacrificial anticorrosive effect, it is necessary to change the potential difference in proportion to the distance between the anticorrosive material and the anticorrosive material. In the case of the brazed bare tube material and the sacrificial anode fin material, the bare tube material in the vicinity of the sacrificial anode fin material can prevent corrosion even with a small potential difference, but the bare tube in the location away from the sacrificial anode fin material. In order to prevent corrosion of the material, a larger potential difference is required, and as a result, the potential difference is designed to be large.

また、本発明のアルミニウム合金クラッド材は、熱交換器を組み立てる際のろう付時に犠牲陽極材から芯材へのZnの拡散及び芯材から犠牲陽極材へのCuの拡散が起こるため、クラッド材表面から芯へ向かって電位勾配が形成され、ベアチューブ材と犠牲陽極フィン材とをろう付して作製された熱交換器の場合よりも、効果的に防食することができる。   In addition, the aluminum alloy clad material of the present invention causes the diffusion of Zn from the sacrificial anode material to the core material and the diffusion of Cu from the core material to the sacrificial anode material during brazing when assembling the heat exchanger. A potential gradient is formed from the surface to the core, and corrosion can be more effectively prevented than in the case of a heat exchanger manufactured by brazing the bare tube material and the sacrificial anode fin material.

本発明のアルミニウム合金クラッド材のろう材において、成分、厚さ等は、特に限定されるものでなく、用途によって自由に変更可能である。   In the brazing material of the aluminum alloy clad material of the present invention, the component, thickness, and the like are not particularly limited and can be freely changed depending on the application.

本発明のアルミニウム合金クラッド材の製造方法は特に限定されず通常の方法で製造してよい。まず、クラッドの構成要素となる芯材、犠牲陽極材およびろう材の素材をそれぞれ通常の半連続鋳造法で鋳造する。必要に応じて均質化処理を行い、その後、面削や予備熱間圧延などで厚さを調整する。その後、組み合わせた芯材、犠牲陽極材およびろう材は、熱間圧延によりクラッド接合され3層材となる。この後、冷間圧延、中間焼鈍および最終冷間圧延にて所定の板厚および加工調質状態とする。   The manufacturing method of the aluminum alloy clad material of the present invention is not particularly limited, and may be manufactured by a normal method. First, the core material, the sacrificial anode material, and the brazing material, which are the constituent elements of the clad, are each cast by a normal semi-continuous casting method. If necessary, homogenization is performed, and then the thickness is adjusted by chamfering or preliminary hot rolling. Thereafter, the combined core material, sacrificial anode material and brazing material are clad joined by hot rolling to form a three-layer material. Then, it is set as a predetermined | prescribed plate | board thickness and work tempering state by cold rolling, intermediate annealing, and final cold rolling.

以上のようにして得られたアルミニウム合金は、熱交換器用の材料として使用されるものであり、通常は冷媒(熱媒体)を流通させるチューブ材として用いられる。このようなチューブ材は、熱交換器用部品として使用するに際して、他部材(例えばフィン材やヘッダー)と組み付けて、ろう付により接合するのが一般的である。ここで、ろう付に際しての雰囲気や加熱温度、時間等の条件については特に限定されるものではなく、また、ろう付方法も特に限定されない。このようにして得られる熱交換器は、高耐圧特性を有しており、しかも良好な耐食性を有しているから、例えば厳しい腐食環境下で使用される自動車等においても、良好な耐久性を発揮することができる。   The aluminum alloy obtained as described above is used as a material for a heat exchanger, and is usually used as a tube material for circulating a refrigerant (heat medium). When such a tube material is used as a heat exchanger component, it is generally assembled with another member (for example, a fin material or a header) and joined by brazing. Here, conditions such as atmosphere, heating temperature, and time for brazing are not particularly limited, and the brazing method is not particularly limited. The heat exchanger thus obtained has high pressure resistance characteristics and good corrosion resistance, so that it has good durability even in, for example, an automobile used in a severe corrosive environment. It can be demonstrated.

以下、実施例に基づいて、本発明をさらに詳細に説明するが、本発明はこれらに限られるものではない。
表1、表2に示す合金組成の犠牲陽極材と表3、表4に示す合金組成の芯材を用い、表5、表6、表7に示す犠牲陽極材と芯材の組合せで構成させたクラッド材を作製した。なお、表1、表2に示す合金組成の犠牲陽極材及び表3、表4に示す合金組成の芯材は各表に示された成分以外はAlおよび不可避不純物からなる。
表5は本発明の実施例のクラッド材であり、表6及び表7は比較例のクラッド材である。
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these.
The sacrificial anode material having the alloy composition shown in Tables 1 and 2 and the core material having the alloy composition shown in Tables 3 and 4 are used, and the combination of the sacrificial anode material and the core material shown in Tables 5, 6 and 7 is used. A clad material was produced. The sacrificial anode materials having the alloy compositions shown in Tables 1 and 2 and the core materials having the alloy compositions shown in Tables 3 and 4 are made of Al and inevitable impurities except for the components shown in the respective tables.
Table 5 shows the clad materials of the examples of the present invention, and Tables 6 and 7 show the clad materials of the comparative examples.

Figure 0004874074
Figure 0004874074

Figure 0004874074
Figure 0004874074

Figure 0004874074
Figure 0004874074

Figure 0004874074
Figure 0004874074

Figure 0004874074
Figure 0004874074

Figure 0004874074
Figure 0004874074

Figure 0004874074
Figure 0004874074

実施例の表1に示す合金組成の犠牲陽極材にあっては、Mnの最大添加量はHの1.42mass%であり、また最小添加量はEの0.27mass%であって、犠牲陽極材のMn添加量を0.2−1.6mass%とする本発明の条件を充足する。さらに、Znの最大添加量はJの1.32mass%であり、また最小添加量はFの0.55mass%であって、犠牲陽極材のZn添加量を0.5−1.4mass%とする本発明の条件を充足する。   In the sacrificial anode material having the alloy composition shown in Table 1 of the example, the maximum addition amount of Mn is 1.42 mass% of H, and the minimum addition amount is 0.27 mass% of E. The conditions of the present invention in which the amount of Mn added to the material is 0.2 to 1.6 mass% are satisfied. Further, the maximum addition amount of Zn is 1.32 mass% of J, the minimum addition amount is 0.55 mass% of F, and the Zn addition amount of the sacrificial anode material is 0.5-1.4 mass%. Satisfy the conditions of the present invention.

一方、比較例である表2に示す合金組成の犠牲陽極材にあっては、何れもTiの添加はあるもののZnの有意の添加はなく、Znの添加を0.5−1.4mass%とする本発明の条件を充足しない。またKについてはMnの添加量は0.03であり、一方LにあってはMnの添加量が1.94であって、犠牲陽極材のMn添加量を0.2−1.6mass%とする本発明の条件を充足しない。   On the other hand, in the sacrificial anode material having the alloy composition shown in Table 2 as a comparative example, there was no significant addition of Zn although Ti was added, and the addition of Zn was 0.5-1.4 mass%. Does not satisfy the conditions of the present invention. For K, the amount of Mn added is 0.03, while in L, the amount of Mn added is 1.94, and the amount of Mn added to the sacrificial anode material is 0.2-1.6 mass%. Does not satisfy the conditions of the present invention.

実施例の表3に示す合金組成のAl合金芯材にあっては、Siの最大添加量はウの1.10mass%であり、また最小添加量はアの0.58mass%であって、いずれも芯材のSi添加量を0.5−1.2mass%とする本発明の条件を充足する。またCuの最大添加量はケの0.96mass%であり、また最小添加量はオの0.08mass%であって、芯材のCu添加量を0.05−1.0mass%とする本発明の条件を充足する。さらにMnの最大添加量はシの1.42mass%であり、また最小添加量はコの0.43mass%であって、芯材のMn添加量を0.2−1.6mass%とする本発明の条件を充足する。加えてTiの最大添加量はオの0.18mass%であり、また最小添加量はスの0.08mass%であって、芯材のTi添加量を0.05−0.2mass%とする本発明の条件を充足する。   In the Al alloy core material having the alloy composition shown in Table 3 of the example, the maximum addition amount of Si is 1.10 mass% of the c, and the minimum addition amount is 0.58 mass% of the a. Also satisfies the conditions of the present invention in which the Si addition amount of the core material is 0.5-1.2 mass%. Further, the maximum addition amount of Cu is 0.96 mass% of the iron, the minimum addition amount is 0.08 mass% of E, and the Cu addition amount of the core material is 0.05 to 1.0 mass%. Satisfy the conditions. Further, the maximum addition amount of Mn is 1.42 mass% of the shi, and the minimum addition amount is 0.43 mass% of the core, and the Mn addition amount of the core material is 0.2-1.6 mass%. Satisfy the conditions. In addition, the maximum addition amount of Ti is 0.18% by mass, the minimum addition amount is 0.08% by mass, and the Ti addition amount of the core material is 0.05-0.2 mass%. Satisfy the conditions of the invention.

これに対し比較例である表4のセに示す合金組成のAl合金芯材にあっては、Siの添加量が0.29mass%であり、一方、ソに示す合金組成のAl合金芯材にあっては、Siの添加量が1.42mass%であり、いずれも芯材のSi添加量を0.5−1.2mass%とする本発明の条件を充足しない。また表4のタに示す合金組成のAl合金芯材にあっては、Cuの添加量が1.09mass%であり、一方、チに示す合金組成のAl合金芯材にあっては、Cuの添加量が1.33mass%であり、いずれも芯材のCu添加量を0.05−1.0mass%とする範囲を超えており、本発明の条件を充足しない。   On the other hand, in the Al alloy core material with the alloy composition shown in Table 4 which is a comparative example, the addition amount of Si is 0.29 mass%, while the Al alloy core material with the alloy composition shown in Seo is Then, the addition amount of Si is 1.42 mass%, and none of them satisfies the conditions of the present invention in which the Si addition amount of the core material is 0.5 to 1.2 mass%. In addition, in the Al alloy core material having the alloy composition shown in Table 4, the addition amount of Cu is 1.09 mass%, while in the Al alloy core material having the alloy composition shown in h, The amount added is 1.33 mass%, which is beyond the range where the amount of Cu added to the core is 0.05-1.0 mass%, and does not satisfy the conditions of the present invention.

さらに表4のツに示す合金組成のAl合金芯材にあっては、Mnの添加量が0.05mass%であり、一方、テに示す合金組成のAl合金芯材にあっては、Mnの添加量が2.02mass%であり、いずれも芯材のMn添加量を0.2−1.6mass%とする本発明の条件を充足しない。
加えて表4のトに示す合金組成のAl合金芯材にあっては、Tiの添加量が0.01mass%であり、一方、ナに示す合金組成のAl合金芯材にあっては、Tiの添加量が0.33mass%であり、いずれも芯材のTi添加量を0.05−0.2mass%とする本発明の条件を充足しない。
Furthermore, in the Al alloy core material having the alloy composition shown in Table 4, the amount of Mn added is 0.05 mass%, whereas in the Al alloy core material having the alloy composition shown in Table 4, the Mn The addition amount is 2.02 mass%, and none of them satisfies the conditions of the present invention in which the Mn addition amount of the core material is 0.2-1.6 mass%.
In addition, in the Al alloy core material of the alloy composition shown in Table 4 G, the addition amount of Ti is 0.01 mass%, while in the Al alloy core material of the alloy composition shown in Na, Ti Is 0.33 mass%, and none of them satisfies the conditions of the present invention in which the amount of Ti added to the core material is 0.05-0.2 mass%.

以上の表1に示す本発明の条件を充足する犠牲陽極材及び表3に示す本発明の条件を充足する合金組成のAl合金芯材を用いて表5に示す本発明実施例のクラッド材を製造した。
また以上の表2に示す本発明の条件を充足しない犠牲陽極材及び表4に示す本発明の条件を充足しない合金組成のAl合金芯材を用いて表6に示す本発明実施例に対する比較例のクラッド材を製造した。
さらには表1に示す本発明の条件を充足する犠牲陽極材及び表3に示す本発明の条件を充足する合金組成のAl合金芯材を用いて製造されてはいるものの、条件i〜ivの何れも充足しない結果として、本発明実施例のクラッド材には該当せず、比較例として評価される表7に示すクラッド材を製造した。
Using the sacrificial anode material satisfying the conditions of the present invention shown in Table 1 and the Al alloy core material of the alloy composition satisfying the conditions of the present invention shown in Table 3, the clad materials of the inventive examples shown in Table 5 are used. Manufactured.
Moreover, the comparative example with respect to the Example of this invention shown in Table 6 using the sacrificial anode material which does not satisfy the conditions of this invention shown in Table 2 above, and the Al alloy core material of the alloy composition which does not satisfy the conditions of this invention shown in Table 4 The clad material was manufactured.
Furthermore, although manufactured using the sacrificial anode material satisfying the conditions of the present invention shown in Table 1 and the Al alloy core material of the alloy composition satisfying the conditions of the present invention shown in Table 3, the conditions i to iv As a result of not satisfying any of them, the clad material shown in Table 7 which is not applicable to the clad material of the embodiment of the present invention and evaluated as a comparative example was manufactured.

ろう材にはJIS4045合金を用い、クラッド率は犠牲陽極材は15%、ろう材は5%である。クラッド材の製造に際しては、芯材、犠牲陽極材およびろう材をそれぞれ、半連続鋳造法で鋳造し、均質化処理を行わず、両面を10mmずつ面削した。その後、所定のクラッド率に芯材、犠牲陽極材およびろう材を組合せ、熱間圧延予備加熱、熱間圧延、中間焼鈍、冷間圧延を行い、板厚0.3mmのクラッド材を作製した。ただし、表2に示す犠牲陽極材のL、表4に示す芯材のテおよびナは、巨大化合物が晶出したため、熱間圧延時に割れが発生し製造することができなかった(表6に示す比較例クラッド材のNo.32、44、46)。   JIS4045 alloy is used for the brazing material, and the clad rate is 15% for the sacrificial anode material and 5% for the brazing material. In the production of the clad material, the core material, the sacrificial anode material and the brazing material were each cast by a semi-continuous casting method, and both surfaces were chamfered by 10 mm without homogenization. Thereafter, a core material, a sacrificial anode material, and a brazing material were combined at a predetermined cladding rate, and hot rolling preheating, hot rolling, intermediate annealing, and cold rolling were performed to produce a cladding material having a plate thickness of 0.3 mm. However, the sacrificial anode material L shown in Table 2 and the core materials Te and Na shown in Table 4 were not able to be manufactured due to the occurrence of cracks during hot rolling because the giant compound crystallized (see Table 6). No. 32, 44, 46 of the comparative clad material shown).

得られたクラッド材は、ろう付相当加熱後、電位測定、耐食性試験および引張試験を行った。ろう付相当加熱では、非腐食性フラックスを塗布したクラッド材を、窒素雰囲気中で600℃、3分加熱した。表4に示す芯材のソを使用したクラッド材はろう付相当加熱によって溶融してしまいその後の評価を行うことができなかった(表6に示す比較例クラッド材のNo.40)。   The obtained clad material was subjected to potential measurement, corrosion resistance test and tensile test after heating corresponding to brazing. In the brazing equivalent heating, the clad material coated with the non-corrosive flux was heated at 600 ° C. for 3 minutes in a nitrogen atmosphere. The clad material using the core material shown in Table 4 was melted by brazing equivalent heating and could not be evaluated thereafter (No. 40 of the comparative clad material shown in Table 6).

電位測定では、前処理として、60℃の5%NaOH溶液に30s浸漬し、30%HNO溶液に60s浸漬を行い表面を洗浄した。その後、5%NaCl溶液中において、犠牲陽極材表面の電位およびアルカリエッチングにより芯材を露出させて芯材の電位を測定し、犠牲陽極材表面と芯材の電位差を求めた。耐食性試験は、犠牲陽極材の表面中央部のみを露出させ、他の面を全てシールし、pH:2.8−3.0の49℃の人工海水(ASTMD 1141)の30分噴霧と49℃で相対湿度98%以上の高湿度下に90分保持するSWAAT1000hを実施した。
試験終了後、各クラッド材はリン酸・クロム酸混合溶液で腐食生成物を除去した後、最大孔食深さを光学顕微鏡を用いて焦点深度法により求めた。さらに、耐食性試験前後の重量を測定し、耐食性試験による腐食減量を求めた。
In the potential measurement, as a pretreatment, the surface was cleaned by immersing in a 5% NaOH solution at 60 ° C. for 30 s and immersing in a 30% HNO 3 solution for 60 s. Thereafter, in a 5% NaCl solution, the potential of the surface of the sacrificial anode material and the core material were measured by exposing the potential of the surface of the sacrificial anode material and exposing the core material by alkali etching, and obtaining the potential difference between the surface of the sacrificial anode material and the core material. In the corrosion resistance test, only the center part of the surface of the sacrificial anode material was exposed, all other surfaces were sealed, and a 30 ° C. spray of 49 ° C. artificial seawater (ASTMD 1141) with a pH of 2.8-3.0 and 49 ° C. The SWAAT1000h was held for 90 minutes under a high humidity of 98% or higher relative humidity.
After the test was completed, each clad material was subjected to removal of corrosion products with a phosphoric acid / chromic acid mixed solution, and then the maximum pitting corrosion depth was determined by a depth of focus method using an optical microscope. Furthermore, the weight before and after the corrosion resistance test was measured to determine the weight loss due to the corrosion resistance test.

表5〜表7においては、引張強度については140MPa以上を可(○)とし、140MPa未満を不可(△)とする基準に基づき評価した。また孔食深さについては68μm未満を可(○)とし、68μm以上79μm未満を不可(△)とし、79μm以上を不良(×)とする基準に基づき評価した。さらに腐食減量については28mg/cm 未満を可(○)とし、28mg/cm 以上31mg/cm 未満を不可(△)とし、31mg/cm 以上を不良(×)とする基準に基づき評価した。 In Tables 5 to 7, the tensile strength was evaluated based on a criterion that 140 MPa or more was acceptable (◯) and less than 140 MPa was unacceptable (Δ). Also, the pitting corrosion depth was evaluated based on a criterion that less than 68 μm was acceptable (◯), 68 μm or more and less than 79 μm was unacceptable (Δ), and 79 μm or more was defective (×). For a more corrosion loss was less than 28 mg / cm 2 and allowed (○), and 28 mg / cm 2 or more 31 mg / cm 2 less than disable the (△), based on criteria of 31 mg / cm 2 or more and poor (×) evaluation did.

以上の基準に基づき、表5に示す各実施例クラッド材及び表6、表7の各比較例クラッド材につき、不良(×)がある場合又は2以上の不可(△)がある場合には(不適)とし、不良(×)がなく、かつ不可(△)が1以下である場合には(適)とするという指針で総合評価を行った。     Based on the above criteria, when each example cladding material shown in Table 5 and each comparative example cladding material in Table 6 and Table 7 has a defect (x) or two or more impossible (△) ( The overall evaluation was conducted according to the guideline of “appropriate”, when there was no defect (×), and the improper (Δ) was 1 or less.

表5に示すように、本発明実施例のクラッド材は、引張強度、孔食深さおよび腐食減量の各評価項目において、すぐれた特性を示し、不良(×)がなく、かつ不可(△)が2以以上のものはない。
これに対し、表6、表7の比較例クラッド材は、引張強度、孔食深さおよび腐食減量のいずれかにおいて、本発明クラッド材より特性が劣り、不良(×)の評価項目が存在するかもしくは2以上の不可(△)の評価項目が存在した。
As shown in Table 5, the clad material of the embodiment of the present invention showed excellent characteristics in each evaluation item of tensile strength, pitting depth and corrosion weight loss, no defect (×), and impossible (Δ). There are no more than two.
On the other hand, the comparative clad materials in Tables 6 and 7 are inferior in characteristics to the clad material of the present invention in any of tensile strength, pitting depth and corrosion weight loss, and there are evaluation items for defects (x). Or there were two or more evaluation items that were not acceptable (Δ).

以下に先ず、表5に示す各実施例クラッド材の評価につき具体的に説明する。
No.1、No.2、No.3、No.4は条件iii及び条件ivを充足し、犠牲陽極材表面と芯材の電位差は93〜105mVの範囲にあり、芯材が犠牲陽極材によって効果的に防食されると共に犠牲陽極材と芯材の電位差が特に過剰ではない結果、犠牲陽極材の消費が抑制され、長寿命を期待することができる。また、No.1、No.3、No.4については引張強度、孔食深さおよび腐食減量の各評価項目が可(○)であり、No.2についても孔食深さにおいて不可(△)の下限に該当する値となるのみである。
First, the evaluation of each example clad material shown in Table 5 will be described specifically.
No. 1, no. 2, no. 3, no. 4 satisfies the conditions iii and iv, the potential difference between the surface of the sacrificial anode material and the core material is in the range of 93 to 105 mV, and the core material is effectively prevented from being corroded by the sacrificial anode material. As a result that the potential difference is not particularly excessive, consumption of the sacrificial anode material is suppressed, and a long life can be expected. No. 1, no. 3, no. As for No. 4, each evaluation item of tensile strength, pitting depth and corrosion weight loss is acceptable (◯). 2 also has a value corresponding to the lower limit of (impossible) in the pitting depth.

No.5、No.6、No.7、No.8は条件iii及び条件ivを充足し、犠牲陽極材表面と芯材の電位差は77〜89mVの範囲にあり、芯材を犠牲陽極材によって効果的に防食することが期待できると共に犠牲陽極材と芯材の電位差が特に過剰ではない結果、犠牲陽極材の消費が抑制され、長寿命を期待することができる。また、引張強度、腐食減量の各評価項目が可(○)であった。ただし、犠牲陽極材表面と芯材の電位差がNo.1〜No.4の実施例クラッド材に比して低く、孔食深さについては不可(△)という評価となった。しかし、このNo.1〜No.4のクラッド材についても不可(△)が1以下であり、総合評価指針に照らし、(適)として評価することができる。   No. 5, no. 6, no. 7, no. 8 satisfies the conditions iii and iv, the potential difference between the surface of the sacrificial anode material and the core material is in the range of 77 to 89 mV, and it can be expected that the core material is effectively prevented from being corroded by the sacrificial anode material. As a result that the potential difference of the core material is not particularly excessive, consumption of the sacrificial anode material is suppressed, and a long life can be expected. Moreover, each evaluation item of tensile strength and corrosion weight loss was possible ((circle)). However, the potential difference between the sacrificial anode material surface and the core material is no. 1-No. It was lower than the clad material of Example 4, and the pitting corrosion depth was evaluated as unacceptable (Δ). However, this No. 1-No. For the clad material 4 as well, the impossibility (Δ) is 1 or less, and it can be evaluated as (appropriate) in light of the comprehensive evaluation guidelines.

No.9及びNo.10については条件i、条件iii、条件ivは充足しないが条件iiを充足し、かつ犠牲陽極材表面と芯材の電位差はそれぞれ118mV、105mVである。したがって、犠牲陽極材表面と芯材の電位差は条件iii及び条件ivを充足するNo.1〜No.4の実施例クラッド材に比して高く芯材が犠牲陽極材によって効果的に防食されることが期待できる。また引張強度、孔食深さおよび腐食減量の各評価項目が可(○)であった。   No. 9 and no. For condition 10, condition i, condition iii, and condition iv are not satisfied, but condition ii is satisfied, and the potential difference between the sacrificial anode material surface and the core material is 118 mV and 105 mV, respectively. Therefore, the potential difference between the surface of the sacrificial anode material and the core material is No. 3 satisfying the conditions iii and iv. 1-No. It can be expected that the core material is effectively anticorrosive by the sacrificial anode material, which is higher than the clad material of Example 4. Moreover, each evaluation item of tensile strength, pitting depth and corrosion weight loss was acceptable (◯).

No.11、No.12、No.13、No.14、No.15については条件iii及び条件ivを充足し、犠牲陽極材表面と芯材の電位差は93〜102mVの範囲にあり、芯材が犠牲陽極材によって効果的に防食されると共に犠牲陽極材と芯材の電位差が特に過剰ではない結果、犠牲陽極材の消費が抑制され、長寿命を期待することができる。また、引張強度、孔食深さおよび腐食減量の各評価項目が可(○)であった。   No. 11, no. 12, no. 13, no. 14, no. No. 15, the conditions iii and iv are satisfied, the potential difference between the sacrificial anode material surface and the core material is in the range of 93 to 102 mV, and the core material is effectively prevented from being corroded by the sacrificial anode material and the sacrificial anode material and the core material As a result, the consumption of the sacrificial anode material is suppressed and a long life can be expected. Moreover, each evaluation item of tensile strength, pitting depth and corrosion weight loss was acceptable (◯).

No.16、No.17、No.18については条件iii及び条件ivを充足し、引張強度、腐食減量の各評価項目が可(○)であった。ただし、犠牲陽極材表面と芯材の電位差は87〜95mVの範囲にあり、No.1〜No.4の実施例クラッド材に比して低く、孔食深さについては不可(△)という評価となった。しかし、このNo.16〜No.18のクラッド材についても不可(△)が1以下であり、総合評価指針に照らし、(適)として評価することができる。   No. 16, no. 17, no. For Condition 18, Condition iii and Condition iv were satisfied, and each evaluation item for tensile strength and corrosion weight loss was acceptable (◯). However, the potential difference between the sacrificial anode material surface and the core material is in the range of 87 to 95 mV. 1-No. It was lower than the clad material of Example 4, and the pitting corrosion depth was evaluated as unacceptable (Δ). However, this No. 16-No. For 18 clad materials, impossibility (Δ) is 1 or less, and it can be evaluated as (appropriate) in light of the comprehensive evaluation guidelines.

No.19については条件iii〜条件ivは充足しないが条件iは充足し、かつ犠牲陽極材表面と芯材の電位差は74mVであり、No.1〜No.4の実施例クラッド材に対し比較的に小さい。したがって、犠牲陽極材の消費が抑制され、長寿命を期待することができる。また、引張強度、腐食減量の各評価項目が可(○)であった。ただし、孔食深さについては不可(△)という評価となった。しかし、このNo.19のクラッド材についても不可(△)が1以下であり、総合評価指針に照らし、(適)として評価することができる。   No. For Condition 19, Condition iii to Condition iv are not satisfied, but Condition i is satisfied, and the potential difference between the sacrificial anode material surface and the core material is 74 mV. 1-No. The example 4 is relatively small compared to the cladding material. Therefore, consumption of the sacrificial anode material is suppressed, and a long life can be expected. Moreover, each evaluation item of tensile strength and corrosion weight loss was possible ((circle)). However, it was evaluated that the pitting depth was not possible (Δ). However, this No. For 19 clad materials, impossibility (Δ) is 1 or less, and it can be evaluated as (appropriate) in light of the comprehensive evaluation guidelines.

No.20、No.21、No.22、No.23No.24、No.25、No.26、No.27、No.28、No.29は条件iii及び条件ivを充足し、犠牲陽極材表面と芯材の電位差は79〜111mVの範囲にあり、No.23及びNo.26〜No.28を除き、引張強度、孔食深さ、腐食減量の各評価項目が可(○)であった。ただし、犠牲陽極材表面と芯材の電位差がNo.1〜No.4の実施例クラッド材に比して低い79〜86mVの範囲にあるNo.23及びNo.26〜No.28では孔食深さについて不可(△)という評価となった。しかし、このNo.23及びNo.26〜No.28のクラッド材についても不可(△)が1以下であり、総合評価指針に照らし、(適)として評価することができる。   No. 20, no. 21, no. 22, no. 23No. 24, no. 25, no. 26, no. 27, no. 28, no. No. 29 satisfies the conditions iii and iv, and the potential difference between the sacrificial anode material surface and the core material is in the range of 79 to 111 mV. 23 and no. 26-No. Except for 28, the evaluation items of tensile strength, pitting depth and corrosion weight loss were acceptable (◯). However, the potential difference between the sacrificial anode material surface and the core material is no. 1-No. No. 4 in the range of 79 to 86 mV, which is lower than the clad material of Example 4. 23 and no. 26-No. In No. 28, the pitting depth was evaluated as not acceptable (Δ). However, this No. 23 and no. 26-No. For the 28 clad materials, the impossibility (Δ) is 1 or less, and it can be evaluated as (appropriate) in light of the comprehensive evaluation guidelines.

No.30については条件i、条件iii、条件ivは充足しないが条件iiを充足し、かつ犠牲陽極材表面と芯材の電位差は120mVであって、No.1〜No.29の実施例クラッド材に比して最も高く芯材が犠牲陽極材によって効果的に防食されることが期待できる。また腐食減量は不可(△)であるが引張強度、孔食深さが可(○)であった。したがって、このNo.30のクラッド材についても不可(△)が1以下であり、総合評価指針に照らし、(適)として評価することができる。   No. For Condition 30, Condition i, Condition iii, and Condition iv are not satisfied, but Condition ii is satisfied, and the potential difference between the sacrificial anode material surface and the core material is 120 mV. 1-No. It can be expected that the core material is effectively protected by the sacrificial anode material as compared with the 29 example clad materials. Further, the corrosion weight loss was not possible (Δ), but the tensile strength and pitting corrosion depth were acceptable (◯). Therefore, this No. For the 30 clad materials, the impossibility (Δ) is 1 or less, and it can be evaluated as (appropriate) in light of the comprehensive evaluation guidelines.

次に表6に示す比較例クラッド材の評価につき詳述する。
No.31は犠牲陽極材Kを使用しMnの添加量は0.03でありMn添加量を0.2−1.6mass%とする本発明の条件を充足せず耐食性に劣る。そのため、孔食深さ及び腐食減量共に不可(△)であり、総合評価指針に基づき、(不適)として評価される。
Next, evaluation of the comparative clad material shown in Table 6 will be described in detail.
No. No. 31 uses the sacrificial anode material K, the amount of Mn added is 0.03, and the Mn addition amount is 0.2 to 1.6 mass%, which does not satisfy the conditions of the present invention and is inferior in corrosion resistance. Therefore, neither pitting depth nor corrosion weight loss is possible (Δ), and it is evaluated as (unsuitable) based on the comprehensive evaluation guidelines.

No.32は犠牲陽極材Lを使用しており、Mnの添加量が本発明基準よりも多く、巨大化合物が晶出したため、熱間圧延時に割れが発生しクラッド材を製造することができず、評価の対象とすることはできなかった。   No. No. 32 uses a sacrificial anode material L, and the amount of Mn added is larger than that of the present invention standard, and a huge compound crystallizes, so that cracks occur during hot rolling, and a clad material cannot be produced. Could not be targeted.

No.33は犠牲陽極材Mを使用しており、Znの添加量が本発明基準よりも少く、孔食不良(×)が生じ、総合評価指針に基づき、(不適)として評価される。   No. No. 33 uses the sacrificial anode material M, and the addition amount of Zn is smaller than the standard of the present invention, resulting in poor pitting corrosion (x), and is evaluated as (unsuitable) based on the comprehensive evaluation guidelines.

No.34は犠牲陽極材Nを使用しており、Znの添加量が本発明基準よりも少く、孔食不良(×)が生じ、総合評価指針に基づき、(不適)として評価される。   No. No. 34 uses a sacrificial anode material N, and the amount of Zn added is less than that of the present invention, resulting in poor pitting corrosion (x), and is evaluated as (unsuitable) based on the comprehensive evaluation guidelines.

No.35は犠牲陽極材Oを使用しており、Znの添加量が本発明基準よりも多く、腐食減量不良(×)が生じ、総合評価指針に基づき、(不適)として評価される。   No. No. 35 uses the sacrificial anode material O, and the amount of Zn added is larger than the standard of the present invention, resulting in poor corrosion weight loss (x), and is evaluated as (unsuitable) based on the comprehensive evaluation guidelines.

No.36は犠牲陽極材Pを使用しており、Znの添加量が本発明基準よりも多く、腐食減量不良(×)が生じ、総合評価指針に基づき、(不適)として評価される。   No. No. 36 uses the sacrificial anode material P, and the amount of Zn added is larger than the standard of the present invention, resulting in poor corrosion weight loss (x), and is evaluated as (unsuitable) based on the comprehensive evaluation guidelines.

No.37は芯材セを使用しており、芯材におけるSiの添加量が本発明基準よりも少く、引張強度につき不可(△)が生じ、また孔食不良(×)が生じて総合評価指針に基づき、(不適)として評価される。   No. No. 37 uses a core material, and the amount of Si added to the core material is less than the standard of the present invention, impossibility of tensile strength (Δ) occurs, and poor pitting corrosion (×) occurs. Based on, it is evaluated as (unsuitable).

No.38は 芯材ソを使用しており、芯材におけるSiの添加量が本発明基準よりも多く、ろう付相当加熱によって溶融してしまいその後の評価を行うことができなかった。   No. No. 38 used a core material so that the amount of Si added to the core material was larger than the standard of the present invention, and it was melted by brazing equivalent heating and subsequent evaluation could not be performed.

No.39、No.40はそれぞれ芯材タ、芯材チを使用しており、芯材におけるCuの添加量が本発明基準よりも多く、腐食減量不良(×)が生じただけではなく、孔食も大きく不可(△)であり、総合評価指針に基づき、(不適)として評価される。   No. 39, no. No. 40 uses a core material and a core material H, respectively. The amount of Cu added to the core material is larger than the standard of the present invention, and not only the corrosion weight loss failure (×) occurs, but also pitting corrosion is impossible ( Δ), and is evaluated as (unsuitable) based on the comprehensive evaluation guidelines.

No.41は芯材ツを使用しており、芯材におけるMnの添加量が本発明基準よりも少く、孔食不良(×)が生じ、総合評価指針に基づき、(不適)として評価される。   No. No. 41 uses a core material, and the amount of Mn added to the core material is smaller than that of the present invention, resulting in poor pitting corrosion (x), and is evaluated as (unsuitable) based on the comprehensive evaluation guidelines.

No.42は芯材テを使用しており、芯材におけるMnの添加量が本発明基準よりも多く、巨大化合物が晶出したため、熱間圧延時に割れが発生しクラッド材を製造することができなかった。
No.43は芯材トを使用しており、芯材におけるTiの添加量が本発明基準よりも少く、孔食不良(×)が生じ、総合評価指針に基づき、(不適)として評価される。
No.44は芯材ナを使用しており、芯材におけるTiの添加量が本発明基準よりも多く、鋳造時に粗大な化合物が晶出したため、熱間圧延時に割れが発生し、クラッド材を製造することができなかった。
No. No. 42 uses a core material TE, and the amount of Mn added to the core material is larger than the standard of the present invention, and a huge compound crystallizes, so that cracks occur during hot rolling and a clad material cannot be manufactured. It was.
No. No. 43 uses a core material, and the addition amount of Ti in the core material is smaller than the standard of the present invention, resulting in poor pitting corrosion (x), and is evaluated as (unsuitable) based on the comprehensive evaluation guidelines.
No. No. 44 uses a core material Na, and the amount of Ti added to the core material is larger than the standard of the present invention, and a coarse compound crystallizes during casting. Therefore, cracks occur during hot rolling, and a clad material is produced. I couldn't.

次に表7に示す比較例クラッド材の評価につき詳述する。
No.45は犠牲陽極材Fを使用し、芯材オを使用して犠牲陽極材及び芯材共に合金組成は本発明基準に適合する。しかしこのNo.45では(犠牲陽極材に含有されるZnのmass%)+(芯材に含有されるCuのmass%)及び(犠牲陽極材に含有されるZnのmass%)−(1/3)・(犠牲陽極材に含有されるMnのmass%)+(芯材に含有されるCuのmass%)+(1/3)・(芯材に含有されるMnのmass%)の値が小さく、本発明条件i〜ivの何れも充足しない結果として、孔食深さが102μmに達する不良(×)を生じ、また引っ張り強度も134MPa程度にとどまり不可(△)であり、総合評価指針に基づき、(不適)として評価される。
Next, the evaluation of the comparative clad material shown in Table 7 will be described in detail.
No. No. 45 uses a sacrificial anode material F, and uses the core material o, and the alloy composition of the sacrificial anode material and the core material conforms to the criteria of the present invention. However, this No. 45 (mass% of Zn contained in sacrificial anode material) + (mass% of Cu contained in core material) and (mass% of Zn contained in sacrificial anode material) − (1/3) · ( The value of mass% of Mn contained in the sacrificial anode material) + (mass% of Cu contained in the core material) + (1/3) · (mass% of Mn contained in the core material) is small. As a result of not satisfying any of the inventive conditions i to iv, a defect (x) in which the pitting depth reaches 102 μm occurs, and the tensile strength is not limited to about 134 MPa (Δ). As inappropriate).

No.46は犠牲陽極材Jを使用し、芯材ケを使用して犠牲陽極材及び芯材共に合金組成は本発明基準に適合する。しかしこのNo.46については(犠牲陽極材に含有されるZnのmass%)+(芯材に含有されるCuのmass%)及び(犠牲陽極材に含有されるZnのmass%)−(1/3)・(犠牲陽極材に含有されるMnのmass%)+(芯材に含有されるCuのmass%)+(1/3)・(芯材に含有されるMnのmass%)の値が大きく、本発明条件i〜ivの何れも充足しない結果として、腐食減量不良(×)が生じ、総合評価指針に基づき、(不適)として評価される。   No. No. 46 uses a sacrificial anode material J, and the alloy composition of the sacrificial anode material and the core material conforms to the present invention standard using the core material. However, this No. 46 (mass% of Zn contained in sacrificial anode material) + (mass% of Cu contained in core material) and (mass% of Zn contained in sacrificial anode material) − (1/3). (Mass% of Mn contained in sacrificial anode material) + (mass% of Cu contained in core material) + (1/3) · (mass% of Mn contained in core material) is large, As a result of not satisfying any of the conditions i to iv of the present invention, a corrosion weight loss defect (x) occurs, and is evaluated as (unsuitable) based on the comprehensive evaluation guideline.

本発明の熱交換器用アルミニウム合金クラッド材は、熱交換器としてはコンデンサ、エバポレータ、ヒーターコアなど種類を問わず適用でき、特にチューブの中を通る気体状の冷媒が冷やされて液体となるコンデンサのチューブ材として適している。   The aluminum alloy clad material for heat exchanger according to the present invention can be applied to any kind of heat exchanger such as a condenser, an evaporator, a heater core, etc. Especially for a condenser in which a gaseous refrigerant passing through a tube is cooled to become a liquid. Suitable as a tube material.

Claims (2)

Si:0.5−1.2mass%、Cu:0.05−1.0mass%、Mn:0.2−1.6mass%、Ti:0.05−0.2mass%を含有し、残りがAlおよび不可避不純物からなるAl合金芯材の片面に、犠牲陽極材として、Mn:0.2−1.6mass%、Zn:0.5−1.4mass%を含有し、残りがAlおよび不可避不純物からなり、かつ、1.0≦(犠牲陽極材に含有されるZnのmass%)−(1/3)・(犠牲陽極材に含有されるMnのmass%)+(芯材に含有されるCuのmass%)+(1/3)・(芯材に含有されるMnのmass%)≦2.4を満たすAl−Zn系合金をクラッドし、該芯材の他方の片面に、Al−Si系合金ろう材をクラッドしたことを特徴とする熱交換器用アルミニウム合金クラッド材。   Si: 0.5-1.2 mass%, Cu: 0.05-1.0 mass%, Mn: 0.2-1.6 mass%, Ti: 0.05-0.2 mass%, the remainder being Al And on one side of the Al alloy core material composed of unavoidable impurities, as a sacrificial anode material, Mn: 0.2-1.6 mass%, Zn: 0.5-1.4 mass% is contained, and the remainder is from Al and unavoidable impurities And 1.0 ≦ (mass% of Zn contained in the sacrificial anode material) − (1/3) · (mass% of Mn contained in the sacrificial anode material) + (Cu contained in the core material) Mass%) + (1/3) .multidot. (Mass% of Mn contained in the core material) ≦ 2.4 is clad, and Al—Si is coated on the other surface of the core material. Aluminium for heat exchangers characterized by clad brazing alloy brazing filler metal Alloy cladding material. 犠牲陽極材として、1.2≦(犠牲陽極材に含有されるZnのmass%)−(1/3)・(犠牲陽極材に含有されるMnのmass%)+(芯材に含有されるCuのmass%)+(1/3)・(芯材に含有されるMnのmass%)≦1.8を満たすAl−Zn系合金をクラッドする請求項1記載の熱交換器用アルミニウム合金クラッド材。   As the sacrificial anode material, 1.2 ≦ (mass% of Zn contained in the sacrificial anode material) − (1/3) · (mass% of Mn contained in the sacrificial anode material) + (contained in the core material) The aluminum alloy clad material for a heat exchanger according to claim 1, wherein an Al—Zn alloy satisfying Cu mass%) + (1/3) · (Mn mass% contained in core material) ≦ 1.8 is clad. .
JP2006328210A 2006-12-05 2006-12-05 Aluminum alloy clad material for heat exchanger Expired - Fee Related JP4874074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006328210A JP4874074B2 (en) 2006-12-05 2006-12-05 Aluminum alloy clad material for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006328210A JP4874074B2 (en) 2006-12-05 2006-12-05 Aluminum alloy clad material for heat exchanger

Publications (2)

Publication Number Publication Date
JP2008138278A JP2008138278A (en) 2008-06-19
JP4874074B2 true JP4874074B2 (en) 2012-02-08

Family

ID=39600052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006328210A Expired - Fee Related JP4874074B2 (en) 2006-12-05 2006-12-05 Aluminum alloy clad material for heat exchanger

Country Status (1)

Country Link
JP (1) JP4874074B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5476030B2 (en) * 2009-04-21 2014-04-23 株式会社Uacj Clad material for welded tube of aluminum alloy heat exchanger and manufacturing method thereof
WO2011034102A1 (en) 2009-09-21 2011-03-24 株式会社デンソー Highly corrosion-resistant aluminum alloy brazing sheet, process for production of the brazing sheet, and highly corrosion-resistant heat exchanger equipped with the brazing sheet
JP6132330B2 (en) * 2013-01-23 2017-05-24 株式会社Uacj Aluminum alloy clad material and heat exchanger assembled with a tube formed from the clad material
JP6446015B2 (en) * 2016-10-31 2018-12-26 株式会社Uacj Aluminum alloy clad material and heat exchanger assembled with a tube formed from the clad material

Also Published As

Publication number Publication date
JP2008138278A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP5486592B2 (en) Aluminum alloy strip of brazed heat exchanger tube
JP5873343B2 (en) High corrosion resistance aluminum alloy brazing sheet and flow path forming part of automobile heat exchanger using the same
WO2015104760A1 (en) Aluminium-alloy clad material and production method therefor, and heat exchanger using said aluminium-alloy clad material and production method therefor
CN108699637B (en) Method for manufacturing aluminum alloy brazing sheet
JP4822277B2 (en) Aluminum alloy brazing sheet for heat exchanger tubes with excellent brazing and corrosion resistance and heat exchanger tubes with excellent corrosion resistance
JP2011162823A (en) Aluminum alloy clad material used for heat-exchanger and core-material for aluminum alloy clad material used for the same
JP2008303405A (en) Aluminum alloy material for header plate of heat exchanger, and soldering body for heat exchanger
JP5918089B2 (en) Aluminum alloy heat exchanger and method of manufacturing the same
JP6315365B2 (en) Brazing sheet for heat exchanger and method for producing the same
US20010007720A1 (en) Aluminum alloy brazing sheet
JP6418714B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
WO2011034102A4 (en) Highly corrosion-resistant aluminum alloy brazing sheet, process for production of the brazing sheet, and highly corrosion-resistant heat exchanger equipped with the brazing sheet
JP2014098185A (en) Aluminum alloy brazing sheet and manufacturing method thereof
CN107849645B (en) Aluminum alloy clad material, method for producing same, and heat exchanger using same
JP4874074B2 (en) Aluminum alloy clad material for heat exchanger
JP2012057183A (en) Aluminum alloy clad material and heat exchanging device using the same
WO2018110320A1 (en) Aluminum alloy brazing sheet and method for manufacturing same
JP2017066494A (en) Aluminum alloy material for heat exchanger and manufacturing method therefor
JP6738667B2 (en) Aluminum alloy heat exchanger excellent in corrosion resistance in atmospheric environment and method of manufacturing aluminum alloy heat exchanger
JP2011195892A (en) High-strength aluminum alloy clad material for heat exchanger having excellent brazability, and heat exchanger
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same
JP4596618B2 (en) High corrosion resistance aluminum alloy composite for heat exchanger and anticorrosion aluminum alloy for heat exchanger
JP5498214B2 (en) Aluminum alloy clad material for high-strength heat exchangers with excellent brazeability
JP2017110266A (en) Aluminum alloy-made brazing sheet excellent strength after brazing
JP5469323B2 (en) Automotive heat exchanger with excellent corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4874074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees