JP4867161B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4867161B2
JP4867161B2 JP2004342240A JP2004342240A JP4867161B2 JP 4867161 B2 JP4867161 B2 JP 4867161B2 JP 2004342240 A JP2004342240 A JP 2004342240A JP 2004342240 A JP2004342240 A JP 2004342240A JP 4867161 B2 JP4867161 B2 JP 4867161B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004342240A
Other languages
Japanese (ja)
Other versions
JP2006156008A (en
Inventor
泰史 上坊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2004342240A priority Critical patent/JP4867161B2/en
Publication of JP2006156008A publication Critical patent/JP2006156008A/en
Application granted granted Critical
Publication of JP4867161B2 publication Critical patent/JP4867161B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、正極活物質粒子表面と粒子界面の少なくとも一部に化合物を形成した、安全性に優れた非水電解質二次電池に関する。 The present invention relates to a non-aqueous electrolyte secondary battery excellent in safety, in which a compound is formed on at least a part of a positive electrode active material particle surface and a particle interface.

近年、携帯用無線電話、携帯用パソコン、携帯用ビデオカメラ等の電子機器が開発され、各種電子機器が携帯可能な程度に小型化されている。それに伴って、内蔵される電池としても、高エネルギー密度を有し、且つ軽量なものが採用されている。   In recent years, electronic devices such as portable radio telephones, portable personal computers, and portable video cameras have been developed, and various electronic devices have been miniaturized to the extent that they can be carried. Accordingly, a battery having a high energy density and a light weight has been adopted as a built-in battery.

そのような要求を満たす典型的な電池は、金属リチウム、リチウム合金またはリチウムを可逆的に吸蔵および放出可能な炭素を負極活物質とし、リチウムを可逆的に吸蔵および放出可能な正極活物質を用い、LiClO、LiPF等のリチウム塩を溶解した非プロトン性の有機溶媒を電解液とする非水電解質二次電池である。 A typical battery that satisfies such a requirement uses metallic lithium, a lithium alloy, or carbon capable of reversibly occluding and releasing lithium as a negative electrode active material and using a positive electrode active material capable of reversibly occluding and releasing lithium. , A non-aqueous electrolyte secondary battery using an aprotic organic solvent in which a lithium salt such as LiClO 4 or LiPF 6 is dissolved as an electrolytic solution.

非水電解質二次電池の中では、特に、負極活物質としてリチウムを可逆的に吸蔵および放出可能な炭素を用い、正極活物質としてLiCoO、LiNiOまたはLiMnなどのリチウム遷移金属複合酸化物を用いたリチウムイオン電池は、エネルギー密度が高く、充放電サイクル特性に優れることから実用に適している。
Among non-aqueous electrolyte secondary batteries, in particular, carbon capable of reversibly occluding and releasing lithium is used as the negative electrode active material, and lithium transition metal composites such as LiCoO 2 , LiNiO 2 or LiMn 2 O 4 are used as the positive electrode active material. A lithium ion battery using an oxide is suitable for practical use because of its high energy density and excellent charge / discharge cycle characteristics.

リチウムイオン電池などの非水電解質二次電池は、正極の電位が非常に貴であり、負極の電位が非常に卑であるために、高電圧となり、エネルギー密度の高い二次電池をえることができる。   Non-aqueous electrolyte secondary batteries, such as lithium ion batteries, have a very positive potential on the positive electrode and a very low potential on the negative electrode. it can.

しかし、非水電解質二次電池の電解質には通常液体の有機電解液が用いられ、電解液溶媒が高電位の正極で酸化分解されやすい。電解液溶媒の分解によって、電池内ではガスが発生し、同時に発熱が起こる。   However, a liquid organic electrolyte is usually used for the electrolyte of the nonaqueous electrolyte secondary battery, and the electrolyte solvent is easily oxidatively decomposed by the positive electrode having a high potential. Due to the decomposition of the electrolyte solvent, gas is generated in the battery and heat is generated at the same time.

電池内で発生したガスが、電極表面とセパレータの間にたまると、活物質と電解液の接触が妨げられ、電池特性が劣化する。また、発生したガスと熱の影響で、電池が膨れ、漏液が起こり、場合によっては発火などの危険な状態になる恐れも考えられる。これらの問題は、高温で電池を放置した場合や、高温で過充電した場合に、特に顕著であった。   If the gas generated in the battery accumulates between the electrode surface and the separator, the contact between the active material and the electrolytic solution is hindered, and the battery characteristics deteriorate. In addition, due to the generated gas and heat, the battery may swell, liquid leakage may occur, and in some cases, a dangerous state such as ignition may occur. These problems were particularly remarkable when the battery was left at a high temperature or overcharged at a high temperature.

電解液溶媒の分解を防止するための方法として、特許文献1に、正極活物質粒子表面をLiF、TiF、VFなどの金属フッ化物からなる被膜で覆う技術が開示されている。また、特許文献2に、一般式LiMO(Mは、NiまたはNiおよびその他1種以上の遷移金属元素)で表される複合酸化物からなる正極活物質粒子表面を、LiVOなどのバナジウム化合物で被覆する技術が開示されている。さらに、特許文献3に、活物質粒子表面の少なくとも一部をリチウムイオン伝導性ガラスで被覆する技術が開示されている。 As a method for preventing the decomposition of the electrolyte solvent, Patent Document 1 discloses a technique in which the surface of the positive electrode active material particles is covered with a film made of a metal fluoride such as LiF, TiF 4 , or VF 5 . In Patent Document 2, a surface of a positive electrode active material particle made of a composite oxide represented by a general formula LiMO 2 (M is Ni or Ni and one or more other transition metal elements) is defined as Li 3 VO 4 or the like. Techniques for coating with vanadium compounds are disclosed. Furthermore, Patent Document 3 discloses a technique for covering at least a part of the surface of the active material particles with lithium ion conductive glass.

しかし、これらの従来の技術では、溶媒の分解抑制効果は不十分であり、高温過充電時に電池が不安全に陥るという問題があった。   However, these conventional techniques have a problem that the effect of suppressing the decomposition of the solvent is insufficient, and the battery falls unsafe during high-temperature overcharge.

さらに、非水電解質二次電池を電気自動車用などに使用する場合には、電池の容量が5Ah以上の大型となり、特に、高温での過充電の安全性が重視されるようになってきた。   Furthermore, when the non-aqueous electrolyte secondary battery is used for an electric vehicle or the like, the capacity of the battery becomes a large size of 5 Ah or more, and in particular, safety of overcharge at a high temperature has been emphasized.

そこで本発明は、このような課題を解決するためになされたものであり、正極活物質粒子表面での電解液溶媒の酸化分解を抑制することにより、安全性に優れた、特に高温過充電時の安全性に優れた非水電解質二次電池を提供することを目的とするものである。   Therefore, the present invention has been made to solve such problems, and by suppressing the oxidative decomposition of the electrolyte solvent on the surface of the positive electrode active material particles, it has excellent safety, particularly at high temperature overcharge. An object of the present invention is to provide a non-aqueous electrolyte secondary battery excellent in safety.

特開平8−264183号公報JP-A-8-264183 特開2002−260660号公報JP 2002-260660 A 特開2003−173770号公報JP 2003-173770 A

請求項1の発明は、正極と負極と非水電解質とを備えた非水電解質二次電池において、正極活物質粒子表面と粒子界面の少なくとも一部に、Li PFO 、NaHF およびKHF から選ばれた少なくとも1種の化合物を形成したことを特徴とする。 The invention of claim 1 is a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte. Li 2 PFO 3 , NaHF 2 and KHF 2 are formed on at least a part of the positive electrode active material particle surface and the particle interface. And at least one compound selected from the group consisting of:

請求項の発明は、上記非水電解質二次電池において、正極活物質粒子表面と粒子界面の少なくとも一部に形成した化合物の正極活物質に対する割合が0.05〜5重量%であることを特徴とする。
According to a second aspect of the present invention, in the nonaqueous electrolyte secondary battery, the ratio of the compound formed on at least a part of the positive electrode active material particle surface and the particle interface to the positive electrode active material is 0.05 to 5% by weight. Features.

本発明によれば、正極活物質粒子表面と粒子界面の少なくとも一部に、アルカリ金属とフッ素を含み、さらにリン、酸素、水素から選ばれた少なくとも1種の元素を含む化合物を形成することにより、正極活物質と電解液との接触面積を小さくすることで、電解液溶媒の酸化分解を抑制し、安全性に優れた非水電解質二次電池を得ることができる。   According to the present invention, by forming at least a part of the positive electrode active material particle surface and the particle interface a compound containing an alkali metal and fluorine and further containing at least one element selected from phosphorus, oxygen, and hydrogen. By reducing the contact area between the positive electrode active material and the electrolytic solution, it is possible to suppress the oxidative decomposition of the electrolytic solution solvent and obtain a non-aqueous electrolyte secondary battery excellent in safety.

本発明は、正極と負極と非水電解質とを備えた非水電解質二次電池において、正極活物質粒子表面と粒子界面の少なくとも一部に、アルカリ金属とフッ素を含み、さらにリン、酸素、水素から選ばれた少なくとも1種の元素を含む化合物を形成したことを特徴とするもので、本発明により、正極活物質と電解液との接触面積を小さくすることで、電解液溶媒の酸化分解を抑制し、安全性に優れた非水電解質二次電池を得ることができる。   The present invention relates to a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein at least part of the positive electrode active material particle surface and the particle interface contains an alkali metal and fluorine, and further contains phosphorus, oxygen, hydrogen According to the present invention, the contact area between the positive electrode active material and the electrolytic solution is reduced to reduce the oxidative decomposition of the electrolytic solution solvent. It is possible to obtain a nonaqueous electrolyte secondary battery that is suppressed and excellent in safety.

本発明において、アルカリ金属とフッ素を含み、さらにリン、酸素、水素から選ばれた少なくとも1種の元素を含む化合物としては、具体的には、LiPF(0<x<4、0<y<6、0<z<4)、NaHFまたはKHFなどの化合物、あるいはこれら化合物の混合物を用いることができる。これらの化合物の中では、電解液との反応性が低いことから、LiPF(0<x<4、0<y<6、0<z<4)が好ましい。 In the present invention, the compound containing an alkali metal and fluorine and further containing at least one element selected from phosphorus, oxygen, and hydrogen is specifically Li x PF y O z (0 <x <4, A compound such as 0 <y <6, 0 <z <4), NaHF 2 or KHF 2 or a mixture of these compounds can be used. Among these compounds, Li x PF y O z (0 <x <4, 0 <y <6, 0 <z <4) is preferable because of low reactivity with the electrolytic solution.

化合物LiPFにおいて、x、yおよびzがこの範囲以外のものは、現在のところ、合成することができない。 In the compound Li x PF y O z , x, y and z outside this range cannot be synthesized at present.

正極活物質粒子表面と粒子界面の少なくとも一部に化合物を形成する方法としては、例えば湿式法やメカニカルミーリング法を用いることができ、化合物は正極活物質粒子表面と粒子界面に、粒子状や被膜状に形成される。これらの方法以外にも、正極活物質粒子表面にリチウム化合物を形成した後、フッ素雰囲気に保つ方法などを用いることができる。   As a method for forming a compound on at least a part of the positive electrode active material particle surface and the particle interface, for example, a wet method or a mechanical milling method can be used. It is formed into a shape. In addition to these methods, a method of maintaining a fluorine atmosphere after forming a lithium compound on the surface of the positive electrode active material particles can be used.

湿式法の例としては、水酸化リチウム(LiOH)の飽和溶液中に正極活物質を一定時間浸漬させ(リップコーティング法)、ブフナーロートで吸引ろ過した後、100℃を越える温度で数時間乾燥させ、その後、フッ化ホスホリルガス(POF)中に一定時間曝して被膜する方法がある。 As an example of the wet method, a positive electrode active material is immersed in a saturated solution of lithium hydroxide (LiOH) for a certain period of time (lip coating method), suction filtered with a Buchner funnel, and then dried at a temperature exceeding 100 ° C. for several hours. Then, there is a method of coating by exposing to phosphoryl fluoride gas (POF 3 ) for a certain time.

メカニカルミーリング法の例としては、正極活物質と水酸化リチウム(LiOH)粉末とを、目的の重量比となるように秤量・混合した後に、フッ化ホスホニルガス(POF)中で一定時間メカニカルミーリングする方法がある。 As an example of the mechanical milling method, a positive electrode active material and lithium hydroxide (LiOH) powder are weighed and mixed so as to have a target weight ratio, and then mechanically milled in phosphonyl fluoride gas (POF 3 ) for a certain period of time. There is a way.

本発明において、正極活物質粒子表面と粒子界面の少なくとも一部に形成した化合物の正極活物質に対する好適な割合は0.05〜5重量%とすることが好ましい。0.05重量%未満の場合には、正極活物質粒子表面の化合物量が少ないため、正極活物質と電解液との接触を妨げることが不十分で、正極での電解液溶媒の酸化分解を有効に抑制することができない。また、5重量%を越える場合には、化合物の抵抗が大きく、電池の内部抵抗が上昇し、充放電時の電圧低下が大きくなり、電池内の正極活物質量が少なくなって、電池のエネルギー密度が小さくなってしまう。   In this invention, it is preferable that the suitable ratio with respect to the positive electrode active material of the compound formed in at least one part of the positive electrode active material particle surface and particle | grain interface shall be 0.05-5 weight%. When the amount is less than 0.05% by weight, the amount of the compound on the surface of the positive electrode active material particles is small, so that the contact between the positive electrode active material and the electrolytic solution is insufficient to prevent oxidative decomposition of the electrolytic solution solvent at the positive electrode. It cannot be effectively suppressed. If it exceeds 5% by weight, the resistance of the compound is large, the internal resistance of the battery is increased, the voltage drop during charging and discharging is increased, the amount of the positive electrode active material in the battery is reduced, and the energy of the battery Density will decrease.

なお、上記好適な化合物の重量割合に対応して、化合物の厚さは、正極活物質粒子の大きさにもよるが、0.01〜1μmの範囲とすることが好ましい。化合物の厚みは、光電子分光法(XPS)の深さ方向の測定の際に用いるアルゴンエッチングに要する時間と各元素のエッチング率によって確認することができる。   The thickness of the compound is preferably in the range of 0.01 to 1 μm, although it depends on the size of the positive electrode active material particles, corresponding to the weight ratio of the preferable compound. The thickness of the compound can be confirmed by the time required for argon etching used for measurement in the depth direction of photoelectron spectroscopy (XPS) and the etching rate of each element.

正極活物質粒子表面と粒子界面の少なくとも一部に形成した化合物と正極活物質との割合は、湿式法やメカニカルミーリング法における、化合物原料と正極活物質との重量比によって調製することができる。また、正極活物質粒子表面と粒子界面の少なくとも一部に形成された化合物の組成は、飛行時間型二次イオン質量分析(TOF−SIMS)の負二次イオンスペクトルとICPの併用によって確認することができる。さらに、化合物と正極活物質との重量比はICP分析によって確認することができる。   The ratio of the compound formed on at least part of the positive electrode active material particle surface and the particle interface to the positive electrode active material can be adjusted by the weight ratio of the compound raw material and the positive electrode active material in a wet method or a mechanical milling method. The composition of the compound formed on at least a part of the positive electrode active material particle surface and the particle interface should be confirmed by the combined use of negative secondary ion spectrum of time-of-flight secondary ion mass spectrometry (TOF-SIMS) and ICP. Can do. Furthermore, the weight ratio between the compound and the positive electrode active material can be confirmed by ICP analysis.

正極活物質粒子表面の少なくとも一部に化合物が形成された状態の模式図を図1〜図5に示す。図1〜図5において、1は正極活物質粒子、2はアルカリ金属とフッ素を含み、さらにリン、酸素、水素から選ばれた少なくとも1種の元素を含む化合物、3はカーボン、4は粒子界面の少なくとも一部に形成された化合物である。   1 to 5 are schematic views showing a state in which a compound is formed on at least a part of the surface of the positive electrode active material particles. 1 to 5, 1 is a positive electrode active material particle, 2 is a compound containing alkali metal and fluorine, and further containing at least one element selected from phosphorus, oxygen, and hydrogen, 3 is carbon, and 4 is a particle interface. A compound formed on at least a part of

図1は、正極活物質粒子表面の一部に化合物を形成した場合を示し、この場合には活物質粒子間の電子伝導は、化合物が形成されていない表面同士の接触によって行われる。しかし、図2に示したように、正極活物質粒子表面全体に化合物が形成された場合には、活物質粒子間の電子伝導を保つことが困難になるので、図3に示すように、化合物中にアセチレンブラックなどの導電性物質を含ませるか、あるいは図4に示したように、個々の正極活物質粒子間の接触が保持された状態で化合物を形成することにより、正極活物質粒子間の電子伝導性を保つことができる。なお、図1の正極活物質粒子表面の一部に化合物を形成した場合においても、化合物中に導電性物質を含ませてもよい。また、正極活物質粒子が凝集して二次粒子を形成する場合には、図5に示すように、粒子界面の少なくとも一部に化合物4を形成してもよい。   FIG. 1 shows a case where a compound is formed on a part of the surface of the positive electrode active material particles. In this case, electronic conduction between the active material particles is performed by contact between surfaces on which no compound is formed. However, as shown in FIG. 2, when a compound is formed on the entire surface of the positive electrode active material particles, it becomes difficult to maintain electronic conduction between the active material particles. By containing a conductive material such as acetylene black in the inside, or as shown in FIG. 4, by forming a compound in a state in which the contact between the individual positive electrode active material particles is maintained, Can maintain the electron conductivity. Even when the compound is formed on a part of the surface of the positive electrode active material particle in FIG. 1, a conductive material may be included in the compound. When the positive electrode active material particles are aggregated to form secondary particles, the compound 4 may be formed on at least a part of the particle interface as shown in FIG.

本発明の非水電解質二次電池の容量は、特に限定されず、小型電池にも大型電池にも適用可能であるが、大型電池の場合には、発火などが起きた場合には大事故につながる可能性があり、安全性が特に重視されるため、容量が5Ah以上の大型の非水電解質二次電池の場合に、特に有効である。   The capacity of the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, and can be applied to both small batteries and large batteries. However, in the case of large batteries, a large accident may occur if ignition occurs. This is particularly effective in the case of a large-sized non-aqueous electrolyte secondary battery having a capacity of 5 Ah or more.

本発明の非水電解質二次電池に用いる正極活物質としては、従来から非水電解質二次電池に用いられてきた活物質を用いることができる。例えば、一般式Li(ただし、MはNi、Co、Mnから選ばれた少なくとも1種の元素、または、2種もしくは3種の元素の混合物、AはNi、Co、Mnを除く遷移金属元素、0<x≦1、0≦z≦0.5、0.9≦y+z≦1.1)で表されるリチウム複合酸化物や一般式LiMn2−b(ただし、BはMnを除く遷移金属元素、0<a≦1、0≦b≦1)で表されるスピネル型リチウムマンガン複合酸化物、オリビン材料などを単独で、または2種以上混合して用いることができる。具体的には、LiCoO、LiNiO、MnO2、LiMn24、LiCoPO、LiVOPOなどを用いることができる。 As the positive electrode active material used in the non-aqueous electrolyte secondary battery of the present invention, an active material conventionally used in non-aqueous electrolyte secondary batteries can be used. For example, the general formula Li x M y A z O 2 (where M is at least one element selected from Ni, Co, and Mn, or a mixture of two or three elements, A is Ni, Co, Transition metal elements excluding Mn, 0 <x ≦ 1, 0 ≦ z ≦ 0.5, 0.9 ≦ y + z ≦ 1.1), and lithium composite oxides or general formula Li a Mn 2-b B b Spinel type lithium manganese composite oxide represented by O 4 (where B is a transition metal element excluding Mn, 0 <a ≦ 1, 0 ≦ b ≦ 1), olivine material, or a mixture of two or more thereof Can be used. Specifically, the like can be used LiCoO 2, LiNiO 2, MnO 2 , LiMn 2 O 4, LiCoPO 4, LiVOPO 4.

本発明の非水電解質二次電池に用いる負極活物質としては、リチウムを吸蔵・放出することができる炭素(例えば、天然黒鉛、人造黒鉛、鱗片状黒鉛、低結晶性炭素、ソフトカーボン、ハードカーボン、活性炭)、リチウムと合金化反応するケイ素、スズなどの化合物を、混合またはメッキした混合材料などを用いることができる。   As the negative electrode active material used in the nonaqueous electrolyte secondary battery of the present invention, carbon capable of occluding and releasing lithium (for example, natural graphite, artificial graphite, flake graphite, low crystalline carbon, soft carbon, hard carbon) , Activated carbon), mixed materials obtained by mixing or plating compounds such as silicon and tin that are alloyed with lithium can be used.

本発明の非水電解質二次電池の電解液溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、エチルアセテート、メチルプロピオネート等の溶媒およびこれらの混合溶媒を使用することができる。   As the electrolyte solution solvent of the non-aqueous electrolyte secondary battery of the present invention, solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, ethyl acetate, methyl propionate, and mixtures thereof A solvent can be used.

本発明の非水電解質二次電池の電解質塩としては、LiPF、LiPF(C、LiBF、LiAsF、LiClO、LiSCN、LiCFCO、LiCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCFおよびLiN(COCFCF、LiB(Cなどの塩もしくはこれらの混合物を使用することができる。 As the electrolyte salt of the non-aqueous electrolyte secondary battery of the present invention, LiPF 6, LiPF 3 (C 2 F 5) 3, LiBF 4, LiAsF 6, LiClO 4, LiSCN, LiCF 3 CO 2, LiCF 3 SO 3, LiN Salts such as (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2, LiN (COCF 2 CF 3 ) 2 , LiB (C 2 O 4 ) 2 or mixtures thereof Can be used.

本発明の非水電解質二次電池においては、電解質中に添加剤を添加することが望ましい。例えば、ビニレンカボーネートおよびその誘導体、ビフェニルやシクロヘキシルベンゼンなどのベンゼン類、プロパンスルトンなどの硫黄類、エチレンサルファイド、トリアゾール系環状化合物、フッ素含有エステル類、テトラエチルアンモニウムフルオライドのフッ化水素錯体またはこれらの誘導体、ホスファゼンおよびその誘導体、アミド基含有化合物、イミノ基含有化合物、または窒素含有化合物からなる群から選択される少なくとも1種を含有しても使用できる。   In the nonaqueous electrolyte secondary battery of the present invention, it is desirable to add an additive to the electrolyte. For example, vinylene carbonate and derivatives thereof, benzenes such as biphenyl and cyclohexylbenzene, sulfurs such as propane sultone, ethylene sulfide, triazole-based cyclic compounds, fluorine-containing esters, hydrogen fluoride complexes of tetraethylammonium fluoride, or these Or at least one selected from the group consisting of amide group-containing compounds, imino group-containing compounds, and nitrogen-containing compounds.

本発明の非水電解質二次電池の発電要素の形状としては、正極板および負極板とも帯状電極を用いた円筒型や長円筒型の巻回型が最適であるが、平板電極を積層した形状とすることも可能である。   As the shape of the power generation element of the nonaqueous electrolyte secondary battery of the present invention, the positive electrode plate and the negative electrode plate are optimally a cylindrical type or a long cylindrical type using a strip electrode, but a shape in which flat plate electrodes are laminated. It is also possible.

本発明の非水電解質二次電池の形状としては、円筒型、長円筒型、角型などの従来から用いられているあらゆる形状を用いることができる。また、電池ケースとしては、アルミニウム合金などの金属ケースや、アルミニウムなどの金属と樹脂を積層したラミネート型ケースを用いることができる。   As the shape of the non-aqueous electrolyte secondary battery of the present invention, any conventionally used shape such as a cylindrical shape, a long cylindrical shape, and a rectangular shape can be used. As the battery case, a metal case such as an aluminum alloy or a laminate type case in which a metal such as aluminum and a resin are laminated can be used.

以下では、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではなく、その趣旨を変更しない範囲において適宜変更して実施することが可能なものである。   In the following, the present invention will be described in more detail based on examples. However, the present invention is not limited to these examples, and can be implemented with appropriate modifications without departing from the scope of the present invention. Is.

[実施例1〜7および比較例1、2]
[実施例1]
正極活物質として平均粒子径15μmのLiCoOを用いた。このLiCoO粒子表面に、リップコーティング法(湿式法)によってLiOHを形成させ、その後、100mlのPFOガス中に10分間曝してLiPFOの組成に調節した化合物を形成した。
[Examples 1 to 7 and Comparative Examples 1 and 2]
[Example 1]
LiCoO 2 having an average particle size of 15 μm was used as the positive electrode active material. LiOH was formed on the surface of the LiCoO 2 particles by a lip coating method (wet method), and then exposed to 100 ml of PFO 3 gas for 10 minutes to form a compound adjusted to the composition of Li 2 PFO 3 .

ICP分析によれば、正極活物質粒子表面に形成した化合物LiPFOの正極活物質に対する割合は2重量%であり、EPMAによれば、化合物は図1に示したように正極活物質粒子表面の一部に形成されていた。 According to the ICP analysis, the ratio of the compound Li 2 PFO 3 formed on the surface of the positive electrode active material particles to the positive electrode active material is 2% by weight. According to EPMA, the compound is positive electrode active material particles as shown in FIG. It was formed on a part of the surface.

このようにして得られた粒子表面の一部に化合物LiPFOを形成したLiCoOに対して、カーボンブラックとポリフッ化ビニリデンを溶解させたN−メチルピロリドン溶液を加え、正極活物質88wt%に対して、カーボンブラックが7wt%、ポリフッ化ビニリデンが5wt%の割合になるようにし、これらを混練してスラリーを作成した。そして、このスラリーをアルミニウム箔にドクターブレード法により塗布し、これを150℃で真空乾燥させて正極板を作製した。 An N-methylpyrrolidone solution in which carbon black and polyvinylidene fluoride are dissolved is added to LiCoO 2 in which the compound Li 2 PFO 3 is formed on a part of the particle surface thus obtained, and the positive electrode active material is 88 wt%. On the other hand, the carbon black content was 7 wt% and the polyvinylidene fluoride content was 5 wt%, and these were kneaded to prepare a slurry. And this slurry was apply | coated to the aluminum foil by the doctor blade method, this was vacuum-dried at 150 degreeC, and the positive electrode plate was produced.

一方、負極板は、厚さ15μmの銅箔集電体の両面に、グラファイト(黒鉛)92wt%とPVDF8wt%とを混合し、適宜N−メチルピロリドンを加えてペースト状に調製したものを塗布・乾燥することによって作製した。   On the other hand, the negative electrode plate was prepared by mixing 92% by weight of graphite (graphite) and 8% by weight of PVDF on both sides of a 15 μm thick copper foil current collector, and appropriately adding N-methylpyrrolidone to form a paste. It was prepared by drying.

上記のようにして作製した正極板、負極板と、厚さ25μmのポリエチレン製セパレータを用いて巻回型電極群とし、この電極群をアルミニウム合金製電池ケースに入れて、電解液を注液し、大きさ幅80mm、厚さ20mm、高さ100mmで、25℃、電流5Aで放電した場合の、100サイクル目の放電容量が約10Ahの、実施例1の長円筒型非水電解質二次電池を作製した。   A positive electrode plate and a negative electrode plate prepared as described above and a polyethylene separator having a thickness of 25 μm are used as a wound electrode group. The electrode group is placed in an aluminum alloy battery case, and an electrolyte is injected. A long cylindrical non-aqueous electrolyte secondary battery of Example 1 having a discharge capacity of about 10 Ah when discharged at 25 ° C. and a current of 5 A, with a size width of 80 mm, a thickness of 20 mm, and a height of 100 mm. Was made.

作製した長円筒型非水電解質二次電池の外観を図6に示す。図6において、11は電池ケース、12は電池蓋、13は正極端子、14は負極端子、15はハーメチックシール、16は安全弁、17は注液口である。電池ケース11には巻回長円筒型発電要素(図示せず)が収納され、電池ケース11と電池蓋はレーザー溶接されている。   The external appearance of the produced long cylindrical nonaqueous electrolyte secondary battery is shown in FIG. In FIG. 6, 11 is a battery case, 12 is a battery lid, 13 is a positive terminal, 14 is a negative terminal, 15 is a hermetic seal, 16 is a safety valve, and 17 is a liquid injection port. The battery case 11 houses a wound long cylindrical power generation element (not shown), and the battery case 11 and the battery lid are laser welded.

[実施例2]
正極活物質として平均粒子径12μmのLiNiOを用いたこと以外は実施例1と同様にして、実施例2の非水電解質二次電池を作製した。
[Example 2]
A nonaqueous electrolyte secondary battery of Example 2 was produced in the same manner as Example 1 except that LiNiO 2 having an average particle diameter of 12 μm was used as the positive electrode active material.

[実施例3]
正極活物質として平均粒子径11μmのLiCo0.2Ni0.8を用いたこと以外は実施例1と同様にして、実施例3の非水電解質二次電池を作製した。
[Example 3]
A nonaqueous electrolyte secondary battery of Example 3 was produced in the same manner as Example 1 except that LiCo 0.2 Ni 0.8 O 2 having an average particle diameter of 11 μm was used as the positive electrode active material.

[実施例4]
正極活物質として平均粒子径12μmのLiCo0.33Ni0.33Mn0.33を用いたこと以外は実施例1と同様にして、実施例4の非水電解質二次電池を作製した。
[Example 4]
A nonaqueous electrolyte secondary battery of Example 4 was produced in the same manner as Example 1 except that LiCo 0.33 Ni 0.33 Mn 0.33 O 2 having an average particle diameter of 12 μm was used as the positive electrode active material. .

[実施例5]
正極活物質として平均粒子径15μmのスピネル型LiMnを用いたこと以外は実施例1と同様にして、実施例5の非水電解質二次電池を作製した。
[Example 5]
A nonaqueous electrolyte secondary battery of Example 5 was produced in the same manner as Example 1 except that spinel type LiMn 2 O 4 having an average particle diameter of 15 μm was used as the positive electrode active material.

[実施例6]
正極活物質として平均粒子径15μmのスピネル型LiMn1.5Ni0.5を用いたこと以外は実施例1と同様にして、実施例6の非水電解質二次電池を作製した。
[Example 6]
A nonaqueous electrolyte secondary battery of Example 6 was produced in the same manner as Example 1 except that spinel type LiMn 1.5 Ni 0.5 O 4 having an average particle diameter of 15 μm was used as the positive electrode active material.

[実施例7]
メカニカルミーリング法によって化合物LiPFOを形成したこと以外は実施例1と同様にして、実施例7の非水電解質二次電池を作製した。
[Example 7]
A nonaqueous electrolyte secondary battery of Example 7 was produced in the same manner as in Example 1 except that the compound Li 2 PFO 3 was formed by the mechanical milling method.

[比較例1]
正極活物質粒子表面に化合物を形成しなかったこと以外は実施例1と同様にして、比較例1の非水電解質二次電池を作製した。
[Comparative Example 1]
A nonaqueous electrolyte secondary battery of Comparative Example 1 was produced in the same manner as in Example 1 except that no compound was formed on the surface of the positive electrode active material particles.

[比較例2]
固相法によって、正極活物質粒子表面にフッ化リチウム(LiF)を形成したこと以外は実施例1と同様にして、比較例2の非水電解質二次電池を作製した。
[Comparative Example 2]
A nonaqueous electrolyte secondary battery of Comparative Example 2 was produced in the same manner as in Example 1 except that lithium fluoride (LiF) was formed on the surface of the positive electrode active material particles by the solid phase method.

実施例1〜7および比較例1、2の非水電解質二次電池を、40℃において電流10Aで過充電試験を行い、電池の状態を観察した。電池の内容を表1に、また試験結果を表2にまとめた。なお、電池膨れは、過充電試験前後の、長円筒型電池の側面の平坦部(図6の×印の部分)の厚さの差から求めた。   The nonaqueous electrolyte secondary batteries of Examples 1 to 7 and Comparative Examples 1 and 2 were subjected to an overcharge test at a current of 10 A at 40 ° C., and the state of the batteries was observed. The contents of the battery are summarized in Table 1, and the test results are summarized in Table 2. In addition, the battery swelling was calculated | required from the thickness difference of the flat part (part of x mark of FIG. 6) of the side surface of a long cylindrical battery before and after an overcharge test.

Figure 0004867161
Figure 0004867161

Figure 0004867161
Figure 0004867161

表1および表2の結果から、本発明の実施例1〜7の電池はきわめて安全性が高く、電池の膨れも小さいことが示された。一方、正極活物質粒子表面に化合物を形成しなかった比較例1の電池は発火し、正極活物質粒子表面にフッ化リチウム(LiF)の被膜を形成した比較例2の電池では漏液が見られた。   From the results of Table 1 and Table 2, it was shown that the batteries of Examples 1 to 7 of the present invention were extremely safe and the swelling of the batteries was small. On the other hand, the battery of Comparative Example 1 in which no compound was formed on the surface of the positive electrode active material particles ignited, and the battery of Comparative Example 2 in which a lithium fluoride (LiF) film was formed on the surface of the positive electrode active material particles showed liquid leakage. It was.

また、本発明の実施例1〜7の電池のように、正極活物質の種類や化合物の取り付け方法が異なる場合でも、電池の安全性を確保できることがわかった。   Moreover, even if the kind of positive electrode active material and the attachment method of a compound differ like the batteries of Examples 1-7 of this invention, it turned out that the safety | security of a battery can be ensured.

[実施例8〜11]
[実施例8]
湿式法によって、平均粒子径15μmのLiCoO粒子の表面にLiPF2を形成したこと以外は実施例1と同様にして、実施例8の非水電解質二次電池を作製した。
[Examples 8 to 11]
[Example 8]
A nonaqueous electrolyte secondary battery of Example 8 was produced in the same manner as Example 1 except that Li 2 PF 3 O 2 was formed on the surface of LiCoO 2 particles having an average particle diameter of 15 μm by a wet method.

[実施例9]
湿式法によって、平均粒子径15μmのLiCoO粒子の表面にLiPF22を形成したこと以外は実施例1と同様にして、実施例9の非水電解質二次電池を作製した。
[Example 9]
A nonaqueous electrolyte secondary battery of Example 9 was produced in the same manner as in Example 1 except that LiPF 2 O 2 was formed on the surface of LiCoO 2 particles having an average particle diameter of 15 μm by a wet method.

[実施例10]
湿式法によって、平均粒子径15μmのLiCoO粒子の表面にNaHFを形成したこと以外は実施例1と同様にして、実施例10の非水電解質二次電池を作製した。
[Example 10]
A nonaqueous electrolyte secondary battery of Example 10 was produced in the same manner as in Example 1 except that NaHF 2 was formed on the surface of LiCoO 2 particles having an average particle diameter of 15 μm by a wet method.

[実施例11]
湿式法によって、平均粒子径15μmのLiCoO粒子の表面にKHFを形成したこと以外は実施例1と同様にして、実施例11の非水電解質二次電池を作製した。
[Example 11]
A nonaqueous electrolyte secondary battery of Example 11 was produced in the same manner as in Example 1 except that KHF 2 was formed on the surface of LiCoO 2 particles having an average particle diameter of 15 μm by a wet method.

実施例8〜11の非水電解質二次電池を、実施例1と同様、40℃において電流10Aで過充電試験を行い、電池の状態を観察し、電池膨れを測定した。その結果、いずれの電池も、1時間後にも異常なく、電池の膨れは、実施例8の電池では1.2mm、実施例9の電池では1.2mm、実施例10の電池では1.2mm、実施例11の電池では1.1mmと、いずれも実施例1の電池と同程度であった。   The non-aqueous electrolyte secondary batteries of Examples 8 to 11 were subjected to an overcharge test at a current of 10 A at 40 ° C. in the same manner as in Example 1, the state of the battery was observed, and the battery swelling was measured. As a result, none of the batteries were abnormal after 1 hour, and the swelling of the batteries was 1.2 mm for the battery of Example 8, 1.2 mm for the battery of Example 9, 1.2 mm for the battery of Example 10, The battery of Example 11 was 1.1 mm, which was almost the same as the battery of Example 1.

この結果から、正極活物質粒子表面に形成する化合物の種類が異なる場合でも、電池の安全性は高く、電池の膨れは小さいことがわかった。   From these results, it was found that even when the types of compounds formed on the surfaces of the positive electrode active material particles are different, the safety of the battery is high and the swelling of the battery is small.

[実施例12〜15および比較例3〜6]
[実施例12]
電池の大きさを、幅40mm、厚さ10mm、高さ20mmとし、25℃、電流5Aで放電した場合の、100サイクル目の放電容量が約0.5Ahとしたこと以外は実施例1と同様にして、実施例12の長円筒型非水電解質二次電池を作製した。
[Examples 12 to 15 and Comparative Examples 3 to 6]
[Example 12]
Similar to Example 1, except that the battery size was 40 mm wide, 10 mm thick, 20 mm high, and the discharge capacity at the 100th cycle was about 0.5 Ah when discharged at 25 ° C. and a current of 5 A. Thus, a long cylindrical nonaqueous electrolyte secondary battery of Example 12 was produced.

[実施例13]
電池の大きさを、幅80mm、厚さ10mm、高さ20mmとし、25℃、電流5Aで放電した場合の、100サイクル目の放電容量が約1.0Ahとしたこと以外は実施例1と同様にして、実施例13の長円筒型非水電解質二次電池を作製した。
[Example 13]
Example 1 except that the battery was 80 mm wide, 10 mm thick, 20 mm high, discharged at 25 ° C. and a current of 5 A, and the discharge capacity at the 100th cycle was about 1.0 Ah. Thus, a long cylindrical nonaqueous electrolyte secondary battery of Example 13 was produced.

[実施例14]
電池の大きさを、幅40mm、厚さ20mm、高さ100mmとし、25℃、電流5Aで放電した場合の、100サイクル目の放電容量が約5Ahとしたこと以外は実施例1と同様にして、実施例14の長円筒型非水電解質二次電池を作製した。
[Example 14]
The battery size is 40 mm in width, 20 mm in thickness, and 100 mm in height, and when discharged at 25 ° C. and a current of 5 A, the discharge capacity at the 100th cycle is about 5 Ah. A long cylindrical nonaqueous electrolyte secondary battery of Example 14 was produced.

[実施例15]
電池の大きさを、幅80mm、厚さ20mm、高さ200mmとし、25℃、電流5Aで放電した場合の、100サイクル目の放電容量が約20Ahとしたこと以外は実施例1と同様にして、実施例15の長円筒型非水電解質二次電池を作製した。
[Example 15]
The battery size was 80 mm wide, 20 mm thick, 200 mm high, and when discharged at 25 ° C. and a current of 5 A, the discharge capacity at the 100th cycle was about 20 Ah. A long cylindrical nonaqueous electrolyte secondary battery of Example 15 was produced.

[比較例3]
正極活物質粒子表面に化合物を形成しなかったこと以外は実施例12と同様にして、比較例3の非水電解質二次電池を作製した。
[Comparative Example 3]
A nonaqueous electrolyte secondary battery of Comparative Example 3 was produced in the same manner as in Example 12 except that no compound was formed on the surface of the positive electrode active material particles.

[比較例4]
正極活物質粒子表面に化合物を形成しなかったこと以外は実施例13と同様にして、比較例4の非水電解質二次電池を作製した。
[Comparative Example 4]
A nonaqueous electrolyte secondary battery of Comparative Example 4 was produced in the same manner as in Example 13 except that no compound was formed on the surface of the positive electrode active material particles.

[比較例5]
正極活物質粒子表面に化合物を形成しなかったこと以外は実施例14と同様にして、比較例5の非水電解質二次電池を作製した。
[Comparative Example 5]
A nonaqueous electrolyte secondary battery of Comparative Example 5 was produced in the same manner as in Example 14 except that no compound was formed on the surface of the positive electrode active material particles.

[比較例6]
正極活物質粒子表面に化合物を形成しなかったこと以外は実施例15と同様にして、比較例6の非水電解質二次電池を作製した。
[Comparative Example 6]
A nonaqueous electrolyte secondary battery of Comparative Example 6 was produced in the same manner as in Example 15 except that no compound was formed on the surface of the positive electrode active material particles.

実施例12〜15および比較例3〜6の非水電解質二次電池を、実施例1と同様、40℃において電流1CAで過充電試験を行い、電池の状態を観察し、電池膨れを測定した。試験結果を表3にまとめた。なお、表3には比較のため、実施例1の電池の結果も示した。   The nonaqueous electrolyte secondary batteries of Examples 12 to 15 and Comparative Examples 3 to 6 were subjected to an overcharge test at a current of 1 CA at 40 ° C., as in Example 1, to observe the state of the battery and to measure the battery swelling. . The test results are summarized in Table 3. Table 3 also shows the results of the battery of Example 1 for comparison.

Figure 0004867161
Figure 0004867161

表3の結果から、本発明の実施例12〜15の電池は安全性が高く、電池の膨れも小さいことが示された。一方、正極活物質粒子表面に化合物を形成しなかった比較例3〜6の電池では、容量の小さい比較例3および4の電池では漏液が見られ、容量の大きい比較例5および6の電池では発火が見られた。このように、本発明は、実施例14、1およびの15のように、容量が5Ah以上の電池の場合に、特に有効であることがわかった。   From the results in Table 3, it was shown that the batteries of Examples 12 to 15 of the present invention were high in safety and small in battery swelling. On the other hand, in the batteries of Comparative Examples 3 to 6 in which no compound was formed on the surface of the positive electrode active material particles, leakage was observed in the batteries of Comparative Examples 3 and 4 having a small capacity, and the batteries of Comparative Examples 5 and 6 having a large capacity. Then there was a fire. Thus, the present invention was found to be particularly effective in the case of a battery having a capacity of 5 Ah or more, as in Examples 14, 1 and 15.

[実施例16〜25]
[実施例16]
正極活物質粒子表面の一部にLiPFOを形成し、LiPFOの正極活物質に対する割合を0.03重量%としたこと以外は実施例1と同様にして、実施例16の非水電解質二次電池を作製した。
[Examples 16 to 25]
[Example 16]
In the same manner as in Example 1, except that Li 2 PFO 3 was formed on a part of the surface of the positive electrode active material particles, and the ratio of Li 2 PFO 3 to the positive electrode active material was 0.03% by weight. A non-aqueous electrolyte secondary battery was produced.

[実施例17]
LiPFOの正極活物質に対する割合を0.05重量%としたこと以外は実施例16と同様にして、実施例17の非水電解質二次電池を作製した。
[Example 17]
A nonaqueous electrolyte secondary battery of Example 17 was made in the same manner as Example 16 except that the ratio of Li 2 PFO 3 to the positive electrode active material was 0.05% by weight.

[実施例18]
LiPFOの正極活物質に対する割合を1.0重量%としたこと以外は実施例16と同様にして、実施例18の非水電解質二次電池を作製した。
[Example 18]
A nonaqueous electrolyte secondary battery of Example 18 was made in the same manner as Example 16 except that the ratio of Li 2 PFO 3 to the positive electrode active material was 1.0 wt%.

[実施例19]
LiPFOの正極活物質に対する割合を5重量%としたこと以外は実施例16と同様にして、実施例19の非水電解質二次電池を作製した。
[Example 19]
A nonaqueous electrolyte secondary battery of Example 19 was made in the same manner as Example 16 except that the ratio of Li 2 PFO 3 to the positive electrode active material was 5 wt%.

[実施例20]
LiPFOの正極活物質に対する割合を10重量%としたこと以外は実施例16と同様にして、実施例20の非水電解質二次電池を作製した。
[Example 20]
A nonaqueous electrolyte secondary battery of Example 20 was produced in the same manner as Example 16 except that the ratio of Li 2 PFO 3 to the positive electrode active material was 10% by weight.

[実施例21]
図4に示したように、正極活物質粒子表面の全面にLiPFOを形成し、LiPFOの正極活物質に対する割合を0.03重量%、被膜の厚みを0.02μmとしたこと以外は実施例1と同様にして、実施例21の非水電解質二次電池を作製した。
[Example 21]
As shown in FIG. 4, Li 2 PFO 3 was formed on the entire surface of the positive electrode active material particles, the ratio of Li 2 PFO 3 to the positive electrode active material was 0.03% by weight, and the thickness of the coating was 0.02 μm. A nonaqueous electrolyte secondary battery of Example 21 was made in the same manner as Example 1 except for the above.

[実施例22]
LiPFOの正極活物質に対する割合を0.05重量%、被膜の厚みを0.04μmとしたこと以外は実施例21と同様にして、実施例22の非水電解質二次電池を作製した。
[Example 22]
A nonaqueous electrolyte secondary battery of Example 22 was produced in the same manner as in Example 21, except that the ratio of Li 2 PFO 3 to the positive electrode active material was 0.05% by weight and the thickness of the film was 0.04 μm. .

[実施例23]
LiPFOの正極活物質に対する割合を1.0重量%、被膜の厚みを0.11μmとしたこと以外は実施例21と同様にして、実施例23の非水電解質二次電池を作製した
[Example 23]
A nonaqueous electrolyte secondary battery of Example 23 was produced in the same manner as in Example 21 except that the ratio of Li 2 PFO 3 to the positive electrode active material was 1.0 wt% and the thickness of the coating film was 0.11 μm. .

[実施例24]
LiPFOの正極活物質に対する割合を5重量%、被膜の厚みを0.4μmとしたこと以外は実施例21と同様にして、実施例24の非水電解質二次電池を作製した。
[Example 24]
A nonaqueous electrolyte secondary battery of Example 24 was produced in the same manner as in Example 21, except that the ratio of Li 2 PFO 3 to the positive electrode active material was 5% by weight and the thickness of the film was 0.4 μm.

[実施例25]
LiPFOの正極活物質に対する割合を10重量%、被膜の厚みを0.12μmとしたこと以外は実施例21と同様にして、実施例25の非水電解質二次電池を作製した。
[Example 25]
A nonaqueous electrolyte secondary battery of Example 25 was made in the same manner as Example 21 except that the ratio of Li 2 PFO 3 to the positive electrode active material was 10 wt% and the thickness of the coating film was 0.12 μm.

実施例16〜25の非水電解質二次電池を、実施例1と同様、40℃において電流10Aで過充電試験を行い、電池の状態を観察し、電池膨れを測定した。試験結果を表4にまとめた。なお、表4において「重量割合、%」は、LiPFOの正極活物質に対する重量割合(%)を示し、「異常なし」は「1時間後、異常なし」を示す。 The non-aqueous electrolyte secondary batteries of Examples 16 to 25 were subjected to an overcharge test at a current of 10 A at 40 ° C. in the same manner as in Example 1, the state of the battery was observed, and the battery swelling was measured. The test results are summarized in Table 4. In Table 4, “weight ratio,%” indicates the weight ratio (%) of Li 2 PFO 3 to the positive electrode active material, and “no abnormality” indicates “no abnormality after 1 hour”.

Figure 0004867161
Figure 0004867161

表4から、正極活物質粒子の表面にLiPFOを形成した場合には、LiPFOが粒子表面一部または全面の場合とも、過充電試験において1時間後に異常はないことがわかった。 Table 4 shows that when Li 2 PFO 3 is formed on the surface of the positive electrode active material particles, there is no abnormality after 1 hour in the overcharge test, even when Li 2 PFO 3 is partly or entirely on the particle surface. It was.

しかしながら、実施例16と実施例21のように、LiPFOが正極活物質に対し0.05重量%未満の場合には、電池の膨れがやや大きく、正極での電解液溶媒が少し分解しているものと推定される。また、実施例20と実施例25のように、LiPFOが正極活物質に対し5重量%を越える場合には、実施例19や実施例24に比べて放電容量がやや小さくなった。 However, as in Example 16 and Example 21, when Li 2 PFO 3 is less than 0.05% by weight with respect to the positive electrode active material, the swelling of the battery is somewhat large, and the electrolyte solvent at the positive electrode is slightly decomposed. It is estimated that Further, as in Example 20 and Example 25, when Li 2 PFO 3 exceeded 5% by weight with respect to the positive electrode active material, the discharge capacity was slightly smaller than in Example 19 and Example 24.

したがって、正極活物質粒子表面に形成したLiPFOの正極活物質に対する割合は、0.05〜5重量%であることが好ましいことがわかった。 Therefore, it was found that the ratio of Li 2 PFO 3 formed on the surface of the positive electrode active material particles to the positive electrode active material is preferably 0.05 to 5% by weight.

[実施例26]
実施例2の電極における、化合物形成後のフッ素原子の最内核電子(F−1s)の結合エネルギー分布を図7に示した。図7から、正極活物質表面にLiPFOを形成した場合には、F−1sの結合エネルギーが682〜689eVに強度分布をもつ化合物が生成していることがわかった。
[Example 26]
FIG. 7 shows the bond energy distribution of the innermost core electron (F-1s) of the fluorine atom after the formation of the compound in the electrode of Example 2. From FIG. 7, it was found that when Li 2 PFO 3 was formed on the surface of the positive electrode active material, a compound having an intensity distribution with an F-1s binding energy of 682 to 689 eV was generated.

正極活物質粒子表面の一部に化合物を形成した場合を示す模式図。The schematic diagram which shows the case where a compound is formed in a part of positive electrode active material particle surface. 正極活物質粒子表面全面に化合物を形成した場合を示す模式図。The schematic diagram which shows the case where a compound is formed in the whole surface of positive electrode active material particle surface. 正極活物質粒子間の接触が保持された状態で、正極活物質粒子表面全面に化合物を形成した場合を示す模式図。The schematic diagram which shows the case where a compound is formed in the whole surface of positive electrode active material particle surface in the state with which the contact between positive electrode active material particles was hold | maintained. 化合物に導電性物質を含ませた場合を示す模式図。The schematic diagram which shows the case where an electroconductive substance is included in a compound. 正極活物質粒子界面に化合物を形成した場合を示す模式図。The schematic diagram which shows the case where a compound is formed in the positive electrode active material particle interface. 長円筒型非水電解質二次電池の外観。Appearance of long cylindrical non-aqueous electrolyte secondary battery. 実施例2の電極における、化合物形成後のフッ素原子の最内核電子(F−1s)の結合エネルギー分布を示す図。The figure which shows the binding energy distribution of the innermost core electron (F-1s) of the fluorine atom in the electrode of Example 2 after compound formation.

符号の説明Explanation of symbols

1 正極活物質粒子
2 正極活物質粒子表面に形成された化合物
3 カーボン
4 正極活物質粒子界面に形成された化合物
11 電池ケース
12 電池蓋
13 正極端子
14 負極端子
DESCRIPTION OF SYMBOLS 1 Positive electrode active material particle 2 Compound formed in the surface of positive electrode active material particle 3 Carbon 4 Compound formed in the interface of positive electrode active material particle 11 Battery case 12 Battery cover 13 Positive electrode terminal 14 Negative electrode terminal

Claims (2)

正極と負極と非水電解質とを備えた非水電解質二次電池において、正極活物質粒子表面と粒子界面の少なくとも一部に、Li PFO 、NaHF およびKHF から選ばれた少なくとも1種の化合物を形成したことを特徴とする非水電解質二次電池。 In a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, at least one selected from Li 2 PFO 3 , NaHF 2 and KHF 2 is formed on at least a part of the positive electrode active material particle surface and the particle interface. A non-aqueous electrolyte secondary battery characterized by forming a compound of 前記正極活物質粒子表面と粒子界面の少なくとも一部に形成した化合物の正極活物質に対する割合が0.05〜5重量%であることを特徴とする請求項1に記載の非水電解質二次電池。2. The nonaqueous electrolyte secondary battery according to claim 1, wherein the ratio of the compound formed on at least a part of the positive electrode active material particle surface and the particle interface to the positive electrode active material is 0.05 to 5% by weight. .
JP2004342240A 2004-11-26 2004-11-26 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4867161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004342240A JP4867161B2 (en) 2004-11-26 2004-11-26 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004342240A JP4867161B2 (en) 2004-11-26 2004-11-26 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2006156008A JP2006156008A (en) 2006-06-15
JP4867161B2 true JP4867161B2 (en) 2012-02-01

Family

ID=36634051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004342240A Expired - Fee Related JP4867161B2 (en) 2004-11-26 2004-11-26 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4867161B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5070754B2 (en) * 2006-07-21 2012-11-14 パナソニック株式会社 Manufacturing method of non-aqueous electrolyte secondary battery
JP2009123576A (en) * 2007-11-16 2009-06-04 Sony Corp Nonaqueous electrolyte secondary battery and nonaqueous electrolyte composition
JP5445103B2 (en) * 2009-12-18 2014-03-19 ソニー株式会社 Secondary battery, electrolyte for secondary battery, electric tool, electric vehicle and power storage system
EP2511976A4 (en) 2009-12-07 2013-07-17 Sony Corp Secondary cell, electrolyte, cell pack, electronic device, electric vehicle
CN104781954B (en) 2012-11-07 2017-08-08 株式会社半导体能源研究所 The manufacture method of electrode for power storage device, electrical storage device and electrode for power storage device
JP2016154061A (en) * 2013-06-19 2016-08-25 日産自動車株式会社 Nonaqueous electrolyte secondary battery
JP6600449B2 (en) * 2013-10-04 2019-10-30 旭化成株式会社 Lithium ion secondary battery
CN106104862B (en) 2014-03-13 2020-04-28 株式会社半导体能源研究所 Electrode, power storage device, electronic apparatus, and method for manufacturing electrode
JP6268049B2 (en) * 2014-06-23 2018-01-24 信越化学工業株式会社 Non-aqueous electrolyte secondary battery negative electrode material, non-aqueous electrolyte secondary battery, and method for producing negative electrode active material particles
JP6623083B2 (en) * 2016-02-29 2019-12-18 富士フイルム株式会社 Solid electrolyte composition, sheet for all-solid secondary battery and all-solid-state secondary battery using the same, and method for producing them

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3736045B2 (en) * 1997-06-19 2006-01-18 松下電器産業株式会社 All solid lithium battery

Also Published As

Publication number Publication date
JP2006156008A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP5232631B2 (en) Non-aqueous electrolyte battery
JP2009164082A (en) Nonaqueous electrolyte secondary battery, and manufacturing method thereof
JP2010135329A (en) Cathode and lithium battery adopting this
KR20100087679A (en) Nonaqueous electrolyte secondary battery
JP2002358999A (en) Non-aqueous electrolyte secondary battery
JP4288402B2 (en) Secondary battery electrolyte, secondary battery, and method of using secondary battery
US11289688B2 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, production method thereof, and nonaqueous electrolyte secondary battery
JP2013041844A (en) Active material for battery, nonaqueous electrolyte battery and battery pack
JP2015170542A (en) Nonaqueous electrolyte secondary battery
WO2008048006A1 (en) Electrolyte of high temperature property and overcharge-prevention property and secondary battery employed with the same
JP2004022523A (en) Nonaqueous electrolyte secondary battery
JP5109349B2 (en) Secondary battery
JP4867161B2 (en) Nonaqueous electrolyte secondary battery
JP2009164053A (en) Battery
JP3969072B2 (en) Nonaqueous electrolyte secondary battery
CN111052486B (en) Nonaqueous electrolyte secondary battery
JP5326923B2 (en) Non-aqueous electrolyte secondary battery
WO2013018607A1 (en) Nonaqueous electrolyte secondary battery
US20210013489A1 (en) Non-aqueous electrolyte secondary battery
US20210376384A1 (en) Electrolyte composition for a lithium-ion electrochemical cell
JP5646661B2 (en) Positive electrode, non-aqueous electrolyte battery and battery pack
JP2008016316A (en) Nonaqueous electrolyte secondary battery
JP6258180B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY, ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY USING THE SAME, LITHIUM SECONDARY BATTERY
JP6042195B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R150 Certificate of patent or registration of utility model

Ref document number: 4867161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees