JP4867416B2 - Laminated core structure for rotating electrical machines - Google Patents

Laminated core structure for rotating electrical machines Download PDF

Info

Publication number
JP4867416B2
JP4867416B2 JP2006078816A JP2006078816A JP4867416B2 JP 4867416 B2 JP4867416 B2 JP 4867416B2 JP 2006078816 A JP2006078816 A JP 2006078816A JP 2006078816 A JP2006078816 A JP 2006078816A JP 4867416 B2 JP4867416 B2 JP 4867416B2
Authority
JP
Japan
Prior art keywords
steel sheet
electromagnetic steel
winding
laminated core
notch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006078816A
Other languages
Japanese (ja)
Other versions
JP2007259557A (en
Inventor
崇 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006078816A priority Critical patent/JP4867416B2/en
Publication of JP2007259557A publication Critical patent/JP2007259557A/en
Application granted granted Critical
Publication of JP4867416B2 publication Critical patent/JP4867416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Description

本発明は、回転電機のロータコアやステータコアに用いられ、帯状に延在する薄板の電磁鋼板を巻き取ってなる渦巻き鋼板を備えた回転電機用積層コア構造体に関するものである。   The present invention relates to a laminated core structure for a rotating electrical machine, which is used for a rotor core and a stator core of a rotating electrical machine, and includes a spiral steel sheet wound by winding a thin electromagnetic steel sheet extending in a strip shape.

回転電機には、アキシャル(軸)方向に同軸或いはオフセットに配置され、このアキシャル方向のギャップに磁界を発生することにより回転を生起させるアキシャルギャップ型のモータがある。こうしたモータに採用されるロータコアやステータコアには、帯状に延在する薄板の電磁鋼板を巻き取って形成された渦巻き鋼板からなる積層コアがある(例えば、特許文献1参照。)。
特開2002−010537号公報
There is an axial gap type motor that is arranged coaxially or offset in the axial (axial) direction and generates rotation by generating a magnetic field in the gap in the axial direction. A rotor core and a stator core employed in such a motor include a laminated core made of a spiral steel plate formed by winding a thin electromagnetic steel plate extending in a strip shape (see, for example, Patent Document 1).
JP 2002-010537 A

図14 (a),(b)はそれぞれ、渦巻き鋼板を形成する際の巻取り開始状態を示す正面図及び、その断面図であり、図15(a),(b)はそれぞれ、渦巻き鋼板を形成する電磁鋼板の巻取り状態を示す正面図及び、その断面図である。   FIGS. 14 (a) and 14 (b) are a front view and a cross-sectional view showing a winding start state when forming a spiral steel sheet, respectively, and FIGS. 15 (a) and 15 (b) are respectively a spiral steel sheet. It is the front view which shows the winding state of the electromagnetic steel plate to form, and its sectional drawing.

図14,15において、符号1は、帯状に延在する薄板の電磁鋼板であり、符号41は、図示せぬ巻き取り装置に固定されたスピンドルである。スピンドル41は、電磁鋼板1を巻き付けるスピンドル軸42を一体に有し、このスピンドル軸42に巻き付けられた電磁鋼板1を保持する保持面43が形成されたディスク形状をしてなる。   14 and 15, reference numeral 1 is a thin electromagnetic steel plate extending in a strip shape, and reference numeral 41 is a spindle fixed to a winding device (not shown). The spindle 41 is integrally formed with a spindle shaft 42 around which the electromagnetic steel plate 1 is wound, and has a disk shape in which a holding surface 43 for holding the electromagnetic steel plate 1 wound around the spindle shaft 42 is formed.

渦巻き鋼板10を形成するにあたっては、図14に示すように、電磁鋼板1の先端をスピンドル軸42の外径(点Po)に固定したのち、スピンドル41を矢印Dの方向に軸線O2周りに回転させて図15に示すように電磁鋼板1をスピンドル軸42に巻き付ける。これにより、スピンドルの保持面43上に渦巻き鋼板10が形成される。   In forming the spiral steel plate 10, as shown in FIG. 14, after fixing the tip of the electromagnetic steel plate 1 to the outer diameter (point Po) of the spindle shaft 42, the spindle 41 is rotated about the axis O2 in the direction of arrow D. Then, the electromagnetic steel sheet 1 is wound around the spindle shaft 42 as shown in FIG. Thereby, the spiral steel plate 10 is formed on the holding surface 43 of the spindle.

しかしながら、かかる構成では、電磁鋼板1がゼンマイ状に積層されるのみであるため、渦巻き鋼板10をスピンドル41から取り外して積層コアとして用いる場合、電磁鋼板1が径方向外側に広がる虞があり、積層コアの形態としては不安定である。   However, in such a configuration, the electromagnetic steel sheet 1 is only laminated in a spring shape, so when the spiral steel sheet 10 is removed from the spindle 41 and used as a laminated core, the electromagnetic steel sheet 1 may spread radially outward, The form of the core is unstable.

即ち、上述した従来技術では、電磁鋼板を締め付けながら巻き取っているものの、渦巻き鋼板の最外層がその周方向に対して位置決めされていないため、巻き締め直後であっても緩みが生じてしまう虞がある。   That is, in the above-described prior art, the electromagnetic steel sheet is wound while being tightened, but the outermost layer of the spiral steel sheet is not positioned with respect to the circumferential direction, so that loosening may occur even immediately after winding. There is.

そのため、こうした従来技術では、電磁鋼板1に接着剤を塗布しながら巻き取ったり、或いは、カシメ金型を用いてカシメながら巻き取ったり、又は、積層コア11として巻き取った後に、取り扱いに注意しながらワニス含浸等により固定しなければならない。   Therefore, in such a conventional technique, care should be taken after winding the magnetic steel sheet 1 while applying an adhesive, winding it using a caulking die, or winding it as a laminated core 11. However, it must be fixed by impregnation with varnish.

本発明の解決すべき課題は、電磁鋼板を巻き取って渦巻き鋼板を形成したときに生じる緩みを防止することにある。   The problem to be solved by the present invention is to prevent loosening that occurs when a magnetic steel sheet is wound to form a spiral steel sheet.

本発明である回転電機の積層コア構造体は、帯状に延在する薄板の電磁鋼板を巻き取ってなる渦巻き鋼板を備えた回転電機用積層コア構造体であって、前記構造体は、電磁鋼板を巻き付けるシャフトを有し、このシャフトに巻き付けられた電磁鋼板を保持する保持面が形成されたディスク部材を備え、前記電磁鋼板は、その長手方向縁部に少なくとも渦巻き鋼板の最外層に位置する切り欠き又は突起を形成してなり、前記ディスク部材の保持面に、少なくとも前記渦巻き鋼板の最外層における位置にて、前記切り欠き又は前記突起と係合して当該電磁鋼板の巻き解きを規制する係合部を設け、当該係合部は、前記ディスク部材のシャフトから径方向に沿って放射状に延在する曲線に沿った形状をしてなり、前記切り欠き又は前記突起の案内として巻き取りに係る前記電磁鋼板を前記シャフト側に導く巻き込み方向に対して傾斜した突条又は条溝であることを特徴とするものである。
A laminated core structure of a rotating electrical machine according to the present invention is a laminated core structure for a rotating electrical machine including a spiral steel sheet obtained by winding a thin electromagnetic steel sheet extending in a strip shape, and the structure is an electrical steel sheet And a disk member formed with a holding surface for holding the electromagnetic steel sheet wound around the shaft, the electromagnetic steel sheet being cut at least at the outermost layer of the spiral steel sheet at its longitudinal edge. A notch or projection is formed, and the disc member is held on the holding surface at least at the position of the outermost layer of the spiral steel plate to engage with the notch or the projection to regulate unwinding of the electromagnetic steel plate. the engagement portion is provided, the engaging portion, the result was a shape along the curve that extends radially along the shaft of the disc member in a radial direction, and the guide of the notch or the projection Wherein according to the winding Te is characterized in that the magnetic steel sheets are inclined ridges or grooves with respect to winding direction leading to the shaft side.

本発明は、前記切り欠き又は前記突起を、前記電磁鋼板の長手方向縁部に沿って複数個形成すると共に、前記ディスク部材の保持面に、前記渦巻き鋼板の最外層と最内層との間の少なくとも一層における位置にて、前記切り欠き又は前記突起と係合して当該電磁鋼板の巻き解きを規制する係合部を設けることが好ましい。   In the present invention, a plurality of the notches or the protrusions are formed along a longitudinal edge of the electromagnetic steel plate, and the holding surface of the disk member is provided between the outermost layer and the innermost layer of the spiral steel plate. It is preferable to provide an engaging portion that engages with the notch or the protrusion and restricts the unwinding of the electromagnetic steel sheet at least at a position in one layer.

本発明において、前記係合部は、前記切り欠きの案内として巻き取りに係る前記電磁鋼板を前記シャフト側に導く突条としてなり、当該突条は、その巻き取り進行側の側面が、前記渦巻き鋼板の最内径から最外径までの間を前記電磁鋼板の巻き取り毎に変化する前記渦巻き鋼板の各外径を基礎円とするインボリュート曲線の包絡線に沿った形状としてなると共に、その巻き取り進行側と逆の側面が、前記渦巻き鋼板の最内径を基礎円とするインボリュート曲線に沿った形状としてなることが好ましい。   In the present invention, the engaging portion is a ridge that guides the electromagnetic steel sheet for winding to the shaft side as a guide for the notch, and the ridge has a side surface on the winding advance side that is the spiral. The inner diameter of the steel sheet changes from the outermost diameter to the outermost diameter each time the electromagnetic steel sheet is wound. It is preferable that the side surface opposite to the traveling side has a shape along an involute curve having the innermost diameter of the spiral steel plate as a basic circle.

本発明において、前記係合部は、前記突起の案内として巻き取りに係る前記電磁鋼板を前記シャフト側に導く条溝としてなり、当該条溝は、その巻き取り進行側の側面が、前記渦巻き鋼板の最内径を基礎円とするインボリュート曲線に沿った形状をしてなると共に、その巻き取り進行側と逆の側面が、前記渦巻き鋼板の最内径から最外径までの間を前記電磁鋼板の巻き取り毎に変化する前記渦巻き鋼板の各外径を基礎円とするインボリュート曲線の包絡線に沿った形状をしてなることが好ましい。   In the present invention, the engaging portion is a groove that guides the electromagnetic steel plate for winding to the shaft side as a guide for the protrusion, and the side surface of the winding progressing side is the spiral steel plate. And the side opposite to the winding progression side is between the innermost diameter and the outermost diameter of the spiral steel sheet. Preferably, the spiral steel plate has a shape along the envelope of an involute curve whose base circle is the outer diameter of each of the spiral steel plates that changes every time.

本発明は、前記係合部を周方向に沿って複数設け、当該係合部をそれぞれ、巻き取り方向に沿って同一ピッチで配置することが好ましい。また、本発明において、前記係合部は、前記切り欠き又は前記突起を係止するアンダーカット形状部を備えることが好ましい。更に、本発明は、前記係合部を、前記渦巻き鋼板の表面に径方向に沿って放射状に形成した凹溝の溝幅中心を通る軸線付近に設けることが好ましい。   In the present invention, it is preferable that a plurality of the engaging portions are provided along the circumferential direction, and the engaging portions are arranged at the same pitch along the winding direction. Moreover, in this invention, it is preferable that the said engaging part is provided with the undercut shape part which latches the said notch or the said protrusion. Furthermore, in the present invention, it is preferable that the engaging portion is provided in the vicinity of an axis passing through a groove width center of a groove formed radially on the surface of the spiral steel plate along the radial direction.

本発明は、巻き取りに係る電磁鋼板が、その長手方向縁部に少なくとも渦巻き鋼板の最外層に位置する切り欠き又は突起を形成してなり、それを巻き取るシャフトを有したディスク部材の保持面に、少なくとも前記渦巻き鋼板の最外層における位置にて、前記切り欠き又は前記突起と係合して当該電磁鋼板の巻き解きを規制する係合部を有するため、電磁鋼板を巻き取るだけで、巻き取りが完了した直後であっても緩みの無い渦巻き鋼板を実現することができる。このため、本発明によれば、製品寸法誤差が小さく、効率的な磁気回路の形成を実現することができる。また、本発明によれば、従来のように、接着剤を塗布しながら巻き取って固定する煩雑さが無く、作業性を大幅に向上させることができる。   The present invention relates to a holding surface of a disk member having a shaft on which an electromagnetic steel sheet for winding is formed with a notch or a protrusion positioned at least on the outermost layer of the spirally-rolled steel sheet at its longitudinal edge. In addition, since it has an engaging portion that engages with the notch or the protrusion and restricts unwinding of the electromagnetic steel sheet at least at a position in the outermost layer of the spiral steel sheet, Even after the removal is completed, it is possible to realize a spiral steel plate without looseness. For this reason, according to the present invention, the product dimensional error is small, and an efficient magnetic circuit can be formed. Moreover, according to the present invention, unlike the conventional case, there is no trouble of winding and fixing while applying an adhesive, and workability can be greatly improved.

以下、図面を参照して、本発明である回転電機用積層コア構造体を詳細に説明する。   Hereinafter, a laminated core structure for a rotating electrical machine according to the present invention will be described in detail with reference to the drawings.

図1は、本発明に従う積層コア構造体を製造するための装置を例示する模式斜視図である。また、図2(a),(b)はそれぞれ、後述のディスク部材21による電磁鋼板1の巻き取り開始状態を示す正面図及び、そのときのディスク部材21を示す断面図であり、図3(a),(b)はそれぞれ、ディスク部材21による電磁鋼板1の巻き取り状態を示す正面図及び、そのときのディスク部材21を示す断面図である。   FIG. 1 is a schematic perspective view illustrating an apparatus for manufacturing a laminated core structure according to the present invention. 2 (a) and 2 (b) are respectively a front view showing a winding start state of the electromagnetic steel sheet 1 by a disk member 21 described later, and a sectional view showing the disk member 21 at that time, FIG. FIGS. 4A and 4B are a front view showing a state in which the electromagnetic steel sheet 1 is wound by the disk member 21, and a cross-sectional view showing the disk member 21 at that time.

図1において、符号1は、所定の幅に形成された帯状に延在する薄板の電磁鋼板である。電磁鋼板1は、巻重ねられたロールRとして軸線O1周りに回転可能に軸支されている。 In FIG. 1, reference numeral 1 denotes a thin electromagnetic steel sheet extending in a strip shape and having a predetermined width. The electromagnetic steel sheet 1 is rotatably supported around the axis O 1 as a rolled roll R.

ロールRから引き出された電磁鋼板1は、後述のプレス装置30を介して巻き取り装置20に繋がる。巻き取り装置20は、軸線O2を中心に回転して電磁鋼板1をその長手方向に沿って巻き取って渦巻き鋼板(積層コア)11を形成すると共に積層コア11を保持するディスク部材21を有する。ディスク部材21は、図2に示すように、電磁鋼板1を巻き付けるシャフト22と、このシャフト22に巻き付けられた電磁鋼板1を保持する保持面23とを一体に有する。 The electromagnetic steel sheet 1 drawn out from the roll R is connected to a winding device 20 through a press device 30 described later. The winding device 20 has a disk member 21 that rotates around an axis O 2 to wind the electromagnetic steel sheet 1 along its longitudinal direction to form a spiral steel sheet (laminated core) 11 and hold the laminated core 11. . As shown in FIG. 2, the disk member 21 integrally includes a shaft 22 around which the electromagnetic steel sheet 1 is wound and a holding surface 23 that holds the electromagnetic steel sheet 1 wound around the shaft 22.

ディスク部材21は、図1に示すように、図示せぬステップモータに着脱可能に駆動結合し、CPU等を搭載したコントロールユニットCUにより回転制御される。これにより、巻き取り装置20は、ディスク部材21を軸線O2周りに回転させ、ロールRから電磁鋼板1をシャフト22周りに環状又は筒状に巻き取ることができると共に、巻き取り後は、ディスク部材21を渦巻き鋼板11ごと、積層コア構造体として取り外せる。なお、巻き取り装置20は、ガイドローラGを有し、ディスク部材21に巻き取られる電磁鋼板1は、その長手方向に沿った縁部1aがガイドローラGによって保持面23に押し付けられて平坦な状態に均される。 As shown in FIG. 1, the disk member 21 is detachably drive-coupled to a step motor (not shown), and is rotationally controlled by a control unit CU equipped with a CPU and the like. As a result, the winding device 20 can rotate the disk member 21 around the axis O 2 to wind the electromagnetic steel sheet 1 from the roll R around the shaft 22 in an annular or cylindrical shape. The member 21 together with the spiral steel plate 11 can be removed as a laminated core structure. The winding device 20 includes a guide roller G, and the electromagnetic steel sheet 1 wound around the disk member 21 is flat because the edge 1a along the longitudinal direction thereof is pressed against the holding surface 23 by the guide roller G. Leveled to state.

保持面23には、図2に示すように、後述のプレス装置30によって電磁鋼板1に形成した切り欠き2を係合させる2つのリブ(突条)24が設けられている。リブ24は、巻き取り方向Dに対して後側となる後側面24bが、シャフト22の外径部22aの外径寸法(以下、「積層コア最内径」という。)φ11(=2×半径r1)を基礎円S1とするインボリュート曲線Cb(1)に沿った形状としてなると共に、巻き取り方向Dに対して前側となる前側面24aが、積層コア最内径φ11から、ディスク部材21の外径部21aの外径寸法(以下、「積層コア最外径」という。)φ12(=2×半径r2)までの間を電磁鋼板1の巻き取り数n回毎に変化する積層コア11の各外径φn(=2×半径rn+2×t×n)を基礎円Snとするインボリュート曲線Ca(n)の包絡線Eに沿った形状としてなる。   As shown in FIG. 2, the holding surface 23 is provided with two ribs (protrusions) 24 for engaging a notch 2 formed in the electromagnetic steel sheet 1 by a press device 30 described later. In the rib 24, the rear side surface 24b which is the rear side in the winding direction D has an outer diameter dimension of the outer diameter portion 22a of the shaft 22 (hereinafter referred to as “laminated core innermost diameter”) φ11 (= 2 × radius r1 ) As a base circle S1 along the involute curve Cb (1), and the front side surface 24a on the front side with respect to the winding direction D extends from the laminated core innermost diameter φ11 to the outer diameter portion of the disk member 21. The outer diameter of 21a (hereinafter referred to as the “outermost diameter of the laminated core”) φ12 (= 2 × radius r2) each outer diameter of the laminated core 11 that changes every n times of winding of the magnetic steel sheet 1. It becomes a shape along the envelope E of the involute curve Ca (n) having φn (= 2 × radius rn + 2 × t × n) as a basic circle Sn.

一方、プレス装置30は、図1に示すように、電磁鋼板1の巻き取りに合わせた所定の間隔で電磁鋼板1を打ち抜いて、電磁鋼板1の長手方向の縁部1aに複数の空隙3を形成する。   On the other hand, as shown in FIG. 1, the pressing device 30 punches the electromagnetic steel sheet 1 at a predetermined interval in accordance with the winding of the electromagnetic steel sheet 1, and forms a plurality of gaps 3 in the longitudinal edge 1a of the electromagnetic steel sheet 1. Form.

図4(a)は、プレス装置30による打ち抜き形状を例示する側面図である。空隙3は、電磁鋼板1の巻き取りに伴う重ね合わせにより積層コア11の径方向に沿って放射状に伸びる凹溝13の断面形状を形作る。また、空隙3の相互間に介在する残部4は、電磁鋼板1の巻き取りに伴う重ね合わせにより径方向に沿って放射状に伸びる側壁14を形成し、残部4に形成された突部5は、電磁鋼板1の巻き取りに伴う重ね合わせにより径方向に沿って放射状に伸びるアンダーカット部15を形成する。   FIG. 4 (a) is a side view illustrating a punched shape by the press device 30. FIG. The air gap 3 forms a cross-sectional shape of the concave groove 13 that radially extends along the radial direction of the laminated core 11 due to the superposition accompanying the winding of the electromagnetic steel sheet 1. Further, the remaining part 4 interposed between the gaps 3 forms a side wall 14 extending radially along the radial direction by superposition accompanying winding of the electromagnetic steel sheet 1, and the protrusion 5 formed in the remaining part 4 An undercut portion 15 extending radially along the radial direction is formed by superposition accompanying winding of the electromagnetic steel sheet 1.

同時にプレス装置30は、空隙3と共に、電磁鋼板1の巻き取り時において、ディスク部材21に設けた2つのリブ24に対応するように、電磁鋼板1の他方の長手方向縁部1bに複数の切り欠き2を形成する。切り欠き2は、残部4の相互間、即ち、空隙3の空隙ピッチL1の中心付近になるように形成される。   At the same time, the pressing device 30 cuts a plurality of cuts on the other longitudinal edge 1b of the electromagnetic steel sheet 1 so as to correspond to the two ribs 24 provided on the disk member 21 together with the gap 3 when winding the electromagnetic steel sheet 1. Form notch 2. The notches 2 are formed between the remaining portions 4, that is, near the center of the gap pitch L 1 of the gap 3.

切り欠き2及び空隙3の打ち抜き間隔を制御する具体例としては、コントロールユニットCUに予め電磁鋼板1の板厚tを入力しておく一方、ディスク部材21上にて巻き取り中の積層コア11の外径φnを計測し、この計測値をコントロールユニットCUに入力する。コントロールユニットCUは、電磁鋼板1の板厚t及び積層コア11の外径φnに応じた電磁鋼板1の空隙ピッチL1及び送りピッチ(打ち抜きピッチ)L2を演算し、この演算値を基にプレス装置30を制御する。   As a specific example of controlling the punching interval of the notch 2 and the gap 3, the thickness t of the electromagnetic steel sheet 1 is input in advance to the control unit CU, while the laminated core 11 being wound on the disk member 21 is The outer diameter φn is measured, and this measured value is input to the control unit CU. The control unit CU calculates the gap pitch L1 and feed pitch (punching pitch) L2 of the electromagnetic steel sheet 1 according to the thickness t of the electromagnetic steel sheet 1 and the outer diameter φn of the laminated core 11, and the press device based on the calculated values Control 30.

打ち抜かれる空隙3は、シャフト22の外径部22aからディスク部材21の外径部21aに進むに従って、その幅が徐々に変化していくため、かかるプレス工程では、重ね抜きや、複数の金型組により形成される。切り欠き2も、空隙3と同様、電磁鋼板1の巻き取りがシャフト22の外径部22aからディスク部材21の外径部21aに進むに従って、後述のように、その幅w1がリブ24の幅に応じて徐々に減少するように形成される。   The width of the air gap 3 to be punched changes gradually as it advances from the outer diameter portion 22a of the shaft 22 to the outer diameter portion 21a of the disk member 21, so that in such a pressing process, multiple punching or a plurality of molds are performed. Formed by pairs. Similarly to the gap 3, the notch 2 also has a width w1 of the rib 24 as the winding of the electromagnetic steel sheet 1 proceeds from the outer diameter portion 22a of the shaft 22 to the outer diameter portion 21a of the disk member 21, as will be described later. It is formed so as to gradually decrease in accordance with.

これにより、プレス装置30は、電磁鋼板1の巻き取り量に応じて凹溝13の幅やリブ24の幅がシャフト22の外径部22aからディスク部材21の外径部21aに進むに従って徐々に変化しても、その幅変化に対応するように、切り欠き2の幅w1や、空隙3の空隙ピッチL1と打ち抜きピッチL2を適宜変更して打ち抜きを行うことができる。   Thus, the pressing device 30 gradually increases the width of the concave groove 13 and the width of the rib 24 from the outer diameter portion 22a of the shaft 22 to the outer diameter portion 21a of the disk member 21 according to the winding amount of the electromagnetic steel sheet 1. Even if it changes, punching can be performed by appropriately changing the width w1 of the notch 2 and the gap pitch L1 and the punching pitch L2 of the gap 3 so as to correspond to the width change.

即ち、切り欠き2は、プレス装置30により、電磁鋼板1が巻き取りによって積層されていく毎に、その前側面2aが、包絡線Eに沿った形状をなすリブ24の前側面24aに係合すると共に、その後側面2bも、インボリュート曲線Cb(1)に沿った形状をなすリブ24の後側面24bに係合するように形成される。従って、巻き取りが完了した状態では、積層コア11の最外層における位置にて、切り欠き2とリブ24とはそれぞれ、切り欠き2の前側面2aがリブ24の前側面24aと係合し、切り欠き2の後側面2bがリブ24の後側面24bと係合する。   That is, the notch 2 is engaged with the front side surface 24a of the rib 24 having a shape along the envelope E each time the electromagnetic steel sheets 1 are laminated by winding by the pressing device 30. In addition, the rear side surface 2b is also formed to engage with the rear side surface 24b of the rib 24 having a shape along the involute curve Cb (1). Therefore, in the state where the winding is completed, at the position in the outermost layer of the laminated core 11, the notch 2 and the rib 24 are engaged with the front side surface 2a of the notch 2 and the front side surface 24a of the rib 24, The rear side surface 2b of the notch 2 is engaged with the rear side surface 24b of the rib 24.

次に、電磁鋼板1の巻き取り工程を説明する。   Next, the winding process of the electromagnetic steel sheet 1 will be described.

図5は、ディスク部材21上でシャフト22周りに電磁鋼板1の巻き取りを開始した直後の様子を示す斜視図である。また、図6,7はそれぞれ、電磁鋼板1の巻き取り工程を示す模式図である。   FIG. 5 is a perspective view showing a state immediately after the winding of the electromagnetic steel sheet 1 around the shaft 22 on the disk member 21 is started. 6 and 7 are schematic views showing the winding process of the electromagnetic steel sheet 1, respectively.

ディスク部材21での巻き取りを開始すると、電磁鋼板1は、矢印Dに沿って巻き取られるため、先ず、2つのリブ24のうちの1つのリブ24の後側面24bが、図5に示すように、切り欠き2の後側面2bと当接する。このとき、電磁鋼板1の端部は、図2(a)に示すように、積層コア最内径21aの点Poに固定されているため、電磁鋼板1がシャフト22に巻き取られる際は、切り欠き2の後側面2bは、図5に示すように、積層コア最内径φ11を基礎円S1としたときの当該基礎円S1の点b1を始点とするインボリュート曲線Cb(1)の軌跡を辿る一方、同様に、切り欠き2の前側面2aは、基礎円S1の点a1を始点とするインボリュート曲線Ca(1)の軌跡を辿る。   When the winding with the disk member 21 is started, the electromagnetic steel sheet 1 is wound along the arrow D, so that the rear side surface 24b of one rib 24 of the two ribs 24 is first as shown in FIG. And abuts the rear side surface 2b of the notch 2. At this time, as shown in FIG. 2 (a), the end of the electromagnetic steel sheet 1 is fixed at a point Po of the laminated core innermost diameter 21a. As shown in FIG. 5, the rear side surface 2b of the notch 2 follows the trajectory of the involute curve Cb (1) starting from the point b1 of the basic circle S1 when the innermost inner diameter φ11 of the laminated core is the basic circle S1. Similarly, the front side surface 2a of the notch 2 follows the trajectory of the involute curve Ca (1) starting from the point a1 of the basic circle S1.

これに対し、リブ24は、その後側面24bが、上述の軌跡と同様、基礎円S1の点b1を始点とするインボリュート曲線Cb(1)に沿った形状である一方、その前側面24aは、各層毎のインボリュート曲線Ca(n)の包絡線Eに沿った形状であるため、電磁鋼板1の巻き取りに際しては、切り欠き2の後側面2bは、リブ23の後側面23bに接しながらシャフト22の外径部22a上にある点b1に向かっていく一方、切り欠き2の前側面2aは、リブ24の前側面24aから離れたインボリュート曲線Ca(1)の軌跡を辿ってシャフト22の外径部22a上にある点a1に向かう。従って、1層目の電磁鋼板1は、図6(a)の二点鎖線で示すように、切り欠き2の前側面2aがリブ24の前側面24aに引っ掛かることなく、リブ24とシャフト22の外径部22aとの連結部にて嵌合するまでスムースに巻き取られる。これにより、1層目の電磁鋼板1は、緩みを生じることなくシャフト22の周りに巻き取られる。   On the other hand, the rib 24 has a shape along the involute curve Cb (1) starting from the point b1 of the basic circle S1 as in the above-described trajectory, while the rib 24 has a shape along the involute curve Cb (1). Since each involute curve Ca (n) has a shape along the envelope E, when the electromagnetic steel sheet 1 is wound, the rear side surface 2b of the notch 2 is in contact with the rear side surface 23b of the rib 23 while the shaft 22 The front side surface 2a of the notch 2 follows the trajectory of the involute curve Ca (1) away from the front side surface 24a of the rib 24 while going toward the point b1 on the outer diameter portion 22a. Go to point a1 on 22a. Therefore, as shown by the two-dot chain line in FIG. 6 (a), the first layer of the electrical steel sheet 1 is such that the front side surface 2a of the notch 2 is not caught by the front side surface 24a of the rib 24, and the rib 24 and the shaft 22 It is smoothly wound up until it is fitted at the connecting portion with the outer diameter portion 22a. As a result, the first-layer electromagnetic steel sheet 1 is wound around the shaft 22 without being loosened.

電磁鋼板1を2層目として巻き取るときは、図6(b)に示すように、その2層目となる電磁鋼板1における切り欠き2の後側面2bが、1層目の電磁鋼板1を巻き取ったときの積層コア11の外径φ2(=φ11+(2×t))を直径とする基礎円S2を基準とし2層目の電磁鋼板1における切り欠き2の径方向内側縁を始点b2として描かれるインボリュート曲線Cb(2)の軌跡を通ってリブ24の後側面24b上にある点b2に当接する一方、切り欠き2の前側面2aは、基礎円S2を基準とし1層目における切り欠き2の径方向外側縁を始点a2として描かれるインボリュート曲線Ca(2)を通り、リブ24の前側面24a上にある点a2に当接する。これにより、2層目の電磁鋼板1も、切り欠き2がリブ24に引っ掛かることなく、1層目の電磁鋼板1と接するまでスムースに巻き取られ、1層目の電磁鋼板1と接した時点で緩みを生じることなくリブ24によって固定される。   When winding the electromagnetic steel sheet 1 as the second layer, as shown in FIG. 6 (b), the rear surface 2b of the notch 2 in the electromagnetic steel sheet 1 as the second layer, The starting point b2 is the radially inner edge of the notch 2 in the second electrical steel sheet 1 with reference to the basic circle S2 whose diameter is the outer diameter φ2 (= φ11 + (2 × t)) of the laminated core 11 when wound. The front side surface 2a of the notch 2 passes through the trajectory of the involute curve Cb (2) drawn as follows and contacts the point b2 on the rear side surface 24b of the rib 24. It passes through an involute curve Ca (2) drawn with the radially outer edge of the notch 2 as a starting point a2, and contacts the point a2 on the front side surface 24a of the rib 24. As a result, the second-layer electrical steel sheet 1 is also smoothly wound up until it touches the first-layer electrical steel sheet 1 without the notch 2 being caught by the rib 24, and when the first-layer electrical steel sheet 1 comes into contact with the first-layer electrical steel sheet 1. It is fixed by the rib 24 without causing loosening.

電磁鋼板1を3層目として巻き取るときも、図7(a)に示すように、その3層目となる電磁鋼板1における切り欠き2の後側面2bが、2層目の電磁鋼板1を巻き取ったときの積層コア11の外径φ3(=φ11+(2×t)+(2×t))を直径とする基礎円S3を基準とし3層目の電磁鋼板1における切り欠き2の径方向内側縁を始点b3として描かれるインボリュート曲線Cb(3)の軌跡を通ってリブ24の後側面24b上にある点b3に当接する一方、切り欠き2の前側面2aは、基礎円S2を基準とし2層目における切り欠き2の径方向外側縁を始点a3として描かれるインボリュート曲線Ca(3)を通り、リブ24の前側面24a上にある点a3に当接する。これにより、3層目の電磁鋼板1も、切り欠き2がリブ24に引っ掛かることなく、2層目の電磁鋼板1と接するまでスムースに巻き取られ、2層目の電磁鋼板1と接した時点で緩みを生じることなくリブ24によって固定される。   When winding the electromagnetic steel sheet 1 as the third layer, as shown in FIG. 7 (a), the rear surface 2b of the notch 2 in the electromagnetic steel sheet 1 serving as the third layer, The diameter of the notch 2 in the electrical steel sheet 1 of the third layer with reference to the basic circle S3 whose diameter is the outer diameter φ3 (= φ11 + (2 × t) + (2 × t)) of the laminated core 11 when wound. The front side 2a of the notch 2 is based on the base circle S2 while contacting the point b3 on the rear side 24b of the rib 24 through the trajectory of the involute curve Cb (3) drawn with the inner edge in the direction as the starting point b3. The radial outer edge of the notch 2 in the second layer passes through an involute curve Ca (3) drawn as a starting point a3 and comes into contact with a point a3 on the front side surface 24a of the rib 24. As a result, the magnetic steel sheet 1 of the third layer is also smoothly wound up until the notch 2 is in contact with the magnetic steel sheet 1 of the second layer without being caught by the rib 24, and when the magnetic steel sheet 1 of the second layer is in contact with the rib 24. It is fixed by the rib 24 without causing loosening.

即ち、電磁鋼板1をn層目として巻き取るときは、図7(b)に示すように、そのn層目となる電磁鋼板1における切り欠き2の後側面2bが、(n-1)層目の電磁鋼板1を巻き取ったときの積層コア11の外径φnを直径とする基礎円Snを基準としn層目の電磁鋼板1における切り欠き2の径方向内側縁を始点bnとして描かれるインボリュート曲線Cb(n)の軌跡を通ってリブ24の後側面24b上にある点bnに当接する一方、切り欠き2の前側面2aは、基礎円S2を基準とし(n-1)層目における切り欠き2の径方向外側縁を始点anとして描かれるインボリュート曲線Ca(n)を通り、リブ24の前側面24a上にある点anに当接する。これにより、n層目の電磁鋼板1も、切り欠き2がリブ24に引っ掛かることなく、(n-1)層目の電磁鋼板1と接するまでスムースに巻き取られ、(n-1)層目の電磁鋼板1と接した時点で緩みを生じることなくリブ24によって固定される。なお、図面上、電磁鋼板1の板厚tを大きくしているが、実際の電磁鋼板は、極薄い板材であるため、インボリュート曲線Ca(n),Cb(n)の基準円Snや始点an,bnの設定は、電磁鋼板1の板厚tの中心を近似値にしてもよい。   That is, when winding the electromagnetic steel sheet 1 as the n-th layer, as shown in FIG.7 (b), the rear side surface 2b of the notch 2 in the electromagnetic steel sheet 1 that is the n-th layer is the (n-1) layer. The inner edge in the radial direction of the notch 2 in the n-th electromagnetic steel sheet 1 is drawn as a starting point bn based on the basic circle Sn whose diameter is the outer diameter φn of the laminated core 11 when the first electromagnetic steel sheet 1 is wound. While contacting the point bn on the rear side 24b of the rib 24 through the trajectory of the involute curve Cb (n), the front side 2a of the notch 2 is based on the base circle S2 in the (n-1) th layer. It passes through an involute curve Ca (n) drawn with the radially outer edge of the notch 2 as a starting point an, and comes into contact with a point an on the front side surface 24a of the rib 24. As a result, the electromagnetic steel sheet 1 in the nth layer is also smoothly wound up until it contacts the (n-1) th electromagnetic steel sheet 1 without the notch 2 being caught by the rib 24, and the (n-1) th layer At the time of contact with the electromagnetic steel sheet 1, the rib 24 is fixed without causing looseness. Although the thickness t of the electrical steel sheet 1 is increased in the drawing, since the actual electrical steel sheet is an extremely thin plate material, the reference circle Sn and the start point an of the involute curves Ca (n) and Cb (n) , bn may be set to approximate the center of the thickness t of the electromagnetic steel sheet 1.

電磁鋼板1の巻き取りは、この繰り返しにより行われるため、巻き取りが完了する積層コア11の最外層では、図7(b)に示すように、切り欠き2の前側面2aがリブ24の前側面24aに係合すると共に、切り欠き2の後側面2bは、リブ24の後側面24bに係合する。即ち、リブ24は、積層コア11の最外層にて、切り欠き2と係合して電磁鋼板11の巻き解きを規制する係合部と、積層コア11の最外層と最内層との間の各層における位置にて、切り欠き2と係合して電磁鋼板11の巻き解きを規制する係合部とを一体に構成してなる。   Since the winding of the electromagnetic steel sheet 1 is performed by repeating this process, the front side surface 2a of the notch 2 is in front of the rib 24 in the outermost layer of the laminated core 11 where the winding is completed, as shown in FIG. The rear side surface 2b of the notch 2 is engaged with the rear side surface 24b of the rib 24 while engaging with the side surface 24a. That is, the rib 24 is formed between the outermost layer and the innermost layer of the laminated core 11 and the engaging portion that engages with the notch 2 and regulates the unwinding of the electromagnetic steel sheet 11 in the outermost layer of the laminated core 11. An engaging portion that engages with the notch 2 and restricts the unwinding of the electromagnetic steel sheet 11 is integrally formed at a position in each layer.

他方のリブ24も、同様に、電磁鋼板1の巻き取り動作によって次に送られて来る電磁鋼板1の切り欠き2に順次案内・係合し、これにより、積層コア11を、電磁鋼板1の巻き取りが完了するまで緩みなく積層していく。なお、リブ24は、シャフト22の外径部22aからディスク部材21の外径部21aまでの連続した形状であるが、少なくとも、積層コア1の最外層における位置にて、切り欠き2と係合すれば、シャフト22の外径部22aからディスク部材21の外径部21aまでの間を、電磁鋼板1の巻き取り位置に合わせて、間欠した不連続な形状であってもよい。 Similarly, the other rib 24 is sequentially guided and engaged with the notch 2 of the electromagnetic steel sheet 1 that is sent next by the winding operation of the electromagnetic steel sheet 1, whereby the laminated core 11 is attached to the electromagnetic steel sheet 1. Laminate gently until winding is complete. The rib 24 has a continuous shape from the outer diameter portion 22a of the shaft 22 to the outer diameter portion 21a of the disk member 21, but engages with the notch 2 at least at a position in the outermost layer of the laminated core 1. In this case, an intermittent discontinuous shape may be adopted in accordance with the winding position of the electromagnetic steel sheet 1 from the outer diameter portion 22a of the shaft 22 to the outer diameter portion 21a of the disk member 21.

図8は、上述した方法により製造した積層コア構造体を巻き取り装置20から取り外した状態で示す斜視図である。この場合、積層コア11の裏面は、ディスク部材21の保持面23に設けたリブ24に電磁鋼板1の切り欠き2が係合することにより、積層コア11とディスク部材21とは一体物としてなる。そして、この積層コア構造体に設けた複数の凹溝13それぞれに、磁石17を組み付ければ、アキシャルギャップ型回転電機のロータコア又はステータコアとしてなる。   FIG. 8 is a perspective view showing a state in which the laminated core structure manufactured by the above-described method is detached from the winding device 20. FIG. In this case, the laminated core 11 and the disk member 21 are integrated with each other by engaging the notch 2 of the electromagnetic steel sheet 1 with the rib 24 provided on the holding surface 23 of the disk member 21 on the back surface of the laminated core 11. . If a magnet 17 is assembled in each of the plurality of concave grooves 13 provided in the laminated core structure, a rotor core or stator core of an axial gap type rotating electrical machine is obtained.

かかる積層コア構造体は、巻き取りに係る電磁鋼板1がその長手方向縁部1bに少なくとも積層コア11の最外層に位置する切り欠き2を形成してなり、それを巻き取るシャフト22を有したディスク部材21の保持面23に、図7(b)に示すように、渦巻き鋼板11の最外層における位置にて、切り欠き2と係合して当該電磁鋼板1の巻き解きを規制するリブ24を有するため、電磁鋼板1を巻き取るだけで、巻き取りが完了した直後であっても緩みの無い積層コア11を実現することができる。このため、かかる構成によれば、製品寸法誤差が小さく、効率的な磁気回路の形成を実現することができる。また、かかる構成によれば、従来のように、接着剤を塗布しながら巻き取って固定する煩雑さが無く、作業性を大幅に向上させることができる。   Such a laminated core structure has a shaft 22 in which a magnetic steel sheet 1 for winding is formed with a notch 2 positioned at least in the outermost layer of the laminated core 11 at the longitudinal edge 1b, and the winding 22 is wound around it. As shown in FIG. 7 (b), on the holding surface 23 of the disk member 21, a rib 24 that engages with the notch 2 and regulates unwinding of the electromagnetic steel sheet 1 at a position in the outermost layer of the spiral steel sheet 11. Therefore, it is possible to realize the laminated core 11 having no loosening even after the completion of the winding only by winding the electromagnetic steel sheet 1. For this reason, according to such a configuration, the product dimensional error is small, and an efficient magnetic circuit can be formed. Moreover, according to this structure, there is no trouble of winding and fixing while applying the adhesive as in the conventional case, and the workability can be greatly improved.

また、本形態では、図6(b),図7(a)に示すように、積層コア11の最外層と最内層との間の各層にても、リブ24が切り欠き2と係合して電磁鋼板1の巻き解きを規制するため、積層コア11を製造するに当たっての巻き取り中の緩みも各層毎に適宜防止することができる。   Further, in this embodiment, as shown in FIGS. 6 (b) and 7 (a), the rib 24 is engaged with the notch 2 also in each layer between the outermost layer and the innermost layer of the laminated core 11. Therefore, unwinding of the electromagnetic steel sheet 1 is restricted, so that loosening during winding when the laminated core 11 is manufactured can be appropriately prevented for each layer.

更に、本形態は、係合部を、切り欠き2の案内として巻き取りに係る電磁鋼板1をシャフト22側に導くリブ24としてなり、このリブ24の前側面24aを、電磁鋼板1を積層する毎に変化する積層コア11の各外径を基礎円Snとするインボリュート曲線Ca(n)の包絡線Eに沿った形状とすると共に、その後側面24bを、積層コア11の最内径を基礎円S1とするインボリュート曲線Cb(1)に沿った形状としたことにより、巻き取りに係る電磁鋼板1の緩みを防止しつつ、スムースな巻き取りが可能となる。このため、生産性の高い製品となる。   Further, in this embodiment, the engaging portion is formed as a rib 24 that guides the electromagnetic steel sheet 1 involved in winding as a guide for the notch 2 to the shaft 22 side, and the front side surface 24a of the rib 24 is laminated with the electromagnetic steel sheet 1. Each of the outer diameters of the laminated core 11 that changes every time has a shape along the envelope E of the involute curve Ca (n) with the base circle Sn as the base circle Sn, and the rear side surface 24b, the innermost diameter of the laminated core 11 is the basic circle S1 By adopting a shape along the involute curve Cb (1), smooth winding can be achieved while preventing loosening of the electromagnetic steel sheet 1 related to winding. For this reason, it becomes a product with high productivity.

更に、切り欠き2及びリブ24の形状は、積層コア11の脱落等を防止するため、アンダーカット形状とすることが好ましい。   Further, the shape of the notch 2 and the rib 24 is preferably an undercut shape in order to prevent the laminated core 11 from dropping off.

図4(b),(c)はそれぞれ、電磁鋼板1に形成した切り欠き2の他の形状を例示する側面図である。図4(b)では、切り欠き2の前側面2a及び後側面2bを傾斜させることにより、切り欠き2を逆三角形状のアンダーカット形状部としている。同様に、図4(c)では、切り欠き2の前側面2a及び後側面2bの下端縁部2c,2dをそれぞれ、長手方向内側に突出させてアンダーカット形状部としている。   FIGS. 4B and 4C are side views illustrating other shapes of the notches 2 formed in the electromagnetic steel sheet 1, respectively. In FIG. 4 (b), the front side surface 2a and the rear side surface 2b of the notch 2 are inclined so that the notch 2 has an inverted triangular undercut shape. Similarly, in FIG. 4 (c), the lower end edges 2c and 2d of the front side surface 2a and the rear side surface 2b of the notch 2 are projected inward in the longitudinal direction to form an undercut shape portion.

これに併せてリブ24の断面形状を、図4(b),(c)に示す切り欠き2と同様の形状とすれば、積層コア11はディスク部材21に強固に固定されるため、緩み防止に加え、軸線方向Oへの脱落を防止することができる。また、積層コア11の面方向剛性を高めることができるから、面剛性を確保するため、後工程でタガ状部材を組み付ける必要がない。   At the same time, if the cross-sectional shape of the rib 24 is the same shape as the notch 2 shown in FIGS. 4 (b) and 4 (c), the laminated core 11 is firmly fixed to the disk member 21, thus preventing loosening. In addition, dropping in the axial direction O can be prevented. Further, since the rigidity in the surface direction of the laminated core 11 can be increased, it is not necessary to assemble a tag-like member in a subsequent process in order to ensure the surface rigidity.

特に、切り欠き2(リブ24)を空隙ピッチL1の中心付近、即ち、積層コア11の凹溝13の溝幅中心を通る軸線付近に設ければ、積層コア構造体に磁石17を取り付けてロータコア又はステータコアとした場合、積層コア11内の磁束Φは、図4(c)に示すような経路を辿るので、切り欠き2を設けたことによる磁束への影響が少なく済む。   In particular, if the notch 2 (rib 24) is provided in the vicinity of the center of the gap pitch L1, that is, in the vicinity of the axis passing through the groove width center of the concave groove 13 of the laminated core 11, the magnet 17 is attached to the laminated core structure and the rotor core is attached. Alternatively, when the stator core is used, the magnetic flux Φ in the laminated core 11 follows a path as shown in FIG. 4 (c), so that the influence on the magnetic flux due to the provision of the notch 2 can be reduced.

また、本形態では、切り欠き2と、リブ24とをそれぞれ2つずつ設け、切り欠き2とリブ24との組をそれぞれ、巻き取り方向Dに沿って360度/2の等ピッチ(切り欠き2とリブ24との組がm個の場合は、360度/mの等ピッチ)、即ち、巻き取り方向Dに沿って同一ピッチで配置している。かかる構成によれば、積層コア構造体を回転要素として用いた場合、回転のバランスを崩すことなく安定した回転を実現することができる。   Further, in this embodiment, two notches 2 and two ribs 24 are provided, and each pair of the notches 2 and the ribs 24 is arranged at an equal pitch of 360 degrees / 2 along the winding direction D (notches When the number of pairs of 2 and ribs 24 is m, the pitches are arranged at the same pitch along the winding direction D). According to such a configuration, when the laminated core structure is used as a rotating element, stable rotation can be realized without breaking the balance of rotation.

切り欠き2及びリブ24は、以下のように、電磁鋼板1に形成した突起7と、ディスク部材21に形成した条溝25に置き換えることもできる。   The notches 2 and the ribs 24 can be replaced with protrusions 7 formed on the electromagnetic steel sheet 1 and strip grooves 25 formed on the disk member 21 as described below.

図9(a),(b)はそれぞれ、ディスク部材21による電磁鋼板1の巻き取り開始状態を示す正面図及び、そのときのディスク部材21を示す断面図である。また、図10(a),(b)はそれぞれ、ディスク部材21による電磁鋼板1の巻き取り状態を示す正面図及び、そのときのディスク部材21を示す断面図である。また、図11,12はそれぞれ、電磁鋼板1の巻き取り工程を示す模式図である。なお、図9〜12において、図1〜8と同一部分は同一符号をもってその説明を省略する。   FIGS. 9 (a) and 9 (b) are a front view showing a winding start state of the electromagnetic steel sheet 1 by the disk member 21, and a cross-sectional view showing the disk member 21 at that time. FIGS. 10A and 10B are a front view showing a state in which the electromagnetic steel sheet 1 is wound by the disk member 21, and a cross-sectional view showing the disk member 21 at that time. 11 and 12 are schematic views showing the winding process of the electromagnetic steel sheet 1, respectively. 9 to 12, the same parts as those in FIGS. 1 to 8 are denoted by the same reference numerals, and the description thereof is omitted.

この場合、保持面23には、図9,10に示すように、プレス装置30によって電磁鋼板1に形成した後述の突起7を係合させる1つの条溝25が設けられている。条溝25は、その前側面25aが、積層コア最内径φ11を基礎円S1とするインボリュート曲線Ca(1)に沿った形状としてなると共に、その後側面25bが、積層コア最内径φ11から積層コア最外径φ12までの間を電磁鋼板1の巻き取り毎に変化する積層コア11の各外径φnを基礎円Snとするインボリュート曲線Cb(n)の包絡線Eに沿った形状としてなる。   In this case, as shown in FIGS. 9 and 10, the holding surface 23 is provided with one groove 25 for engaging a projection 7 described later formed on the electromagnetic steel sheet 1 by the press device 30. In the groove 25, the front side surface 25a has a shape along the involute curve Ca (1) with the laminated core innermost diameter φ11 as a basic circle S1, and the rear side surface 25b extends from the laminated core innermost diameter φ11 to the laminated core innermost diameter. A shape along the envelope E of the involute curve Cb (n) having the outer diameter φn of the laminated core 11 that changes every time the electromagnetic steel sheet 1 is wound up to the outer diameter φ12 as the basic circle Sn.

図13(a)は、プレス装置30による打ち抜き形状を例示する側面図である。なお、図13において、図1〜12と同一部分は同一符号をもってその説明を省略する。   FIG. 13 (a) is a side view illustrating a punched shape by the press device 30. FIG. In FIG. 13, the same parts as those in FIGS.

電磁鋼板1の他方の縁部1bには、電磁鋼板1の巻取り時において、ディスク部材21に設けた1つの条溝25に対応する複数の突起7が形成されている。   On the other edge 1b of the electromagnetic steel sheet 1, a plurality of protrusions 7 corresponding to one groove 25 provided in the disk member 21 are formed when the electromagnetic steel sheet 1 is wound.

突起7は、図1〜7で説明したと同様、電磁鋼板1の巻き取りがシャフト22の外径部22aからディスク部材21の外径部21aに進むに従って、その幅w2が条溝25の幅に応じて徐々に増加するように形成される。   As described with reference to FIGS. 1 to 7, the protrusion 7 has a width w2 that is the width of the groove 25 as the winding of the electromagnetic steel sheet 1 proceeds from the outer diameter portion 22a of the shaft 22 to the outer diameter portion 21a of the disk member 21. It is formed so as to gradually increase in accordance with.

これにより、プレス装置3は、電磁鋼板1の巻き取り量に応じて凹溝13の幅や条溝25の幅がシャフト22の外径部22aからディスク部材21の外径部21aに進むに従って徐々に変化しても、その幅変化に対応するように、突起7の幅w2や、空隙3の空隙ピッチL1と打ち抜きピッチL2を適宜変更して打ち抜きを行うことができる。   Thus, the pressing device 3 gradually increases as the width of the groove 13 and the width of the groove 25 proceed from the outer diameter portion 22a of the shaft 22 to the outer diameter portion 21a of the disk member 21 in accordance with the winding amount of the electromagnetic steel sheet 1. Even if it changes, the width w2 of the protrusion 7 and the gap pitch L1 and the punching pitch L2 of the gap 3 can be appropriately changed to perform punching so as to correspond to the width change.

即ち、突起7は、プレス装置30により、電磁鋼板1が巻き取りによって積層されていく毎に、その前側面7aがインボリュート曲線Cb(1)に沿った形状をなす条溝25の前側面25aに係合すると共に、突起7の後側面7bも、包絡線Eに沿った形状をなす条溝25の後側面25bに係合するように形成される。従って、巻き取りが完了した状態では、少なくとも、積層コア11の最外層における位置にて、突起7と条溝25とはそれぞれ、突起7の前側面7aが条溝25の前側面25aと係合し、突起7の後側面7bが条溝25の後側面25bと係合する。   That is, each time the magnetic steel sheet 1 is laminated by winding by the pressing device 30, the protrusion 7 is formed on the front side surface 25a of the groove 25 whose front side surface 7a forms a shape along the involute curve Cb (1). In addition to engaging, the rear side surface 7b of the protrusion 7 is also formed to engage with the rear side surface 25b of the groove 25 having a shape along the envelope E. Therefore, when the winding is completed, at least at the position in the outermost layer of the laminated core 11, the protrusion 7 and the groove 25 are respectively engaged with the front side surface 7a of the protrusion 25 and the front side surface 25a of the groove 25. The rear side surface 7b of the protrusion 7 is engaged with the rear side surface 25b of the groove 25.

次に、電磁鋼板1の巻き取り工程を説明する。   Next, the winding process of the electromagnetic steel sheet 1 will be described.

この場合、ディスク部材21での巻き取りを開始すると、電磁鋼板1は、矢印Dの方向に向かって巻き取られるため、先ず、条溝25が、突起7の前側面7aと当接する。このとき、電磁鋼板1の端部は、図9(a)に示すように、積層コア最内径φ1の点Poに固定されているため、電磁鋼板1がシャフト22に巻き取られる際は、突起7の前側面7aは、図9に示すように、積層コア最内径φ1を基礎円S1としたときの当該基礎円S1の点a1を始点とするインボリュート曲線Ca(1)の軌跡を辿る一方、突起7の後側面7bは、積層コア最内径φ1を基礎円S1としたときの当該基礎円S1の点b1を始点とするインボリュート曲線Cb(1)の軌跡を辿る。   In this case, when the winding with the disk member 21 is started, the electromagnetic steel sheet 1 is wound in the direction of the arrow D, so that the groove 25 first comes into contact with the front side surface 7a of the protrusion 7. At this time, as shown in FIG. 9 (a), the end of the electromagnetic steel sheet 1 is fixed at a point Po of the laminated core innermost diameter φ1, so when the electromagnetic steel sheet 1 is wound around the shaft 22, 9, the front side surface 7a follows the locus of the involute curve Ca (1) starting from the point a1 of the basic circle S1 when the laminated core innermost diameter φ1 is the basic circle S1, as shown in FIG. The rear side surface 7b of the protrusion 7 follows the locus of the involute curve Cb (1) starting from the point b1 of the basic circle S1 when the innermost inner diameter φ1 of the laminated core is the basic circle S1.

これに対し、条溝25は、その前側面25aは、上述の軌跡と同様、基礎円S1の点a1を始点とするインボリュート曲線Ca(1)に沿った形状である一方、その後側面25bは、各層毎のインボリュート曲線Ca(n)の包絡線Eに沿った形状であるため、電磁鋼板1の巻き取りに際しては、突起7の前側面7aは、条溝25の前側面25aに接しながらシャフト22の外径部22a上にある点a1に向かっていく一方、突起7の後側面7bは、条溝25の後側面25bから離れたインボリュート曲線Cb(1)の軌跡を辿ってシャフト22の外径部22a上にある点b1に向かう。従って、1層目の電磁鋼板1は、図11(a)の二点鎖線で示すように、突起7の後側面7bが条溝25の後側面25bに引っ掛かることなく、突起7が条溝25とシャフト22の外径部22aとの連結部にて嵌合するまでスムースに巻き取られる。これにより、1層目の電磁鋼板1は、緩みを生じることなくシャフト22の周りに巻き取られる。   In contrast, the front side surface 25a of the groove 25 has a shape along the involute curve Ca (1) starting from the point a1 of the basic circle S1 as in the above-described locus, while the rear side surface 25b is Since the shape is along the envelope E of the involute curve Ca (n) for each layer, when winding the electromagnetic steel sheet 1, the front side surface 7a of the protrusion 7 is in contact with the front side surface 25a of the groove 25 while the shaft 22 The rear side surface 7b of the protrusion 7 follows the locus of the involute curve Cb (1) away from the rear side surface 25b of the groove 25 while going toward the point a1 on the outer diameter portion 22a of the shaft 22. Heading to the point b1 on the part 22a. Therefore, as shown by the two-dot chain line in FIG. 11 (a), the first layer of the electrical steel sheet 1 is such that the rear surface 7b of the projection 7 is not caught by the rear side surface 25b of the groove 25, and the projection 7 has the groove 25. Is smoothly wound up until it is fitted at the connecting portion between the shaft 22 and the outer diameter portion 22a of the shaft 22. As a result, the first-layer electromagnetic steel sheet 1 is wound around the shaft 22 without being loosened.

電磁鋼板1を2層目として巻き取るときは、図11(b)に示すように、その2層目となる電磁鋼板1における突起7の前側面7aが、1層目の電磁鋼板1を巻き取ったときの積層コア11の外径φ2(=φ11+(2×t))を直径とする基礎円S2を基準とし2層目の電磁鋼板1における突起7の径方向内側縁を始点a2として描かれるインボリュート曲線Ca(2)の軌跡を通って突起7の前側面25a上にある点a2に当接する一方、突起7の後側面7bは、基礎円S2を基準とし1層目における突起7の径方向外側縁を始点b2として描かれるインボリュート曲線Cb(2)を通り、条溝25の後側面25b上にある点b2に当接する。これにより、2層目の電磁鋼板1も、突起7が条溝25に引っ掛かることなく、1層目の電磁鋼板1と接するまでスムースに巻き取られ、1層目の電磁鋼板1と接した時点で緩みを生じることなく条溝25によって固定される。   When winding the electromagnetic steel sheet 1 as the second layer, as shown in FIG. 11 (b), the front side surface 7a of the projection 7 of the electromagnetic steel sheet 1 as the second layer winds the first steel sheet 1. The radial inner edge of the protrusion 7 in the second electrical steel sheet 1 is drawn as the starting point a2 based on the basic circle S2 whose diameter is the outer diameter φ2 (= φ11 + (2 × t)) of the laminated core 11 when taken. Through the locus of the involute curve Ca (2) that contacts the point a2 on the front side surface 25a of the projection 7, while the rear side surface 7b of the projection 7 is the diameter of the projection 7 in the first layer with reference to the base circle S2. It passes through the involute curve Cb (2) drawn with the outer edge in the direction as the starting point b2, and comes into contact with the point b2 on the rear side surface 25b of the groove 25. As a result, the second-layer electromagnetic steel sheet 1 is also smoothly wound up until it comes into contact with the first-layer electromagnetic steel sheet 1 without being caught in the groove 25, and when the first-layer electromagnetic steel sheet 1 comes into contact with the first-layer electromagnetic steel sheet 1. It is fixed by the groove 25 without causing loosening.

電磁鋼板1を3層目として巻き取るときも、図12(a)に示すように、その3層目となる電磁鋼板1における突起7の前側面7aが、2層目の電磁鋼板1を巻き取ったときの積層コア11の外径φ3(=φ11+(2×t) +(2×t))を直径とする基礎円S3を基準とし3層目の電磁鋼板1における突起7の径方向内側縁を始点a3として描かれるインボリュート曲線Ca(3)の軌跡を通って突起7の前側面25a上にある点a3に当接する一方、突起7の後側面7bは、基礎円S3を基準とし2層目における突起7の径方向外側縁を始点b3として描かれるインボリュート曲線Cb(3)を通り、条溝25の後側面25b上にある点b3に当接する。これにより、3層目の電磁鋼板1も、突起7が条溝25に引っ掛かることなく、2層目の電磁鋼板1と接するまでスムースに巻き取られ、2層目の電磁鋼板1と接した時点で緩みを生じることなく条溝25によって固定される。   When winding the electromagnetic steel sheet 1 as the third layer, as shown in FIG. 12 (a), the front side surface 7a of the protrusion 7 in the electromagnetic steel sheet 1 as the third layer winds the second electromagnetic steel sheet 1. Radial inner side of the protrusion 7 in the third-layer electrical steel sheet 1 with reference to the basic circle S3 whose diameter is the outer diameter φ3 (= φ11 + (2 × t) + (2 × t)) of the laminated core 11 when taken The abutting point a3 on the front side surface 25a of the projection 7 passes through the locus of the involute curve Ca (3) drawn with the edge as the starting point a3, while the rear side surface 7b of the projection 7 has two layers based on the basic circle S3. The radial outer edge of the projection 7 in the eye passes through the involute curve Cb (3) drawn with the starting point b3, and comes into contact with the point b3 on the rear side surface 25b of the groove 25. As a result, the third-layer electrical steel sheet 1 is also smoothly wound up until it comes into contact with the second-layer electrical steel sheet 1 without the protrusions 7 being caught in the grooves 25. It is fixed by the groove 25 without causing loosening.

即ち、電磁鋼板1をn層目として巻き取るときは、図12(b)に示すように、そのn層目となる電磁鋼板1における突起7の前側面7aが、(n-1)層目の電磁鋼板1を巻き取ったときの積層コア11の外径φnを直径とする基礎円Snを基準としn層目の電磁鋼板1における突起7の径方向内側縁を始点anとして描かれるインボリュート曲線Ca(n)の軌跡を通って突起7の前側面25a上にある点anに当接する一方、突起7の後側面7bは、基礎円Snを基準とし(n-1)層目における突起7の径方向外側縁を始点bnとして描かれるインボリュート曲線Cb(n)を通り、条溝25の後側面25b上にある点bnに当接する。これにより、n層目の電磁鋼板1も、突起7が条溝25に引っ掛かることなく、(n-1)層目の電磁鋼板1と接するまでスムースに巻き取られ、(n-1)層目の電磁鋼板1と接した時点で緩みを生じることなく条溝25によって固定される。なお、図面上、電磁鋼板1の板厚tを大きくしているが、実際の電磁鋼板は、極薄い板材であるため、インボリュート曲線Ca(n),Cb(n)の基準円Snや始点an,bnの設定は、電磁鋼板1の板厚tの中心を近似値にしてもよい。   That is, when winding the electromagnetic steel sheet 1 as the nth layer, as shown in FIG. 12 (b), the front side surface 7a of the projection 7 in the electromagnetic steel sheet 1 that is the nth layer is the (n-1) th layer. An involute curve drawn with the radial inner edge of the projection 7 in the n-th electromagnetic steel sheet 1 as the starting point an based on the basic circle Sn whose diameter is the outer diameter φn of the laminated core 11 when the electromagnetic steel sheet 1 is wound up While contacting the point an on the front side surface 25a of the projection 7 through the locus of Ca (n), the rear side surface 7b of the projection 7 is based on the base circle Sn, and the projection 7 in the (n-1) th layer It passes through an involute curve Cb (n) drawn with the radially outer edge as a starting point bn, and comes into contact with a point bn on the rear side surface 25b of the groove 25. As a result, the n-th electromagnetic steel sheet 1 is also smoothly wound up until the projection 7 is in contact with the (n-1) -th electromagnetic steel sheet 1 without being caught in the groove 25, and the (n-1) -th layer At the time of contact with the electromagnetic steel sheet 1, it is fixed by the groove 25 without being loosened. Although the thickness t of the electrical steel sheet 1 is increased in the drawing, since the actual electrical steel sheet is an extremely thin plate material, the reference circle Sn and the start point an of the involute curves Ca (n) and Cb (n) , bn may be set to approximate the center of the thickness t of the electromagnetic steel sheet 1.

電磁鋼板1の巻き取りは、この繰り返しにより行われるため、巻き取りが完了する積層コア11の最外層では、図12(b)に示すように、突起7の前側面7aが条溝25の前側面25aに係合すると共に、突起7の後側面7bは、条溝25の後側面25bに係合する。即ち、条溝25は、積層コア11の最外層にて、突起7と係合して電磁鋼板11の巻き解きを規制する係合部と、積層コア11の最外層と最内層との間の各層における位置にて、突起7と係合して電磁鋼板11の巻き解きを規制する係合部とを一体に構成してなる。   Since the winding of the electromagnetic steel sheet 1 is performed by repeating this process, in the outermost layer of the laminated core 11 where the winding is completed, as shown in FIG. The rear side surface 7b of the protrusion 7 is engaged with the rear side surface 25b of the groove 25 while engaging with the side surface 25a. That is, the groove 25 is between the outermost layer and the innermost layer of the laminated core 11, and the engaging portion that engages with the protrusion 7 and regulates the unwinding of the electromagnetic steel sheet 11 in the outermost layer of the laminated core 11. An engaging portion that engages with the protrusion 7 and restricts the unwinding of the electromagnetic steel sheet 11 at a position in each layer is integrally formed.

これにより、積層コア11は、電磁鋼板1の巻き取りが完了するまで緩みなく積層されていく。なお、条溝25は、シャフト22の外径部22aからディスク部材21の外径部21aまでをインボリュート関数に基づく連続した形状であるが、少なくとも、積層コア11の最外層における位置にて、突起7と係合すれば、シャフト22の外径部22aからディスク部材21の外径部21aまでの間を、インボリュート関数に基づく形状で連続させる必要はない。   Thereby, the laminated core 11 is laminated without loosening until the winding of the electromagnetic steel sheet 1 is completed. The groove 25 has a continuous shape based on the involute function from the outer diameter portion 22a of the shaft 22 to the outer diameter portion 21a of the disk member 21, but at least at a position in the outermost layer of the laminated core 11. If engaged with 7, the space from the outer diameter portion 22a of the shaft 22 to the outer diameter portion 21a of the disk member 21 does not need to be continued in a shape based on the involute function.

かかる積層コア構造体は、巻き取りに係る電磁鋼板1がその長手方向縁部1bに少なくとも積層コア11の最外層に位置する突起7を形成してなり、それを巻き取るシャフト22を有したディスク部材21の保持面23に、積層コア11の最外層における位置にて、突起7と係合して当該電磁鋼板1の巻き解きを規制する条溝25を有するため、第1形態と同様、電磁鋼板1を巻き取るだけで、巻き取りが完了した直後であっても緩みの無い積層コア11を実現することができる。このため、かかる構成によっても、製品寸法誤差が小さく、効率的な磁気回路の形成を実現することができる。また、かかる構成によっても、従来のように、接着剤を塗布しながら巻き取って固定する煩雑さが無く、作業性を大幅に向上させることができる。   Such a laminated core structure is a disk having a shaft 22 in which a magnetic steel sheet 1 for winding is formed with protrusions 7 positioned at least on the outermost layer of the laminated core 11 at the edge 1b in the longitudinal direction, and a winding 22 is wound around it. Since the holding surface 23 of the member 21 has a groove 25 that engages with the protrusion 7 and restricts unwinding of the electromagnetic steel sheet 1 at a position in the outermost layer of the laminated core 11, as in the first embodiment, the electromagnetic wave By simply winding up the steel plate 1, it is possible to realize the laminated core 11 without loosening even immediately after the winding is completed. For this reason, even with such a configuration, the product dimensional error is small, and an efficient magnetic circuit can be formed. In addition, even with such a configuration, there is no trouble of winding and fixing while applying an adhesive as in the prior art, and workability can be greatly improved.

また、本形態でも、図11(b),図12(a)に示すように、積層コア11の最外層と最内層との間の各層にても、条溝25が突起7と係合して電磁鋼板1の巻き解きを規制するため、積層コア11を製造するに当たっての巻き取り中の緩みも各層毎に適宜防止することができる。   Also in this embodiment, as shown in FIGS. 11 (b) and 12 (a), the groove 25 is engaged with the protrusion 7 in each layer between the outermost layer and the innermost layer of the laminated core 11. Therefore, unwinding of the electromagnetic steel sheet 1 is restricted, so that loosening during winding when the laminated core 11 is manufactured can be appropriately prevented for each layer.

更に、本形態は、係合部を、突起7の案内として巻き取りに係る電磁鋼板1をシャフト22側に導く条溝25としてなり、このリブ25の前側面25aを、積層コア11の最内径を基礎円とするインボリュート曲線C1に沿った形状とすると共に、その後側面25bを、電磁鋼板1を積層する毎に変化する積層コア11の各外径を基礎円Snとするインボリュート曲線Cnの包絡線Eに沿った形状としたことにより、巻き取りに係る電磁鋼板1の緩みを防止しつつ、スムースな巻き取りが可能となる。このため、生産性の高い製品となる。   Further, in this embodiment, the engaging portion is formed as a groove 25 that guides the electromagnetic steel sheet 1 to be wound as a guide of the protrusion 7 to the shaft 22 side, and the front side surface 25a of the rib 25 is formed as the innermost diameter of the laminated core 11. An involute curve Cn envelope having a shape along the involute curve C1 with a base circle and the outer side surface of the laminated core 11 that changes each time the electromagnetic steel sheet 1 is laminated with a base circle Sn. By adopting a shape along E, smooth winding is possible while preventing loosening of the electromagnetic steel sheet 1 related to winding. For this reason, it becomes a product with high productivity.

更に、突起7及び条溝25の形状も、積層コア11の脱落等を防止するため、アンダーカット形状とすることが好ましい。   Further, the shape of the protrusion 7 and the groove 25 is preferably an undercut shape in order to prevent the laminated core 11 from dropping off.

図13(b),(c)はそれぞれ、電磁鋼板1に形成した突起7の他の形状を例示する側面図である。図13(b)では、突起7の前側面7a及び後側面7bを傾斜させることにより、突起7を三角形状のアンダーカット形状部としている。同様に、図13(c)では、突起7の前側面7a及び後側面7bの下端縁部7c,7dをそれぞれ、長手方向外側に突出させてアンダーカット形状部としている。これに併せて条溝25の断面形状を、図13(b),(c)に示す突起7と同様の形状とすれば、積層コア11はディスク部材21に強固に固定されるため、ゆるみ防止に加え、軸線方向Oへの脱落を防止することができる。また、積層コア11の面方向剛性を高めることができるから、面剛性を確保するため、後工程でタガ状部材を組み付ける必要がない。   13B and 13C are side views illustrating other shapes of the protrusions 7 formed on the electromagnetic steel sheet 1, respectively. In FIG. 13 (b), the protrusion 7 is formed into a triangular undercut shape portion by inclining the front side surface 7a and the rear side surface 7b of the protrusion 7. Similarly, in FIG. 13 (c), the lower end edge portions 7c and 7d of the front side surface 7a and the rear side surface 7b of the protrusion 7 are projected outward in the longitudinal direction to form an undercut shape portion. At the same time, if the cross-sectional shape of the groove 25 is the same shape as the protrusion 7 shown in FIGS. 13 (b) and 13 (c), the laminated core 11 is firmly fixed to the disk member 21, thus preventing loosening. In addition, dropping in the axial direction O can be prevented. Further, since the rigidity in the surface direction of the laminated core 11 can be increased, it is not necessary to assemble a tag-like member in a subsequent process in order to ensure the surface rigidity.

また本形態では、突起7と、条溝25とをそれぞれ1つ設けたのみであるが、この突起7と条溝25との組み合せも複数にすることができる。この場合も、突起7と条溝25との組がm個であれば、巻取り進行方向Dに沿って360度/mの等ピッチで配置することが好ましい。   In this embodiment, only one protrusion 7 and one groove 25 are provided, but a plurality of combinations of the protrusion 7 and the groove 25 can be provided. Also in this case, if there are m pairs of the protrusions 7 and the grooves 25, it is preferable that they are arranged at an equal pitch of 360 degrees / m along the winding traveling direction D.

上述したところは、本発明の好適な形態であるが、請求の範囲内において、種々の変更を加えることができる。例えば、本形態の積層コア構造体は、切り欠き2や突起7の幅W1,W2をそれぞれ、電磁鋼板1の巻き取りに併せて適宜変更しているが、この幅W1,W2はそれぞれ、その幅を一定値としてもよい。また、本形態の積層コア構造体は、その凹溝13にアンダーカット形状部15を有するため、磁石17を取り付けた場合、積層コア11のゆるみ防止に更なる効果を奏するが、凹溝13の断面形状はアンダーカット形状部15を設けない矩形形状にする等、適宜変更することができる。また、上述した各形態で説明した構成要素はそれぞれ、用途等に併せて様々に組み合わせることができる。   The above is a preferred embodiment of the present invention, but various modifications can be made within the scope of the claims. For example, in the laminated core structure of the present embodiment, the widths W1 and W2 of the notches 2 and the protrusions 7 are appropriately changed according to the winding of the electromagnetic steel sheet 1, and the widths W1 and W2 are respectively changed. The width may be a constant value. Further, since the laminated core structure of this embodiment has the undercut shape portion 15 in the concave groove 13, when the magnet 17 is attached, there is a further effect in preventing the laminated core 11 from loosening. The cross-sectional shape can be changed as appropriate, such as a rectangular shape without the undercut shape portion 15. In addition, the constituent elements described in the above embodiments can be combined in various ways according to the usage.

本発明に従う積層コア構造体の第一形態を製造するための装置を例示する模式斜視図である。It is a model perspective view which illustrates the apparatus for manufacturing the 1st form of the lamination | stacking core structure according to this invention. (a),(b)はそれぞれ、同形態において、ディスク部材による電磁鋼板の巻取り開始状態を示す正面図及び、そのときのディスク部材を示す断面図である。(a), (b) is the front view which shows the winding start state of the electromagnetic steel plate by a disk member in the same form, respectively, and sectional drawing which shows a disk member at that time. (a),(b)はそれぞれ、同形態において、ディスク部材による電磁鋼板の巻取り状態を示す正面図及び、そのときのディスク部材を示す断面図である。(a), (b) is the front view which shows the winding state of the electromagnetic steel plate by a disk member in the same form, respectively, and sectional drawing which shows a disk member at that time. (a)〜(c)はそれぞれ、本発明に従う積層コア構造体の第一〜第三形態に係る電磁鋼板の、プレス装置による打ち抜き形状を例示する側面図である。(a)-(c) is a side view which respectively illustrates the punching shape by the press apparatus of the electromagnetic steel plate which concerns on the 1st-3rd form of the laminated core structure according to this invention. 第一の形態において、電磁鋼板をディスク部材により巻き取る際の切り欠きとリブとの係合する様子を示す斜視図である。In a 1st form, it is a perspective view which shows a mode that the notch at the time of winding up an electromagnetic steel plate with a disk member and a rib are engaged. (a),(b)はそれぞれ、同形態における構造体を製造するに当たって、電磁鋼板を1巻きした状態及び、2巻きした状態を説明する拡大上面図である。(a) and (b) are enlarged top views for explaining a state in which the electromagnetic steel sheet is wound once and a state in which it is wound twice in manufacturing the structure in the same form. (a),(b)はそれぞれ、同形態における構造体を製造するに当たって、電磁鋼板1を3巻きした状態及び、巻き取りを完了した状態を説明する拡大上面図である。(a), (b) is an enlarged top view for explaining a state in which the electromagnetic steel sheet 1 is wound three times and a state in which the winding is completed in manufacturing the structure in the same form. 第一形態における、積層コア構造体を示す斜視図である。It is a perspective view which shows the lamination | stacking core structure in a 1st form. (a),(b)はそれぞれ、第四形態において、ディスク部材による電磁鋼板の巻取り開始状態を示す正面図及び、そのときのディスク部材を示す断面図である。(a), (b) is the front view which shows the winding start state of the electromagnetic steel plate by a disc member in a 4th form, respectively, and sectional drawing which shows a disc member at that time. (a),(b)はそれぞれ、同形態において、ディスク部材による電磁鋼板の巻取り状態を示す正面図及び、そのときのディスク部材を示す断面図である。(a), (b) is the front view which shows the winding state of the electromagnetic steel plate by a disk member in the same form, respectively, and sectional drawing which shows a disk member at that time. (a),(b)はそれぞれ、同形態における構造体を製造するに当たって、電磁鋼板を1巻きした状態、及び2巻きした状態を説明する拡大上面図である。(a), (b) is an enlarged top view for explaining a state in which the electromagnetic steel sheet is wound once and a state in which it is wound twice in manufacturing the structure in the same form. (a),(b)はそれぞれ、同形態における構造体を製造するに当たって、電磁鋼板1を3巻きした状態及び、巻き取りを完了した状態を説明する拡大上面図である。(a), (b) is an enlarged top view for explaining a state in which the electromagnetic steel sheet 1 is wound three times and a state in which the winding is completed in manufacturing the structure in the same form. (a)〜(c)はそれぞれ、本発明に従う積層コア構造体の第四〜第六形態に係る電磁鋼板の、プレス装置による打ち抜き形状を例示する側面図である。(a)-(c) is a side view which respectively illustrates the punching shape by the press apparatus of the electromagnetic steel plate which concerns on the 4th-6th form of the laminated core structure according to this invention. (a),(b)はそれぞれ、ディスク部材の存在しない従来の積層コアを形成するに当たり、図1の巻取り装置に固定された従来の巻取りスピンドルによる電磁鋼板の巻取り開始状態を示す正面図及び、そのときのスピンドルを示す断面図である。(a) and (b) are front views showing a state of starting the winding of the electromagnetic steel sheet by the conventional winding spindle fixed to the winding device of FIG. 1 in forming the conventional laminated core without the disk member, respectively. It is sectional drawing which shows a figure and the spindle at that time. (a),(b)はそれぞれ、同従来技術において、スピンドルによる電磁鋼板の巻取り状態を示す正面図及び、そのときのスピンドルを示す断面図である。(a), (b) is the front view which shows the winding state of the magnetic steel plate by a spindle in the same prior art, respectively, and sectional drawing which shows a spindle at that time.

符号の説明Explanation of symbols

1 電磁鋼板
2 切り欠き
3 空隙
4 残部
5 突部
11 積層コア
13 凹溝
14 壁部
15 アンダーカット部
20 巻取り装置
21 ディスク部材
22 シャフト
23 保持面
24 リブ(突条)
24a 前側面(アンダーカット形状部)
24b 後側面(アンダーカット形状部)
24c アンダーカット形状部
24d アンダーカット形状部
25 条溝
25a 前側面(アンダーカット形状部)
25b 後側面(アンダーカット形状部)
25c アンダーカット形状部
25d アンダーカット形状部
C1 インボリュート曲線
C2 インボリュート曲線の包絡線
CU コントロールユニット
DESCRIPTION OF SYMBOLS 1 Electrical steel plate 2 Notch 3 Air gap 4 Remaining part 5
11 laminated core
13 groove
14 Wall
15 Undercut section
20 Winding device
21 Disc material
22 Shaft
23 Holding surface
24 ribs
24a Front side (undercut shape)
24b Rear side (undercut shape)
24c Undercut shape
24d undercut shape
25 groove
25a Front side (undercut shape)
25b Rear side (undercut shape)
25c Undercut shape
25d undercut shape
C1 involute curve
C2 Involute curve envelope
CU control unit

Claims (7)

帯状に延在する薄板の電磁鋼板を巻き取ってなる渦巻き鋼板を備えた回転電機用積層コア構造体であって、
前記構造体は、電磁鋼板を巻き付けるシャフトを有し、このシャフトに巻き付けられた電磁鋼板を保持する保持面が形成されたディスク部材を備え、
前記電磁鋼板は、その長手方向縁部に少なくとも渦巻き鋼板の最外層に位置する切り欠き又は突起を形成してなり、
前記ディスク部材の保持面に、少なくとも前記渦巻き鋼板の最外層における位置にて、前記切り欠き又は前記突起と係合して当該電磁鋼板の巻き解きを規制する係合部を設け
当該係合部は、前記ディスク部材のシャフトから径方向に沿って放射状に延在する曲線に沿った形状をしてなり、前記切り欠き又は前記突起の案内として巻き取りに係る前記電磁鋼板を前記シャフト側に導く巻き込み方向に対して傾斜した突条又は条溝であることを特徴とする回転電機用積層コア構造体。
A laminated core structure for a rotating electrical machine comprising a spiral steel sheet obtained by winding a thin electromagnetic steel sheet extending in a strip shape,
The structure has a shaft around which an electromagnetic steel sheet is wound, and includes a disk member on which a holding surface for holding the electromagnetic steel sheet wound around the shaft is formed,
The electromagnetic steel sheet is formed by forming a notch or a protrusion located at least in the outermost layer of the spiral steel sheet at the longitudinal edge thereof,
On the holding surface of the disk member, at least at a position in the outermost layer of the spiral steel plate, an engagement portion that engages with the notch or the protrusion to regulate unwinding of the electromagnetic steel plate is provided ,
The engaging portion has a shape along a curved line extending radially from the shaft of the disk member along the radial direction, and the electromagnetic steel plate for winding as the guide of the notch or the protrusion is A laminated core structure for a rotating electrical machine, characterized in that it is a ridge or a groove inclined with respect to the winding direction leading to the shaft side .
前記切り欠き又は前記突起を、前記電磁鋼板の長手方向縁部に沿って複数個形成すると共に、前記ディスク部材の保持面に、前記渦巻き鋼板の最外層と最内層との間の少なくとも一層における位置にて、前記切り欠き又は前記突起と係合して当該電磁鋼板の巻き解きを規制する係合部を設けたことを特徴とする請求項1に記載の回転電機用積層コア構造体。   A plurality of the notches or the protrusions are formed along a longitudinal edge of the electromagnetic steel sheet, and the holding surface of the disk member is positioned on at least one layer between the outermost layer and the innermost layer of the spiral steel sheet. The laminated core structure for a rotating electrical machine according to claim 1, further comprising an engaging portion that engages with the notch or the protrusion to restrict unwinding of the electrical steel sheet. 前記突条は、その巻き取り進行側の側面が、前記渦巻き鋼板の最内径から最外径までの間を前記電磁鋼板の巻き取り毎に変化する渦巻き鋼板の各外径を基礎円とするインボリュート曲線の包絡線に沿った形状としてなると共に、
その巻き取り進行側と逆の側面が、前記渦巻き鋼板の最内径を基礎円とするインボリュート曲線に沿った形状としてなることを特徴とする請求項1又は2に記載の回転電機用積層コア構造体。
The ridge is an involute whose side surface on the winding progression side is based on each outer diameter of the spiral steel sheet that changes every time the electromagnetic steel sheet is wound between the innermost diameter and the outermost diameter of the spiral steel sheet. As it becomes a shape along the envelope of the curve,
3. The laminated core structure for a rotating electrical machine according to claim 1, wherein a side surface opposite to the winding progression side has a shape along an involute curve having the innermost inner diameter of the spiral steel plate as a base circle. .
前記条溝は、その巻取り進行側の側面が、渦巻き鋼板の最内径を基礎円とするインボリュート曲線に沿った形状をしてなると共に、
その巻き取り進行側と逆の側面が、前記渦巻き鋼板の最内径から最外径までの間を前記電磁鋼板の巻き取り毎に変化する前記渦巻き鋼板の各外径を基礎円とするインボリュート曲線の包絡線に沿った形状をしてなることを特徴とする請求項1又は2に記載の回転電機用積層コア構造体。
The groove has a shape along the involute curve whose side surface on the winding progression side is based on the innermost diameter of the spiral steel sheet,
The side opposite to the winding progression side is an involute curve based on each outer diameter of the spiral steel sheet that changes from the innermost diameter to the outermost diameter of the spiral steel sheet each time the electromagnetic steel sheet is wound. The laminated core structure for a rotating electrical machine according to claim 1 or 2, wherein the laminated core structure has a shape along an envelope.
前記係合部を周方向に沿って複数設け、当該係合部をそれぞれ、巻き取り方向に沿って同一ピッチで配置したことを特徴とする請求項1乃至4のいずれか一項に記載の回転電機用積層コア構造体。   The rotation according to any one of claims 1 to 4, wherein a plurality of the engaging portions are provided along the circumferential direction, and the engaging portions are arranged at the same pitch along the winding direction. Laminated core structure for electric machine. 前記係合部は、前記切り欠き又は前記突起を係止するアンダーカット形状部を備えることを特徴とする請求項1乃至5のいずれか一項に記載の回転電機用積層コア構造体。   The laminated core structure for a rotating electrical machine according to any one of claims 1 to 5, wherein the engagement portion includes an undercut shape portion that locks the notch or the protrusion. 前記係合部を、前記渦巻き鋼板の表面に径方向に沿って放射状に形成した凹溝の溝幅中心を通る軸線付近に設けたことを特徴とする請求項1乃至6のいずれか一項に記載の回転電機用積層コア構造体。   The said engaging part was provided in the axial line vicinity which passes along the groove width center of the ditch | groove formed radially along the radial direction on the surface of the said spiral steel plate, It is any one of Claim 1 thru | or 6 characterized by the above-mentioned. The laminated core structure for a rotating electrical machine as described.
JP2006078816A 2006-03-22 2006-03-22 Laminated core structure for rotating electrical machines Active JP4867416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006078816A JP4867416B2 (en) 2006-03-22 2006-03-22 Laminated core structure for rotating electrical machines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006078816A JP4867416B2 (en) 2006-03-22 2006-03-22 Laminated core structure for rotating electrical machines

Publications (2)

Publication Number Publication Date
JP2007259557A JP2007259557A (en) 2007-10-04
JP4867416B2 true JP4867416B2 (en) 2012-02-01

Family

ID=38633212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006078816A Active JP4867416B2 (en) 2006-03-22 2006-03-22 Laminated core structure for rotating electrical machines

Country Status (1)

Country Link
JP (1) JP4867416B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5410162B2 (en) * 2009-06-02 2014-02-05 本田技研工業株式会社 Axial gap type motor and manufacturing method thereof
CN105305739B (en) * 2014-07-28 2018-04-03 三菱电机株式会社 The manufacture method of axial-gap rotary electric machine and the motor stator core

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102203A (en) * 1972-04-11 1973-12-22
JPS5548393A (en) * 1978-10-05 1980-04-07 Mitsubishi Chem Ind Ltd Preparation of c-type cytochrome
AU514253B2 (en) * 1978-10-18 1981-01-29 Card-O-Matic Pty. Limited Manufacturing punched strip for electromagnetic apparatus
JPS58647A (en) * 1982-06-09 1983-01-05 Chuo Spring Co Ltd Mounting method of vibro-isolating equipment to floor surface
JPS5963940A (en) * 1982-10-05 1984-04-11 Matsushita Electric Ind Co Ltd Wound core for axial air gap rotary electric machine
JP4357941B2 (en) * 2003-12-01 2009-11-04 本田技研工業株式会社 Rotor for axial gap type motor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2007259557A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP3730218B2 (en) Stacked stator core and manufacturing method thereof, and rotary motor and manufacturing method thereof
JP5315743B2 (en) Electric rotary motor
JP4176121B2 (en) Rotor laminated iron core and manufacturing method thereof
EP1854111B1 (en) Winding method and coil unit
US7654123B2 (en) Automated manufacturing machine
JP2006353001A (en) Laminated iron core and its manufacturing method and apparatus
WO2002064468A1 (en) Reel member and method of winding film
JP4867416B2 (en) Laminated core structure for rotating electrical machines
JP4934402B2 (en) Armature manufacturing method and progressive mold apparatus
JP4076837B2 (en) Insulator and rotating magnetic field type electric motor
JP2802862B2 (en) Method for manufacturing core of electric motor
JP5277514B2 (en) Method for manufacturing rotor core with magnet of rotating electrical machine
JPH06303747A (en) Method and apparatus for manufacturing wound stator core
JP2834988B2 (en) Method for manufacturing laminated core of rotating electric machine
JP2006353038A (en) Armature, brushless motor, and winding method of armature
JP5456375B2 (en) Electric motor
JP2892225B2 (en) Spiral coil manufacturing equipment
JP5150349B2 (en) Winding jig, rectangular coil manufacturing method, rectangular coil
JP2008220170A (en) Rotor laminated core and method for manufacturing the same
JP3198277B2 (en) Core structure of coil winding machine
JP2010067790A (en) Edge-wise coil and manufacturing device thereof
JP3570946B2 (en) Winding method, winding jig and winding device
JP6595695B2 (en) Stator and conductive wire winding method
JP4872449B2 (en) STATOR COIL SETTING METHOD AND SETTING DEVICE, AND ROTARY ELECTRIC MANUFACTURING METHOD
JP3685628B2 (en) Continuous unwinding device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110714

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Ref document number: 4867416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3