JP4870491B2 - Fuel reformer - Google Patents

Fuel reformer Download PDF

Info

Publication number
JP4870491B2
JP4870491B2 JP2006203559A JP2006203559A JP4870491B2 JP 4870491 B2 JP4870491 B2 JP 4870491B2 JP 2006203559 A JP2006203559 A JP 2006203559A JP 2006203559 A JP2006203559 A JP 2006203559A JP 4870491 B2 JP4870491 B2 JP 4870491B2
Authority
JP
Japan
Prior art keywords
water
absorbing member
fuel reformer
reforming
helical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006203559A
Other languages
Japanese (ja)
Other versions
JP2007055892A (en
Inventor
孝博 中野利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Fuji Electric Co Ltd
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006203559A priority Critical patent/JP4870491B2/en
Publication of JP2007055892A publication Critical patent/JP2007055892A/en
Application granted granted Critical
Publication of JP4870491B2 publication Critical patent/JP4870491B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、原燃料である炭化水素ガスを水蒸気改質する燃料改質装置、特に、燃料電池発電装置等で使用される燃料改質装置における水蒸気発生部の構成に関する。   The present invention relates to a fuel reformer for steam reforming a hydrocarbon gas, which is a raw fuel, and more particularly to a configuration of a steam generator in a fuel reformer used in a fuel cell power generator or the like.

燃料電池は、燃料の有する化学エネルギーを機械エネルギーや熱エネルギーを経由することなく直接電気エネルギーに変換する装置であり、高いエネルギー効率が実現可能である。良く知られた燃料電池の形態としては、電解質層を挟んで一対の電極を配置し、一方の電極(アノード側)に水素を含有する燃料ガスを供給するとともに他方の電極(カソード側)に酸素を含有する酸化ガスを供給するものであり、両極間で起きる電気化学反応を利用して起電力を得る。以下に、燃料電池で起きる電気化学反応を表す式を示す。(1)はアノード側に於ける反応、(2)はカソード側に於ける反応を表し、燃料電池全体では(3)式に表す反応が進行する。   A fuel cell is a device that directly converts chemical energy of fuel into electrical energy without passing through mechanical energy or thermal energy, and can achieve high energy efficiency. As a well-known form of a fuel cell, a pair of electrodes are arranged with an electrolyte layer in between, a fuel gas containing hydrogen is supplied to one electrode (anode side), and oxygen is supplied to the other electrode (cathode side). The electromotive force is obtained by utilizing an electrochemical reaction that occurs between the two electrodes. Below, an equation representing an electrochemical reaction occurring in the fuel cell is shown. (1) represents the reaction on the anode side, (2) represents the reaction on the cathode side, and the reaction represented by the formula (3) proceeds in the entire fuel cell.

2→2H++2e- ………(1)
1/2O2+2H++2e-→H2O ………(2)
2+1/2O2→H2O ………(3)
燃料電池発電装置は、使用する電解質の種類により分類されるが、これらの燃料電池の中で、固体高分子型燃料電池、リン酸型燃料電池、溶融炭酸塩型燃料電池等では、その電解質の性質から、二酸化炭素を含んだ酸化ガスや炭酸ガスを使用することが可能である。そこで通常これらの燃料電池では、空気を酸化ガスとして用い、天然ガス等の炭化水素系の原燃料を水蒸気改質して生成した水素を含むガスを燃料ガスとして用いている。
H 2 → 2H + + 2e (1)
1 / 2O 2 + 2H + + 2e → H 2 O (2)
H 2 + 1 / 2O 2 → H 2 O (3)
Fuel cell power generators are classified according to the type of electrolyte used. Among these fuel cells, solid polymer fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, etc. Due to the nature, it is possible to use oxidizing gas or carbon dioxide containing carbon dioxide. Therefore, in these fuel cells, normally, air is used as an oxidizing gas, and a gas containing hydrogen generated by steam reforming a hydrocarbon-based raw fuel such as natural gas is used as a fuel gas.

天然ガス等の炭化水素系の原燃料には、硫黄分が含まれているので、燃料改質器の前段に設けられた脱硫器に原燃料を流して含有する硫黄分を脱硫している。
改質装置は、脱硫された原燃料を改質器および一酸化炭素変成器において改質され燃料ガスを生成している。
式(4)は、改質器におけるメタンの改質反応について示したものである。
Since hydrocarbon-based raw fuels such as natural gas contain sulfur, the sulfur content contained is desulfurized by flowing the raw fuel through a desulfurizer provided in front of the fuel reformer.
In the reformer, desulfurized raw fuel is reformed in a reformer and a carbon monoxide converter to generate fuel gas.
Equation (4) shows the reforming reaction of methane in the reformer.

CH+HO → CO+3H +206.14 KJ/mol ………(4)
式(4)に示される通り、メタンの改質反応は吸熱反応であるため、メタンに水蒸気を添加したうえで、燃料電池からの燃料オフガスを燃焼させた燃焼排ガスにて粒状改質触媒を600〜700℃に保つことにより、水素に富む改質ガスを生成する。
改質器を出たこの改質ガスは、改質ガス中の一酸化炭素を低減するために一酸化炭素変成器に供給され、所定の温度に制御された一酸化炭素変成器で一酸化炭素は1%以下に低減され、リン酸形燃料電池(PAFC)であれば、このガスを燃料電池へと導入して発電を行なうことが出来る。
CH 4 + H 2 O → CO + 3H 2 +206.14 KJ / mol (4)
As shown in formula (4), the reforming reaction of methane is an endothermic reaction, so that the granular reforming catalyst is made 600 by using combustion exhaust gas in which fuel off-gas from the fuel cell is burned after adding water vapor to methane. By maintaining at ˜700 ° C., a reformed gas rich in hydrogen is produced.
The reformed gas exiting the reformer is supplied to the carbon monoxide converter to reduce carbon monoxide in the reformed gas, and the carbon monoxide is supplied to the carbon monoxide converter controlled at a predetermined temperature. Is reduced to 1% or less, and in the case of a phosphoric acid fuel cell (PAFC), this gas can be introduced into the fuel cell to generate electricity.

一方、固体高分子形燃料電池(PEFC)は、その動作温度が60〜80℃と低いために、改質ガス中に一酸化炭素が存在すると、これが触媒毒となって性能が劣化することから、一酸化炭素をさらに低減するために改質ガスは所定の温度に制御された一酸化炭素除去器に供給され、ここで一酸化炭素が選択的に酸化され二酸化炭素となり一酸化炭素は10ppm以下に低減される。改質されたガスは、固体高分子形燃料電池(PEFC)に供給される。   On the other hand, the polymer electrolyte fuel cell (PEFC) has a low operating temperature of 60 to 80 ° C, so if carbon monoxide is present in the reformed gas, it becomes a catalyst poison that degrades performance. In order to further reduce carbon monoxide, the reformed gas is supplied to a carbon monoxide remover controlled at a predetermined temperature, where carbon monoxide is selectively oxidized to carbon dioxide, and carbon monoxide is 10 ppm or less. Reduced to The reformed gas is supplied to a polymer electrolyte fuel cell (PEFC).

前記の燃料電池発電システムで使用される燃料改質装置は、改質器の改質触媒温度を600℃〜700℃に保ち、一酸化炭素変成器の触媒温度を250℃前後、一酸化炭素除去器の触媒温度を150℃前後に保ち燃料改質反応を行っている。各反応器の温度を制御するため、それぞれを分離し個別に温度制御を行う燃料改質装置や、脱硫器、改質器、一酸化炭素変成器、一酸化炭素除去器等を1つのユニットとしてまとめてなる燃料改質装置で、排ガスと熱交換することによって所定の温度に保つものが知られている(例えば、特許文献1から4参照)。   The fuel reformer used in the fuel cell power generation system keeps the reforming catalyst temperature of the reformer at 600 ° C to 700 ° C, removes the carbon monoxide from the carbon monoxide converter catalyst temperature of around 250 ° C. The fuel reforming reaction is carried out by keeping the catalyst temperature of the reactor at around 150 ° C. In order to control the temperature of each reactor, a fuel reformer, a desulfurizer, a reformer, a carbon monoxide converter, a carbon monoxide remover, etc. that separate and control the temperature individually as one unit 2. Description of the Related Art There are known fuel reformers that are kept at a predetermined temperature by exchanging heat with exhaust gas (see, for example, Patent Documents 1 to 4).

また、原燃料ガスを水蒸気改質する場合、改質用水蒸気が必要となるが、前記特許文献1ないし3は、燃料改質装置内に設けた水蒸気発生部に改質用水を供給して改質用水蒸気を得、この改質用水蒸気と原燃料ガスとを混合した混合ガスを、改質器に供給する装置を開示している。
特に、特許文献3は、燃料改質装置における水蒸気発生部(蒸発器)の構成に関わり、簡易な構成で、蒸発性能に優れ、熱効率が高い水素生成器を提供することを目的として、下記のような水素生成器の構成を開示している。即ち、「燃焼ガスを発生する燃焼部と、当該燃焼部の周囲に設けられ、前記燃焼部により生じた燃焼ガスからの伝熱を利用して、少なくとも炭素および水素から構成される化合物を含む原料と水蒸気とから水蒸気改質反応により水素を含む改質ガスを生成する改質器と、前記燃焼部の周囲に設けられた内筒、当該内筒の周囲に設けられた外筒、および前記内筒と前記外筒との間に形成された筒状空間の下部を塞ぐ底板を有し、前記筒状空間に供給される水を蒸発させることにより水蒸気を生成し、当該水蒸気を前記改質器に供給する蒸発器とを備え、前記筒状空間には、吸水性を有する吸水材が設けられている水素生成器」を開示している。
In addition, when the raw fuel gas is steam reformed, reforming steam is required. However, Patent Documents 1 to 3 are modified by supplying reforming water to a steam generating section provided in the fuel reformer. An apparatus is disclosed in which quality steam is obtained and a mixed gas obtained by mixing the reforming steam and raw fuel gas is supplied to the reformer.
In particular, Patent Document 3 relates to the configuration of a water vapor generation unit (evaporator) in a fuel reformer, and is intended to provide a hydrogen generator having a simple configuration, excellent evaporation performance, and high thermal efficiency as described below. Such a hydrogen generator configuration is disclosed. That is, "a raw material including a combustion part that generates a combustion gas and a compound that is provided around the combustion part and that is composed of at least carbon and hydrogen using heat transfer from the combustion gas generated by the combustion part. A reformer that generates a reformed gas containing hydrogen from the steam and steam by a steam reforming reaction, an inner cylinder provided around the combustion section, an outer cylinder provided around the inner cylinder, and the inner A bottom plate that closes a lower portion of a cylindrical space formed between a cylinder and the outer cylinder; generates water vapor by evaporating water supplied to the cylindrical space; and converts the water vapor into the reformer A hydrogen generator in which a water-absorbing material having water absorption is provided in the cylindrical space.

また、特許文献3の図2には、「前記筒状空間には、上方から供給される水を下方に通過させる降下流路が形成された第1蒸発室と、当該第1蒸発室の内側に設けられ、前記第1蒸発室内の水が蒸発することにより発生した水蒸気を上方へ通過させる上昇流路が形成された第2蒸発室とが設けられており、前記内筒と前記外筒との間には中筒が配置され、前記第1蒸発室は前記外筒と前記中筒との間に形成された筒状空間に、前記第2蒸発室は前記内筒と前記中筒との間に形成された筒状空間にそれぞれ設けられており、また、前記吸水材は、前記外筒の前記第1蒸発室側の面、前記内筒の前記第2蒸発室側の面および前記底板の上面等に設けられ、さらに、前記吸水材としては、多孔質材料、網状材料、または繊維状材料とし、前記外筒の前記第1蒸発室側の面に設けられている吸水材は、らせん状に配置される構成」が開示されている。   Further, FIG. 2 of Patent Document 3 shows that “a first evaporating chamber in which a downward flow path for allowing water supplied from above to pass downward is formed in the cylindrical space, and an inner side of the first evaporating chamber. And a second evaporating chamber formed with an ascending flow path for allowing water vapor generated by evaporating water in the first evaporating chamber to pass upward, the inner cylinder and the outer cylinder, An intermediate cylinder is disposed between the first and second evaporation chambers in a cylindrical space formed between the outer cylinder and the intermediate cylinder, and the second evaporation chamber is formed between the inner cylinder and the intermediate cylinder. The water absorbing material is provided in a cylindrical space formed between the outer cylinder, the first evaporation chamber side surface of the outer cylinder, the second evaporation chamber side surface of the inner cylinder, and the bottom plate, respectively. Further, the water absorbing material is a porous material, a mesh material, or a fibrous material, and the outer cylinder Water absorbing member provided on the surface of serial first evaporation chamber side is configured to be arranged in a spiral "is disclosed.

また、特許文献4には、中心軸を同一にして設けられた径の異なる複数の筒体を間隔を置いて多重に配置して構成し、バーナ、改質触媒層、一酸化炭素変成触媒層及び一酸化炭素除去触媒層を内部に設けた円筒式改質器が記載されているが、改質用水は、円筒式改質器の外周に沿ってラセン状に巻き付けられた水加熱管に上方から下方へと通流する間に予熱された後、折り返して上方に通流して水と水蒸気の2相流となって原料ガスに混合するよう構成されている(特許文献4の図1)。またこれとは逆に、上方から下方に通流した後、円筒式改質器の外周に沿ったラセン状の水加熱管を下から上へと通流させて上方の原料ガス供給管に接続する構成も開示されている(特許文献4の図2)。
特開2003−160306号公報 特開2003−327405号公報 特開2004−149402号公報 国際公開第2002/098790号パンフレット
Further, in Patent Document 4, a plurality of cylinders with different diameters provided with the same central axis are arranged in multiple positions at intervals, and a burner, a reforming catalyst layer, a carbon monoxide shift catalyst layer are formed. And a cylindrical reformer with a carbon monoxide removal catalyst layer provided therein, the reforming water is located above a water heating tube wound in a spiral shape along the outer periphery of the cylindrical reformer. It is configured so that it is preheated while flowing downward from the bottom and then folded back to flow upward to form a two-phase flow of water and water vapor and mixed with the raw material gas (FIG. 1 of Patent Document 4). On the contrary, after flowing from the top to the bottom, the helical water heating pipe along the outer periphery of the cylindrical reformer is passed from the bottom to the top and connected to the upper source gas supply pipe The structure to perform is also disclosed (FIG. 2 of patent document 4).
JP 2003-160306 A JP 2003-327405 A JP 2004-149402 A International Publication No. 2002/098790 Pamphlet

ところで、前記特許文献3に開示された水蒸気発生部(蒸発器)の構成の場合、前記吸水材が改質用水の蒸発機能を促進する効果はあるものの、下記のような問題があった。即ち、特許文献3に開示された蒸発器の場合、原燃料ガス(都市ガス)と改質用水とが、第1蒸発室の上部に導入された場合、改質用水の一部は、らせん状に配置された吸水材に吸水されるが、残りの一部の水は、前記吸水材と中筒との間の空間を、その上方から下方に原燃料ガスと共に落下する。落下した水は、前記底板の上面および前記内筒の第2蒸発室側の面に設けられた吸水材に吸水されて、前記第2蒸発室側において蒸発に授かる。   By the way, in the case of the structure of the water vapor generating part (evaporator) disclosed in Patent Document 3, the water absorbing material has the effect of promoting the evaporation function of the reforming water, but has the following problems. That is, in the case of the evaporator disclosed in Patent Document 3, when raw fuel gas (city gas) and reforming water are introduced into the upper part of the first evaporation chamber, part of the reforming water is spiral. The remaining part of the water falls together with the raw fuel gas from above to below in the space between the water absorbent and the middle cylinder. The dropped water is absorbed by a water absorbing material provided on the upper surface of the bottom plate and the surface of the inner cylinder on the second evaporation chamber side, and is subjected to evaporation on the second evaporation chamber side.

従って、水蒸気発生部の構造を、特許文献3に開示されたものより簡素化し、内筒と外筒とで形成される単一の中空環状空間の上方から原燃料ガスと改質用水とを導入して、改質用水を蒸発させるシンプルな構成を実現しようとする場合には、上方から下方に改質用水が原燃料ガスと共に落下し、蒸発効率が低下すると共に、改質用水蒸気が安定して得られない問題が生ずる。   Therefore, the structure of the water vapor generating part is simplified from that disclosed in Patent Document 3, and the raw fuel gas and the reforming water are introduced from above the single hollow annular space formed by the inner cylinder and the outer cylinder. Thus, when trying to realize a simple configuration for evaporating the reforming water, the reforming water falls together with the raw fuel gas from the upper side to lower the evaporation efficiency, and the reforming steam is stabilized. Problems that cannot be obtained.

また、上記のような改質用水蒸気の不安定な生成は、水蒸気発生部ひいては改質器全体の圧力変動をもたらし、燃料電池の負荷変動がある場合には問題が増幅する。さらに水蒸気発生部の特に周方向に温度分布が生じさせる問題ももたらし、全体的に改質器の性能が安定しない問題をもたらす。
この発明は、上記のような問題点に鑑みてなされたもので、本発明の課題は、構成を簡素化し、かつ水蒸気生成の性能および安定性に優れた水蒸気発生部を備え、さらに燃料改質装置の起動時間の低減をも図った燃料改質装置を提供することにある。
In addition, the unstable generation of reforming steam as described above causes pressure fluctuations in the steam generating section and the entire reformer, and the problem is amplified when there is load fluctuation of the fuel cell. Further, there is a problem that a temperature distribution is generated particularly in the circumferential direction of the water vapor generating part, and there is a problem that the performance of the reformer is not stabilized as a whole.
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a steam generator having a simplified structure and having excellent steam generation performance and stability, and further fuel reforming. It is an object of the present invention to provide a fuel reformer that also reduces the startup time of the apparatus.

上記課題は、以下により達成される。
即ち、燃焼器の外側に、同心状に径の異なる複数の円筒が配置されて、径方向の内側から順に、前記燃焼器から排出された燃焼排ガスが通流する第1環状空間、下端で連通する第2及び第3環状空間を有し、前記第2及び第3環状空間の一部に改質触媒が充填された改質部を有する燃料改質装置において、
前記第2環状空間は、上部に改質用水及び原燃料の導入口と、改質用水を蒸発させる水蒸気発生部を有し、
前記水蒸気発生部は、前記第2環状空間の内周側壁面及び外周側壁面に接する吸水性部材をラセン状に備え、前記第1環状空間を流れる燃焼排ガス及び前記第3環状空間を流れる改質ガスとの熱交換により加熱されることを特徴とする(請求項1)。
The above-mentioned subject is achieved by the following.
That is, a plurality of cylinders having different diameters are arranged concentrically outside the combustor, and communicated at the lower end with a first annular space through which the combustion exhaust gas discharged from the combustor flows in order from the radially inner side. A fuel reformer having a reforming section having second and third annular spaces, and a reforming catalyst filled in a part of the second and third annular spaces,
The second annular space has an inlet for reforming water and raw fuel in the upper part, and a water vapor generating part for evaporating the reforming water,
The water vapor generating section includes a water-absorbing member in contact with the inner peripheral wall surface and the outer peripheral wall surface of the second annular space in a spiral shape, and the combustion exhaust gas flowing through the first annular space and the reforming flowing through the third annular space. It is heated by heat exchange with gas (claim 1).

前記吸水性の意義は、毛管力により改質水を保持する機能を有することであり、上記請求項1の発明によれば、内周側壁と外周側壁とで形成される中空の第2環状空間の上方から原燃料ガスと改質用水とを導入して改質用水を蒸発させるシンプルな構成において、改質用水はラセン状の吸水性部材に保持されて効率よく蒸発させることができ、また、蒸発して生成された改質用水蒸気と原燃料ガスとの混合ガスを、ラセン状の吸水性部材の間に形成されるラセン状ガス流通路を流通させてスムーズに改質器に誘導できる。特に、前記内周側壁内側面及び前記外周側壁外側面に沿って流れるガスによって改質用水が両面から加熱される場合は、蒸発効率はさらに向上する。即ち、上記請求項1の発明によれば、構成を簡素化し、かつ水蒸気生成の性能および安定性に優れた水蒸気発生部を備えた燃料改質装置が提供できる。   The significance of the water absorption is to have a function of holding the reformed water by capillary force. According to the invention of claim 1, the hollow second annular space formed by the inner peripheral side wall and the outer peripheral side wall. In a simple configuration in which raw fuel gas and reforming water are introduced from above to evaporate the reforming water, the reforming water can be efficiently evaporated by being held in a helical water-absorbing member, The gas mixture of reforming water vapor and raw fuel gas generated by evaporation can be smoothly guided to the reformer through the helical gas flow passage formed between the helical water-absorbing members. In particular, when the reforming water is heated from both sides by the gas flowing along the inner side surface of the inner peripheral side wall and the outer side surface of the outer peripheral side wall, the evaporation efficiency is further improved. That is, according to the first aspect of the present invention, it is possible to provide a fuel reformer including a steam generating section that has a simplified configuration and is excellent in steam generation performance and stability.

上記請求項1の発明の実施態様としては、下記請求項2ないし12の発明が好ましい。まず、改質用水を両面から加熱して蒸発効率を向上させる観点から、下記請求項2の発明が好ましい。即ち、前記請求項1に記載の燃料改質装置において、前記第2環状空間の前記水蒸気発生部の下方に改質部が、前記第3環状空間に一酸化炭素変成部および一酸化炭素除去部を設けた構成とする(請求項2)。   As an embodiment of the invention of claim 1, the inventions of claims 2 to 12 below are preferable. First, the invention of claim 2 is preferable from the viewpoint of improving the evaporation efficiency by heating the reforming water from both sides. That is, in the fuel reforming apparatus according to claim 1, a reforming unit is provided below the water vapor generating unit in the second annular space, and a carbon monoxide conversion unit and a carbon monoxide removing unit are disposed in the third annular space. (Claim 2).

前記請求項2の発明によれば、前記蒸発効率向上の効果以外に、下記の効果が得られる。即ち、水蒸気発生部の内側空間を燃焼排ガス流通路とし、外側空間に一酸化炭素除去部や一酸化炭素変成部を配設しているので、改質装置の起動時において、燃焼排ガスの熱を、水蒸気発生部の内周側壁、ラセン状の吸水性部材および外周側壁を介して、一酸化炭素除去部や一酸化炭素変成部に有効に伝達することができる。これにより、燃料改質装置の起動時間の低減を図ることができる。   According to the invention of the second aspect, in addition to the effect of improving the evaporation efficiency, the following effect can be obtained. In other words, the inner space of the steam generation section is used as a combustion exhaust gas flow passage, and the carbon monoxide removal section and the carbon monoxide conversion section are disposed in the outer space. In addition, the carbon monoxide can be effectively transmitted to the carbon monoxide removal unit or the carbon monoxide transformation unit via the inner peripheral side wall of the water vapor generation unit, the helical water absorbing member, and the outer peripheral side wall. Thereby, the start-up time of the fuel reformer can be reduced.

さらに、前記ラセン状の吸水性部材は弾性を有するものが好ましく、前記第2環状空間の内周側壁面及び外周側壁面に圧接して設けることが好ましい(請求項3)。
前記弾性の意義は、吸水性部材が第2環状空間を形成する内筒と外筒との間にラセン状に装着された際(実際の組み立てにおいては、吸水性部材をまず内筒にラセン状に装着した後、ラセン状の吸水性部材の外側に外筒を軸方向から装着する)に、ラセン状の吸水性部材が前記内筒と外筒との間でその弾性により筒の径方向に圧縮され、かつ、装着後はその弾性反発力により、ラセン状の吸水性部材と前記内筒または外筒との間の熱接触抵抗を低減することにある。従って、上記のような弾性と吸水性の機能を備えるものであれば、後述する実施形態に限定されることなく、部材は種々の形態をとり得る。
Further, the helical water-absorbing member preferably has elasticity, and is preferably provided in pressure contact with the inner peripheral side wall surface and the outer peripheral side wall surface of the second annular space.
The meaning of the elasticity is that when the water absorbing member is mounted in a helical shape between the inner cylinder and the outer cylinder forming the second annular space (in actual assembly, the water absorbing member is first formed into a helical shape in the inner cylinder. The outer cylinder is mounted on the outside of the helical water-absorbing member from the axial direction), and the helical water-absorbing member is elastic between the inner cylinder and the outer cylinder in the radial direction of the cylinder. It is to reduce the thermal contact resistance between the helical water-absorbing member and the inner cylinder or the outer cylinder due to its elastic repulsion after being compressed. Therefore, as long as it has the functions of elasticity and water absorption as described above, the member can take various forms without being limited to the embodiments described later.

さらにまた、前記ラセン状の吸水性部材は、前記水蒸気発生部の内周側壁面にラセン状の凸部を形成するガイド上に沿って設けられたものとする(請求項4)。
上記請求項4の発明において、ラセン状のガイドは改質用水の保持・伝達機能を有する。ラセン状の吸水性部材は保水機能を有するが、ラセン状の吸水性部材から溢れた水が内筒(内周側壁面)又は外筒(外周側壁面)の側壁を伝って鉛直方向に滴下してしまうことにより蒸発効率が低下しまう問題があったが、本発明のラセン状ガイドを有する構成とすれば改質用水は当該ラセン状ガイドに沿って下方に移動する。水量にもよるが、実験で確認したところによれば、ラセン状の吸水性部材から溢れた水が最下部に直接落下しないようにするためには、下記請求項5の発明が好ましい。即ち、前記請求項4に記載の燃料改質装置において、前記ラセン状の吸水性部材の下部に設けたラセン状ガイドを水蒸気発生部の内周側壁面との接点全域に渡って溶接により固定したものとする(請求項5)。この構成によれば、ラセン状の金属部材から溢れた水は、ラセン状の金属棒と内周側壁万との間の隙間から重力方向へ滴下することなくラセン状の金属棒に沿って順次移動し、その間に徐々にラセン状の吸水性部材を介して蒸発する。
Furthermore, the helical water-absorbing member is provided along a guide that forms a helical convex portion on the inner peripheral side wall surface of the water vapor generating portion (claim 4).
In the fourth aspect of the present invention, the helical guide has a function of holding and transmitting reforming water. The helical water-absorbing member has a water retention function, but water overflowing from the helical water-absorbing member drops in the vertical direction along the side wall of the inner cylinder (inner peripheral side wall surface) or outer cylinder (outer peripheral side wall surface). However, if the structure has the helical guide of the present invention, the reforming water moves downward along the helical guide. Although it depends on the amount of water, it has been confirmed by experiments that the invention of claim 5 is preferable in order to prevent water overflowing from the helical water-absorbing member from dropping directly to the lowermost part. That is, in the fuel reformer according to claim 4, the helical guide provided at the lower part of the helical water absorbing member is fixed by welding over the entire contact area with the inner peripheral side wall surface of the water vapor generating portion. (Claim 5). According to this configuration, the water overflowing from the helical metal member sequentially moves along the helical metal rod without dropping in the direction of gravity from the gap between the helical metal rod and the inner peripheral wall 10,000. In the meantime, it gradually evaporates through the helical water-absorbing member.

さらに、ラセン状の吸水性部材やラセン状ガイドの固定構造に関しては、下記請求項6の発明が好ましい。即ち、請求項4または5に記載の燃料改質装置において、前記ラセン状の吸収性部材の下部に設けたラセン状ガイドに加えて、さらに、ラセン状の吸収性部材の上部に沿うラセン状ガイドを設けて、ラセン状の吸水性部材を上下のラセン状ガイドの間に配置したものとする(請求項6)。これによれば、ラセン状の吸水性部材の上下方向へのずれが防止できる。なお、上部に設けるラセン状ガイドは、改質用水の保持・伝達機能を必要としないので、下部に設けるラセン状ガイドに比較して、内周側壁面からの径方向への突出高さを小さいものとすることができる。   Furthermore, regarding the fixing structure of the helical water-absorbing member and the helical guide, the invention of claim 6 below is preferable. That is, in the fuel reformer according to claim 4 or 5, in addition to the helical guide provided at the lower portion of the helical absorbent member, the helical guide along the upper portion of the helical absorbent member. And a helical water-absorbing member is arranged between the upper and lower helical guides (Claim 6). According to this, the vertical displacement of the helical water-absorbing member can be prevented. Note that the helical guide provided at the upper portion does not require the function of holding and transmitting the reforming water, so that the protrusion height in the radial direction from the inner peripheral side wall surface is smaller than that of the helical guide provided at the lower portion. Can be.

また、ラセン状ガイドとしては金属棒を、ラセン状の吸水性部材としては、金属フェルト、金属布、金属不織布もしくは金属金網などの吸水性および弾性を有する金属部材を用いることが好ましい(請求項7)。
さらに、ラセン状の給水性部材の異なる構成の実施態様としては、請求項8または9の発明が好ましい。即ち、請求項1または2に記載の燃料改質装置において、ラセン状の金属部材は、複数本の金属製細線の撚り線からなるものとする(請求項8)。また、請求項1または2に記載の燃料改質装置において、ラセン状の吸水性部材は、金属フェルト、金属布、金属不織布もしくは金属金網の一部を、ラセン棒により内周側壁面に圧接してラセン状のくびれ部を形成したものからなるものとする(請求項9)。
Further, it is preferable to use a metal rod as the helical guide and a metal member having water absorption and elasticity such as a metal felt, a metal cloth, a metal nonwoven fabric or a metal wire mesh as the spiral water-absorbing member. ).
Furthermore, as an embodiment of a different configuration of the helical water supply member, the invention of claim 8 or 9 is preferable. That is, in the fuel reformer according to claim 1 or 2, the helical metal member is composed of a plurality of stranded wires made of metal thin wires (claim 8). 3. The fuel reformer according to claim 1, wherein the helical water-absorbing member presses a part of a metal felt, a metal cloth, a metal non-woven fabric, or a metal wire mesh to the inner peripheral side wall surface with a helical rod. And a helical constricted portion (claim 9).

さらに、ラセン状の吸水性部材の配置に関しては、請求項10から13のように配置されるのが好ましい。即ち、吸水性部材が、一酸化炭素変成部および前記一酸化炭素除去部に隣接する部位に設ける(請求項10)。このようにすれば、吸水性部材に保水された改質用に、改質ガスの熱だけでなく、一酸化炭素変成部および一酸化炭素除去部の発熱も効率よく伝熱され、水蒸気発生効率が向上する。   Furthermore, regarding the arrangement of the helical water-absorbing member, it is preferable that the helical water-absorbing member is arranged as in claims 10 to 13. That is, the water absorbing member is provided in a portion adjacent to the carbon monoxide modifying portion and the carbon monoxide removing portion (claim 10). In this way, not only the heat of the reformed gas but also the heat generation of the carbon monoxide conversion section and the carbon monoxide removal section is efficiently transferred for the reformation retained in the water absorbing member, and the steam generation efficiency Will improve.

また、前記吸水性部材を、一酸化炭素除去部に隣接する部位にのみ設ける構成とする(請求項11)。このように、一酸化炭素除去部に隣接する部位に集中的に前記吸水性部材を設けることとすれば、一酸化炭素除去部をその適温である150℃〜200℃に保つのに好適である。
さらに、隣接する第3環状空間の各部位を夫々に適温に維持するように、前記吸水性部材のラセンピッチを設定するか、前記吸水性部材に熱交換能力の異なる複数の部材を配置することが好ましい。具体的には、吸水性部材は、第3環状空間において相対的に高温に維持される部位に隣接する部分よりも、相対的に低温に維持される部位に隣接する部分のラセンピッチが、より小さくなるように設置する(請求項12)。または、吸水性部材を、熱交換能力の異なる複数の部材から構成し、かつ、第3環状空間において相対的に高温に維持される部位に隣接する部分よりも、相対的に低温に維持される部位に隣接する部分に熱交換能力のより高い(伝熱量の大きい)部材を配置するものとする(請求項13)。
Further, the water absorbing member is provided only at a portion adjacent to the carbon monoxide removing portion (claim 11). Thus, if the said water absorbing member is provided intensively in the site | part adjacent to a carbon monoxide removal part, it is suitable for keeping a carbon monoxide removal part at 150 degreeC-200 degreeC which is the appropriate temperature. .
Further, the helical pitch of the water absorbing member may be set or a plurality of members having different heat exchange capacities may be disposed on the water absorbing member so as to maintain each portion of the adjacent third annular space at an appropriate temperature. preferable. Specifically, in the water absorbing member, the helical pitch of the portion adjacent to the portion maintained at a relatively low temperature is smaller than the portion adjacent to the portion maintained at a relatively high temperature in the third annular space. (Claim 12). Alternatively, the water absorbing member is composed of a plurality of members having different heat exchange capacities, and is maintained at a relatively low temperature compared to a portion adjacent to a portion that is maintained at a relatively high temperature in the third annular space. A member having a higher heat exchange capacity (a larger amount of heat transfer) is disposed in a part adjacent to the part (claim 13).

この発明によれば、構成を簡素化し、かつ水蒸気生成の性能および安定性に優れた水蒸気発生部を備え、さらに燃料改質装置の起動時間の低減をも図った燃料改質装置を提供することができる。   According to the present invention, there is provided a fuel reforming apparatus that has a simplified structure, includes a steam generating section that is excellent in steam generation performance and stability, and further reduces the startup time of the fuel reforming apparatus. Can do.

本発明の実施形態に関して、図1に基づいて説明する。図1は、本発明の実施形態に係る燃料改質装置の模式的概略構成図である。
まず、図1の燃料改質装置の基本構造について説明する。
燃料改質装置10の中心軸上には、一体に形成された燃焼空気筒11と燃焼筒12とから成り、内部に下向きに火炎を形成するバーナ14を備える燃焼器13が配置されている。燃焼空気筒11とその内側の燃焼空気筒内筒15との間の環状の空間は燃焼空気供給路16を形成しており、燃焼空気供給路16の下部はバーナカップ17に形成された孔に連通している。燃焼空気筒内筒15の内部には、バーナ14へ燃焼用燃料を供給するバーナ燃料供給路18が貫通しており、バーナ燃料供給路18の上端はバーナ燃料供給口19を有している。
An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic schematic configuration diagram of a fuel reformer according to an embodiment of the present invention.
First, the basic structure of the fuel reformer of FIG. 1 will be described.
On the central axis of the fuel reformer 10, there is disposed a combustor 13 that includes a combustion air cylinder 11 and a combustion cylinder 12 that are integrally formed, and that includes a burner 14 that forms a downward flame inside. An annular space between the combustion air cylinder 11 and the inner combustion air cylinder inner cylinder 15 forms a combustion air supply passage 16, and a lower portion of the combustion air supply passage 16 is formed in a hole formed in the burner cup 17. Communicate. A burner fuel supply passage 18 for supplying combustion fuel to the burner 14 passes through the combustion air cylinder inner cylinder 15, and a burner fuel supply port 19 is provided at the upper end of the burner fuel supply passage 18.

上記の構成を備えた燃焼器13の外側には、燃焼器13よりも径が大きく底面を有する内筒20を配置し、燃焼器13と内筒20との間の間隙により燃焼排ガス流路21を形成している。
内筒20の底板と燃焼筒12の下端との間は、燃焼排ガス中の水分が凝縮して底部に溜まっても、燃焼排ガスが燃焼筒12の先端で折り返して燃焼排ガス流路21に流入する際に、この凝縮水を巻き込んで流路が閉塞しない適度の距離を設けている。底部に溜まった凝縮水は、燃焼部が十分加熱されると気化して燃焼排ガスとともに外部に排出される。
An inner cylinder 20 having a diameter larger than that of the combustor 13 and having a bottom surface is disposed outside the combustor 13 having the above-described configuration, and the combustion exhaust gas passage 21 is formed by a gap between the combustor 13 and the inner cylinder 20. Is forming.
Between the bottom plate of the inner cylinder 20 and the lower end of the combustion cylinder 12, even if moisture in the combustion exhaust gas is condensed and collected at the bottom, the combustion exhaust gas is folded back at the tip of the combustion cylinder 12 and flows into the combustion exhaust gas passage 21. At this time, an appropriate distance is provided so that the condensed water is involved and the flow path is not blocked. The condensed water collected at the bottom is vaporized and discharged together with the combustion exhaust gas when the combustion section is sufficiently heated.

燃焼空気筒内筒15と、燃焼空気筒11及び内筒20は、各々の上端付近に形成されたフランジ部22にガスケットを挟んで重ねたのちボルトで固定されている。
内筒20のさらに外側には、同じく底面を有する外筒23が内筒20との間に間隙を設けて配置されている。そして、内筒20と外筒23との間には隔壁24が設けられ、内筒20と外筒23との間を同心円状の2つの環状空間に区分されていると共に、両環状空間は外筒23の底面と隔壁24下端との間に設けられた間隙を介して連通している。なお、隔壁24は、燃焼空気筒11の外周部分に位置する径の小さい上部仕切筒24aと、これよりも径が大きく燃焼筒12の外周部分に位置する下部仕切筒24bと、上部仕切筒24a下端と上部仕切筒24b上端との間に径の差によって生じる隙間を塞ぐ環状の水平板とにより構成されている。
The combustion air cylinder inner cylinder 15, the combustion air cylinder 11, and the inner cylinder 20 are fixed with bolts after being overlapped with a flange portion 22 formed in the vicinity of each upper end with a gasket interposed therebetween.
On the further outer side of the inner cylinder 20, an outer cylinder 23 having a bottom surface is disposed with a gap between the inner cylinder 20 and the outer cylinder 23. A partition wall 24 is provided between the inner cylinder 20 and the outer cylinder 23, and the inner cylinder 20 and the outer cylinder 23 are divided into two concentric annular spaces. The cylinder 23 communicates with a gap provided between the bottom surface of the cylinder 23 and the lower end of the partition wall 24. The partition wall 24 has an upper partition cylinder 24a having a small diameter located at the outer peripheral portion of the combustion air cylinder 11, a lower partition cylinder 24b having a larger diameter and positioned at the outer peripheral portion of the combustion cylinder 12, and an upper partition cylinder 24a. It is comprised by the cyclic | annular horizontal board which block | closes the clearance gap produced by the difference in diameter between a lower end and the upper partition cylinder 24b upper end.

内筒20と上部仕切筒24aとの間の環状空間は、上端部に改質用水と原燃料ガスとを併せて供給する原燃料ガス供給口25が接続されていると共に、上部仕切筒24aに相対する内筒20の外壁には、ラセン状に板または棒状の部材により形成されたラセン状ガイド52と、弾性を有する吸水性部材50がラセン状に溶接されており、原燃料ガス供給口25から供給された改質用水がラセン状ガイド52上を伝って内筒20の表面に接して流れる間に加熱され、気化する水蒸気発生部27を構成している。そして、ラセン状の吸水性部材50の間隔部分には、ラセン状ガス通路51が形成されている。   The annular space between the inner cylinder 20 and the upper partition cylinder 24a is connected to a raw fuel gas supply port 25 for supplying reforming water and raw fuel gas together at the upper end, and is connected to the upper partition cylinder 24a. A helical guide 52 formed of a helical plate or rod-like member and an elastic water-absorbing member 50 are welded to the outer wall of the opposing inner cylinder 20 in a helical shape, and the raw fuel gas supply port 25 The water for reforming supplied from above is heated and vaporized while flowing on the helical guide 52 and in contact with the surface of the inner cylinder 20, thereby constituting a water vapor generating part 27. A helical gas passage 51 is formed in the space between the helical water-absorbing members 50.

内筒20と下部仕切筒24bとの間の環状空間は、下端に触媒が落ちないように触媒直径よりも小さく、かつガスが通過する際に過度の圧損とならない程度の径の孔が形成された板底を有しており、その上に改質触媒が充填され改質部28が形成されている。改質触媒としてはルテニウム系やニッケル系の水蒸気改質触媒が用いられる。改質触媒の上にはアルミナボールを充填したアルミナボール層29が形成されており、これにより、アルミナボール層29を通過する原燃料ガスが、その内側を通流する燃焼排ガスと外側を通流する改質ガスからの熱を回収して昇温され、一方、改質ガスは降温される。また万が一、未気化の改質水が流れ込んできた場合には、アルミナボール層29における熱交換で水が蒸発するので、水のまま改質部28に流入することで触媒を劣化させるのを防ぐことができる。   The annular space between the inner cylinder 20 and the lower partition cylinder 24b is formed with a hole having a diameter that is smaller than the catalyst diameter so that the catalyst does not fall at the lower end and does not cause excessive pressure loss when the gas passes. A reforming portion 28 is formed by filling a reforming catalyst thereon. As the reforming catalyst, a ruthenium-based or nickel-based steam reforming catalyst is used. An alumina ball layer 29 filled with alumina balls is formed on the reforming catalyst, so that the raw fuel gas passing through the alumina ball layer 29 flows through the combustion exhaust gas flowing through the inside and the outside through the outside. The heat from the reformed gas is recovered and the temperature is raised, while the reformed gas is lowered. In the unlikely event that unvaporized reformed water flows in, the water evaporates due to heat exchange in the alumina ball layer 29, so that it is prevented from deteriorating the catalyst by flowing into the reforming section 28 as water. be able to.

水蒸気発生部27とアルミナボール層29との間には、気化せずに水蒸気発生部27の下端へ到達した改質用水を受け止め、気体のみを改質部28へ通流させるための水受け部30が設けられている。これにより、改質用水が液体の状態で改質部28に入ることを防ぎ、これにより触媒の割れや剥がれが発生することを防止するとともに、改質用水の急激な気化による急激な体積変化によって圧力変動が発生し、原燃料ガス量や蒸気量が変動して改質反応が不安定になるのを防止し、さらには、急激な気化によって改質部の温度が不安定になるのを防止している。   Between the water vapor generating part 27 and the alumina ball layer 29, a water receiving part for receiving the reforming water that has reached the lower end of the water vapor generating part 27 without being vaporized and allows only the gas to flow to the reforming part 28. 30 is provided. This prevents the reforming water from entering the reforming section 28 in a liquid state, thereby preventing the catalyst from cracking or peeling off, and by a rapid volume change due to rapid vaporization of the reforming water. Prevents fluctuations in pressure, fluctuations in the amount of raw fuel gas and steam, and instability of the reforming reaction, and also prevents the temperature of the reforming unit from becoming unstable due to rapid vaporization. is doing.

下部仕切筒24bと外筒23との間の環状空間は改質ガス流路31を構成している。上部仕切筒24aと外筒23との間の環状空間には、その上端部近傍に一酸化炭素除去触媒が充填された一酸化炭素除去部32が、その下方に一酸化炭素変成触媒を充填した一酸化炭素変成部34が形成されている。一酸化炭素変成部入口マニホールド33と一酸化炭素変成部34との間には、アルミナボールを充填したアルミナボール層29を設けて原料ガスと改質ガスとの熱交換により一酸化炭素変性部34の入口温度が一酸化炭素変性反応に適した300〜350℃になるようにしている。なお、一酸化炭素除去触媒としては貴金属系触媒が、一酸化炭素変成触媒としては、貴金属系触媒または銅−亜鉛触媒などが用いられる。また、一酸化炭素除去部32と一酸化炭素変成部34との間は環状の水平板で仕切られており、一酸化炭素変成部出口マニホールド35に接続された一酸化炭素変成ガス排出口36から導出した一酸化炭素変成後の改質ガスに、狭い配管内で選択酸化用空気を混合した後、選択酸化空気混合ガス入口37を介して選択酸化空気混合後マニホールド38に戻すことによって、改質ガスに対し均一に空気を混合するようにしている。   An annular space between the lower partition cylinder 24 b and the outer cylinder 23 constitutes a reformed gas flow path 31. In the annular space between the upper partition cylinder 24a and the outer cylinder 23, a carbon monoxide removal section 32 filled with a carbon monoxide removal catalyst in the vicinity of the upper end thereof is filled with a carbon monoxide shift catalyst below. A carbon monoxide shift portion 34 is formed. An alumina ball layer 29 filled with alumina balls is provided between the carbon monoxide shift portion inlet manifold 33 and the carbon monoxide shift portion 34, and the carbon monoxide modified portion 34 is exchanged by heat exchange between the raw material gas and the reformed gas. The inlet temperature is set to 300 to 350 ° C. suitable for the carbon monoxide modification reaction. A noble metal catalyst is used as the carbon monoxide removal catalyst, and a noble metal catalyst or a copper-zinc catalyst is used as the carbon monoxide conversion catalyst. Further, the carbon monoxide removal unit 32 and the carbon monoxide conversion unit 34 are partitioned by an annular horizontal plate, and are connected to a carbon monoxide conversion gas outlet 36 connected to the carbon monoxide conversion unit outlet manifold 35. The reformed carbon monoxide-modified reformed gas is mixed with selective oxidation air in a narrow pipe, and then mixed with the selective oxidation air mixed gas inlet 37 and then returned to the manifold 38 to reform the reformed gas. Air is uniformly mixed with the gas.

一酸化炭素除去部32の上部の一酸化炭素除去部出口マニホールド39には、一酸化炭素除去後の改質ガスを燃料改質装置10の外に取り出すための改質ガス排出口40が接続されている。
また、燃料改質装置10の周囲は、燃料改質装置10からの放熱を防ぐために図示しない断熱材で覆われている。
A reformed gas discharge port 40 for taking out the reformed gas after the removal of carbon monoxide out of the fuel reformer 10 is connected to the carbon monoxide remover outlet manifold 39 above the carbon monoxide remover 32. ing.
The periphery of the fuel reformer 10 is covered with a heat insulating material (not shown) in order to prevent heat dissipation from the fuel reformer 10.

次に、上述のように構成された本発明の燃料改質装置10を作動した場合の各流体の流れについて、燃料電池と組み合わせて運転する場合を例に説明する。なお、図1中の矢印は、各流体の通流方向を示す。
通常運転時には、燃料電池から反応に利用されずに排出された電池オフガスがバーナ燃料としてバーナ燃料供給口19を介してバーナ燃料供給路18に、また、空気が燃焼空気供給路16に供給されて、各々鉛直方向下向きに流れ、バーナ14で燃焼する。
Next, the flow of each fluid when the fuel reforming apparatus 10 of the present invention configured as described above is operated will be described as an example in which it is operated in combination with a fuel cell. In addition, the arrow in FIG. 1 shows the flow direction of each fluid.
During normal operation, the cell off-gas discharged from the fuel cell without being used for the reaction is supplied as burner fuel to the burner fuel supply passage 18 via the burner fuel supply port 19, and air is supplied to the combustion air supply passage 16. , Each flow downward in the vertical direction and burn in the burner 14.

一方、燃料改質装置10の起動時には、バーナ燃料供給口19に改質用の原燃料ガスを供給するが、これに代えて、改質原燃料として原燃料ガス供給口25から供給され各反応部を通流後、改質ガス排出口40から排出されたガスを再びバーナ燃料供給口19に送る配管(図示せず)から循環供給することとしても良い。また、起動後、通常運転に入るまでの調整運転の段階では、改質ガス排出口40から排出された改質ガスの全量をバーナ燃料供給口19から燃焼バーナ14に送って燃焼させる。   On the other hand, when the fuel reformer 10 is started, the reforming raw fuel gas is supplied to the burner fuel supply port 19. Instead of this, the reforming raw fuel is supplied from the raw fuel gas supply port 25 as the reforming raw fuel. It is good also as circulatingly supplying from the piping (not shown) which sends the gas discharged | emitted from the reformed gas discharge port 40 to the burner fuel supply port 19 again after flowing through a part. In addition, after the start-up, in the adjustment operation stage until the normal operation is started, the entire amount of the reformed gas discharged from the reformed gas discharge port 40 is sent from the burner fuel supply port 19 to the combustion burner 14 for combustion.

燃焼によって発生した高温の燃焼排ガスは、燃焼筒12下端の開口部から内筒20に排出され、燃焼排ガス流路21を下から上へと流れる。一方、原燃料ガス供給口25から導入された原燃料ガスと改質用水とは、水蒸気発生部27の上方から下方へと向かって流れるが、改質用水は上述したように、ラセン状の吸水性部材50の上流側から順に滲み込み、吸水性部材50からの伝熱により蒸発する。また、吸水性部材50から溢れた改質用水はラセン状ガイド52上を伝って流れて吸水性部材50の下流側へと運ばれる。これにより、溢れた改質用水は重力方向へ真直ぐ滴下することなく、水蒸気発生部27の両側壁面からの熱が吸水性部材50を介して有効に伝えられ、水蒸気となって改質部28へ原燃料ガスとともに供給される。改質部28は内側を流れる燃焼排ガスにより400℃〜650℃程度に加熱される。改質部28を出た改質ガスは、下部仕切筒24bの下端で折り返して流れの方向を変え、改質ガス流路31を上昇しながら内側に隣接する改質部28に熱を与え、300℃〜350℃程度となって一酸化炭素変成部34へ導入される。   The high-temperature combustion exhaust gas generated by the combustion is discharged from the opening at the lower end of the combustion cylinder 12 to the inner cylinder 20, and flows through the combustion exhaust gas passage 21 from the bottom to the top. On the other hand, the raw fuel gas and the reforming water introduced from the raw fuel gas supply port 25 flow from the upper side to the lower side of the water vapor generating unit 27. However, as described above, the reforming water is a helical water absorption. Infiltrate sequentially from the upstream side of the conductive member 50 and evaporate due to heat transfer from the water absorbing member 50. Further, the reforming water overflowing from the water absorbing member 50 flows along the helical guide 52 and is carried to the downstream side of the water absorbing member 50. As a result, the overflowing reforming water is not dripped straightly in the direction of gravity, but the heat from the both side walls of the steam generating section 27 is effectively transmitted through the water absorbing member 50 and becomes steam to the reforming section 28. Supplied with raw fuel gas. The reforming unit 28 is heated to about 400 ° C. to 650 ° C. by the combustion exhaust gas flowing inside. The reformed gas exiting the reforming section 28 is folded at the lower end of the lower partition cylinder 24b to change the direction of flow, and heats the reforming section 28 adjacent to the inside while ascending the reformed gas channel 31, The temperature is about 300 ° C. to 350 ° C. and introduced into the carbon monoxide shifter 34.

一酸化炭素変成部34での反応は発熱反応であり、この反応熱が内側の水蒸気発生部27を通流する改質用水または水蒸気と原燃料ガスに与えられ、改質ガスは200℃程度となって一酸化炭素変成部34を出る。選択酸化用空気が混合された改質ガスは150℃〜100℃程度となって一酸化炭素除去部32に導入されるが、ここでも改質ガスの熱は水蒸気発生部27へ伝えられ、一酸化炭素除去部32を出る改質ガスの温度は100℃程度まで低下する。
<第1の実施例>
第1の実施例では、上述した図1に示す構造の燃料改質装置を用い、水蒸気発生部27の吸水性部材50として金属フェルトを、ラセン状ガイド52として針金状の金属棒を用いた。本実施例の構成および機能に関して、図2により詳述する。図2(a)は、本実施例の水蒸気発生部27の機能を説明する模式的部分拡大図、図2(b)は、特許文献3の図2に開示された構成を類似の水蒸気発生部に適用した場合の比較例である。なお、図2において、図1に示した部材と同一機能を有する部材には同一番号を付して示す。
The reaction at the carbon monoxide shifter 34 is an exothermic reaction, and this reaction heat is given to the reforming water or steam and the raw fuel gas flowing through the inner steam generator 27, and the reformed gas is about 200 ° C. And exits the carbon monoxide metamorphic section 34. The reformed gas mixed with the selective oxidation air becomes about 150 ° C. to 100 ° C. and is introduced into the carbon monoxide removal unit 32, but again, the heat of the reformed gas is transmitted to the steam generation unit 27, The temperature of the reformed gas exiting the carbon oxide removing unit 32 is reduced to about 100 ° C.
<First embodiment>
In the first embodiment, the fuel reformer having the structure shown in FIG. 1 is used, and a metal felt is used as the water absorbing member 50 of the water vapor generating unit 27 and a wire-like metal rod is used as the helical guide 52. The configuration and functions of this embodiment will be described in detail with reference to FIG. FIG. 2A is a schematic partial enlarged view for explaining the function of the water vapor generating unit 27 of the present embodiment, and FIG. 2B is a water vapor generating unit similar to the configuration disclosed in FIG. It is a comparative example when it applies to. In FIG. 2, members having the same functions as those shown in FIG.

まず、図2(a)において、27は水蒸気発生部、51はラセン状ガス流通路、50aは金属フェルト、52aはラセン状ガイドとしての金属棒を示す。水蒸気発生部27は、同心円状に配置された2つの円筒間に形成される中空環状空間の上方から、原燃料ガスA(例えば、都市ガス13A)と改質用水とを導入して、内側円筒(内筒20)内壁面に沿って流れる燃焼排ガスCと、外側円筒(上部仕切筒24a)外壁面に沿って流れる改質ガスBとによって加熱し、加熱された原燃料ガスと加熱により生成した改質用水蒸気との混合ガスを下方から導出して、図示しない改質部に供給する構成を備える。さらに、前記中空環状空間は、弾性と吸水性とを備えた金属フェルト50aを備え、この金属フェルト50aと前記内側円筒(内筒20)および外側円筒(上部仕切筒24a)とで作る空間が、混合ガスの閉じたラセン状ガス流通路51として構成される。   First, in FIG. 2A, 27 is a water vapor generating part, 51 is a helical gas flow passage, 50a is a metal felt, and 52a is a metal rod as a helical guide. The steam generation unit 27 introduces raw fuel gas A (for example, city gas 13A) and reforming water from above a hollow annular space formed between two concentrically arranged cylinders, and forms an inner cylinder. (Inner cylinder 20) Heated by the combustion exhaust gas C flowing along the inner wall surface and the reformed gas B flowing along the outer wall surface of the outer cylinder (upper partition cylinder 24a), and generated by heating the heated raw fuel gas A mixed gas with reforming steam is led out from below and supplied to a reforming unit (not shown). Further, the hollow annular space includes a metal felt 50a having elasticity and water absorption, and a space formed by the metal felt 50a, the inner cylinder (inner cylinder 20) and the outer cylinder (upper partition cylinder 24a), It is configured as a spiral gas flow passage 51 in which the mixed gas is closed.

これに対して、特許文献3に開示された構成に関わる図2(b)の場合には、金網60が、内側円筒(内筒20)の表面にラセン状に巻回されるものの、金網60によって形成されるラセン状ガス流通路51bは、オープン流路51cに対して開いたガス流通路となっている。従って、原燃料ガス供給口25から原燃料ガス(例えば、都市ガス13A)と改質用水とを導入した場合、改質用水の一部は金網60によって吸水されるが、他の改質用水は、オープン流路51cから重力方向に滴下してしまい、壁面及び金網からの伝熱が行われず、改質用水蒸気が安定して得られない問題が生じる。   On the other hand, in the case of FIG. 2B related to the configuration disclosed in Patent Document 3, the wire mesh 60 is wound in a spiral shape on the surface of the inner cylinder (inner tube 20). The helical gas flow passage 51b formed by the above is a gas flow passage opened with respect to the open flow passage 51c. Therefore, when the raw fuel gas (for example, city gas 13A) and the reforming water are introduced from the raw fuel gas supply port 25, a part of the reforming water is absorbed by the wire mesh 60, but the other reforming water is Then, it drops in the direction of gravity from the open flow path 51c, heat transfer from the wall surface and the wire mesh is not performed, and there is a problem that the steam for reforming cannot be obtained stably.

一方、図2(a)に示す本実施例の構造では、金属フェルト50aが、前記内側円筒(内筒20)および外側円筒(上部仕切筒24a)の両方に圧接されているので、両側面からの熱が金属フェルトを介して伝熱される。さらに、金属フェルトから溢れた改質用水も金属棒52aを伝わって、内側円筒(内筒20)表面を旋回しながら流れるので、比較例の場合のような問題がなく、蒸発効率が良い。   On the other hand, in the structure of the present embodiment shown in FIG. 2A, the metal felt 50a is pressed against both the inner cylinder (inner cylinder 20) and the outer cylinder (upper partition cylinder 24a). Heat is transferred through the metal felt. Further, the reforming water overflowing from the metal felt flows along the metal rod 52a while swirling on the surface of the inner cylinder (inner cylinder 20), so there is no problem as in the comparative example and the evaporation efficiency is good.

なお、ラセン状ガイドとしての金属棒52aは、内筒20にラセン全体にわたってロウ付けすることにより、保水機能および水のラセン棒に沿った移動機能の向上(重力方向への滴下防止)を図ることができる。
<第2の実施例>
図3は第2の実施例に係る燃料改質装置の水蒸気発生部27の模式的部分拡大図であり、図3(a)は部分的側断面図、図3(b)は図3(a)の一部を円筒周方向に展開した説明図である。
In addition, the metal rod 52a as the helical guide is brazed to the inner cylinder 20 over the entire spiral, thereby improving the water retention function and the movement function along the spiral rod (preventing dripping in the direction of gravity). Can do.
<Second embodiment>
FIGS. 3A and 3B are schematic partial enlarged views of the steam generating section 27 of the fuel reforming apparatus according to the second embodiment. FIG. 3A is a partial side sectional view, and FIG. FIG.

本実施例では、第1の実施例の水蒸気発生部27においてラセン状の金属フェルト50aの下側に設けたラセン状の金属棒52aに加えて、金属フェルト50aの上側に沿ったラセン状の金属棒52bを設けた。さらに、前記金属棒52a、52b及び金属フェルト50aは、内筒20に対してスポット溶接により部分的に固定した。図3に示す上部仕切筒24aは、前記金属棒52a、52b及び金属フェルト50aを内筒20に固定した後、上方から装着するが、この際、金属フェルト50aを径方向に圧縮させながら装着し、装着後においては、金属フェルト50aはその弾性により、内筒20および上部仕切筒24aに押し付けられた状態となり、係合部材相互の熱移動を良好にしている。   In this embodiment, in addition to the helical metal rod 52a provided on the lower side of the helical metal felt 50a in the water vapor generating section 27 of the first embodiment, the helical metal along the upper side of the metallic felt 50a. A rod 52b was provided. Further, the metal bars 52a and 52b and the metal felt 50a were partially fixed to the inner cylinder 20 by spot welding. The upper partition cylinder 24a shown in FIG. 3 is mounted from above after the metal rods 52a, 52b and the metal felt 50a are fixed to the inner cylinder 20, and at this time, the metal felt 50a is mounted while being compressed in the radial direction. After the mounting, the metal felt 50a is pressed against the inner cylinder 20 and the upper partition cylinder 24a due to its elasticity, so that the heat transfer between the engaging members is good.

また、本実施例では、2本の金属棒52a、52bにより、金属フェルト50aが挟まれるので、金属フェルト50aのずれを防止することができる。
<第3の実施例>
図4は、水蒸気発生部27の異なる実施形態を示す模式的概念図であり、実施例1の金属フェルト50aおよび金属棒52aに代えて、弾性と吸水性とを備えた金属部材として複数本の金属製細線からなる撚り線をラセン状に設けた場合を示す。図4において、53は撚り線ラセン状壁を示し、この撚り線ラセン状壁53と内筒20および上部仕切筒24aとにより、混合ガス(原燃料ガスおよび改質用水蒸気)が流通するラセン状ガス流通路51が形成される。なお、上記撚り線ラセン状壁53は、改質用水の吸水機能および保持・伝達機能とを兼ね備えている。
<第4の実施例>
図5は、水蒸気発生部27のさらに異なる実施形態を示す模式的概念図であり、実施例1の金属フェルト50aおよび金属棒52aに代えて、金属金網の一部を、ラセン棒により内筒20に圧接してラセン状のくびれ部を有する構造としたものである。図5において、54はラセン状弾性金網壁、52cは固定用のラセン状金属棒を示し、前記くびれ部と上部仕切筒24aとにより、混合ガスのラセン状ガス流通路51が形成されている。
<第5の実施例>
図6は、水蒸気発生部27の吸水性部材50のラセンピッチと水蒸気発生部27を流れる原燃料ガスおよび改質用水への伝熱量との関係を示すグラフである。
In the present embodiment, the metal felt 50a is sandwiched between the two metal rods 52a and 52b, so that the metal felt 50a can be prevented from shifting.
<Third embodiment>
FIG. 4 is a schematic conceptual diagram showing a different embodiment of the water vapor generating section 27. In place of the metal felt 50a and the metal rod 52a of Example 1, a plurality of metal members having elasticity and water absorption are provided. The case where the strand wire which consists of metal fine wires is provided in a spiral shape is shown. In FIG. 4, reference numeral 53 denotes a stranded helical wall, and the helical shape through which the mixed gas (raw fuel gas and reforming steam) flows is circulated by the stranded helical wall 53, the inner cylinder 20 and the upper partition cylinder 24a. A gas flow passage 51 is formed. The stranded helical wall 53 has both a water absorption function and a retention / transmission function of the reforming water.
<Fourth embodiment>
FIG. 5 is a schematic conceptual view showing still another embodiment of the water vapor generating unit 27. Instead of the metal felt 50a and the metal rod 52a of the first embodiment, a part of the metal wire mesh is replaced by the spiral rod with the inner cylinder 20. And a structure having a helical constriction. In FIG. 5, reference numeral 54 denotes a helical elastic wire mesh wall, 52c denotes a fixing helical metal rod, and a helical gas flow passage 51 for mixed gas is formed by the constricted portion and the upper partition cylinder 24a.
<Fifth embodiment>
FIG. 6 is a graph showing the relationship between the helical pitch of the water absorbing member 50 of the water vapor generating unit 27 and the amount of heat transferred to the raw fuel gas and the reforming water flowing through the water vapor generating unit 27.

ラセンピッチが小さくなるほど単位長さ当りのラセン巻数が増えると共に、吸水性部材50と原燃料ガスおよび改質用水との接触面積が増え、かつ、原燃料ガスおよび改質用水蒸気の流速が上がる。その結果、図6に示すように、ラセン状の吸水性部材50のラセンピッチが小さい箇所ほど、ラセン状吸水性部材50での伝熱量が大きくなる。また、同一構造、同一部材のラセン状吸水性部材50を備えた水蒸気発生部27の温度と伝熱量の関係は、図7に示すように温度が高くなるほど熱伝達係数が大きくなる。   As the helical pitch decreases, the number of helical turns per unit length increases, the contact area between the water absorbing member 50 and the raw fuel gas and reforming water increases, and the flow rates of the raw fuel gas and reforming steam increase. As a result, as shown in FIG. 6, the heat transfer amount in the helical water-absorbing member 50 increases as the helical pitch of the helical water-absorbing member 50 decreases. Moreover, as for the relationship between the temperature of the water vapor generation part 27 provided with the helical water-absorbing member 50 having the same structure and the same member and the amount of heat transfer, the heat transfer coefficient increases as the temperature increases as shown in FIG.

これらを考慮して、第5の実施例では、図8に示すように、水蒸気発生部27のうち、150℃〜200℃に保たれる一酸化炭素除去部32に隣接する部分の吸水性部材50およびラセン状ガイド52のラセンピッチを狭くし、200℃〜350℃に保たれる一酸化炭素変成部34に隣接する部分では、吸水性部材50およびラセン状ガイド52のラセンピッチをこれよりも広くすることで、各反応部の触媒層が上記所定の温度になるようにした。また、吸水性部材50およびラセン状ガイド52には第1の実施例と同じ金属フェルト50aおよび金属棒52aを各々用いた。
<第6の実施例>
図9は、ラセン状の吸水性部材50の配置に関する異なる実施例である。
In consideration of these, in the fifth embodiment, as shown in FIG. 8, the water absorbing member of the portion adjacent to the carbon monoxide removing unit 32 maintained at 150 ° C. to 200 ° C. in the water vapor generating unit 27. 50 and the helical pitch of the helical guide 52 are narrowed, and the helical pitch of the water-absorbing member 50 and the helical guide 52 is made wider than this in the portion adjacent to the carbon monoxide shifter 34 maintained at 200 ° C. to 350 ° C. Thus, the catalyst layer in each reaction part was set to the predetermined temperature. Further, the same metal felt 50a and metal rod 52a as in the first embodiment were used for the water absorbing member 50 and the helical guide 52, respectively.
<Sixth embodiment>
FIG. 9 shows different embodiments regarding the arrangement of the helical water-absorbing member 50.

本実施例でも吸水性部材50及びラセン状ガイド52として、第1の実施例と同じ金属フェルト50aおよび金属棒52aを各々用いているが、水蒸気発生部27のうち、150℃〜200℃以下に保つ一酸化炭素除去部32に隣接する部位にのみに吸水性部材50及びラセン状ガイド52を配置し、それ以外の部位にはラセン状の吸水性部材50及びラセン状ガイド52を設けていない構造としている。
<第7の実施例>
図10は、ラセン状の吸水性部材50の配置に関するさらに異なる実施例である。本実施例では、吸水性部材50のラセンピッチは変えずに、吸水性部材50の配置部位によって、熱交換能力の異なる複数の吸水性部材を用いたものである。
Also in this embodiment, the same metal felt 50a and metal rod 52a as those of the first embodiment are used as the water absorbing member 50 and the helical guide 52, respectively. A structure in which the water-absorbing member 50 and the helical guide 52 are disposed only in a portion adjacent to the carbon monoxide removing portion 32 to be maintained, and the helical water-absorbing member 50 and the helical guide 52 are not provided in other portions. It is said.
<Seventh embodiment>
FIG. 10 shows still another embodiment relating to the arrangement of the helical water-absorbing member 50. In the present embodiment, the helical pitch of the water absorbing member 50 is not changed, and a plurality of water absorbing members having different heat exchange capacities depending on the arrangement site of the water absorbing member 50 are used.

具体的には、水蒸気発生部27のうち、150℃〜200℃に保つ一酸化炭素除去部32に隣接する部位には、吸水性部材50として熱交換能力の高い金属フェルト50a(または金属不織布)をラセン状に配置し、200℃〜350℃に保つ一酸化炭素変成部に隣接する位置には、吸水性部材50として前記金属フェルト50aより熱交換能力の低い金網60をラセン状に配置した。また、金属フェルト50aは他の実施例同様に、内筒20と上部仕切筒24aとに圧接して設けられており、これらの間にラセン状ガス流通路51を形成しているが、金網60は、内筒20のみに接して設けられており、金網60と上部仕切筒24aとの間は、原燃料ガスおよび水蒸気が鉛直方向に流通可能なオープン流路51cとなっている。このような構成により、各部位に適した伝熱量となるよう調整した。
<第8の実施例>
図11は、ラセン状の吸水性部材50の配置に関するさらに異なる実施例である。本実施例では、水蒸気発生部27の部位によって、配置する吸水性部材50の種類、ラセンピッチを変えることにより各部位の伝熱量を調整している。
Specifically, a metal felt 50a (or a metal nonwoven fabric) having a high heat exchanging ability as the water absorbing member 50 is disposed in a portion adjacent to the carbon monoxide removing unit 32 that is maintained at 150 ° C. to 200 ° C. in the water vapor generating unit 27. In a position adjacent to the carbon monoxide metamorphic portion maintained at 200 ° C. to 350 ° C., a wire mesh 60 having a heat exchange capability lower than that of the metal felt 50a is disposed in a spiral shape as a water absorbing member 50. Further, like the other embodiments, the metal felt 50a is provided in pressure contact with the inner cylinder 20 and the upper partition cylinder 24a, and a helical gas flow passage 51 is formed between them. Is provided in contact with only the inner cylinder 20, and between the wire mesh 60 and the upper partition cylinder 24 a is an open flow path 51 c through which raw fuel gas and water vapor can flow in the vertical direction. With such a configuration, the heat transfer amount was adjusted to be suitable for each part.
<Eighth embodiment>
FIG. 11 shows still another embodiment relating to the arrangement of the helical water-absorbing member 50. In the present embodiment, the amount of heat transfer in each part is adjusted by changing the type of the water-absorbing member 50 and the helical pitch depending on the part of the water vapor generating unit 27.

具体的は、図11に示すように、発熱反応後のガスの排出口であり、反応熱が発生しない一酸化炭素除去部出口マニホールド39近傍に隣接する水蒸気発生部27には、保水のための金網60を配置し、反応熱が発生する一酸化炭素除去部32の入口付近に隣接する水蒸気発生部27には、熱交換能力の高い金属フェルト50a(または金属不織布)をラセン状に設置した。また、一酸化炭素除去部32よりも高温に維持される一酸化炭素変成部34に隣接する水蒸気発生部27には、熱交換能力の高い金属フェルト50a(または金属不織布)のラセンピッチを広くすることで伝熱量を調整した。   Specifically, as shown in FIG. 11, the water vapor generating unit 27 adjacent to the vicinity of the carbon monoxide removing unit outlet manifold 39 that is an exhaust port of the gas after the exothermic reaction and does not generate reaction heat is used for water retention. A metal felt 50a (or a metal non-woven fabric) having a high heat exchanging capacity was installed in a spiral shape in the water vapor generating section 27 adjacent to the vicinity of the entrance of the carbon monoxide removing section 32 where the wire mesh 60 is disposed and generating heat of reaction. Further, the steam pitch of the metal felt 50a (or the metal nonwoven fabric) having a high heat exchange capacity is widened in the water vapor generating part 27 adjacent to the carbon monoxide shifter 34 that is maintained at a higher temperature than the carbon monoxide removing part 32. The amount of heat transfer was adjusted with.

本発明の実施形態に係る燃料改質装置の模式的概略構成図。1 is a schematic schematic configuration diagram of a fuel reformer according to an embodiment of the present invention. 第1の実施例の水蒸気発生部と特許文献3の構成および機能を比較して説明する模式的部分拡大図。The typical partial expanded view which compares and demonstrates the structure and function of the water vapor generation part of 1st Example, and patent document 3. FIG. 第2の実施例の水蒸気発生部の金属フェルトおよびラセン棒の固定構造を説明する模式的部分拡大図。The typical fragmentary enlarged view explaining the fixation structure of the metal felt of the water vapor | steam generation | occurrence | production part of 2nd Example, and a helical rod. 第3の実施例の水蒸気発生部の構成を示す模式的概念図。The typical conceptual diagram which shows the structure of the water vapor generation part of a 3rd Example. 第4の実施例の水蒸気発生部の構成を示す模式的概念図。The typical conceptual diagram which shows the structure of the water vapor generation part of a 4th Example. 水蒸気発生部の吸水性部材のラセンピッチと伝熱量との関係を示す図。The figure which shows the relationship between the helical pitch of the water absorbing member of a water vapor generation part, and the amount of heat transfer. 同一構造、同一部材の吸水性部材を備えた水蒸気発生部の温度と伝熱量の関係を示す図。The figure which shows the relationship between the temperature of the water vapor generation part provided with the water absorbing member of the same structure and the same member, and the amount of heat transfer. 第5の実施例に係る燃料改質装置の模式的概略構成図。The typical schematic block diagram of the fuel reforming apparatus which concerns on a 5th Example. 第6の実施例に係る燃料改質装置の模式的概略構成図。The typical schematic block diagram of the fuel reforming apparatus which concerns on a 6th Example. 第7の実施例に係る燃料改質装置の模式的概略構成図。The typical schematic block diagram of the fuel reforming apparatus which concerns on a 7th Example. 第8の実施例に係る燃料改質装置の模式的概略構成図。The typical schematic block diagram of the fuel reforming apparatus which concerns on an 8th Example.

符号の説明Explanation of symbols

10 燃料改質装置
11 燃焼空気筒
12 燃焼筒
13 燃焼器
14 バーナ
15 燃焼空気筒内筒
16 燃焼空気供給路
17 バーナカップ
18 バーナ燃料供給路
19 バーナ燃料供給口
20 内筒
21 燃焼排ガス流路
22 フランジ部
23 外筒
24a 上部仕切筒
24b 下部仕切筒
25 原燃料ガス供給口
27 水蒸気発生部
28 改質部
29 アルミナボール層
30 水受け部
31 改質ガス流路
32 一酸化炭素除去部
33 一酸化炭素変成部入口マニホールド
34 一酸化炭素変成部
35 一酸化炭素変成部出口マニホールド
36 一酸化炭素変成ガス排出口
37 選択酸化空気混合ガス入口
38 選択酸化空気混合後マニホールド
39 一酸化炭素除去部出口マニホールド
40 改質ガス排出口
41 燃焼排ガス排出口
43 脱硫部
44 脱硫部原燃料入口
45 脱硫部原燃料出口
50 吸水性部材
51 ラセン状ガス流通路
52 ラセン状ガイド
53 撚り線ラセン状壁
54 ラセン状弾性金網
60 金網
DESCRIPTION OF SYMBOLS 10 Fuel reformer 11 Combustion air cylinder 12 Combustion cylinder 13 Combustor 14 Burner 15 Combustion air cylinder inner cylinder 16 Combustion air supply path 17 Burner cup 18 Burner fuel supply path 19 Burner fuel supply port 20 Inner cylinder 21 Combustion exhaust gas flow path 22 Flange 23 Outer cylinder 24a Upper partition cylinder 24b Lower partition cylinder 25 Raw fuel gas supply port 27 Water vapor generation section 28 Reforming section 29 Alumina ball layer 30 Water receiving section 31 Reformed gas flow path 32 Carbon monoxide removal section 33 Monoxide Carbon conversion section inlet manifold 34 Carbon monoxide conversion section 35 Carbon monoxide conversion section outlet manifold 36 Carbon monoxide conversion gas outlet 37 Selective oxidation air mixed gas inlet 38 Manifold 39 after selective oxidation air mixing 39 Carbon monoxide removal section outlet manifold 40 Reformed gas outlet 41 Combustion exhaust gas outlet 43 Desulfurization section 44 Desulfurization section raw fuel inlet 45 Desulfurization section Fuel outlet 50 water absorbing member 51 spiral gas flow passage 52 spiral guide 53 twisted spiral wall 54 spiral elastic metal net 60 wire mesh

Claims (13)

燃焼器の外側に、同心状に径の異なる複数の円筒が配置されて、径方向の内側から順に、前記燃焼器から排出された燃焼排ガスが通流する第1環状空間、下端で連通する第2及び第3環状空間を有し、前記第2及び第3環状空間の一部に改質触媒が充填された改質部を有する燃料改質装置において、
前記第2環状空間は、上部に改質用水及び原燃料の導入口と、改質用水を蒸発させる水蒸気発生部を有し、
前記水蒸気発生部は、前記第2環状空間の内周側壁面及び外周側壁面に接する吸水性部材をラセン状に備え、前記第1環状空間を流れる燃焼排ガス及び前記第3環状空間を流れる改質ガスとの熱交換により加熱されることを特徴とする燃料改質装置。
A plurality of cylinders having different diameters are arranged concentrically outside the combustor, and a first annular space through which the combustion exhaust gas discharged from the combustor flows in order from the inside in the radial direction, the first annular space communicating with the lower end. In a fuel reformer having a reforming section having two and third annular spaces, and a reforming catalyst filled in a part of the second and third annular spaces,
The second annular space has an inlet for reforming water and raw fuel in the upper part, and a water vapor generating part for evaporating the reforming water,
The water vapor generating section includes a water-absorbing member in contact with the inner peripheral wall surface and the outer peripheral wall surface of the second annular space in a spiral shape, and the combustion exhaust gas flowing through the first annular space and the reforming flowing through the third annular space. A fuel reformer that is heated by heat exchange with a gas.
前記第2環状空間の前記水蒸気発生部の下方に改質部が、前記第3環状空間に一酸化炭素変成部および一酸化炭素除去部が設けられていることを特徴とする請求項1に記載の燃料改質装置。   The reforming unit is provided below the water vapor generating unit in the second annular space, and a carbon monoxide shifter and a carbon monoxide removing unit are provided in the third annular space. Fuel reformer. 前記吸水性部材は弾性を有し、前記第2環状空間の内周側壁面及び外周側壁面に圧接していることを特徴とする請求項1または2に記載の燃料改質装置。   3. The fuel reformer according to claim 1, wherein the water absorbing member has elasticity and is in pressure contact with an inner peripheral side wall surface and an outer peripheral side wall surface of the second annular space. 前記吸水性部材は、前記水蒸気発生部の内周側壁面にラセン状の凸部を形成するガイド上に沿って設けられたものであることを特徴とする請求項1から3のいずれか1項に記載の燃料改質装置。   The said water absorbing member is provided along the guide which forms a helical convex part in the inner peripheral side wall surface of the said water vapor generation part, The any one of Claim 1 to 3 characterized by the above-mentioned. The fuel reformer described in 1. 前記ガイドは、前記水蒸気発生部の内周側壁面との接点全域に渡って溶接により固定されたものであることを特徴とする請求項4に記載の燃料改質装置。   The fuel reformer according to claim 4, wherein the guide is fixed by welding over the entire contact area with the inner peripheral side wall surface of the water vapor generating section. 前記水蒸気発生部の内周側壁面には前記ガイドに加え、これと平行に第2のラセン状ガイドを設け、前記2本の平行なガイド間に前記吸水性部材が配置されたものであることを特徴とする請求項4または5に記載の燃料改質装置。   In addition to the guide, a second helical guide is provided in parallel to the guide on the inner peripheral side wall surface of the water vapor generating section, and the water absorbing member is disposed between the two parallel guides. The fuel reformer according to claim 4 or 5, characterized by the above-mentioned. 前記ガイドは金属棒からなり、前記吸水性部材は金属フェルト、金属布、金属不織布もしくは金属金網からなることを特徴とする請求項から6のいずれか1項に記載の燃料改質装置。
The fuel reformer according to any one of claims 4 to 6, wherein the guide is made of a metal rod, and the water absorbing member is made of metal felt, metal cloth, metal nonwoven fabric, or metal wire mesh.
前記吸水性部材は複数本の金属製細線の撚り線からなることを特徴とする請求項1または2に記載の燃料改質装置。   3. The fuel reformer according to claim 1, wherein the water absorbing member is formed of a plurality of fine metal strands. 4. 前記吸水性部材は、金属フェルト、金属布、金属不織布もしくは金属金網の一部を、ラセン棒により前記水蒸気発生部の内周側壁面に圧接してラセン状のくびれ部を形成したものからなることを特徴とする前記請求項1または2に記載の燃料改質装置。   The water absorbing member is made of a metal felt, a metal cloth, a metal nonwoven fabric, or a metal wire mesh, which is formed by forming a helical constriction by pressing a part of the inner peripheral side wall of the water vapor generating part with a helical rod. The fuel reformer according to claim 1 or 2, wherein 前記吸水性部材が、前記一酸化炭素変成部および前記一酸化炭素除去部に隣接する部位に設けられていることを特徴とする請求項1から8のいずれか1項に記載の燃料改質装置。   9. The fuel reformer according to claim 1, wherein the water absorbing member is provided in a portion adjacent to the carbon monoxide shifter and the carbon monoxide removal unit. . 前記吸水性部材が、前記一酸化炭素除去部に隣接する部位にのみ設けられていることを特徴とする請求項1から8のいずれか1項に記載の燃料改質装置。   9. The fuel reformer according to claim 1, wherein the water absorbing member is provided only in a portion adjacent to the carbon monoxide removing unit. 前記吸水性部材は、前記第3環状空間において相対的に高温に維持される部位に隣接する部分よりも、相対的に低温に維持される部位に隣接する部分のラセンピッチが、より小さくなるように設置されていることを特徴とする請求項1から10のいずれか1項に記載の燃料改質装置。   In the water absorbing member, the helical pitch of the portion adjacent to the portion maintained at a relatively low temperature is smaller than the portion adjacent to the portion maintained at a relatively high temperature in the third annular space. The fuel reformer according to any one of claims 1 to 10, wherein the fuel reformer is installed. 前記吸水性部材が、熱交換能力の異なる複数の部材からなり、かつ、前記第3環状空間において相対的に高温に維持される部位に隣接する部分よりも、相対的に低温に維持される部位に隣接する部分に熱交換能力のより高い部材が配置されていることを特徴とする請求項1から10のいずれか1項に記載の燃料改質装置。   The water absorbing member is composed of a plurality of members having different heat exchange capacities and is maintained at a relatively lower temperature than a portion adjacent to a portion maintained at a relatively high temperature in the third annular space. 11. The fuel reformer according to claim 1, wherein a member having a higher heat exchange capacity is disposed in a portion adjacent to the fuel reformer.
JP2006203559A 2005-07-27 2006-07-26 Fuel reformer Expired - Fee Related JP4870491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006203559A JP4870491B2 (en) 2005-07-27 2006-07-26 Fuel reformer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005216806 2005-07-27
JP2005216806 2005-07-27
JP2006203559A JP4870491B2 (en) 2005-07-27 2006-07-26 Fuel reformer

Publications (2)

Publication Number Publication Date
JP2007055892A JP2007055892A (en) 2007-03-08
JP4870491B2 true JP4870491B2 (en) 2012-02-08

Family

ID=37919688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006203559A Expired - Fee Related JP4870491B2 (en) 2005-07-27 2006-07-26 Fuel reformer

Country Status (1)

Country Link
JP (1) JP4870491B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101466635B (en) 2006-06-12 2011-07-20 松下电器产业株式会社 Hydrogen generating apparatus and fuel battery system equipped with the same
JP2009062223A (en) * 2007-09-06 2009-03-26 Fuji Electric Holdings Co Ltd Reforming apparatus
US8178062B2 (en) 2007-09-27 2012-05-15 Sanyo Electric Co., Ltd. Reforming apparatus for fuel cell
JP5154272B2 (en) * 2007-09-27 2013-02-27 三洋電機株式会社 Fuel cell reformer
JP5477748B2 (en) * 2008-05-15 2014-04-23 パナソニック株式会社 Hydrogen generator and fuel cell power generator
JP5062028B2 (en) * 2008-05-15 2012-10-31 パナソニック株式会社 Hydrogen generator and fuel cell power generator
JP2009274914A (en) * 2008-05-15 2009-11-26 Panasonic Corp Apparatus for generating hydrogen and fuel cell power generation system using it
JP2010083684A (en) * 2008-09-29 2010-04-15 Casio Computer Co Ltd Vaporization apparatus and reaction apparatus
JP5274986B2 (en) * 2008-11-06 2013-08-28 東京瓦斯株式会社 Multi-cylinder steam reformer for fuel cells
JP2010129411A (en) * 2008-11-28 2010-06-10 Tokyo Gas Co Ltd Cylindrical steam reformer for fuel battery
WO2010103740A1 (en) * 2009-03-09 2010-09-16 パナソニック株式会社 Hydrogen generation apparatus, method for manufacturing same, and fuel cell system utilizing same
RU2012142177A (en) * 2010-03-04 2014-04-10 Панасоник Корпорэйшн DEVICE FOR HYDROGEN PRODUCTION AND ENERGY PRODUCTION SYSTEM BASED ON FUEL ELEMENT
WO2013118430A2 (en) * 2012-02-09 2013-08-15 Panasonic Corporation Fuel processor
JP5874667B2 (en) * 2013-03-22 2016-03-02 東京瓦斯株式会社 Evaporator, manufacturing method thereof, hydrogen generator and fuel cell system
JP6383554B2 (en) * 2014-03-28 2018-08-29 フタバ産業株式会社 Fuel reformer
JP6246088B2 (en) * 2014-07-16 2017-12-13 東京瓦斯株式会社 Fuel cell module
JP6387521B2 (en) * 2014-08-05 2018-09-12 パナソニックIpマネジメント株式会社 Hydrogen generator and fuel cell system using the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115088A (en) * 1984-06-28 1986-01-23 Matsushita Electric Ind Co Ltd Heat transfer tube for boiling
JPH0221103A (en) * 1988-07-11 1990-01-24 Unyusho Senpaku Gijutsu Kenkyusho Inner radial small lines-inserted vaporization pipe designed to inhibit the generation of droplets
KR100677016B1 (en) * 2001-06-04 2007-01-31 도쿄 가스 가부시키가이샤 Cylindrical steam reforming unit
JP4090234B2 (en) * 2001-11-22 2008-05-28 大阪瓦斯株式会社 Hydrogen-containing gas generator
JP4161612B2 (en) * 2002-05-15 2008-10-08 株式会社Ihi Starting method of fuel reformer
JP2004149402A (en) * 2002-10-10 2004-05-27 Matsushita Electric Ind Co Ltd Hydrogen generator and fuel cell system having the same
JP4233903B2 (en) * 2003-03-24 2009-03-04 パナソニック株式会社 Hydrogen generator, fuel cell system using the same, and method for generating hydrogen

Also Published As

Publication number Publication date
JP2007055892A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP4870491B2 (en) Fuel reformer
JP4520100B2 (en) Hydrogen production apparatus and fuel cell system
JP4906242B2 (en) How to shut down the fuel cell
JP2007015911A (en) Fuel reforming apparatus
JP2009078954A (en) Reforming apparatus
JP5154272B2 (en) Fuel cell reformer
JP5123442B2 (en) Hydrogen generator and fuel cell power generation system
JP4945598B2 (en) Integrated reactor for fuel reforming of solid oxide fuel cells
JP2010103084A (en) Fuel reforming method for solid oxide fuel cell system
JP4870499B2 (en) Hydrogen production apparatus and fuel cell power generation apparatus
JP4013692B2 (en) Reformer steam generator for fuel cell generator
JP4464230B2 (en) Reforming apparatus and method, and fuel cell system
JP5600460B2 (en) Hydrogen production apparatus and fuel cell system
KR100821037B1 (en) Reformer for fuel cell and fuel cell using the same
JP5161621B2 (en) Fuel cell reformer
JP4617966B2 (en) Hydrogen generator
JP2007031185A (en) Fuel reforming apparatus
JP2009062223A (en) Reforming apparatus
JP5428531B2 (en) Hydrogen production equipment
JP4278393B2 (en) Hydrogen production apparatus and fuel cell system
JP2001151502A (en) Fuel reforming device
JP2004175637A (en) Co remover and hydrogen production apparatus
JP2005053733A (en) Apparatus for reforming liquid hydrocarbon fuel
JP4479237B2 (en) Insulated container structure
JP5938580B2 (en) Hydrogen generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees