JP4865875B2 - LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME - Google Patents

LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME Download PDF

Info

Publication number
JP4865875B2
JP4865875B2 JP2010021562A JP2010021562A JP4865875B2 JP 4865875 B2 JP4865875 B2 JP 4865875B2 JP 2010021562 A JP2010021562 A JP 2010021562A JP 2010021562 A JP2010021562 A JP 2010021562A JP 4865875 B2 JP4865875 B2 JP 4865875B2
Authority
JP
Japan
Prior art keywords
light
guide plate
fine scattering
scattering structure
light guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010021562A
Other languages
Japanese (ja)
Other versions
JP2010108948A (en
Inventor
克則 本間
範宏 出島
慎 栗原
貴康 佐土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2010021562A priority Critical patent/JP4865875B2/en
Publication of JP2010108948A publication Critical patent/JP2010108948A/en
Application granted granted Critical
Publication of JP4865875B2 publication Critical patent/JP4865875B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

本発明は、コンピュータ機器や携帯電話や一般の電子機器等に使用される照明装置及びそれを用いた表示装置に関する。   The present invention relates to a lighting device used for a computer device, a mobile phone, a general electronic device, and the like, and a display device using the same.

近年のコンピュータ機器や携帯電話などに用いられているカラー液晶表示装置に対する薄型、軽量化、高輝度化、低消費電力化の要求がますます高まってきている。それに伴って、カラー液晶表示装置に用いられている照明装置に用いられる光源としては発光効率の高い高輝度LEDが多用されるようになってきた。そして、光源からの光を閉じ込めて液晶表示素子に照射する導光板の設計も、LEDのような点光源を意識した設計が積極的になされるようになってきた。詳しくは、導光板裏面に形状に長手方向の方向性を持った拡散パターン素子を、その長手方向が拡散パターン素子と光源とを結ぶ方向に対してほぼ垂直となるように配列させて出射効率を向上させる技術、並びに、拡散パターン素子密度が輝度特性に与える効果が飽和しないように、導光板の1/2の領域に傾斜を付けた構造が開示されている(例えば、特許文献1参照)。   In recent years, there has been an increasing demand for thin, lightweight, high brightness, and low power consumption color liquid crystal display devices used in computer devices and mobile phones. Accordingly, high-luminance LEDs with high luminous efficiency have been frequently used as light sources used in illumination devices used in color liquid crystal display devices. In addition, the design of a light guide plate that confines light from a light source and irradiates a liquid crystal display element has been actively made in consideration of a point light source such as an LED. Specifically, a diffusion pattern element having a shape in the longitudinal direction on the back surface of the light guide plate is arranged so that the longitudinal direction is substantially perpendicular to the direction connecting the diffusion pattern element and the light source, thereby improving the emission efficiency. In order to prevent saturation of the technology to improve and the effect that the diffusion pattern element density has on the luminance characteristics, a structure in which a half region of the light guide plate is inclined is disclosed (for example, see Patent Document 1).

特許第3151830号公報(第11、12頁、第27、31図)Japanese Patent No. 3151830 (pages 11, 12 and 27, 31)

特許文献1に開示されている照明装置は、形状の長手方向が拡散パターン素子と光源とを結ぶ方向に対してほぼ垂直であるため、拡散パターン素子を中心とした円弧方向に対する拡散パターン素子の配列密度を十分大きく取れず、パターン配列が困難になるという課題を有していた。あるいは、導光板のおよそ1/2に傾斜を付けると、傾斜部分において内部で多重反射される光の反射角が伝播と共に変化するため、拡散パターン素子の設計が困難であった。そこで、本発明は、LEDなどの点光源を用いた照明装置の構成を最適化して、薄型・軽量・高輝度の照明装置を提供することを目的とする。   In the illumination device disclosed in Patent Document 1, since the longitudinal direction of the shape is substantially perpendicular to the direction connecting the diffusion pattern element and the light source, the arrangement of the diffusion pattern elements with respect to the arc direction around the diffusion pattern element There was a problem that the density could not be increased sufficiently and the pattern arrangement became difficult. Alternatively, if the light guide plate is inclined about ½, the reflection angle of light that is internally reflected at the inclined portion changes with propagation, making it difficult to design a diffusion pattern element. Therefore, an object of the present invention is to provide a thin, lightweight, and high-luminance illumination device by optimizing the configuration of the illumination device using a point light source such as an LED.

本発明による照明装置は、導光板の光入射面に点光源を有する照明装置において、導光板の光出射面と反対側の面上に互いに離間した微細散乱構造体をほぼ全面に渡って形成した。そして、微細散乱構造体としては、その形状に長手方向の方向性を有しており、微細散乱構造体と複数の光源の内で最短の距離にある点光源とを結ぶ方向に対して、長手方向が略平行である構成とした。このような構成によって、点光源からの光に対する出射効率を損なわないで、点光源を中心とした円弧方向に対する拡散パターン素子の配列密度を十分大きく取ることができる。   In the illumination device according to the present invention, in the illumination device having the point light source on the light incident surface of the light guide plate, the fine scattering structures separated from each other are formed on the entire surface of the light guide plate opposite to the light exit surface. . The fine scattering structure has a longitudinal directionality in its shape, and is long with respect to the direction connecting the fine scattering structure and the point light source at the shortest distance among the plurality of light sources. The direction is substantially parallel. With such a configuration, the arrangement density of the diffusion pattern elements in the arc direction around the point light source can be made sufficiently large without impairing the emission efficiency of the light from the point light source.

また、微細散乱構造体の側面が、微細散乱構造体と複数の点光源の内で最短の距離にある点光源とを結ぶ方向に略平行である構造とした。このような構造によって、従来の三角柱や半円柱などの形状の微細散乱構造体と比較して、微細散乱構造体による光反射効率を向上させることができる。   Further, the side surface of the fine scattering structure is substantially parallel to the direction connecting the fine scattering structure and the point light source at the shortest distance among the plurality of point light sources. With such a structure, the light reflection efficiency of the fine scattering structure can be improved as compared with a conventional fine scattering structure such as a triangular prism or a semi-cylinder.

また、導光板の光出射面または反対側の面が、導光板の入射面に対して略平行に分割された複数の領域から構成され、複数の領域に対する導光板の厚みは、複数の光源から遠ざかるにつれて薄くなる構造とした。このように、点光源から離れた領域の導光板の厚さを薄くする構成により、微細散乱構造体の利用効率を向上させることができると共に、導光板内部を伝播する光の反射角を変化させないようにできる。そのため、微細散乱構造体の設計が容易になる。   Further, the light exit surface of the light guide plate or the opposite surface is composed of a plurality of regions divided substantially parallel to the light incident surface of the light guide plate, and the thickness of the light guide plate for the plurality of regions is determined from the plurality of light sources. The structure becomes thinner as the distance increases. As described above, the configuration in which the thickness of the light guide plate in the region away from the point light source is reduced can improve the utilization efficiency of the fine scattering structure, and does not change the reflection angle of light propagating through the light guide plate. You can This facilitates the design of the fine scattering structure.

さらに、導光板に形成された複数の領域に対する境界面の形状は、複数の点光源を中心とした円弧となるようにした。このような構成によって、境界面で反射された光も効率良く再び微細散乱構造体で反射されることとなり、明るい照明装置が実現できる。   Furthermore, the shape of the boundary surface for the plurality of regions formed on the light guide plate is an arc centered on the plurality of point light sources. With such a configuration, the light reflected at the boundary surface is also efficiently reflected again by the fine scattering structure, and a bright illumination device can be realized.

また、導光板内部では、点光源から離れるに従って伝播光のパワー密度が減少する。そこで、均一な照明を可能とするために、点光源から離れるに従って微細散乱構造体の形成密度が大きくなるように構成した。   Further, in the light guide plate, the power density of propagating light decreases as the distance from the point light source increases. Therefore, in order to enable uniform illumination, the formation density of the fine scattering structures increases as the distance from the point light source increases.

特に、導光板を複数の厚みの異なる領域に分割する場合は、導光板の厚みの変化によって導光板内部の光パワー密度が不連続に変化する。そして、領域内ごとに点光源から離れるに従って伝播光の光パワー密度が小さくなる。そこで、微細散乱構造体は、導光板に形成された複数の領域内部では点光源から離れるに従って密度が大きくなるように形成されている。このとき、微細散乱構造体の形成密度は境界面を挟んで不連続に変化している。このような構成により、均一な照明を可能とした。   In particular, when the light guide plate is divided into a plurality of regions having different thicknesses, the optical power density inside the light guide plate changes discontinuously due to a change in the thickness of the light guide plate. And the optical power density of propagating light becomes small as it leaves | separates from a point light source for every area | region. Therefore, the fine scattering structure is formed so that the density increases as the distance from the point light source increases within the plurality of regions formed in the light guide plate. At this time, the formation density of the fine scattering structures changes discontinuously across the boundary surface. Such a configuration enables uniform illumination.

また、点光源が配置されている光入射面からの光を効率的に利用する場合は、微細散乱構造体と複数の光源の内で最短の距離にある点光源とを結ぶ方向における微細散乱構造体の断面を略直角三角形とすることによって、光利用効率を向上させることができる。   In addition, when efficiently using light from the light incident surface on which the point light source is arranged, the fine scattering structure in the direction connecting the fine scattering structure and the point light source at the shortest distance among the plurality of light sources. By making the cross section of the body into a substantially right triangle, light utilization efficiency can be improved.

反対に、点光源が配置されている光入射面と反対側の導光板端面からの反射光を利用する場合は、微細散乱構造体と複数の光源の内で最短の距離にある点光源とを結ぶ方向における微細散乱構造体の断面を略二等辺三角形とすることによって、光利用効率を向上させることができる。   Conversely, when using the reflected light from the light guide plate end surface opposite to the light incident surface on which the point light source is disposed, the fine scattering structure and the point light source at the shortest distance among the plurality of light sources are provided. The light utilization efficiency can be improved by making the cross section of the fine scattering structure in the connecting direction into a substantially isosceles triangle.

導光板に微細散乱構造体を十分な密度で形成できない場合は、導光板の光出射面上に互いに離間した第二の微細散乱構造体をほぼ全面に渡って形成する。この第二の微細散乱構造体もその形状に長手方向の方向性を有しており、第二の微細散乱構造体と複数の光源の内で最短の距離にある点光源とを結ぶ方向に対して、長手方向が略平行または垂直となるように構成した。このような構成によって、光出射面から直接照明光を得ることが可能となる。   When the fine scattering structure cannot be formed at a sufficient density on the light guide plate, the second fine scattering structures separated from each other are formed on the light exit surface of the light guide plate over almost the entire surface. This second fine scattering structure also has a longitudinal directionality in its shape, and the direction connecting the second fine scattering structure and the point light source at the shortest distance among the plurality of light sources. Thus, the longitudinal direction is substantially parallel or vertical. With such a configuration, it is possible to obtain illumination light directly from the light exit surface.

このとき、第二の微細散乱構造体と点光源とを結ぶ方向における第二の微細散乱構造体の断面を直角三角形または二等辺三角形とすることによって、光利用効率を上げることができる。さらに、導光板の光出射面に対向して光拡散シートまたはプリズムシートを設けることによって、照明装置からの照明放射分布の最適化を図ることができ、明るい照明装置とすることができる。さらに、導光板の端面から漏れ出した光を再利用して光利用効率を上げるために、導光板の光照射面と反対側の面、および光入射面を除く光照射面と垂直な側面に対向して光反射層を配した。   At this time, the light utilization efficiency can be increased by setting the cross section of the second fine scattering structure in the direction connecting the second fine scattering structure and the point light source to a right triangle or an isosceles triangle. Furthermore, by providing a light diffusing sheet or a prism sheet so as to face the light exit surface of the light guide plate, it is possible to optimize the illumination radiation distribution from the illuminating device, and to achieve a bright illuminating device. Furthermore, in order to reuse the light leaked from the end face of the light guide plate and increase the light utilization efficiency, the light guide plate has a surface opposite to the light irradiation surface and a side surface perpendicular to the light irradiation surface excluding the light incident surface. A light reflecting layer was disposed opposite to it.

そして、点光源、導光板、光拡散シート、光反射層を、導光板の光照射面側が開口した筐体によって保持する構成により、取り扱いが容易で、安定性、信頼性の高い照明装置を実現できた。   And, the structure that holds the point light source, light guide plate, light diffusion sheet, and light reflection layer by the housing with the light irradiation surface side of the light guide plate opened makes it easy to handle, and realizes a highly stable and reliable lighting device did it.

また、上述したいずれかの構成の照明装置を非自発光型の表示素子と組み合わせて用いることによって、高輝度で薄型・軽量の表示装置が実現できる。   In addition, by using the lighting device having any of the above-described structures in combination with a non-self-luminous display element, a high-luminance, thin, and lightweight display device can be realized.

本発明によれば、LEDなどの点光源を用いた照明装置の薄型・軽量化が実現すると同時に、光利用効率の高い、高輝度で低消費電力の照明装置を実現できる、という効果を有する。   According to the present invention, an illumination device using a point light source such as an LED can be reduced in thickness and weight, and at the same time, an illumination device with high light utilization efficiency, high luminance, and low power consumption can be realized.

本発明の照明装置を模式的に示す断面図である。It is sectional drawing which shows typically the illuminating device of this invention. 本発明の照明装置を模式的に示す平面図である。It is a top view which shows typically the illuminating device of this invention. 本発明の照明装置に用いる導光板を模式的に示す断面図である。It is sectional drawing which shows typically the light-guide plate used for the illuminating device of this invention. 本発明の導光板に形成された微細散乱構造体を説明する模式図である。It is a schematic diagram explaining the fine scattering structure formed in the light-guide plate of this invention. 本発明の導光板に形成された微視散乱構造体を説明する模式図である。It is a schematic diagram explaining the microscopic scattering structure formed in the light-guide plate of this invention. 本発明の導光板に形成された微細散乱構造体を説明する模式図である。It is a schematic diagram explaining the fine scattering structure formed in the light-guide plate of this invention. 本発明の導光板に形成された微視散乱構造体を説明する模式図である。It is a schematic diagram explaining the microscopic scattering structure formed in the light-guide plate of this invention. 本発明の導光板に形成された微細散乱構造体を説明する模式図である。It is a schematic diagram explaining the fine scattering structure formed in the light-guide plate of this invention. 本発明の照明装置の導光板の断面形状を示す模式図である。It is a schematic diagram which shows the cross-sectional shape of the light-guide plate of the illuminating device of this invention. 本発明の照明装置の導光板の断面形状を示す模式図である。It is a schematic diagram which shows the cross-sectional shape of the light-guide plate of the illuminating device of this invention. 本発明の照明装置の導光板の断面形状を示す模式図である。It is a schematic diagram which shows the cross-sectional shape of the light-guide plate of the illuminating device of this invention. 本発明による照明装置の微細散乱構造体の配列を示す模式平面図である。It is a schematic plan view which shows the arrangement | sequence of the fine scattering structure of the illuminating device by this invention. 本発明による液晶表示装置を模式的に示す断面図である。It is sectional drawing which shows the liquid crystal display device by this invention typically.

本発明の照明装置は、点光源と、点光源の光を光入射面から光出射面に導く導光板と、導光板の光出射面と反対側の面上に形成された複数の微細散乱構造体を備えている。そして、この微細散乱構造体の長手方向が、点光源からの光線が微細散乱構造体に入射する方向と略一致している。あるいは、微細散乱構造体と点光源を結ぶ直線に対して、微細散乱構造体の長手方向が略平行になっている。   The illuminating device of the present invention includes a point light source, a light guide plate that guides light of the point light source from the light incident surface to the light output surface, and a plurality of fine scattering structures formed on a surface opposite to the light output surface of the light guide plate. Has a body. The longitudinal direction of the fine scattering structure substantially coincides with the direction in which the light from the point light source enters the fine scattering structure. Alternatively, the longitudinal direction of the fine scattering structure is substantially parallel to the straight line connecting the fine scattering structure and the point light source.

さらに、微細散乱構造体を構成する2つの側面は、それぞれの側面を点光源方向に延長した仮想面が点光源で交わるように形成されている。この微細散乱構造体を構成する2つの側面を光拡散面で構成しても良い。または、うねりのある曲面もしくは複数の平面の組み合わせで構成しても良い。さらに、この2つの側面を光拡散面とした。   Furthermore, the two side surfaces constituting the fine scattering structure are formed such that virtual surfaces obtained by extending the respective side surfaces in the direction of the point light source intersect with the point light source. You may comprise two side surfaces which comprise this fine scattering structure by a light-diffusion surface. Or you may comprise with the curved surface with a wave | undulation, or the combination of several planes. Further, these two side surfaces were used as light diffusion surfaces.

また、導光板の光出射面、あるいは光出射面と反対側の面が複数の領域に分割されており、この複数の領域での導光板の厚みが、光源から遠ざかるにつれて薄くなっている。さらに、この複数の領域は、微細散乱構造体と点光源とを結ぶ直線に対して略直交するように分割されている。ここで、複数の領域の境界面の形状を、点光源を略中心とした円弧とした。この境界面を境に散乱構造体の形成密度が不連続に変化している。   In addition, the light exit surface of the light guide plate or the surface opposite to the light exit surface is divided into a plurality of regions, and the thickness of the light guide plate in the plurality of regions decreases as the distance from the light source increases. Further, the plurality of regions are divided so as to be substantially orthogonal to a straight line connecting the fine scattering structure and the point light source. Here, the shape of the boundary surface of the plurality of regions was an arc centered about the point light source. The formation density of the scattering structure changes discontinuously from this boundary surface.

微細散乱構造体と点光源を結ぶ直線による微細散乱構造体の断面形状として、直角三角形、二等辺三角形、台形等が例示できる。   Examples of the cross-sectional shape of the fine scattering structure formed by a straight line connecting the fine scattering structure and the point light source include a right triangle, an isosceles triangle, and a trapezoid.

さらに、導光板の光出射面上には互いに離間した第二の微細散乱構造体が複数個形成され、第二の微細散乱構造体と点光源とを結ぶ直線に対して、第二の微細散乱構造体の長手方向が略平行または略垂直になるように構成されている。   Furthermore, a plurality of second fine scattering structures separated from each other are formed on the light exit surface of the light guide plate, and the second fine scattering structure is formed with respect to a straight line connecting the second fine scattering structure and the point light source. It is comprised so that the longitudinal direction of a structure may become substantially parallel or substantially perpendicular | vertical.

また、点光源が複数個設けられている場合には、それぞれの光源に対応して微細散乱構造体が形成される。   When a plurality of point light sources are provided, a fine scattering structure is formed corresponding to each light source.

また、本発明の表示装置は、上述したいずれか一つの構成の照明装置と、照明装置の光照射面側に設けられた非自発光型の表示素子とを備えている。   The display device of the present invention includes any one of the above-described illumination devices and a non-self-luminous display element provided on the light irradiation surface side of the illumination device.

本発明の画像表示装置に関して図面を参照しながら説明する。図1と図2に本実施例の照明装置の基本構成を示す側面断面図と平面図を示す。図1と図2において、同じ作用を有する要素には同一の符号を付してある。   The image display apparatus of the present invention will be described with reference to the drawings. 1 and 2 are a side sectional view and a plan view showing the basic configuration of the lighting apparatus of the present embodiment. In FIG. 1 and FIG. 2, the same code | symbol is attached | subjected to the element which has the same effect | action.

図1に示すように、導光板2の光入射面に対向して点光源1が配置されている。光入射面と光出射面は垂直な位置関係にある。ここでは、点光源1としてLED素子が用いられている。LED素子には、青色LEDからの放射光を黄色蛍光体で波長変換して緑色光と赤色光を発生させ元の青色光と加法混色して白色光を得る白色LEDや、赤色光を発光する赤色LEDと、緑色光を発光する緑色LEDと、青色光を発光する青色LEDとを互いに近接させて配置して加法混色することによって白色光を得る3色混合LEDなどが良く知られている。これらの光源は、導光板の厚さ程度の発光領域を持っており、その発光領域の長さは光入射面方向の長さに比較して十分短く、点光源として扱うことができる。   As shown in FIG. 1, the point light source 1 is disposed to face the light incident surface of the light guide plate 2. The light incident surface and the light emitting surface are in a vertical positional relationship. Here, an LED element is used as the point light source 1. The LED element is a white LED that converts the wavelength of emitted light from a blue LED with a yellow phosphor to generate green light and red light, and additively mixes with the original blue light to obtain white light, or emits red light. A three-color mixed LED that obtains white light by arranging a red LED, a green LED that emits green light, and a blue LED that emits blue light close to each other and additively mixing them is well known. These light sources have a light emitting area that is about the thickness of the light guide plate, and the length of the light emitting area is sufficiently shorter than the length in the direction of the light incident surface, and can be handled as a point light source.

点光源1は、ポリイミドなどの高分子フィルム上に電極配線を施したFPC基板7上に並べて実装されており、図示していない電源から電力を供給されている。点光源は、複数並べて用いられる場合が多い。図2には、点光源1a、1b、1cが3つ並べて用いられる場合の例が示してある。図2に示すような導光板2の側面から入射するサイドライト型もので携帯電話などに用いられる小型のものであると、LEDの数は通常2〜5個用いられる。また、ノートブック型コンピュータに用いられる液晶表示装置の場合のように、15型程度以上もある大きな液晶表示装置に用いられる場合は、300〜400個程度の数のLEDが用いられている。本発明は、複数の点光源1つ1つに対する放射特性を考慮した照明装置に適用することもできる。   The point light source 1 is mounted side by side on an FPC board 7 having electrode wiring on a polymer film such as polyimide, and is supplied with electric power from a power source (not shown). In many cases, a plurality of point light sources are used side by side. FIG. 2 shows an example in which three point light sources 1a, 1b, and 1c are used side by side. In the case of a side light type incident from the side surface of the light guide plate 2 as shown in FIG. 2 and a small type used for a mobile phone or the like, the number of LEDs is usually 2 to 5. Further, in the case of being used for a large liquid crystal display device having a size of about 15 or more, as in the case of a liquid crystal display device used for a notebook computer, about 300 to 400 LEDs are used. The present invention can also be applied to an illuminating device that considers radiation characteristics for each of a plurality of point light sources.

導光板2は、アクリル系樹脂やポリカーボネート系樹脂、あるいはシクロオレフィン系樹脂などの透明な高分子材料を用いて射出成形で作製される。導光板2の光出射面に対する反対側の面、すなわち裏面には微細散乱構造体が複数形成されている。点光源1から出射した光は、導光板2の内部を伝播して行き、これら複数の微細散乱構造体で散乱されることによって偏向され、光出射面から出射される。また、導光板2の光出射面側にも微細散乱構造体を複数形成する場合は、その微細散乱構造体は導光板2内部を伝播する光を直接光照射面側から出射すると同時に、裏面に形成された微細散乱構造体からの偏向光をさらに偏向して、良好な放射角分布を形成する働きをする。   The light guide plate 2 is manufactured by injection molding using a transparent polymer material such as acrylic resin, polycarbonate resin, or cycloolefin resin. A plurality of fine scattering structures are formed on the surface opposite to the light exit surface of the light guide plate 2, that is, the back surface. The light emitted from the point light source 1 propagates through the light guide plate 2, is deflected by being scattered by the plurality of fine scattering structures, and is emitted from the light emitting surface. When a plurality of fine scattering structures are also formed on the light exit surface side of the light guide plate 2, the fine scattering structures emit light propagating through the light guide plate 2 directly from the light irradiation surface side, and at the same time on the back surface. The deflected light from the formed fine scattering structure is further deflected to form a good radiation angle distribution.

また、導光板2の光入射面に垂直な三側面と裏面、換言すると光出射面と光入射面を除いた導光板の4つの面、に対向して光反射層3、4が配されている。この光反射層3、4は、AgやAl、またはこれらの化合物を真空蒸着で表面に形成した高分子フィルムや、白色顔料を混合して反射率を高くした高分子フィルムが配されている。   Further, light reflecting layers 3 and 4 are arranged facing three side surfaces and the back surface perpendicular to the light incident surface of the light guide plate 2, in other words, four surfaces of the light guide plate excluding the light emitting surface and the light incident surface. Yes. The light reflecting layers 3 and 4 are provided with a polymer film in which Ag, Al, or a compound thereof is formed on the surface by vacuum deposition, or a polymer film in which a white pigment is mixed to increase the reflectance.

一方、導光板2の光出射面に対向して光拡散シート5およびプリズムシート6が設けられている。光拡散シート5は、表面にシボなどの微細な散乱構造体を形成したり、表面にビーズ粒子を塗布したりされた透明フィルムであり、導光板2から出射された光を拡散させて均一化させる作用をする。この光拡散シート5を配することによって、導光板2からの出射光に生じる輝度むらや輝線などによる悪影響を減ずることができる。   On the other hand, a light diffusion sheet 5 and a prism sheet 6 are provided to face the light emitting surface of the light guide plate 2. The light diffusion sheet 5 is a transparent film in which fine scattering structures such as wrinkles are formed on the surface or bead particles are applied on the surface, and diffuses the light emitted from the light guide plate 2 to make it uniform. To act. By disposing the light diffusion sheet 5, it is possible to reduce adverse effects caused by uneven brightness and bright lines generated in the light emitted from the light guide plate 2.

また、プリズムシート6は、表面に稜線が光入射面とほぼ平行になった複数の微細プリズムが規則的に形成された透明フィルムである。このようなプリズムシートは、導光板2からの放射光の出射角をシート面に垂直な方向に変換するものであり、輝度の視覚依存性を向上させる。図1には、プリズムシートが1枚だけ配置された場合を示しているが、互いの稜線がほぼ直交した2枚のプリズムシートを配しても良い。あるいは、導光板2からの放射光の出射角によっては、プリズムシート6を省略しても良い。   The prism sheet 6 is a transparent film in which a plurality of fine prisms whose ridgelines are substantially parallel to the light incident surface are regularly formed on the surface. Such a prism sheet converts the emission angle of the radiated light from the light guide plate 2 in a direction perpendicular to the sheet surface, and improves the visual dependency of luminance. Although FIG. 1 shows a case where only one prism sheet is arranged, two prism sheets whose ridgelines are almost orthogonal may be arranged. Alternatively, the prism sheet 6 may be omitted depending on the emission angle of the radiated light from the light guide plate 2.

以上説明した各要素は、筺体8によって支持・固定されている。この筺体8に各要素を支持・固定することによって、外部から機械的な力が加わったとしても要素間の位置関係をくずさず安定した照明が可能となると同時に、取り扱いも容易になる。なお、この筺体8を、白色顔料などの反射率の高い材料を混合した高分子材料で形成することによって、光反射層3と4を省略しても良い。   Each element described above is supported and fixed by the housing 8. By supporting and fixing each element to the housing 8, even if mechanical force is applied from the outside, stable illumination is possible without losing the positional relationship between the elements, and handling is facilitated. In addition, you may abbreviate | omit the light reflection layers 3 and 4 by forming this housing | casing 8 with the polymeric material which mixed materials with high reflectance, such as a white pigment.

また、本実施例の照明装置に用いた導光板2は、複数の領域に分割されている。図2では3つの領域9,10,11に分割されている例を示しているが、導光板の大きさや厚みによってさらに多くの領域に分割することもある。図3に、この分割の様子を模式的に示す。図示するように、各領域で導光板の厚みが異なっている。すなわち、点光源1から見て遠い領域ほど導光板2が薄くなっている。   Moreover, the light guide plate 2 used in the illumination device of the present embodiment is divided into a plurality of regions. Although FIG. 2 shows an example in which the region is divided into three regions 9, 10, and 11, it may be divided into more regions depending on the size and thickness of the light guide plate. FIG. 3 schematically shows the state of this division. As shown in the figure, the thickness of the light guide plate is different in each region. That is, the light guide plate 2 is thinner in a region farther from the point light source 1.

図2で示した実施例では、各領域9、10、11の境界12と13は、点光源1a、1b、1cをおおよその中心として描いた円弧をなしている。厳密には、各点光源から入射した光の導光板内部での広がりの収束点を中心とした円弧とするのが望ましい。このように、分割された領域の境界形状を円弧状にすることによって、境界面で反射された光は、その円弧の中心(すなわち点光源側)に向かって反射されるため、導光板に形成した微細散乱構造体によって再び効率良く反射して利用することができる。境界面12、13の断面方向の形状には制約は無いが、略垂直または頂角が鈍角になるように傾斜させるのが望ましい。このようにすることで、境界面に発生する輝線を低減することができる。また、境界線の段部の高さは、20〜100μm程度とするのが良い。すなわち、導光板2は、領域が変わるごとに20〜100μm程度ずつ薄くなっていくようにするのが良い。段部の高さをこれ以上低くすると分割する領域の数を多くしなければならないし、これ以上高くすると輝線等の影響が大きくなって好ましくない。   In the embodiment shown in FIG. 2, the boundaries 12 and 13 of the regions 9, 10, 11 form an arc drawn with the point light sources 1 a, 1 b, 1 c as approximate centers. Strictly speaking, it is desirable that the arc is centered on the convergence point of the spread of the light incident from each point light source inside the light guide plate. In this way, by making the boundary shape of the divided area into an arc shape, the light reflected at the boundary surface is reflected toward the center of the arc (that is, the point light source side), so it is formed on the light guide plate. The fine scattering structure thus made can be efficiently reflected and used again. Although there is no restriction | limiting in the shape of the cross-sectional direction of the boundary surfaces 12 and 13, it is desirable to incline so that it may become substantially perpendicular | vertical or an apex angle may become an obtuse angle. By doing in this way, the bright line which generate | occur | produces in a boundary surface can be reduced. The height of the stepped portion of the boundary line is preferably about 20 to 100 μm. That is, the light guide plate 2 is preferably thinned by about 20 to 100 μm every time the region changes. If the height of the stepped portion is further reduced, the number of regions to be divided must be increased. If the stepped portion is further increased, the influence of bright lines and the like is increased, which is not preferable.

また、領域を分割される面は、光出射面側でも光出射面と反対側の面でも良い。光出射面側を領域に分割すると、光出射面側に微細散乱構造体を形成しない場合では、導光板の作製は容易となるが、領域の境界における輝線が目立ちやすくなる虞がある。これは、領域の境界を形成する段部のテーパ−角を緩くしたり、光拡散シートのヘイズ値を最適化したりすることで緩和できる。一方、光出射面と反対側の面を領域に分割する場合では、輝線は目立ち難くなるが微細散乱構造体の製法が複雑になる虞がある。   Further, the surface into which the region is divided may be the light exit surface side or the surface opposite to the light exit surface. If the light emitting surface side is divided into regions, the light guide plate can be easily manufactured when the fine scattering structure is not formed on the light emitting surface side, but the bright lines at the boundaries of the regions may be noticeable. This can be alleviated by loosening the taper angle of the step portion forming the boundary of the region or optimizing the haze value of the light diffusion sheet. On the other hand, when the surface opposite to the light emitting surface is divided into regions, the bright lines are not noticeable, but the manufacturing method of the fine scattering structure may be complicated.

このように各領域で導光板厚みを変え、点光源から離れた領域ほど薄くすることによって、点光源から離れるに従って導光板内部での光の繰り返し反射回数を増やすことができる。導光板2の中を光が伝播して点光源から遠ざかるにつれて光パワー密度が低下する。そのため、導光板の光出射面から均一な光を出射しようとすると、点光源から離れるに従って微細散乱構造体の形成密度を大きくしなければならない。従って、導光板2を上述のような領域に分割しない場合は、点光源から最も遠い導光板裏面に形成される微細散乱構造体の形成密度が最大になる。   Thus, by changing the thickness of the light guide plate in each region and making the region farther away from the point light source thinner, the number of repeated reflections of light inside the light guide plate can be increased as the distance from the point light source increases. As the light propagates through the light guide plate 2 and moves away from the point light source, the optical power density decreases. Therefore, in order to emit uniform light from the light emitting surface of the light guide plate, the formation density of the fine scattering structures must be increased as the distance from the point light source increases. Therefore, when the light guide plate 2 is not divided into regions as described above, the formation density of the fine scattering structures formed on the back surface of the light guide plate farthest from the point light source is maximized.

なお、形成された分割領域は光出射面に平行な平面で狭持されているために、その厚みが各領域で異なっても、内部での伝播光が光出射面や裏面に入射する角度は、導光板全体に渡ってこれら領域に分割しない場合と変わらない。従って、微細散乱構造体の寸法や角度に関する設計は、形成密度を除いて、領域分割をしない場合と同じになる。   In addition, since the formed divided region is sandwiched by a plane parallel to the light emitting surface, the angle at which the internally propagated light is incident on the light emitting surface and the back surface is different even if the thickness is different in each region. This is the same as when the light guide plate is not divided into these regions. Therefore, the design related to the size and angle of the fine scattering structure is the same as in the case where the region is not divided, except for the formation density.

しかし、図2及び図3に示したように導光板2を厚みの異なる領域に分割する場合は、各領域内部での繰り返し反射回数が異なるために、最適な微細散乱構造体の形成密度も異なってくる。一方、各領域内では点光源から離れた位置になるほど光パワー密度は小さくなる。従って、各領域の境界を挟んで、微細散乱構造体が形成される密度は、点光源側の領域からそれよりも遠い領域に移ると不連続に変化する。しかし、各領域内においては、点光源から離れるに従って微細散乱構造体の形成密度は大きくしなければならない。   However, when the light guide plate 2 is divided into regions having different thicknesses as shown in FIG. 2 and FIG. 3, since the number of repeated reflections in each region is different, the optimum formation density of the fine scattering structure is also different. Come. On the other hand, in each region, the light power density decreases as the position becomes farther from the point light source. Therefore, the density at which the fine scattering structures are formed across the boundary of each region changes discontinuously when moving from the point light source side region to a region farther than that. However, in each region, the formation density of the fine scattering structures must be increased as the distance from the point light source increases.

次に、微細散乱構造体の形状について説明する。微細散乱構造体を導光板の発光面から見た透視平面図を図4aに模式的に示す。図4a中の一点鎖線CDでの断面形状を図4bに、一点鎖線ABでの断面形状を図4cに示す。導光板の裏面に形成される微細散乱構造体は、導光板の内側に窪んだ凹形状をしており、その形状は長手方向に方向性を持っている。微細散乱構造体は、稜線16で交差する2つの斜面14及び15と、導光板の裏面に対して略垂直な2つの側面17a及び17bで構成されている。そのため、図4bに示すように、一点鎖線CDでの断面は、正方形あるいは長方形を成している。この例では点光源側に位置する斜面14は、もう1つの斜面15よりも面積が広くなっている。微細散乱構造体は、その長手方向が、点光源からの光線が微細散乱構造体に入射する方向と略一致するように形成されている。点光源が複数ある場合には、微細散乱構造体は、微細散乱構造体から最短の距離にある点光源からの光線が微細散乱構造体に入射する方向と略一致するように形成される。このように、微細散乱構造体の長手方向は、点光源からその微細散乱構造体に入射する光線と略並行になるように形成されている。また、微細散乱構造体の側面17a及び17bは、側面を点光源方向にそれぞれ延長した仮想面が点光源の近傍で交わるように形成されている。点光源が複数ある場合には、微細散乱構造体の側面17aと側面17bは、側面を点光源方向にそれぞれ延長した仮想面が、微細散乱構造体と最短の距離にある点光源の近傍で交わるように形成されている。微細散乱構造体の形状をこのようにすることによって、点光源からの光を最も効率良く斜面14で反射することが可能となり、輝度を最大化することができる。   Next, the shape of the fine scattering structure will be described. A perspective plan view of the fine scattering structure viewed from the light emitting surface of the light guide plate is schematically shown in FIG. FIG. 4b shows a cross-sectional shape taken along one-dot chain line CD in FIG. 4a, and FIG. 4c shows a cross-sectional shape taken along one-dot chain line AB in FIG. The fine scattering structure formed on the back surface of the light guide plate has a concave shape recessed inside the light guide plate, and the shape has directionality in the longitudinal direction. The fine scattering structure includes two inclined surfaces 14 and 15 that intersect at the ridgeline 16 and two side surfaces 17a and 17b that are substantially perpendicular to the back surface of the light guide plate. Therefore, as shown in FIG. 4b, the cross section taken along the alternate long and short dash line CD is square or rectangular. In this example, the slope 14 located on the point light source side has a larger area than the other slope 15. The fine scattering structure is formed such that the longitudinal direction thereof substantially coincides with the direction in which the light beam from the point light source enters the fine scattering structure. When there are a plurality of point light sources, the fine scattering structure is formed so as to substantially coincide with the direction in which the light from the point light source at the shortest distance from the fine scattering structure is incident on the fine scattering structure. Thus, the longitudinal direction of the fine scattering structure is formed so as to be substantially parallel to the light beam incident on the fine scattering structure from the point light source. Further, the side surfaces 17a and 17b of the fine scattering structure are formed such that imaginary surfaces whose side surfaces extend in the direction of the point light source intersect in the vicinity of the point light source. In the case where there are a plurality of point light sources, the side surface 17a and the side surface 17b of the fine scattering structure intersect with each other in the vicinity of the point light source at the shortest distance from the fine scattering structure with the virtual surfaces extending in the direction of the point light source. It is formed as follows. By making the shape of the fine scattering structure in this way, the light from the point light source can be reflected by the inclined surface 14 with the highest efficiency, and the luminance can be maximized.

微細散乱構造体の形状のその他の例について説明する。微細散乱構造体を導光板の発光面から見た透視平面図を図5aに模式的に示す。この微細散乱構造体の図5aの一点鎖線CDでの断面形状を図5bに示す。導光板の裏面に形成される微細散乱構造体は、導光板の内側に窪んだ凹形状をしており、その形状は長手方向に方向性を持っている。微細散乱構造体は、稜線16で交差する4つの平面14、15、17a及び17bで構成されている。先に示した図4の例では、側面17a、17bは、導光板の裏面に対して略垂直となっていたが、図5aの例では、斜面をなしている。したがって、図5bに示すように、断面は三角形を成している。図4aで示した構成の方が、微細散乱構造体の光源に向いた斜面面積が大きくなることから、点光源からの光をより多く導光板の光出射面へ向けて反射/偏向させるためには好ましいといえる。一方、微細散乱構造体の配置密度を大きくし、かつ、後方へ透過する光線数も確保するという観点からは、図5aの構成が好ましい。また、図5aに示した構成では、微細構造散乱体頂部に稜線が存在しないことから、導光板の光出射面における輝線の発生を抑えるという点で、有利である。微細散乱構造体のその他の構成・効果は、図4aの例と変わるところはない。   Other examples of the shape of the fine scattering structure will be described. A perspective plan view of the fine scattering structure viewed from the light emitting surface of the light guide plate is schematically shown in FIG. The cross-sectional shape of the fine scattering structure taken along the one-dot chain line CD in FIG. 5a is shown in FIG. 5b. The fine scattering structure formed on the back surface of the light guide plate has a concave shape recessed inside the light guide plate, and the shape has directionality in the longitudinal direction. The fine scattering structure is composed of four planes 14, 15, 17 a and 17 b that intersect at the ridge line 16. In the example shown in FIG. 4 described above, the side surfaces 17a and 17b are substantially perpendicular to the back surface of the light guide plate. However, in the example shown in FIG. Thus, as shown in FIG. 5b, the cross section is triangular. The configuration shown in FIG. 4a has a larger slope area toward the light source of the fine scattering structure, so that more light from the point light source is reflected / deflected toward the light exit surface of the light guide plate. Is preferable. On the other hand, from the viewpoint of increasing the arrangement density of the fine scattering structures and securing the number of light rays transmitted backward, the configuration of FIG. 5a is preferable. Further, the configuration shown in FIG. 5a is advantageous in that generation of bright lines on the light exit surface of the light guide plate is suppressed because no ridge line exists at the top of the fine structure scatterer. Other configurations and effects of the fine scattering structure are not different from the example of FIG. 4a.

また、図6を用いて微細散乱構造体の他の形状について説明する。図6は微細散乱構造体を導光板の裏面から見た模式図である。導光板の裏面に形成される微細散乱構造体は導光板の内側に窪んだ凹形状をしており、その形状は長手方向に方向性を持っている。微細散乱構造体は、稜線16で交差する4つの平面14、15、17a及び17bで構成されている。側面17aと17bによって1本の稜線が形成されている点で、図5aの例とは異なっている。ここでは、側面17a、17bの表面を荒らし、側面に入射する光を拡散反射させる。拡散効果を顕著にするために、図5aの構成よりも側面17a、17bの面積を増加させている。これにより導光板の光出射面における拡散光を増加させ、輝線の発生やモアレの発生を抑えるだけでなく、従来導光板の光出射面上に設置していた拡散板を不要にする。   Further, another shape of the fine scattering structure will be described with reference to FIG. FIG. 6 is a schematic view of the fine scattering structure viewed from the back surface of the light guide plate. The fine scattering structure formed on the back surface of the light guide plate has a concave shape recessed inside the light guide plate, and the shape has directionality in the longitudinal direction. The fine scattering structure is composed of four planes 14, 15, 17 a and 17 b that intersect at the ridge line 16. This is different from the example of FIG. 5a in that one ridge line is formed by the side surfaces 17a and 17b. Here, the surfaces of the side surfaces 17a and 17b are roughened, and light incident on the side surfaces is diffusely reflected. In order to make the diffusion effect prominent, the areas of the side surfaces 17a and 17b are increased compared to the configuration of FIG. 5a. This not only increases the diffused light on the light exit surface of the light guide plate and suppresses the generation of bright lines and moire, but also eliminates the need for a diffuser plate that has been conventionally installed on the light exit surface of the light guide plate.

さらに、図7を用いて微細散乱構造体の他の形状について説明する。図7は微細散乱構造体を導光板の裏面から見た模式図である。導光板の裏面に形成される微細散乱構造体は導光板の内側に窪んだ凹形状をしており、その形状は長手方向に方向性を持っている。微細散乱構造体は、稜線16で交差する4つの面14、15、17a及び17bで構成されている。側面17aと17bによって1本の稜線が形成されている点では、図6の構成と同様である。ただし、ここでは、稜線がS字状、あるいは他の規則性を有する曲線状、あるいは規則性のない曲線状、あるいはジグザグ線状とした。このような形状によれば、側面17a、17b面の光拡散面積が図6の構成より増えるとともに、側面で反射する光線の拡散方向が制御できるようになる。したがって、導光板の光出射面における輝線の発生あるいはモアレの発生を抑えることができる。   Further, another shape of the fine scattering structure will be described with reference to FIG. FIG. 7 is a schematic view of the fine scattering structure viewed from the back surface of the light guide plate. The fine scattering structure formed on the back surface of the light guide plate has a concave shape recessed inside the light guide plate, and the shape has directionality in the longitudinal direction. The fine scattering structure is composed of four surfaces 14, 15, 17 a and 17 b that intersect at the ridge line 16. The configuration is the same as that of FIG. 6 in that one ridge line is formed by the side surfaces 17a and 17b. However, here, the ridgeline is an S-shape, a curved shape having other regularity, a curved shape having no regularity, or a zigzag line shape. According to such a shape, the light diffusion area on the side surfaces 17a and 17b is increased from that in the configuration of FIG. 6, and the diffusion direction of the light beam reflected on the side surfaces can be controlled. Accordingly, it is possible to suppress the generation of bright lines or moire on the light exit surface of the light guide plate.

さらに、図8を用いて微細散乱構造体の他の形状について説明する。図8は微細散乱構造体を導光板の裏面から見た模式図である。導光板の裏面に形成される微細散乱構造体は導光板の内側に窪んだ凹形状をしており、その形状は長手方向に方向性を持っている。微細散乱構造体は、稜線16で交差する2つの斜面14及び15と、導光板の裏面に対して略垂直な2つの側面17a及び17bで構成されている。図8に示した例では、点光源側に位置する斜面14は、もう1つの斜面15よりも面積が広くなっている。微細散乱構造体は、その長手方向が、点光源近傍からの光線が微細散乱構造体に入射する方向と略一致するように形成されている。こうすることにより、2in1チップのように、一つのLEDチップに複数の点光源が含まれている場合に、複数の点光源からの光を効率良く斜面14で反射することが可能となり、輝度を最大化することができる。   Further, another shape of the fine scattering structure will be described with reference to FIG. FIG. 8 is a schematic view of the fine scattering structure viewed from the back surface of the light guide plate. The fine scattering structure formed on the back surface of the light guide plate has a concave shape recessed inside the light guide plate, and the shape has directionality in the longitudinal direction. The fine scattering structure includes two inclined surfaces 14 and 15 that intersect at the ridgeline 16 and two side surfaces 17a and 17b that are substantially perpendicular to the back surface of the light guide plate. In the example shown in FIG. 8, the slope 14 located on the point light source side has a larger area than the other slope 15. The fine scattering structure is formed such that the longitudinal direction thereof substantially coincides with the direction in which light rays from the vicinity of the point light source are incident on the fine scattering structure. In this way, when a plurality of point light sources are included in one LED chip, such as a 2-in-1 chip, light from the plurality of point light sources can be efficiently reflected by the inclined surface 14, and luminance can be reduced. Can be maximized.

次に、微細散乱構造体の長手方向の断面形状について図面を用いて詳細に説明する。図9は、図4a、図5aの一点鎖線ABに相当する線での導光板の断面形状を示す模式図である。図9に示す例では、複数の光源の内で最短の距離にある点光源1と微細散乱構造体18を結ぶ方向における微細散乱構造体18の断面が略直角三角形となっている。すなわち、図4aもしくは図5aに示した斜面15が導光板2の裏面に対して略垂直に立っている。斜面14と導光板2の裏面がなす角度は、導光板の厚みや長さ、あるいは光出射面での出射角などに依存するが、5〜55度の範囲内にある。この角度が5〜15度程度と小さい場合は、導光板内を伝播する光を全反射条件またはそれに近い条件で反射できるために光出射効率が高くなるが、出射角が導光板の光出射面に立てた垂線に対して大きく傾くことになるために視角特性が悪くなる。そこで、その場合には図1で示したプリズムシート6で出射角を補正する必要がある。また、この角度が45〜55度と大きい場合は、導光板内を伝播する光を全反射条件から離れた条件で反射するために光出射効率は低くなるが、出射角が導光板の光出射面に立てた垂線に対して0±15度の角度となるため、視覚方向(光出射面での垂線方向)に光が反射されることとなり、プリズムシート6は不要となる。   Next, the cross-sectional shape in the longitudinal direction of the fine scattering structure will be described in detail with reference to the drawings. FIG. 9 is a schematic diagram showing a cross-sectional shape of the light guide plate taken along a line corresponding to the one-dot chain line AB of FIGS. 4a and 5a. In the example shown in FIG. 9, the cross section of the fine scattering structure 18 in the direction connecting the point light source 1 and the fine scattering structure 18 at the shortest distance among the plurality of light sources is a substantially right triangle. That is, the slope 15 shown in FIG. 4 a or 5 a stands substantially perpendicular to the back surface of the light guide plate 2. The angle formed by the inclined surface 14 and the back surface of the light guide plate 2 is in the range of 5 to 55 degrees, although it depends on the thickness and length of the light guide plate or the exit angle at the light exit surface. When this angle is as small as about 5 to 15 degrees, light propagating in the light guide plate can be reflected under the total reflection condition or a condition close thereto, so that the light emission efficiency is increased, but the emission angle is the light emission surface of the light guide plate. Therefore, the viewing angle characteristic is deteriorated. Therefore, in that case, it is necessary to correct the emission angle with the prism sheet 6 shown in FIG. When this angle is as large as 45 to 55 degrees, the light emission efficiency is low because the light propagating in the light guide plate is reflected under the condition away from the total reflection condition, but the light emission angle is low. Since the angle is 0 ± 15 degrees with respect to the vertical line standing on the surface, the light is reflected in the visual direction (perpendicular direction on the light emitting surface), and the prism sheet 6 is not necessary.

同様に、微細散乱構造体の長手方向の他の断面形状について図10を用いて説明する。図10に示す例では、微細散乱構造体18の断面形状は二等辺三角形となっている。断面形状を二等辺三角形とすることによって、点光源1が配置されている光入射面と対向する端面からの折り返し光や、分割領域の境界面による反射光を光出射面側に向かわせる効率が良くなる。   Similarly, another cross-sectional shape in the longitudinal direction of the fine scattering structure will be described with reference to FIG. In the example shown in FIG. 10, the cross-sectional shape of the fine scattering structure 18 is an isosceles triangle. By making the cross-sectional shape an isosceles triangle, the efficiency of turning the reflected light from the end surface facing the light incident surface on which the point light source 1 is arranged or the reflected light from the boundary surface of the divided region to the light emitting surface side is improved. Get better.

図4〜図10に示した微細散乱構造体の典型的な寸法は、底面の一辺の長さが5〜50μm×7〜120μmであり、高さが5〜120μmである。この寸法は、断面形状や斜面の傾斜角などによって異なる。可能な限り密度を稼ぎたい場合は、底面の短辺寸法を5μm程度と小さな値に設定する。   Typical dimensions of the fine scattering structure shown in FIGS. 4 to 10 are such that the length of one side of the bottom surface is 5 to 50 μm × 7 to 120 μm and the height is 5 to 120 μm. This dimension varies depending on the cross-sectional shape and the inclination angle of the slope. In order to increase the density as much as possible, the short side dimension of the bottom surface is set to a small value of about 5 μm.

図12に微細散乱構造体の配列の具体例を模式的に示す。図示するように、ここでは点光源として3つのLED1a、1b、1cを用いている。微細散乱構造体20は、各微細散乱構造体に最も近いLEDと結ぶ直線に対して、形状の長手方向が略平行になるように配列されている。導光板2は3つの領域9、10、11に分割されており、各領域内においてLEDから遠ざかるに従って微細散乱構造体20の形成密度が大きくなっている。さらに、領域9から領域10に移ると、微細散乱構造体20の形成密度は不連続に減少している。この密度の減少量は、各領域における導光板厚みの差によって決まる。   FIG. 12 schematically shows a specific example of the arrangement of the fine scattering structures. As shown in the figure, here, three LEDs 1a, 1b, and 1c are used as point light sources. The fine scattering structures 20 are arranged so that the longitudinal direction of the shape is substantially parallel to the straight line connecting the LED closest to each fine scattering structure. The light guide plate 2 is divided into three regions 9, 10, and 11, and the formation density of the fine scattering structures 20 increases as the distance from the LED increases in each region. Furthermore, when moving from the region 9 to the region 10, the formation density of the fine scattering structures 20 decreases discontinuously. The amount of decrease in density is determined by the difference in the thickness of the light guide plate in each region.

微細散乱構造体20は、長手方向をLEDと結ぶ直線に平行に並べてあるために、LED近傍を中心とした円弧方向への充填密度を大きく取ることができ、その結果散乱特性も飽和し難くなる。また、LEDから遠ざかるにつれて導光板が薄くなっているために、内部での繰り返し反射回数はLEDから遠ざかるにつれて大きくなる。従って、LEDから遠い場所にある領域に形成される微細散乱構造体の密度は、領域9、10、11が形成されないときの密度に比較して小さくすることができる。さらに、微細散乱構造体の配列から可能な限り規則性を排除することによって、モワレ縞などの発生を押さえることができる。   Since the fine scattering structure 20 is arranged in parallel with a straight line connecting the longitudinal direction to the LED, it is possible to increase the packing density in the arc direction centering on the vicinity of the LED, and as a result, the scattering characteristics are not easily saturated. . In addition, since the light guide plate becomes thinner as the distance from the LED increases, the number of internal reflections increases as the distance from the LED increases. Therefore, the density of the fine scattering structure formed in the region far from the LED can be made smaller than the density when the regions 9, 10, and 11 are not formed. Furthermore, by eliminating regularity as much as possible from the arrangement of the fine scattering structures, the occurrence of moire fringes can be suppressed.

一方、図11に示すように導光板2の裏面に設けた微細散乱構造体18以外に、導光板2の光出射面にも別の第二の微細散乱構造体19を設けることもできる。この第二の微細散乱構造体19は、裏面に形成した微細散乱構造体18では散乱しきれない伝播光成分を散乱して光出射面から出射する機能を持っている。第二の微細散乱構造体19の平面形状は、図4と同様の形状であり、その側面は最も近くにある点光源と第二の微細散乱構造体19とを結ぶ直線に平行に形成されている。なお、光出射面側に形成する第二の微細散乱構造体19は、裏面に形成する微細散乱構造体18の形成密度の1/5〜1/50程度の密度で一様に形成すれば効果がある。そのため、点光源と結んだ方向に対して長手方向を垂直にして配列しても良い。また、図11に示した第二の微細散乱構造体19の断面形状は、導光板2の外側に凸形状の三角形をしている。この三角形の形状としては、光出射面からの光出射角の設計値に依存する。また、第二の微細散乱構造体19を導光板の内側に凹形状にすると、この微細散乱構造体で反射された光は、導光板裏面側に向きを変える。そして、導光板の裏面、あるいは、裏面に設けられた光反射層で反射されて光出射面から出射される。   On the other hand, in addition to the fine scattering structure 18 provided on the back surface of the light guide plate 2 as shown in FIG. 11, another second fine scattering structure 19 can also be provided on the light exit surface of the light guide plate 2. The second fine scattering structure 19 has a function of scattering a propagating light component that cannot be scattered by the fine scattering structure 18 formed on the back surface and emitting it from the light exit surface. The planar shape of the second fine scattering structure 19 is the same as that in FIG. 4, and its side surface is formed in parallel to a straight line connecting the nearest point light source and the second fine scattering structure 19. Yes. The second fine scattering structure 19 formed on the light emitting surface side is effective if formed uniformly at a density of about 1/5 to 1/50 of the formation density of the fine scattering structure 18 formed on the back surface. There is. Therefore, the longitudinal direction may be perpendicular to the direction connected to the point light source. The cross-sectional shape of the second fine scattering structure 19 shown in FIG. 11 is a convex triangle on the outside of the light guide plate 2. The shape of the triangle depends on the design value of the light emission angle from the light emission surface. Further, when the second fine scattering structure 19 is formed in a concave shape inside the light guide plate, the light reflected by the fine scattering structure turns to the back side of the light guide plate. And it reflects with the light reflection layer provided in the back surface of the light-guide plate, or a back surface, and is radiate | emitted from the light-projection surface.

最後に、図13を用いて本発明の照明装置を用いた液晶表示装置について説明する。照明装置は、上述したいずれかの構成の導光板2を備えており、導光板2の光入射面に対向して点光源1が配置されている。点光源1はFPC基板7上に実装されている。また、導光板2の三側面と裏面、換言すると光出射面と光入射面を除いた導光板の4つの面、に対向するように光反射層3、4が設けられている。そして、導光板の光出射面の上側に液晶表示素子21が設けられている。さらに、導光板2と液晶表示素子21の間には光拡散シート5とプリズムシート6が設けられている。液晶表示素子として、TFT素子を用いた透過型アクチブマトリクス型液晶表示素子や、STN液晶などを用いた透過型パッシブマトリックス型液晶表示素子などを用いることができる。この液晶表示素子21は、照明装置を保持する筐体8によって共通に保持される。液晶表示素子には図示していない回路基板が接続されており、液晶駆動回路からの電力と駆動信号が供給されている。図12に示す液晶表示装置とすることによって、均一な輝度で明るい液晶表示装置を実現することができる。   Finally, a liquid crystal display device using the illumination device of the present invention will be described with reference to FIG. The illumination device includes the light guide plate 2 having any one of the above-described configurations, and the point light source 1 is disposed so as to face the light incident surface of the light guide plate 2. The point light source 1 is mounted on the FPC board 7. Further, the light reflecting layers 3 and 4 are provided so as to face the three side surfaces and the back surface of the light guide plate 2, in other words, the four surfaces of the light guide plate excluding the light emitting surface and the light incident surface. A liquid crystal display element 21 is provided above the light exit surface of the light guide plate. Further, a light diffusion sheet 5 and a prism sheet 6 are provided between the light guide plate 2 and the liquid crystal display element 21. As the liquid crystal display element, a transmissive active matrix liquid crystal display element using a TFT element, a transmissive passive matrix liquid crystal display element using STN liquid crystal, or the like can be used. The liquid crystal display element 21 is held in common by a housing 8 that holds the lighting device. A circuit board (not shown) is connected to the liquid crystal display element, and power and drive signals are supplied from the liquid crystal drive circuit. By using the liquid crystal display device shown in FIG. 12, a bright liquid crystal display device with uniform brightness can be realized.

1 点光源
2 導光板
3,4 光反射層
5 光拡散シート
6 プリズムシート
7 FPC基板
8 筐体
9,10,11 分割領域
12,13 境界面
14,15 斜面
16 稜線
17a,17b 側面
18,19,20 微細散乱構造体
1 point light source 2 light guide plate 3, 4 light reflection layer 5 light diffusion sheet 6 prism sheet 7 FPC board 8 housing 9, 10, 11 divided area 12, 13 boundary surface 14, 15 slope 16 ridge line 17 a, 17 b side surface 18, 19 , 20 Fine scattering structure

Claims (4)

入射面から入射した光を光出射面に導く導光板と、前記光入射面に対向して配置された複数のLED素子と、前記光出射面とは反対側の面上に内部に窪んだ凹形状で形成された複数の微細散乱構造体を備え、
前記微細散乱構造体は、光源側の斜面と、2つの側面とを有するとともに、それぞれの側面がうねりのある曲面で形成され、
前記複数のLED素子のうち、当該微細散乱構造体から最短の距離にあるLED素子から前記微細散乱構造体に入射する光の方向が前記微細散乱構造体の長手方向と略一致し、前記光源側の斜面の基底線と直交することを特徴とする照明装置。
A light guide plate for guiding the light incident from the light incident surface to the light emitting surface, and a plurality of LED elements which are arranged opposite to the light incident surface, recessed therein on a surface opposite to the light emitting surface Provided with a plurality of fine scattering structures formed in a concave shape,
The fine scattering structure includes a light source side of the slope, with having two sides, are formed by tracks surface, each side is undulating,
Among the plurality of LED elements, the LED element from the fine scattering structure the shortest distance, the direction of light incident on the fine scattering structure, the longitudinal direction substantially coincides of the fine scattering structure, the An illumination device characterized by being orthogonal to a base line of a slope on a light source side.
前記2つの側面が斜面であることを特徴とする請求項1に記載の照明装置。   The lighting device according to claim 1, wherein the two side surfaces are inclined surfaces. 前記2つの側面により1つの稜線が形成されており、前記稜線が曲線であることを特徴とする請求項1または2に記載の照明装置。 The lighting device according to claim 1 , wherein one ridge line is formed by the two side surfaces, and the ridge line is a curved line . 請求項1〜3のいずれか一項に記載の照明装置と、前記照明装置の光照射面側に設けられた非自発光型の表示素子を備えることを特徴とする表示装置。   A display device comprising: the illumination device according to claim 1; and a non-self-luminous display element provided on a light irradiation surface side of the illumination device.
JP2010021562A 2004-05-20 2010-02-02 LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME Expired - Fee Related JP4865875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010021562A JP4865875B2 (en) 2004-05-20 2010-02-02 LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004150796 2004-05-20
JP2004150796 2004-05-20
JP2010021562A JP4865875B2 (en) 2004-05-20 2010-02-02 LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005118224A Division JP4717494B2 (en) 2004-05-20 2005-04-15 LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME

Publications (2)

Publication Number Publication Date
JP2010108948A JP2010108948A (en) 2010-05-13
JP4865875B2 true JP4865875B2 (en) 2012-02-01

Family

ID=35476202

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010021562A Expired - Fee Related JP4865875B2 (en) 2004-05-20 2010-02-02 LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME
JP2010021561A Expired - Fee Related JP4739454B2 (en) 2004-05-20 2010-02-02 LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010021561A Expired - Fee Related JP4739454B2 (en) 2004-05-20 2010-02-02 LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME

Country Status (2)

Country Link
JP (2) JP4865875B2 (en)
CN (1) CN100514150C (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7876489B2 (en) * 2006-06-05 2011-01-25 Pixtronix, Inc. Display apparatus with optical cavities
JP2009093143A (en) * 2007-09-18 2009-04-30 Fujifilm Corp Liquid crystal device
TWI405010B (en) 2009-07-10 2013-08-11 Au Optronics Corp Backlight module
CN101619825A (en) * 2009-08-06 2010-01-06 友达光电股份有限公司 Backlight module for reducing light leakage
KR20120026451A (en) * 2010-09-09 2012-03-19 히다치 가세고교 가부시끼가이샤 Light guide plate and surface light source device
WO2012046441A1 (en) * 2010-10-06 2012-04-12 株式会社クラレ Surface light source element and illuminating device provided with same
JP5556836B2 (en) * 2012-03-15 2014-07-23 オムロン株式会社 Surface light source device
KR20180045066A (en) * 2013-06-13 2018-05-03 주식회사 쿠라레 Illumination apparatus
JP6381484B2 (en) * 2015-05-22 2018-08-29 三菱電機株式会社 Surface light source device and display device including the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04162002A (en) * 1990-10-25 1992-06-05 Mitsubishi Rayon Co Ltd Plane light source in edge light system
JP3402138B2 (en) * 1996-09-27 2003-04-28 株式会社日立製作所 Liquid crystal display
AU4724397A (en) * 1996-10-25 1998-05-22 Omron Corporation Surface light source and liquid crystal display, portable telephone and information terminal employing the surface light source
JPH11231797A (en) * 1998-02-10 1999-08-27 Omron Corp Light guide plate for back light device, back light device, and display device using back light device
JP3651238B2 (en) * 1998-02-27 2005-05-25 オムロン株式会社 Surface light source device
JP4387049B2 (en) * 2000-08-16 2009-12-16 株式会社エンプラス Surface light source device and liquid crystal display
JP4055056B2 (en) * 2002-07-19 2008-03-05 ミネベア株式会社 Surface lighting device

Also Published As

Publication number Publication date
CN1700074A (en) 2005-11-23
JP2010108947A (en) 2010-05-13
JP2010108948A (en) 2010-05-13
CN100514150C (en) 2009-07-15
JP4739454B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP4717494B2 (en) LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME
JP4865875B2 (en) LIGHTING DEVICE AND DISPLAY DEVICE USING THE SAME
US11231547B2 (en) Slim waveguide coupling apparatus and method
KR100483209B1 (en) Apparatus of surface light source
JP4006918B2 (en) Surface light source device and manufacturing method thereof
JP5360172B2 (en) Planar light source device and display device using the same
US7484873B2 (en) Illumination device having elliptical body and display device using the same
JP5199830B2 (en) Display device
JP2011014520A (en) Lighting device and display
TWI431327B (en) Color mixing lens and liquid crystal display device having the same
JP2005243533A (en) Planar lighting system
JP2005243259A (en) Double-screen image display device and surface light source device
WO2008047442A1 (en) Surface light source device
JP4530923B2 (en) Light source and backlight
JP2012209088A (en) Backlight device
JP2012209091A (en) Backlight device
TWI437327B (en) Back-light module
JP2012209086A (en) Backlight device and light guide plate
JP2004272055A (en) Side light type surface light source device
JP2012209090A (en) Backlight device
JP2012209089A (en) Backlight device
TW201122661A (en) Backlight module and display device using the same
KR20190031364A (en) Light guide plate and backlight unit having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4865875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees