JP4868507B2 - A method and apparatus for decontaminating surfaces contaminated with radioactive isotopes easily and at low temperatures with less water contamination using water jet guided laser peeling. - Google Patents

A method and apparatus for decontaminating surfaces contaminated with radioactive isotopes easily and at low temperatures with less water contamination using water jet guided laser peeling. Download PDF

Info

Publication number
JP4868507B2
JP4868507B2 JP2006147930A JP2006147930A JP4868507B2 JP 4868507 B2 JP4868507 B2 JP 4868507B2 JP 2006147930 A JP2006147930 A JP 2006147930A JP 2006147930 A JP2006147930 A JP 2006147930A JP 4868507 B2 JP4868507 B2 JP 4868507B2
Authority
JP
Japan
Prior art keywords
laser
water jet
water
jet
guided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006147930A
Other languages
Japanese (ja)
Other versions
JP2007315996A (en
Inventor
英介 峰原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Power Co Ltd
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Power Co Ltd
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Power Co Ltd, Japan Atomic Energy Agency filed Critical Japan Atomic Power Co Ltd
Priority to JP2006147930A priority Critical patent/JP4868507B2/en
Publication of JP2007315996A publication Critical patent/JP2007315996A/en
Application granted granted Critical
Publication of JP4868507B2 publication Critical patent/JP4868507B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laser Beam Processing (AREA)

Description

この発明は、加速器、原子炉、放射性同位元素製造工場、核燃料工場、核燃料再処理工場などの周辺において使用される数多くの放射性同位元素を取り扱う機器施設装置において、多くの放射性同位元素に汚染されている装置表面近傍部位を水噴流導光レーザーを照射することにより、汚染物質が存在する領域から近接する周辺に、照射領域での汚染物質の蒸発あるいは流体での汚染物質の除去によって生じた放射性同位元素を含む物質の輸送と剥離を同時に行うことを、水噴流導光レーザー低温剥離除染と呼び、これを用いて再溶融無く、再拡散無く、且つ再汚染無く除染する方法とその装置に関する。   This invention is contaminated with many radioisotopes in equipment facilities equipment that handles many radioisotopes used in the vicinity of accelerators, nuclear reactors, radioisotope manufacturing factories, nuclear fuel factories, nuclear fuel reprocessing factories, etc. By irradiating the vicinity of the device surface with a water jet guided laser, the radioactive isotope generated by evaporation of the contaminant in the irradiation region or removal of the contaminant by the fluid is introduced in the vicinity of the region where the contaminant exists. Simultaneous transport and stripping of substances containing elements is called water jet guided laser low temperature stripping decontamination, and it relates to a method and apparatus for decontamination without remelting, without re-diffusion and without recontamination. .

従来、放射性汚染物資を除去する場合には、次の方法がとられている。   Conventionally, the following method has been used to remove radioactive contaminants.

(1)放射性同位元素からの表面線量率を勘案し、作業者の被爆量管理を行いながら放射性同位元素に汚染された表面を物理的、機械的にサンドブラスト、グラインダー、表面研削工具通常レーザーなどを用いて除去する方法。   (1) Taking into account the surface dose rate from the radioisotope, the surface contaminated with the radioisotope is physically and mechanically sandblasted, grindered, surface grinding tool, usually laser, etc. How to remove using.

(2)放射性同位元素で汚染された表面固着皮膜をキレート剤、酸など薬剤で化学的に腐食させて除去する方法。   (2) A method of removing a surface-fixed film contaminated with a radioisotope by chemically corroding with a chelating agent, an acid or the like.

(3)気中あるいは真空中にて連続波レーザー、長パルスレーザー、10ピコ秒より十分に長いパルス幅の短パルスレーザーを放射性同位元素を含む表面固着皮膜に照射し、溶融、熱蒸発させる方法。   (3) A method of irradiating a surface-fixed film containing a radioisotope with a continuous wave laser, a long pulse laser, or a short pulse laser having a pulse width sufficiently longer than 10 picoseconds in the air or vacuum to melt and thermally evaporate it. .

(4)放射性同位元素で汚染された表面固着皮膜を電解研磨液に浸漬させ、電気化学的に電解研磨する方法。   (4) A method in which a surface-fixed film contaminated with a radioisotope is immersed in an electrolytic polishing solution and electrochemically electropolished.

(5)放射性同位元素で汚染された表面固着皮膜を塩素ガス雰囲気中でレーザー照射し,金属表面の汚染物質を酸化物などから昇華性あるいは水溶性の塩化物に変換して除去する方法。   (5) A method in which a surface-fixed film contaminated with a radioisotope is irradiated with a laser in a chlorine gas atmosphere, and the contaminant on the metal surface is converted from an oxide or the like to sublimable or water-soluble chloride and removed.

(6)放射性同位元素で汚染された表面固着皮膜にゲル除染剤を塗布してレーザーを照射し,レーザー誘起化学反応により汚染物質を除去する方法。   (6) A method in which a gel decontamination agent is applied to a surface-fixed film contaminated with a radioisotope and irradiated with a laser to remove the contaminant by a laser-induced chemical reaction.

(7)冷間加工の一種である気中、水中で研磨剤をいれたあるいは入れない水ジェットを用いて放射性同位元素で汚染された表面固着皮膜を物理的機械的に除去する方法。   (7) A method of physically and mechanically removing a surface-fixed film contaminated with a radioisotope using a water jet containing or not containing an abrasive in the air, which is a kind of cold working.

上記のような放射性同位元素で汚染された表面固着皮膜を除去する方法は利用実績があり、広く用いられているが、対象物、場所、形状等の適用可能条件が厳しく、応用範囲がかなり限定され、100%除染できるわけで無く、半分以上は除去除染可能であるが、大きな割合で固着した放射性同位元素の大きな部分が残留する場合が多く、その除染能力効果が限られており、次のような課題がある。   The above-mentioned methods for removing surface-adhered films contaminated with radioisotopes have been used widely and are widely used. However, applicable conditions such as objects, locations, and shapes are severe, and the application range is quite limited. However, 100% decontamination is not possible, and more than half can be removed and decontaminated, but a large part of the radioisotope fixed in a large proportion often remains, and its decontamination ability effect is limited. There are the following problems.

放射性同位元素で汚染された表面固着皮膜を除去するための連続波あるいは長パルスレーザー照射溶融蒸発方法は、これらは本質的に熱間あるいは温間加工方法で、除去過程で基本的には表面固着皮膜と構造材の双方の表面は照射されて局所的に融点あるいは沸点温度以上に上昇し、双方の層が溶融・蒸発し、さらに亀裂や割れがこの除去作業中に発生し、進展している。このため表面固着皮膜の放射性同位元素は構造材の表面に局所的に、再溶融し、再拡散する。   The continuous wave or long pulse laser irradiation melt evaporation method for removing the surface sticking film contaminated with radioisotopes is essentially a hot or warm processing method, and basically the surface sticking in the removal process. Both the surface of the coating and the structural material are irradiated and locally rise above the melting point or boiling temperature, both layers melt and evaporate, and cracks and cracks are generated and progressed during this removal operation. . For this reason, the radioisotope of the surface fixing film is locally remelted and rediffused on the surface of the structural material.

また、放射性同位元素で汚染された表面固着皮膜を除去する物理的機械的な方法は、これらは本質的に冷間加工方法で、除去過程で基本的には表面固着皮膜と構造材の双方の表面とサンドブラスト、グラインダー、表面研削工具などの接触する粒子、刃物、工具の表面は局所的に千数百度以上に上昇し、機械的に亀裂や割れがこの除去作業中に発生し、進展している。このため表面固着皮膜の放射性同位元素は構造材の表面に局所的に、再溶融し、汚染が軽微な内面、あるいは汚染されていない内面に再拡散し、再汚染するので完全な除去除染が困難である。   In addition, the physical mechanical methods for removing the surface adhesion film contaminated with radioactive isotopes are essentially cold working methods, and basically both the surface adhesion film and the structural material in the removal process. The surface of the surface, sandblasting, grinder, surface grinding tool, etc. that come into contact with the tool, the surface of the tool, and the tool locally rise to over a few hundred degrees, and mechanical cracks and cracks are generated and developed during this removal operation. Yes. For this reason, the radioactive isotopes of the surface-fixed film are locally remelted on the surface of the structural material, and the contamination is slightly diffused or re-diffused to the uncontaminated inner surface. Have difficulty.

通常、表面固着皮膜の下層の構造材表面は製造時に不可避的に冷間加工されており、割れ感受性と引張残留応力が集中するので、除染以前の製造工程や運転中に割れがすでに進展しており、水腐食環境下でこの割れ感受性がある表面から応力腐食割れが長い年月にわたり深く進展し、この割れに沿って深い領域まで放射性同位元素が侵入する。除染時の酸などの薬剤によってもたらされる強い腐食環境下では応力腐食割れがさらに短時間に大きく進展し、この割れに沿って広く深い領域まで放射性同位元素が侵入する。このため表面固着皮膜の放射性同位元素と同様に放射性同位元素は構造材の表面から内部に直接輸送され、再浸透し、汚染が軽微な内面、あるいは汚染されていない内面に拡散し、再汚染するので完全な除染が困難である。   Normally, the surface of the structural material under the surface fixing film is inevitably cold-worked at the time of manufacturing, and cracking susceptibility and tensile residual stress are concentrated, so cracks have already developed during the manufacturing process and operation before decontamination. Stress corrosion cracking progresses deeply over many years from the surface susceptible to cracking in a water-corrosive environment, and radioisotopes penetrate into the deep region along this crack. Under a strong corrosive environment brought about by chemicals such as acids during decontamination, stress corrosion cracking progresses further in a short time, and radioisotopes penetrate into the wide and deep region along this crack. For this reason, the radioisotope is transported directly from the surface of the structural material to the inside and re-infiltrated, as well as the radioisotope of the surface-fixed film, and diffuses to a lightly contaminated inner surface or an uncontaminated inner surface to recontaminate. So complete decontamination is difficult.

そこで、この発明は、上記のように、すでに除染前に製造工程や運転中の応力腐食割れ等により深く広く浸透、拡散し、汚染していた放射性同位元素が除去できない恐れもなく、使用する連続波、極短パルスあるいは長パルスにより、表面固着皮膜と構造材の双方の表面は照射されて局所的に融点沸点温度以上に上昇し、双方の層が溶融・蒸発し、さらに亀裂や割れがこの除去作業中に発生し、進展している。このため表面固着皮膜の放射性同位元素は構造材の表面に局所的に、再溶融し、汚染が軽微な内面、あるいは汚染されていない内面に拡散する。   Therefore, as described above, the present invention is used without any fear that the radioactive isotopes that have already penetrated and diffused deeply and deeply due to stress corrosion cracking during the manufacturing process or operation before decontamination cannot be removed. Due to continuous wave, ultrashort pulse, or long pulse, both the surface fixing film and the surface of the structural material are irradiated and locally rise above the melting point boiling temperature, both layers melt and evaporate, and cracks and cracks occur. Occurred and progressed during this removal operation. For this reason, the radioisotope of the surface fixing film is locally remelted on the surface of the structural material, and diffuses to the inner surface where the contamination is light or uncontaminated.

この発明においては、使用する酸などの薬剤によって表面の冷間加工跡が応力腐食割れによって割れ進展し、放射性同位元素が浸透、拡散し、再汚染する恐れもなく、使用環境、有効性、適用対象、適用場所、その他の適用条件に制限がほとんどない、容易に、安価で、通常の除染方法よりもはるかに高い除染率を実現し、除染中の放射性同位元素の浸透や汚染が軽微な内面、あるいは汚染されていない内面への再拡散を防ぎ、再汚染を無くす、あるいは最小にする、水噴流導光レーザー剥離による除染方法を提供することにある。   In this invention, the surface of the cold work of the surface progresses by stress corrosion cracking due to the chemicals such as acid used, the radioisotope penetrates, diffuses, and there is no fear of recontamination. There are almost no restrictions on the target, application location, and other application conditions, it is easy, inexpensive, and achieves a much higher decontamination rate than conventional decontamination methods, and the penetration and contamination of radioactive isotopes during decontamination It is an object of the present invention to provide a decontamination method by water jet guided laser ablation which prevents re-diffusion to a light inner surface or an uncontaminated inner surface and eliminates or minimizes re-contamination.

この発明の「放射性同位元素に汚染された表面を水噴流導光レーザー剥離を用いて再汚染少なく容易に低温にて除染する方法とその装置」は、加速器、原子炉、放射性同位元素製造工場、核燃料工場、核燃料再処理工場など放射性同位元素に汚染された表面を持つ部品、構造物などを水噴流導光レーザー照射により、照射表面近傍に発生する熱がその被対象物全体の温度を上げないように周囲の水や水噴流により十分冷却を保持して、且つレーザー照射された表面近傍部位を蒸発させ、除去するところの水噴流導光レーザー剥離を用いて、その部位の再溶融無く、再拡散無く、且つ再汚染無く除染することを特徴としている。
本発明の様々な態様を以下に記載する。
[1]高い圧力を水に印加し、小さな円形断面の鏡状内面を持つ開口あるいは鏡状内面を持つ筒から水を噴流として数十センチ程度以上にわたり放出させ、この噴流の進行方向と同じ方向に水噴流中内に高出力のレーザーを入射し、水中から気中境界面への光の全反射条件である臨界角度以下でレーザーが水中から気中境界面へ進行するように入射角度と光学系を調整し、鏡面状内面内と水噴流内にて全反射を繰り返して、あたかも水噴流中を通信用石英製光ファイバー中のようにレーザー光を導光させ、放射性同位元素に汚染された表面をこの噴流とその中を導光されたレーザーによって衝撃し、照射し、局所的に短時間あるいは連続的に加熱し、放射性同位元素に汚染された表面を蒸発剥離させ、水噴流とレーザーの同時投入により、対象物全体として温度上昇させず、通常の溶融や蒸発のような温間加工や熱間加工では無い、冷間加工の一種として、比較的低温を保持し、除染することを特徴とする、放射性同位元素に汚染された表面を水噴流導光レーザー剥離を用いて低温にて再汚染少なく除染する方法。
[2]水噴流導光レーザーによって蒸発除去あるいは、剥離させられた放射性同位元素を含む表面物質が再度照射領域に戻り、あるいはその熱が伝導、輻射、対流等によって照射領域表面周辺の温度を上昇させ、同表面周辺を溶融し、汚染が軽微な、あるいは汚染されていない内面に拡散し、再汚染が頻繁かつ多量に発生することを防ぐために、単位レーザー出力あたりの噴流水量を多くし、あるいは単位噴流水量あたりのレーザー出力を少なくし、あるいは別の流体、具体的には気体、液体、縣濁液噴霧物、霧状噴霧物、液体と気体などの流体を単独にて、あるいは固体微粒子と流体を同時に、別の水噴流を追加して、照射領域の効率的、局所的冷却により照射領域温度を上昇させない、あるいはこれらレーザーとレーザー以外の物質の融合作用により力学的に切削、あるいは単に移動させ、あるいは複合的に巻き込んで、近接部位に配置した排気管で回収分別することによって結果的に照射領域から除くことを特徴とする、[1]記載の方法。
[3]化学反応及び/又は機械的手段と水噴流導光レーザー剥離とを併用することにより、あるいは最初から最後まで水噴流導光レーザー剥離のみにより除染を行うことを特徴とする、[1]又は[2]記載の方法。
[4]蒸気発生器、原子炉圧力容器、保管容器などの水中において水噴流導光レーザーの照射を妨げないように、同時に水噴流とその中のレーザー光が自由に通過できる気体で充填された領域を確保するために周囲環境の水を高圧気体で排除された領域を確保し、同時に全反射条件を満足させるように水噴流と周囲環境の水とを接触させないために高圧気体を筒状に水噴流導光レーザーの照射と同軸、同一方向にて、水噴流周囲を鞘状に囲むように放出する気体噴流を形成し、さらにこの放出気体噴流と水噴流とレーザーによって剥離除染された物質を排気管から吸引廃棄することを特徴とする[1]〜[3]いずれかに記載の方法。
[5]レーザー集束レンズ及びレーザー窓からなるレーザー光学系と、レーザー光学系に隣接して設けられた互いに同軸の高圧水噴流導入部及び高圧気体噴流導入部とから構成され、水噴流導光レーザーと同軸上に周囲を鞘状に囲む高圧気体噴流によって周囲環境の水を排除した、水噴流導光レーザーの光導に必要な気体空間を形成し、この空間内で水噴流導光レーザー照射することにより、RIを含む表面固着皮膜をレーザー照射によって発生する表面近傍の熱が周辺部に熱伝達され、周囲の水および水噴流で冷却されるために、照射対象物全体の温度が上昇することなく、対象物照射部分は十分に冷却され、且つレーザーにより蒸発除去され、冷間加工的な蒸発・除去が行われる、放射性同位元素に汚染された表面を水噴流導光レーザー剥離を用いて低温にて再汚染少なく除染する装置。
[6]蒸気発生器、原子炉圧力容器、保管容器などの水中において水噴流導光レーザーの照射を妨げないように水を気体で加圧排水された領域を確保するために、半密閉式不完全水封部を備えた直径方向は水圧に耐える機械構造体であって、レーザー照射面にほぼ垂直な方向に広い範囲で傾けることが可能な伸縮自在のベローズ様ダクトや他の伸縮可能な部位を備え、水中での水噴流導光レーザー剥離照射により、放射性同位元素を含む表面固着皮膜を蒸発除去し、このレーザーの熱が照射対象物全体へ熱伝達される前に対流蒸発、輻射、伝熱によって冷却保持し、更に照射局所に気体又は液体からなる流体を吹付け、剥離された固着層破片を排気管から吸引排気する冷間加工的な低温作業を行うことを特徴とする放射性同位元素に汚染された表面を水噴流導光レーザー剥離を用いて低温にて再汚染少なく除染する装置。
[7]水噴流導光レーザー剥離による除去部位近傍において、あるいは剥離除去後、排気管で回収分別された放射性同位元素が集積される部分近傍において重量計、放射線量及び線量率を放射線検出器を用いて、表面あるいは背面の温度を赤外線放射温度計を用いて、あるいは剥離物質の元素を分光検出器などで剥離除染過程を監視することを特徴とする[5]又は[6]記載の装置。
The "method and apparatus for easily decontaminating a surface contaminated with a radioisotope using water jet guided laser peeling with low recontamination and at a low temperature" includes an accelerator, a nuclear reactor, and a radioisotope manufacturing factory. , Parts and structures with surfaces contaminated with radioactive isotopes, such as nuclear fuel factories and nuclear fuel reprocessing factories, are irradiated with water jet guided lasers, and the heat generated near the irradiated surface raises the temperature of the entire object. Keeping enough cooling with the surrounding water and water jet so as not to evaporate and remove the vicinity of the surface irradiated with laser, using water jet guided laser peeling to remove the part, without remelting the part, It is characterized by decontamination without re-diffusion and without re-contamination.
Various aspects of the invention are described below.
[1] A high pressure is applied to water, and water is ejected as a jet from an opening having a mirror-shaped inner surface with a small circular cross section or a tube having a mirror-shaped inner surface over several tens of centimeters, and the same direction as the traveling direction of this jet A high-power laser is incident on the water jet, and the incident angle and optics are set so that the laser travels from the water to the air interface below the critical angle, which is the total reflection condition of light from the water to the air interface. The surface is contaminated with radioactive isotopes by adjusting the system and repeating total reflection in the mirror-like inner surface and in the water jet, as if the laser beam is guided through the water jet like in a quartz optical fiber for communication. This jet and its inside are bombarded by a laser guided, irradiated, and heated locally for a short time or continuously to evaporate and separate the surface contaminated with radioactive isotopes. By input, The radioactive material is characterized by maintaining a relatively low temperature and decontaminating as a kind of cold processing, which is not warm processing or hot processing such as normal melting or evaporation, without raising the temperature of the whole thing. A method of decontaminating isotopes contaminated surfaces at low temperatures using water jet guided laser peeling.
[2] Surface material containing radioactive isotopes removed or peeled off by water jet guided laser returns to the irradiated area again, or its heat increases the temperature around the irradiated area surface by conduction, radiation, convection, etc. In order to prevent the recontamination from occurring frequently and in large quantities, or to increase the amount of jet water per unit laser power, Reduce the laser output per unit jet water amount, or use another fluid, specifically gas, liquid, suspension spray, mist spray, fluid and gas alone, or solid fine particles. At the same time, another water jet is added to the fluid so that the irradiation area temperature is not increased by efficient and local cooling of the irradiation area, or the fusion of these lasers and non-laser materials. [1], characterized in that it is mechanically cut by action, or simply moved, or combined, and recovered and separated by an exhaust pipe disposed in the vicinity, resulting in removal from the irradiated region Method.
[3] Decontamination is performed by using chemical reaction and / or mechanical means in combination with water jet light guide laser peeling, or from the beginning to the end only by water jet light guide laser peeling. [1] ] Or the method according to [2].
[4] At the same time, the water jet and the laser beam in it were filled with a gas that can freely pass through so as not to interfere with the irradiation of the water jet light guiding laser in water such as steam generator, reactor pressure vessel, storage vessel, etc. In order to secure the area, the area where the water in the surrounding environment is excluded by the high pressure gas is secured, and at the same time, the high pressure gas is made cylindrical so as not to contact the water jet and the water in the surrounding environment so as to satisfy the total reflection condition. A gas jet that discharges so as to surround the water jet in a sheath shape in the same direction as the water jet light guide laser irradiation, and further, this released gas jet, the water jet, and the material delaminated and decontaminated by the laser The method according to any one of [1] to [3], wherein the waste is sucked and discarded from the exhaust pipe.
[5] A water jet light guiding laser comprising a laser optical system comprising a laser focusing lens and a laser window, and a high-pressure water jet introduction portion and a high-pressure gas jet introduction portion which are provided adjacent to the laser optical system and are coaxial with each other. Form a gas space necessary for the light jet of the water jet light guiding laser that excludes the water of the surrounding environment by a high pressure gas jet that is coaxially surrounded by a sheath and irradiates the water jet light guiding laser in this space By this, the heat near the surface generated by laser irradiation of the surface fixing film containing RI is transferred to the peripheral portion and cooled by the surrounding water and water jet, so that the temperature of the entire irradiation object does not rise The target irradiated part is sufficiently cooled and evaporated and removed by the laser, and the surface contaminated with the radioisotope is evaporated and removed by cold working. Away recontamination less decontamination to devices at low temperatures using.
[6] In order to secure a region where water is pressurized and drained in a gas so as not to interfere with irradiation of the water jet light guiding laser in water such as a steam generator, a reactor pressure vessel, a storage vessel, etc. Stretchable bellows-like duct and other stretchable parts that can be tilted in a wide range in a direction perpendicular to the laser irradiation surface with a mechanical structure that can withstand water pressure in the diameter direction with a complete water seal The surface-fixed film containing the radioisotope is evaporated and removed by water jet guided laser peeling irradiation in water, and convective evaporation, radiation, and transmission are conducted before the heat of this laser is transferred to the whole irradiation object. A radioisotope characterized in that it is cooled by heat, sprayed with a fluid consisting of gas or liquid at the irradiation site, and cold-worked low-temperature work is performed to suck and exhaust the peeled debris from the exhaust pipe. Contaminated by Recontamination less decontamination to devices at low temperatures using a water jet light laser ablation surface.
[7] Weighing detector, radiation dose and dose rate in the vicinity of the part removed by water jet guided laser peeling, or in the vicinity of the part where the radioisotopes collected and separated in the exhaust pipe are collected after peeling and removal. The apparatus according to [5] or [6], wherein the temperature of the front or back surface is monitored using an infrared radiation thermometer, or the element of the release material is monitored by a spectroscopic detector or the like. .

この発明においては、水噴流導光レーザーを用いて、図1の様に照射し、気中にて低温でのレーザー剥離により、汚染物質の再溶融無く、再拡散無く、且つ再汚染無く除染する。即ち、図1に示されるように、ステンレス鋼製コールド構造材1のRI(放射性同位元素)を含む表面固着層皮膜7に、冷間加工的作業を行う水噴流導光レーザー2として、連続波あるいパルスレーザーが水噴流とともに照射され、更に、その領域に除去用気体または液体などからなる流体3が吹き付けられ、その照射領域からRIで汚染された固着層破片が剥離除去される。その剥離された固着層破片は吸入排気管4を通して吸引、除去される。その結果、ステンレス鋼製コールド構造材の表面固着層皮膜部分からは、蒸発剥離の際に生ずる汚染剥離皮膜による再汚染無く、再拡散なしに汚染物質が除去される。また、その剥離汚染の過程をモニターするために、重量計、分光器あるいは放射線検出器などを用いた除染モニター6により、その除染過程が観察される。   In this invention, a water jet light guiding laser is used for irradiation as shown in FIG. 1, and laser delamination at low temperature in the air eliminates decontamination of contaminants without remelting, re-diffusion, and recontamination. To do. That is, as shown in FIG. 1, a continuous wave is used as a water jet light guiding laser 2 that performs a cold work operation on a surface adhering layer coating 7 containing RI (radioisotope) of a stainless steel cold structural material 1. Alternatively, a pulse laser is irradiated with a water jet, and further, a fluid 3 made of a removing gas or liquid is sprayed on the region, and the fixed layer fragments contaminated with RI are peeled and removed from the irradiated region. The separated fixed layer fragments are sucked and removed through the suction / exhaust pipe 4. As a result, the contaminant is removed from the surface fixing layer coating portion of the stainless steel cold structural material without re-diffusion without re-contamination due to the contamination peeling coating that occurs during evaporation peeling. In order to monitor the process of peeling contamination, the decontamination process is observed by a decontamination monitor 6 using a weigh scale, spectroscope, radiation detector or the like.

図2のように、水噴流導光レーザーと同軸上に周囲を鞘状に囲む高圧気体噴流によって周囲環境の水を排除した、水噴流導光レーザーの光導に必要な気体空間を形成し、この空間内で水噴流導光レーザー照射することにより、RIを含む表面固着皮膜をレーザー照射によって発生する表面近傍の熱が周辺部に熱伝達され、周囲の水および水噴流で冷却されるために、照射対象物全体の温度が上昇することなく、対象物照射部分は十分に冷却され、且つレーザーにより蒸発除去され、冷間加工的な蒸発・除去が行われる。   As shown in FIG. 2, a gas space necessary for the light of the water jet light guiding laser is formed by excluding water in the surrounding environment by a high pressure gas jet coaxially with the water jet light guiding laser and surrounding the sheath in a sheath shape. By irradiating the water jet light guide laser in the space, the heat in the vicinity of the surface generated by laser irradiation of the surface fixing film including RI is transferred to the peripheral part and cooled by the surrounding water and the water jet. Without increasing the temperature of the entire object to be irradiated, the object irradiated part is sufficiently cooled and evaporated and removed by a laser, and cold work evaporation and removal are performed.

即ち、図2に示されるように、レーザー光学系1の前面からRIを含む表面固着皮膜10の汚染局所に向けて高圧気体噴流5を周囲の水中環境6の水中に噴射し、その周囲環境の水を排除し、その水中に気体噴流による光学系からその汚染局所に至る鞘状の気体空間を形成する。更に、レーザー光学系の前面から高圧水噴流5をその気体空間内に噴射し、その空間内に水噴流を形成する。その水噴流中にレーザー光2をレーザー窓3を通して照射し、その空間内に水噴流導光レーザーを形成する。水噴流内のレーザー光は、この水噴流導光レーザーを囲む鞘状の気体空間内面で全反射7して水噴流中を進み、汚染局所に照射される。レーザー光により照射された固着皮膜が局所蒸発8し、剥離された固着層破片11が生ずる。この破片が鞘状空間を形成するために使用された高圧気体噴流および水噴流導光レーザーの水噴流により除去される。蒸発局所近傍がレーザーと同時に投入される水噴流及び周囲環境の水より冷却されるので、この剥離除染は冷間加工的に行われる。   That is, as shown in FIG. 2, a high-pressure gas jet 5 is jetted from the front surface of the laser optical system 1 toward the contaminated area of the surface fixing film 10 including RI into the water of the surrounding underwater environment 6. Water is excluded, and a sheath-like gas space is formed in the water from the optical system by the gas jet to the contamination site. Further, a high-pressure water jet 5 is jetted into the gas space from the front surface of the laser optical system, and a water jet is formed in the space. Laser light 2 is irradiated through the laser window 3 into the water jet to form a water jet light guide laser in the space. The laser beam in the water jet is totally reflected 7 by the inner surface of the sheath-like gas space surrounding the water jet light guide laser, travels through the water jet, and is irradiated to the contaminated area. The fixed film irradiated by the laser light is locally evaporated 8 and peeled fixed layer fragments 11 are generated. The debris is removed by the high pressure gas jet used to form the sheath space and the water jet of the water jet light guide laser. Since the vicinity of the evaporation is cooled by the water jet that is introduced simultaneously with the laser and the water in the surrounding environment, this stripping decontamination is performed by cold working.

さらに図3のように同軸上に周囲を鞘状高圧気体噴流に囲まれた水噴流導光レーザーを、水中の被剥離除染対象物に接した高圧気体で周囲の水を排除した比較的広い空間に、形成して水噴流導光レーザー剥離照射を行い、RIを含む表面固着皮膜を被剥離除染対象物全体を低温に保ったまま蒸発除去し、さらに気体、液体などの流体を吹き付け、剥離された固着層破片が効率よく、排気管から吸引排気され、低温が保持されたままにて表面近傍から剥離され、除染される。   Further, as shown in FIG. 3, a water jet light guiding laser that is coaxially surrounded by a sheath-like high pressure gas jet is relatively wide by removing the surrounding water with a high pressure gas in contact with the object to be decontaminated in water. In the space, water jet light guide laser peeling irradiation is performed, and the surface fixing film including RI is removed by evaporation while keeping the whole object to be peeled and decontaminated at a low temperature, and further, a fluid such as gas or liquid is sprayed. The peeled debonded layer fragments are efficiently sucked and exhausted from the exhaust pipe, peeled from the vicinity of the surface while being kept at a low temperature, and decontaminated.

即ち、加圧気体導入口、開放水封部8、伸縮圧縮部6及び半密閉式不完全水封部7を備えたパイプ構造体を、その伸縮部を伸縮してその水封部をステンレス鋼構造体2のRIを含む表面固着皮膜3に押付け、その水封部と固着皮膜表面との間で半密閉式不完全水封7を形成する。次に、加圧気体導入口から加圧気体を圧入し、水中環境10内にあるステンレス鋼構造材2のRIを含む表面固着皮膜3近傍の水を排除し、加圧気体による空間を形成する。この空間を通して水噴流導光レーザー1からなる非熱的レーザーを固着皮膜に照射し、同時に破片除去用気体4を吹付け、固着層破片5を除去し、排気管を通して除去する。この空間内に貯まった水は開放水封部8を経て除去され、又かかる剥離除去過程を剥離除染モニター(発光元素分析器、あるいは放射線検出器)9を使用して監視する。   That is, a pipe structure provided with a pressurized gas inlet, an open water seal portion 8, an expansion / contraction compression portion 6 and a semi-sealed incomplete water seal portion 7 is expanded and contracted to make the water seal portion stainless steel. The structure 2 is pressed against the surface fixing film 3 including the RI, and a semi-sealed incomplete water seal 7 is formed between the water seal portion and the surface of the fixing film. Next, pressurized gas is injected from the pressurized gas inlet, water in the vicinity of the surface fixing film 3 including RI of the stainless steel structural material 2 in the underwater environment 10 is excluded, and a space by the pressurized gas is formed. . Through this space, the non-thermal laser comprising the water jet light guiding laser 1 is irradiated onto the fixed film, and at the same time, the debris removing gas 4 is sprayed to remove the fixed layer debris 5 and removed through the exhaust pipe. The water stored in this space is removed through the open water seal 8 and the separation / removal process is monitored using a separation / contamination monitor (emission element analyzer or radiation detector) 9.

剥離表面に対して垂直入射照射でない、より水平に近い浅い角度で照射し、剥離物質が反跳する方向がレーザー入射方向と干渉することが少ない方向とする事によって、衝撃剥離する残渣の自動的反跳除去が容易に実現するように、また高温の反跳残渣が照射面に堆積しない様にする。この近傍に排気管を剥離物の除去を容易にするように低温を保ちやすいように配置し、吸引する。   By irradiating the peeling surface at a shallower angle that is closer to the horizontal than normal incidence, and the direction in which the release material recoils is less likely to interfere with the laser incident direction, the impact peeling residue is automatically removed. The recoil removal is easily realized and the high temperature recoil residue is not deposited on the irradiated surface. In this vicinity, an exhaust pipe is disposed so as to easily maintain a low temperature so as to facilitate removal of the exfoliation, and sucked.

比較的高温の残渣や照射面が空気中の酸素と反応して酸化し、高熱を発生しないように希ガス等の不活性ガスを含む流体の噴射で空気を照射面から遮断隔離し、温度上昇を防ぎながら、照射面から残渣を水噴流を用いて、さらに水噴流導光レーザーの水噴流とは独立に水、ガス、あるいは混合物噴射で吹き飛ばし高速で除去する。   The relatively high temperature residue and irradiated surface react with oxygen in the air and oxidize, and air is shut off and isolated from the irradiated surface by injecting fluid containing inert gas such as rare gas so as not to generate high heat, and the temperature rises In this case, the residue is removed from the irradiated surface at high speed by using a water jet and blowing it away with water, gas, or mixture jet independently of the water jet of the water jet light guide laser.

照射とガス遮断を容易にするためにガスの流れとレーザー照射方向をできれば同軸あるいは概略同方向とする。またガスが照射面を覆いやすいように流れを妨げないように照射面とレーザー装置とガス吹き付け孔等全体を筒状の、或いは遮断ガス噴流等で遮蔽隔離する。   In order to facilitate irradiation and gas blocking, the gas flow and the laser irradiation direction should be coaxial or approximately the same direction if possible. Further, the entire irradiation surface, the laser device, the gas blowing holes, and the like are shielded and isolated by a cylindrical or shut-off gas jet so as not to disturb the flow so that the gas can easily cover the irradiation surface.

また噴射ガスを断熱膨張させ液化ミスト噴射として用い、あるいは別種の液体ミストの混合噴射を用いて、超音速、あるいは高速の残渣除去し易い噴射と照射面の冷却と効果的空気遮蔽を実現する。
[発明の効果]
Further, the jet gas is adiabatically expanded and used as a liquefied mist jet, or mixed jet of another type of liquid mist, thereby realizing supersonic or high-speed jetting that easily removes residues, cooling of the irradiated surface, and effective air shielding.
[Effect of the invention]

以上のようにこの発明によれば、従来の技術では不可能であった、高除染効率を容易に安価に実現し、母材の放射化以外の放射性同位元素の残留の無いほぼ完全な表面からの除去除染が可能である、すなわち、対象物全体として低温を保つことが可能な冷間加工的な水噴流導光レーザー剥離による除染であるために照射表面近傍部位に再溶融無く、再拡散無く、且つ再汚染無く除染することが可能である。   As described above, according to the present invention, high decontamination efficiency, which is impossible with the prior art, is easily realized at low cost, and a substantially complete surface with no remaining radioisotopes other than activation of the base material. Decontamination is possible, that is, it is decontamination by cold working water jet light guide laser peeling that can keep the whole object at a low temperature, so there is no remelting in the vicinity of the irradiation surface, It is possible to decontaminate without re-diffusion and without re-contamination.

又、この発明によれば、次のこの発明に特有の顕著な効果を生ずる。   Moreover, according to this invention, the following remarkable effects peculiar to this invention are produced.

(1)人手によりあるいは自動機械によってサンドブラスト、グラインダー、表面研削工具などを用いて物理的、機械的に汚染を除去する必要がなく、容易に除染を実行できる。   (1) It is not necessary to remove the contamination physically or mechanically by using a sandblast, grinder, surface grinding tool or the like manually or by an automatic machine, and can easily perform decontamination.

(2)この発明によれば、キレート剤、酸など化学的腐食薬剤を用いて汚染を除去する必要がなく、水噴流導光レーザーを用いて容易に除染を実行できる。   (2) According to the present invention, it is not necessary to remove contamination using a chemical corrosive agent such as a chelating agent or an acid, and decontamination can be easily performed using a water jet light guiding laser.

(3)この発明によれば、周囲を腐食しやすい、有毒で危険で保存等に注意が必要な塩素ガス雰囲気中でレーザー照射し,金属表面の汚染物質を酸化物から昇華性あるいは水溶性の塩化物に変換して汚染を除去する必要がなく、容易に除染を実行できる。   (3) According to the present invention, laser irradiation is performed in a chlorine gas atmosphere that easily corrodes the surroundings, is toxic, dangerous, and needs attention for storage, and the contaminants on the metal surface are sublimated or water-soluble from oxides. Decontamination can be easily carried out without the need to convert to chloride to remove contamination.

(4)この発明によれば、電気化学的に電解研磨液と電解研磨装置を用いて汚染を除去する必要がなく、容易に除染を実行できる。   (4) According to the present invention, it is not necessary to electrochemically remove contamination using an electrolytic polishing liquid and an electrolytic polishing apparatus, and decontamination can be easily performed.

(5)この発明によれば、再溶融、再拡散、したがって再汚染が不可避に起こり、除染効率が高くできない、連続波レーザー、長パルスレーザー、10ピコ秒より十分に長い間隔の短パルスレーザーを放射性同位元素を含む表面固着皮膜に照射し、溶融、熱蒸発させる方法を用いて汚染を除去する必要がなく、容易により高除染効率の除染を実行できる。   (5) According to the present invention, re-melting, re-diffusion, and therefore re-contamination is unavoidable, and the decontamination efficiency cannot be increased. Continuous wave laser, long-pulse laser, short-pulse laser with an interval sufficiently longer than 10 picoseconds It is not necessary to remove contamination by using a method of irradiating a surface fixing film containing a radioisotope, melting, and thermally evaporating, and decontamination with high decontamination efficiency can be easily performed.

(6)この発明によれば、冷間加工の一種である気中、水中で研磨剤をいれたあるいは入れない水ジェットを用いて放射性同位元素で汚染された表面固着皮膜を物理的機械的に除去する必要がなく、容易に除染を実行できる。   (6) According to the present invention, a surface-fixed film contaminated with a radioisotope is physically and mechanically used by using a water jet in which an abrasive is or is not put in water. Decontamination can be easily performed without the need for removal.

(7)この発明によれば、電気化学的に電解研磨液と電解研磨装置を用いて汚染を除去する必要がなく、容易に除染を実行できる。   (7) According to the present invention, it is not necessary to remove contamination using an electrochemical polishing solution and an electrolytic polishing apparatus electrochemically, and decontamination can be easily performed.

(8)この発明によれば、放射性廃棄物としての制限以外、対象物の重量、形状、化学的性質、周囲雰囲気、周囲環境、作業場所などによる制限はなく、大面積にわたって容易に安価に安全に除染を実行できる。   (8) According to the present invention, there is no restriction due to the weight, shape, chemical properties, ambient atmosphere, ambient environment, work place, etc. of the object other than the restriction as radioactive waste, and it is easy and inexpensive and safe over a large area. Decontamination can be performed.

(9)この発明によれば、容易に広範囲の放射化物が除染可能となり、且つ除染後の放射線線量率が現在の方法よりも桁違いに減少するためにそれまで母材の放射化は少ないが表面汚染を完全に取れずに放射性廃棄物として処理しなければならなかった大部分の放射性廃棄物を一般廃棄物として繰り返し再生利用できるようになる。   (9) According to the present invention, a wide range of radioactive materials can be easily decontaminated, and since the radiation dose rate after decontamination is orders of magnitude less than that of the current method, the activation of the base material has been Most of the radioactive waste that had to be treated as radioactive waste without removing the surface contamination completely can be reused repeatedly as general waste.

この発明における、気中でRIを含む表面固着皮膜を水噴流導光レーザーにより剥離除染する図である。It is a figure which peels and decontaminates the surface fixed film | membrane containing RI in this air with a water jet light guide laser in this invention. この発明における、水噴流導光レーザーとその周囲を鞘状に囲む高圧気体噴流によってRIを含む表面固着皮膜を剥離除染する図である。It is a figure which peels and decontaminates the surface fixed film containing RI by the water jet light guide laser in this invention and the high pressure gas jet which surrounds the circumference | surroundings in a sheath shape. この発明における、水中でRIを含む表面固着皮膜を水噴流導光レーザーにより剥離除染する図である。It is a figure which peels and decontaminates the surface fixed film | membrane containing RI in this water by a water jet light guide laser in this invention.

[図1]
1:ステンレス鋼製コールド構造材
2:冷間加工的な作業を行う水噴流導光レーザー
3:除去用気体液体等の流体吹付け部
4:剥離された固着層破片を吸入する排気管
5:ステンレス鋼製界面にほぼ再汚染、再拡散が無い。
6:剥離除染の程度をモニターする発光元素分析器、又は放射線検出器
7:RI(放射性同位元素)を含む表面固着層
[図2]
1:レーザー光学系
2:レーザー光
3:レーザー窓
4:高圧水噴流
5:高圧気体噴流
6:周囲の水中環境
7:全反射
8:局所蒸発
9:低温な表面
10:RIを含む表面固着皮膜
11:剥離されたRIを含む固着層破片
[図3]
1:全体を低温に保ったまま冷間加工的な作業を行う水噴流導光レーザー
2:ステンレス構造材
3:RIを含む表面固着皮膜
4:除去用吹付け配管と除去流体
5:剥離されたRIを含む表面固着皮膜破片を吸引する排気管
6:伸縮耐圧部
7:半密閉式不完全水封部
8:開放水封部
9:剥離除染の程度をモニターする発光元素分析器、又は放射線検出器
10:水中環境
11:ステンレス構造材へはほぼ再汚染なく、再拡散がない
[Figure 1]
1: Stainless steel cold structural material 2: Water jet light guiding laser 3 that performs a cold work operation: Fluid spraying part 4 such as a gas liquid for removal 4: Exhaust pipe 5 for sucking the separated fixed layer fragments: There is almost no recontamination and re-diffusion on the stainless steel interface.
6: Luminescent element analyzer for monitoring the degree of stripping decontamination, or radiation detector 7: Surface fixing layer containing RI (radioisotope) [FIG. 2]
1: Laser optical system 2: Laser light 3: Laser window 4: High-pressure water jet 5: High-pressure gas jet 6: Ambient underwater environment 7: Total reflection 8: Local evaporation 9: Low-temperature surface 10: Surface fixing film including RI 11: Fixed layer fragment containing peeled RI [FIG. 3]
1: Water jet light guiding laser that performs cold work while keeping the whole at a low temperature 2: Stainless steel structure material 3: Surface fixing film including RI 4: Removal spray pipe and removal fluid 5: Peeled Exhaust pipe 6 for sucking surface sticking film fragments including RI 6: Stretch pressure resistant part 7: Semi-sealed incomplete water sealing part 8: Open water sealing part 9: Luminescent element analyzer for monitoring the degree of peeling decontamination, or radiation Detector 10: Underwater environment 11: There is almost no re-contamination and no re-diffusion to the stainless steel structural material.

Claims (9)

円形断面の鏡状内面を持つ開口から水を噴流として数十センチ以上にわたり放出させ、当該水噴流の進行方向と同方向に水噴流中にレーザーを入射し、水噴流及びレーザーと同軸、同方向に、水噴流の周囲を鞘状に囲むように、高圧気体を筒状に放出させ、水中から気中への境界面の光の全反射条件である臨界角度以下でレーザーが進行するようにレーザーの入射角度を調整し、鏡状内面内と水噴流中で全反射を繰り返させてレーザー光を導光させ、放射性同位元素に汚染された物質の表面を当該水噴流とその中を導光されたレーザーによって照射し、当該表面を局所的に加熱して蒸発剥離させ、当該物質全体の温度を上昇させずに当該物質を除染することを特徴とする、放射性同位元素に汚染された物質の表面を除染する方法。 Water is ejected over several tens of centimeters as a jet from an opening with a mirror-shaped inner surface with a circular cross section, and a laser is incident on the water jet in the same direction as the water jet . The water jet and the laser are coaxial and in the same direction. In addition, the high-pressure gas is discharged in a cylindrical shape so as to surround the water jet in a sheath shape, and the laser proceeds so that it travels below the critical angle, which is the total reflection condition of the light at the interface from water to the air. The incident angle is adjusted, and the laser beam is guided by repeating total reflection in the mirror inner surface and in the water jet, and the surface of the substance contaminated with the radioisotope is guided through the water jet and the inside. A substance contaminated with a radioisotope, characterized in that the substance is irradiated with a laser, the surface is locally heated to evaporate and peel, and the substance is decontaminated without raising the temperature of the whole substance. A method of decontaminating the surface. 水噴流とその中を導光されたレーザーによって蒸発剥離した物質の表面材料が照射領域に戻り、又はレーザー照射による熱で照射領域周辺の物質の表面温度が上昇して当該物質を溶融し、再汚染が発生することを防ぐために十分な量の水流を放出することを特徴とする、請求項1に記載の方法。 The surface material of the substance evaporated and separated by the water jet and the laser guided through it returns to the irradiation area, or the surface temperature of the substance around the irradiation area rises due to the heat of the laser irradiation and melts the substance. contamination is characterized in that to release a sufficient amount of water injection flow to prevent the occurrence method of claim 1. 化学反応及び/又は機械的手段を、水噴流及びその中を導光されたレーザーによる剥離と併用することにより、又は最初から最後まで水噴流とその中を導光されたレーザーによる剥離のみにより、除染を行うことを特徴とする、請求項1又は請求項2記載の方法。   By using chemical reaction and / or mechanical means in combination with water jets and laser-guided delamination, or from the beginning to the end by water jets and laser-guided delamination The method according to claim 1 or 2, wherein decontamination is performed. 出気体、水噴流、及びその中を導光されたレーザーによって剥離された物質を排気管から吸引して廃棄することを特徴とする請求項1から3のいずれかに記載の方法。 Gas exits discharge, water jet, and methods according to any one of claims 1 to 3, characterized in that discarding by suction exfoliated material from the exhaust pipe by the laser that is guided therein. レーザー集束レンズ及びレーザー窓からなるレーザー光学系と、当該レーザー光学系に隣接して設けられた互いに同軸の高圧水噴流導入部及び高圧気体噴流導入部とから構成される装置であって、水噴流及びレーザーと同軸上に、その周囲を鞘状に囲む高圧気体を放出することによって周囲の水を排除して気体空間を形成し、当該空間内で水噴流及びその中を導光されたレーザーを放射性同位元素に汚染された物質に照射することにより、当該物質除染する装置。 A device comprising a laser optical system comprising a laser focusing lens and a laser window, and a high-pressure water jet introduction portion and a high-pressure gas jet introduction portion, which are provided adjacent to the laser optical system and are coaxial with each other. A gas space is formed by discharging high-pressure gas coaxially with the laser and surrounding the periphery in a sheath-like manner to eliminate the surrounding water, and a water jet and a laser guided through the space inside the space. A device that decontaminates substances by irradiating substances contaminated with radioactive isotopes. 水噴流及びレーザーの照射を妨げないように水を気体で排除した領域を確保するための半密閉式不完全水封部を備えた、レーザーの直径方向に対して耐水圧性の機械構造体であって、レーザー照射面にほぼ垂直な方向に広い範囲で角度を変化させることが可能な伸縮自在の部位を備える、請求項5に記載の装置。 It is a mechanical structure that is water resistant to the diametrical direction of the laser and has a semi-sealed incomplete water seal to secure a region where water is removed with gas so as not to interfere with water jet and laser irradiation. The apparatus according to claim 5, further comprising a telescopic part capable of changing an angle in a wide range in a direction substantially perpendicular to the laser irradiation surface. レーザー照射によって剥離した物質を回収する排気管を更に備えた請求項5又は6に記載の装置であって、水噴流及びその中を導光されたレーザーによる照射部位の近傍、又はレーザーによる蒸発剥離後に排気管で回収された物質が集積される部分の近傍において、重量計、放射線検出器、赤外線放射温度計、又は分光検出器を用いて剥離除染過程を監視することを特徴とする、前記装置。 The apparatus according to claim 5 or 6, further comprising an exhaust pipe for collecting a substance peeled off by laser irradiation, wherein the water jet and the vicinity of the irradiation part by the laser guided through the water jet or the evaporation peeling by the laser are provided. in the vicinity of the portion where material recovered in the exhaust pipe after is integrated, characterized by monitoring the weight scales, radiation detectors, infrared thermometer, or peeling decontamination process using a spectroscopic detector, wherein apparatus. 別の流体を単独で、又は固体微粒子と同時に、水噴流に追加してレーザー照射領域を冷却して、レーザーが照射された物質全体の温度を上昇させないことを特徴とする、請求項1に記載の方法。   The laser irradiation region is cooled by adding another fluid alone or simultaneously with the solid fine particles to cool the laser irradiation region, and the temperature of the whole material irradiated with the laser is not increased. the method of. レーザー照射と共に、レーザー照射以外の機械的手段により物質の表面を力学的に除去して、除去した表面材料をレーザー照射領域の近傍に配置した排気管で回収することを特徴とする、請求項1に記載の方法。 With laser irradiation, and mechanically removing the surface of the material by mechanical means other than the laser irradiation, and recovering an exhaust pipe arranged to remove the surface material in the vicinity of the laser irradiation region, claim 1 The method described in 1.
JP2006147930A 2006-05-29 2006-05-29 A method and apparatus for decontaminating surfaces contaminated with radioactive isotopes easily and at low temperatures with less water contamination using water jet guided laser peeling. Expired - Fee Related JP4868507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006147930A JP4868507B2 (en) 2006-05-29 2006-05-29 A method and apparatus for decontaminating surfaces contaminated with radioactive isotopes easily and at low temperatures with less water contamination using water jet guided laser peeling.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006147930A JP4868507B2 (en) 2006-05-29 2006-05-29 A method and apparatus for decontaminating surfaces contaminated with radioactive isotopes easily and at low temperatures with less water contamination using water jet guided laser peeling.

Publications (2)

Publication Number Publication Date
JP2007315996A JP2007315996A (en) 2007-12-06
JP4868507B2 true JP4868507B2 (en) 2012-02-01

Family

ID=38849972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006147930A Expired - Fee Related JP4868507B2 (en) 2006-05-29 2006-05-29 A method and apparatus for decontaminating surfaces contaminated with radioactive isotopes easily and at low temperatures with less water contamination using water jet guided laser peeling.

Country Status (1)

Country Link
JP (1) JP4868507B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6129646B2 (en) * 2013-05-31 2017-05-17 日立Geニュークリア・エナジー株式会社 Method for carrying out fuel debris in boiling water nuclear power plant

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2615362B2 (en) * 1994-02-10 1997-05-28 理化学研究所 Method and apparatus for removing surface deposits by laser
JPH11183693A (en) * 1997-12-25 1999-07-09 Toshiba Corp Method and device for decontamination
JP2000317661A (en) * 1999-05-07 2000-11-21 Hitachi Engineering & Services Co Ltd Method and device for cutting by laser beam and method for cutting graphite block in the case of dismantling waste nuclear reactor
JP2001349978A (en) * 2000-06-07 2001-12-21 Toshiba Corp Preventive maintenance device for structure in reactor
JP2002346847A (en) * 2001-05-24 2002-12-04 Babcock Hitachi Kk Peening method and apparatus by combined use of water jet and laser
JP2003052715A (en) * 2001-07-27 2003-02-25 Norio Daikuzono Laser beam radiation device
JP3850724B2 (en) * 2001-12-19 2006-11-29 株式会社東芝 Reactor internal structure maintenance and repair equipment
JP2004042113A (en) * 2002-07-12 2004-02-12 Toshiba Corp Laser machining head and laser machining method
IL150914A (en) * 2002-07-25 2014-04-30 Zamir Tribelsky Method for hydro-optronic photochemical treatment of liquids

Also Published As

Publication number Publication date
JP2007315996A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
US8518331B2 (en) Apparatus for decontaminating radioisotope-contaminated surface vicinity region by use of nonthermal laser peeling
JP2007181830A (en) Process and apparatus for cleaning or decontaminating object by ultraviolet laser beam
US5780806A (en) Laser ablation system, and method of decontaminating surfaces
Delaporte et al. Dry excimer laser cleaning applied to nuclear decontamination
EP0091646B1 (en) Laser decontamination method
DE2107479C3 (en) Process for the decontamination of the surfaces of nuclear reactor components
ZA200807439B (en) Device and method for the treatment and/or decontamination of surfaces
RU2411044C2 (en) Laser decontamination of shaped part surfaces
JP2006061966A (en) METHOD FOR PREVENTING STRESS CORROSION CRACKING CAUSED BY COLD WORKING IN ALLOY STEEL IRON INCLUDING STEEL IRON AND STAINLESS STEEL USING fs (FEMTOSECOND) REGION EXTRASHORT PULSE kW CLASS HIGH AVERAGE OUTPUT LASER
JP4868507B2 (en) A method and apparatus for decontaminating surfaces contaminated with radioactive isotopes easily and at low temperatures with less water contamination using water jet guided laser peeling.
Litchfield et al. Surface cleaning technologies for the removal of crosslinked epoxide resin
CN113523578B (en) Chemical auxiliary wet laser paint removing method for aircraft skin
Delaporte et al. Radioactive oxide removal by XeCl laser
Kumar et al. Laser-assisted decontamination of fuel pins for prototype fast breeder reactor
JP2011102812A (en) Method and device for decontaminating regions near the surface contaminated by radioactive isotope without remelting, re-diffusion and re-contamination due to athermal laser peeling
WO2012010740A1 (en) Method for removing an oxidation from the surface of a metal object
JP2001116892A (en) Method for decontaminating surface layer of inorganic layer by use of laser beam and high-pressure gas and apparatus for use therein
JPH08505704A (en) Radioactive material decontamination
Milijanic et al. Possibilities of a metal surface radioactive decontamination using a pulsed CO2 laser
Nomura et al. ICONE23-1600 development of fuel debris cutting technique by laser gouging
JP2000206292A (en) Method for controlling laser decontamination device and such device
JP2022550787A (en) Method for decontaminating gas-containing metal parts using laser irradiation in liquid media
Saishu et al. Applying laser technology to decommissioning for nuclear power plant
KR102562982B1 (en) Blasting system for decontamination of extremely low-level waste
Costes et al. Decontamination by ultraviolet laser: The LEXDIN prototype

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees