JP4863459B2 - MIMO detection method, receiving apparatus and receiving method - Google Patents

MIMO detection method, receiving apparatus and receiving method Download PDF

Info

Publication number
JP4863459B2
JP4863459B2 JP2006152638A JP2006152638A JP4863459B2 JP 4863459 B2 JP4863459 B2 JP 4863459B2 JP 2006152638 A JP2006152638 A JP 2006152638A JP 2006152638 A JP2006152638 A JP 2006152638A JP 4863459 B2 JP4863459 B2 JP 4863459B2
Authority
JP
Japan
Prior art keywords
signal
transmission signal
channel information
candidates
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006152638A
Other languages
Japanese (ja)
Other versions
JP2007300586A5 (en
JP2007300586A (en
Inventor
和彦 府川
博 鈴木
聡 須山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Tokyo Institute of Technology NUC
Original Assignee
Sharp Corp
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, Tokyo Institute of Technology NUC filed Critical Sharp Corp
Priority to JP2006152638A priority Critical patent/JP4863459B2/en
Publication of JP2007300586A publication Critical patent/JP2007300586A/en
Publication of JP2007300586A5 publication Critical patent/JP2007300586A5/ja
Application granted granted Critical
Publication of JP4863459B2 publication Critical patent/JP4863459B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radio Transmission System (AREA)

Description

本発明は,携帯電話システム等の無線通信に関するものであり,特に複数の送受信アンテナを用いて空間多重伝送を行うMIMO(Multiple Input Multiple Output)検波方式,受信装置及び受信方法に関するものである. The present invention relates to wireless communication such as a mobile phone system, and more particularly to a MIMO (Multiple Input Multiple Output) detection method , a receiving apparatus, and a receiving method for performing spatial multiplexing transmission using a plurality of transmitting and receiving antennas.

携帯電話システム等の無線通信において,周波数帯域を広げずに伝送速度を高める技術として,複数の送受信アンテナを用いて空間多重伝送を行うMIMO伝送が知られている.
図1に,送信アンテナ数K(Kは2以上の整数)のMIMO伝送用送信機の構成を示す.まず,入力端子1から送信ビット系列がシリアル・パラレル変換器2−1へ入力され,K個のビット系列に分けられる.ビット系列は,各々対応するベースバンド変調回路3−1から3−Kへ端子7−1を通って入力され,送信信号に相当する複素シンボルが変調信号として生成される.この複素シンボルは同相成分と直交成分の2成分を持つが,一つの信号と見なす.ベースバンド変調回路3−1の出力である変調信号は,端子7−2と端子7−3を通り変調器4−1へ入力される.発振器6が出力するキャリア信号が端子7−4から入力し,変調器4−1は,このキャリア信号を用いて変調信号をRF周波数帯へ周波数変換し,端子8を通して対応する送信アンテナ5−1で送信する.他の変調信号についても同様の操作が行われる.
In wireless communication such as cellular phone systems, MIMO transmission that performs spatial multiplexing transmission using multiple transmitting and receiving antennas is known as a technique for increasing the transmission speed without expanding the frequency band.
Fig. 1 shows the configuration of a transmitter for MIMO transmission with the number of transmitting antennas K (K is an integer of 2 or more). First, the transmission bit sequence is input from the input terminal 1 to the serial / parallel converter 2-1, and is divided into K bit sequences. Each bit sequence is input from a corresponding baseband modulation circuit 3-1 to 3-K through a terminal 7-1, and a complex symbol corresponding to a transmission signal is generated as a modulation signal. Although this complex symbol has two components, an in-phase component and a quadrature component, it is regarded as one signal. The modulation signal that is the output of the baseband modulation circuit 3-1 is input to the modulator 4-1 through the terminals 7-2 and 7-3. The carrier signal output from the oscillator 6 is input from the terminal 7-4, and the modulator 4-1 converts the frequency of the modulated signal into the RF frequency band using this carrier signal, and transmits the corresponding transmitting antenna 5-1 through the terminal 8. Send with. The same operation is performed for other modulated signals.

図1の変調器4の構成を図2に示す.端子7−2と端子7−3からそれぞれ,変調信号である複素シンボルの同相成分と直交成分が入力され,端子7−4からキャリア信号が入力される.乗算器9−1は変調信号の同相成分にキャリア信号を乗算し,乗算器9−2は変調信号の直交成分に,移相器10の出力である位相が90度回転したキャリア信号を乗算する.これらの乗算結果は加算器11で足し合わされ,増幅器12で増幅された後,端子8から出力される.  The configuration of the modulator 4 in FIG. 1 is shown in FIG. The in-phase component and the quadrature component of the complex symbol, which is a modulation signal, are input from the terminal 7-2 and the terminal 7-3, respectively, and the carrier signal is input from the terminal 7-4. The multiplier 9-1 multiplies the in-phase component of the modulation signal by the carrier signal, and the multiplier 9-2 multiplies the quadrature component of the modulation signal by the carrier signal whose phase that is the output of the phase shifter 10 is rotated by 90 degrees. . These multiplication results are added by the adder 11, amplified by the amplifier 12, and then output from the terminal 8.

また,図1のベースバンド変調回路3について,MIMOシングルキャリア伝送用の構成を図3に示す.端子7−1からビット系列が複素シンボル生成回路13に入力され,ビットに応じて複素シンボルが生成される.複素シンボルの同相成分と直交成分がそれぞれ,端子7−2及び7−3から出力される.  The configuration for MIMO single carrier transmission of the baseband modulation circuit 3 in FIG. 1 is shown in FIG. A bit sequence is input from the terminal 7-1 to the complex symbol generation circuit 13, and a complex symbol is generated according to the bit. The in-phase component and quadrature component of the complex symbol are output from terminals 7-2 and 7-3, respectively.

さらに,MIMO−OFDM(Orthogonal Frequency Division Multiplexing)伝送用のベースバンド変調回路3の構成を,図4に示す.まず,端子7−1からビット系列がシリアル・パラレル変換器2−2へ入力され,サブキャリア数N(Nは2以上の整数)のビット系列に分けられる.N個のビット系列はそれぞれ,対応する複素シンボル生成回路13−1から13−Nへ入力され,複素シンボルが生成される.IFFT(Inverse Fast Fourier Transform)回路はこれらの複素シンボルに対して,各サブキャリアに応じたキャリア信号を乗算して合成し,マルチキャリア信号を生成する.ガードインターバル付加器15は,このマルチキャリア信号の最後の部分をガードインターバルとして先頭に付加してOFDM変調信号を生成し,その同相成分と直交成分をそれぞれ,端子7−2及び7−3へ出力する.  Furthermore, FIG. 4 shows the configuration of a baseband modulation circuit 3 for MIMO-OFDM (Orthogonal Frequency Division Multiplexing) transmission. First, a bit sequence is input from the terminal 7-1 to the serial / parallel converter 2-2 and divided into bit sequences of N subcarriers (N is an integer of 2 or more). Each of the N bit sequences is input to a corresponding complex symbol generation circuit 13-1 to 13-N, and a complex symbol is generated. An IFFT (Inverse Fast Fourier Transform) circuit multiplies these complex symbols by a carrier signal corresponding to each subcarrier to generate a multicarrier signal. The guard interval adder 15 generates the OFDM modulation signal by adding the last part of the multicarrier signal as a guard interval to the head, and outputs the in-phase component and the quadrature component to terminals 7-2 and 7-3, respectively. Do it.

次に,受信アンテナ数L(Lは2以上の整数)のMIMOシングルキャリア伝送用の受信機の構成を図5に示す.まず,受信アンテナ16−1から16−Lで受信した受信波はそれぞれ,対応する受信回路20−1から20−Lにおいてベースバンドへ周波数変換され,受信信号として出力される.受信回路20−1は,増幅器12,ハイブリッド17,乗算器9−1と9−2,移相器10,低域通過フィルタ18−1と18−2,及びA/D変換器19−1及び19−2から構成され,増幅器12とハイブリッド17は受信波を増幅後分岐し,移相器10は発振器6が出力するキャリア信号の位相を90度回転させ,乗算回路9−1及び9−2は増幅された受信波にキャリア信号とキャリア信号の位相を90度回転したものをそれぞれ乗算して,2つの乗算結果を出力する.これらの乗算結果は低域通過フィルタ18−1及び18−2で高周波成分が除去された後,ベースバンド信号である受信信号の同相成分と直交成分が抽出される.A/D変換器19−1及び19−2は受信信号をディジタル信号に変換して出力する.信号検出器21は,受信信号と,伝送路のチャネル情報として伝送路推定回路43が出力するインパルス応答の推定値を基に,送信信号である複素シンボルを検出し送信ビット系列の判定値を出力端子22へ出力する.伝送路推定回路43は,入力端子23から入力する既知のトレーニング信号と,受信信号を用いて,伝送路のインパルス応答を推定し,この推定値を出力する.  Next, Fig. 5 shows the configuration of a receiver for MIMO single carrier transmission with the number of receiving antennas L (L is an integer of 2 or more). First, the received waves received by the receiving antennas 16-1 to 16-L are frequency-converted to the baseband in the corresponding receiving circuits 20-1 to 20-L, and are output as received signals. The receiving circuit 20-1 includes an amplifier 12, a hybrid 17, multipliers 9-1 and 9-2, a phase shifter 10, low-pass filters 18-1 and 18-2, and an A / D converter 19-1. The amplifier 12 and the hybrid 17 branch after amplifying the received wave, and the phase shifter 10 rotates the phase of the carrier signal output from the oscillator 6 by 90 degrees, thereby multiplying circuits 9-1 and 9-2. Multiplies the amplified received signal by the carrier signal and the carrier signal phase rotated by 90 degrees, and outputs two multiplication results. From these multiplication results, high-frequency components are removed by the low-pass filters 18-1 and 18-2, and then the in-phase component and the quadrature component of the received signal which is the baseband signal are extracted. The A / D converters 19-1 and 19-2 convert the received signal into a digital signal and output it. The signal detector 21 detects a complex symbol which is a transmission signal based on the received signal and an estimated value of an impulse response output from the transmission path estimation circuit 43 as channel information of the transmission path, and outputs a transmission bit sequence determination value. Output to terminal 22. The transmission path estimation circuit 43 estimates the impulse response of the transmission path using a known training signal input from the input terminal 23 and the received signal, and outputs this estimated value.

また,図6にMIMO−OFDM伝送用受信機の構成を示す.まず,受信アンテナ16−1から16−Lで受信した受信波はそれぞれ,対応するOFDM受信回路26−1から26−Lにおいてベースバンドへ周波数変換された後,各サブキャリア成分に分離され,受信信号として出力される.OFDM受信回路26−1は受信回路20−1,ガードインターバル除去回路24,及びFFT(Fast Fourier Transform)演算回路25から構成され,受信回路20−1は,発振器6が出力するキャリア信号を用いて受信波をベースバンドへ周波数変換する.ガードインターバル除去回路24は,周波数変換された信号からガードインターバルに相当する部分を除去し,FFT演算回路25は,IFFTの逆操作であるFFTを行い,各サブキャリア成分へ分離し,受信信号として出力する.したがって,サブキャリア数N個の同相成分と直交成分が生成される.信号検出はサブキャリア毎に行い,第1サブキャリアに相当する受信信号は信号検出器21−1へ入力され,第Nサブキャリアに相当する受信信号は信号検出器21−Nへ入力される.信号検出器21−1から21−Nは,受信信号と,DFT(Discrete Fourier Transform)回路27が出力するチャネルの周波数応答推定値をチャネル情報として用い,送信信号である複素シンボルを検出し送信ビット系列の判定値を出力する.パラレル・シリアル変換回路28は,信号検出器21−1から21−Nが出力する送信ビット系列の判定値をパラレル・シリアル変換して出力端子22へ出力する.DFT回路27は,伝送路推定回路43が出力する伝送路のインパルス応答の推定値にDFTを行い,各サブキャリア周波数における周波数応答の推定値を出力する.  Figure 6 shows the configuration of the receiver for MIMO-OFDM transmission. First, the received waves received by the receiving antennas 16-1 to 16-L are frequency-converted to baseband in the corresponding OFDM receiving circuits 26-1 to 26-L, respectively, and then separated into subcarrier components. It is output as a signal. The OFDM receiving circuit 26-1 includes a receiving circuit 20-1, a guard interval removing circuit 24, and an FFT (Fast Fourier Transform) arithmetic circuit 25. The receiving circuit 20-1 uses a carrier signal output from the oscillator 6. Frequency conversion of received wave to baseband. The guard interval removal circuit 24 removes a portion corresponding to the guard interval from the frequency-converted signal, and the FFT operation circuit 25 performs FFT, which is the inverse operation of IFFT, and separates it into each subcarrier component as a received signal. Output. Therefore, in-phase and quadrature components with N subcarriers are generated. Signal detection is performed for each subcarrier, a received signal corresponding to the first subcarrier is input to the signal detector 21-1, and a received signal corresponding to the Nth subcarrier is input to the signal detector 21-N. The signal detectors 21-1 to 21 -N use the received signal and the channel frequency response estimation value output from the DFT (Discrete Fourier Transform) circuit 27 as channel information, detect complex symbols that are transmission signals, and transmit bits The judgment value of the series is output. The parallel / serial conversion circuit 28 performs parallel / serial conversion on the determination value of the transmission bit series output from the signal detectors 21-1 to 21 -N and outputs the result to the output terminal 22. The DFT circuit 27 performs DFT on the estimated value of the impulse response of the transmission line output from the transmission line estimation circuit 43, and outputs the estimated value of the frequency response at each subcarrier frequency.

図5及び図6の信号検出器21に適用できる各種検出方式の内,最適方式はビット誤り率を最小にできる最尤検出(非特許文献1参照)である.最尤検出に基づく信号検出器21の構成を図7に示す.まず,各受信アンテナからの受信信号が端子を介してメトリック生成回路31へ入力する.具体的には,端子29−1と29−2からは受信アンテナ16−1の受信信号の同相成分及び直交成分が,端子29−3と29−4からは受信アンテナ16−Lの受信信号の同相成分及び直交成分が,それぞれ入力する.伝送路のチャネル情報として端子30から,MIMOシングルキャリア伝送の場合には伝送路のインパルス応答の推定値が,MIMO−OFDM伝送の場合には伝送路の周波数応答の推定値が入力する.メトリック生成手段に相当するメトリック生成回路31は,受信信号,伝送路のチャネル情報,及び信号候補生成回路34が出力する送信信号候補を基に,送信信号候補に対応するメトリックを生成する.このメトリックについて以下数式を用いて,MIMOシングルキャリア伝送を例に説明する.なお,ベースバンドの信号は全て,同相成分を実部,直交成分を虚部とする複素表示で表すものとする.  Among various detection methods applicable to the signal detector 21 of FIGS. 5 and 6, the optimum method is maximum likelihood detection (see Non-Patent Document 1) that can minimize the bit error rate. Figure 7 shows the configuration of the signal detector 21 based on maximum likelihood detection. First, the received signal from each receiving antenna is input to the metric generation circuit 31 via the terminal. Specifically, the in-phase and quadrature components of the reception signal of the reception antenna 16-1 are received from the terminals 29-1 and 29-2, and the reception signal of the reception antenna 16-L is received from the terminals 29-3 and 29-4. In-phase and quadrature components are input respectively. As channel information of the transmission path, an estimated value of the impulse response of the transmission path is input from the terminal 30 in the case of MIMO single carrier transmission, and an estimated value of the frequency response of the transmission path is input in the case of MIMO-OFDM transmission. The metric generation circuit 31 corresponding to the metric generation means generates a metric corresponding to the transmission signal candidate based on the received signal, the channel information of the transmission path, and the transmission signal candidate output from the signal candidate generation circuit 34. This metric will be explained below using MIMO single carrier transmission as an example, using the following formula. All baseband signals are expressed in a complex representation with the in-phase component as the real part and the quadrature component as the imaginary part.

Figure 0004863459
kは整数)送信アンテナと第p受信アンテナ間のインパルス応答をhpk,第k送信アンテナからの送信信号,即ち複素シンボルをsとすると,y
Figure 0004863459
と表すことができる.なお,nは第p受信アンテナの受信信号に加わる雑音であり,pが
Figure 0004863459
数選択性と仮定した.
Figure 0004863459
となる.
Figure 0004863459
トを求め,判定値として端子33へ出力する.なお,この最小メトリック検出器32は最
Figure 0004863459
と第p受信アンテナ間の周波数応答の推定値に置き換えればよい.
このように最尤検出は,数式2のメトリックを送信信号候補の数だけ計算しなければならず,複素シンボルの多値数をMとするとM回計算する必要がある.したがって,MやKが大きい値のとき演算量が膨大になってしまうという問題がある.
Figure 0004863459
k is an integer) If the impulse response between the transmitting antenna and the p-th receiving antenna is h pk , and the transmission signal from the k-th transmitting antenna, that is, the complex symbol is s k , y p is
Figure 0004863459
It can be expressed as. Note that n p is noise added to the received signal of the p-th receiving antenna, and p is
Figure 0004863459
Assumed number selectivity.
Figure 0004863459
It becomes.
Figure 0004863459
Is output to the terminal 33 as a judgment value. The minimum metric detector 32 is the maximum
Figure 0004863459
And the estimated value of the frequency response between the pth receiving antennas.
Thus maximum likelihood detection has to compute a metric of Equation 2 for the number of transmission signal candidates, certain multi-level number of complex symbols is necessary to calculate M K times when the M. Therefore, there is a problem that the amount of calculation becomes enormous when M and K are large values.

以上説明したように,最尤検出はビット誤り率を最小にできるものの,演算量が膨大になるという問題がある.この演算量を削減できる準最適検波方式として,受信信号に線形操作を行う線形受信が知られている.線形受信の一種であるMMSE(Minimum Mean Square Error)(非特許文献2参照)に基づく信号検出器21の構成を図8に示す.まず,各受信アンテナからの受信信号が端子を介して線形変換回路35へ入力する.具体的には,端子29−1と29−2からは受信アンテナ16−1の受信信号の同相成分及び直交成分が,端子29−3と29−4からは受信アンテナ16−Lの受信信号の同相成分及び直交成分が,それぞれ入力する.伝送路のチャネル情報として端子30から,MIMOシングルキャリア伝送の場合には伝送路のインパルス応答の推定値が,MIMO−OFDM伝送の場合には伝送路の周波数応答の推定値が入力する.線形変換回路35は,チャネル情報から算出する重み付け係数を用いて受信信号に線形操作である線形合成を行い,K個の合成信号を生成する.硬判定器36−1から36−Kはそれぞれ,合成信号に量子化の一種である硬判定を行い,合成信号に最も近い複素シンボルを求める.その複素シンボルから送信ビットを推定し,判定値としてパラレル・シリアル変換器28へ入力する.パラレル・シリアル変換器28は判定値をパラレル・シリアル変換して端子33へ出力する.  As explained above, maximum likelihood detection can minimize the bit error rate, but has the problem that the amount of computation is enormous. As a sub-optimal detection method that can reduce the amount of computation, linear reception is known which performs linear operation on the received signal. The configuration of the signal detector 21 based on MMSE (Minimum Mean Square Error) (see Non-Patent Document 2), which is a type of linear reception, is shown in FIG. First, the received signal from each receiving antenna is input to the linear conversion circuit 35 via a terminal. Specifically, the in-phase and quadrature components of the reception signal of the reception antenna 16-1 are received from the terminals 29-1 and 29-2, and the reception signal of the reception antenna 16-L is received from the terminals 29-3 and 29-4. In-phase and quadrature components are input respectively. As channel information of the transmission path, an estimated value of the impulse response of the transmission path is input from the terminal 30 in the case of MIMO single carrier transmission, and an estimated value of the frequency response of the transmission path is input in the case of MIMO-OFDM transmission. The linear conversion circuit 35 performs linear synthesis, which is a linear operation, on the received signal using a weighting coefficient calculated from the channel information, and generates K synthesized signals. Each of the hard discriminators 36-1 to 36-K performs a hard decision which is a kind of quantization on the synthesized signal, and obtains a complex symbol closest to the synthesized signal. The transmission bit is estimated from the complex symbol and input to the parallel / serial converter 28 as a judgment value. The parallel / serial converter 28 converts the judgment value from parallel to serial and outputs the result to the terminal 33.

上記の線形変換回路35の動作について数式を用いて説明する.まず,L次元受信信号ベクトルy,K次元送信信号ベクトルs,L次元雑音ベクトルnを以下のように定義する.

Figure 0004863459
を(p,k)成分とするL×K行列とする.合成信号を成分とするK次元ベクトルをxとすると
Figure 0004863459
と表すことができる.ここで,Wは重み付け係数を成分とするK×L行列,IはK×K単位行列である.WはHから求めることができ,xを硬判定したものがsの推定値となる.
この線形受信は最尤検出に較べ演算量を大幅に削減できるものの,送信信号候補の数を実質1にしていることと等価で,ビット誤り率が著しく劣化するという問題がある.The operation of the linear conversion circuit 35 will be described using mathematical expressions. First, an L-dimensional received signal vector y, a K-dimensional transmitted signal vector s, and an L-dimensional noise vector n are defined as follows.
Figure 0004863459
Is an L × K matrix with (p, k) components. If a K-dimensional vector whose component is a composite signal is x,
Figure 0004863459
It can be expressed as. Here, W is a K × L matrix whose components are weighting coefficients, and I is a K × K unit matrix. W can be obtained from H, and a hard decision of x is an estimate of s.
Although this linear reception can greatly reduce the amount of computation compared to maximum likelihood detection, it is equivalent to making the number of transmission signal candidates substantially 1, and has the problem that the bit error rate significantly deteriorates.

X.Zhu and R.D.Murch,“Performance analysis of maximum likelihood detection in a MIMO antenna system,” IEEE Transaction on Communications,vol.50,no.2,pp.187−191,February 2002.X. Zhu and R.K. D. Murch, “Performance analysis of maximum Likelihood detection in a MIMO antenna system,” IEEE Transactions on Communications, vol. 50, no. 2, pp. 187-191, February 2002. Simon Haykin,Adaptive Filter Theory Third Edition,Prentice−Hall出版,1996年.Simon Haykin, Adaptive Filter Theory Third Edition, published by Prentice-Hall, 1996.

このように,MIMO検波方式の内,最尤検出は最適検波方式であり最小ビット誤り率を達成できるが,演算量が膨大になってしまう.この演算量を削減するため,従来から線形受信等の準最適検波方式が提案されているが,演算量を削減するとビット誤り率が大幅に劣化するという問題があった.  Thus, of the MIMO detection methods, maximum likelihood detection is an optimal detection method and can achieve the minimum bit error rate, but the amount of computation becomes enormous. In order to reduce this amount of computation, quasi-optimal detection methods such as linear reception have been proposed in the past, but there was a problem that the bit error rate deteriorated significantly when the amount of computation was reduced.

本発明は,このような課題に鑑みてなされたものであり,最尤検出と同程度のビット誤り率特性を維持しつつ,演算量を大幅に削減できるMIMO検波方式,受信装置及び受信方法を提供することを目的とする. The present invention has been made in view of such a problem, and provides a MIMO detection method , a receiving apparatus, and a receiving method that can significantly reduce the amount of computation while maintaining a bit error rate characteristic comparable to that of maximum likelihood detection. It is intended to provide.

本発明は,受信信号と,伝送路のチャネル情報と,複数の送信信号候補とを基に,前記送信信号候補に対応するメトリックを生成するメトリック生成手段と,前記メトリックの最小値を探索し,その最小値に対応する前記送信信号候補のビットを判定値として出力する最小メトリック検出手段と,前記受信信号と前記チャネル情報を基に,線形操作と量子化により複数の前記送信信号候補を生成する送信信号候補生成手段と,を備え前記送信信号候補の数は、同一の前記送信信号候補のうち一つを残してそれ以外を除くと前記量子化の回数以下であることを特徴とするMIMO検波方式である.
また,前記送信信号候補生成手段は,前記受信信号に対して前記チャネル情報から求める重み付け係数を用いて線形操作を行い,初期値を求める線形変換手段と,前記初期値と前記チャネル情報と前記受信信号とを基に更新値を算出する更新値演算手段と,前記初期値に前記更新値を加算する加算手段と,前記加算結果を量子化により複数の前記送信信号候補を生成する量子化手段と,を備えることを特徴とする.
また,前記送信信号候補生成手段は,前記送信信号候補数の回数だけ複素ガウス変数を生成する雑音生成手段と,前記受信信号に前記複素ガウス変数を加算する加算手段と,前記チャネル情報から求める重み付け係数を用いて前記加算結果に対して線形操作を行う線形変換手段と,前記線形変換手段の出力を量子化により複数の前記送信信号候補を生成する量子化手段と,を備えることを特徴とする.
また,前記送信信号候補生成手段は,複素ガウス変数を生成する雑音生成手段と,前記受信信号に前記複素ガウス変数を加算する加算手段と,前記チャネル情報から求める重み付け係数を用いて前記加算結果に対して線形操作を行う線形変換手段と,前記線形変換手段の出力を量子化により複数の前記送信信号候補を生成する量子化手段と,を備えることを特徴とする.
また,前記受信信号は,複数の受信アンテナで受信した受信波を周波数変換して得られる信号とし,前記チャネル情報は,伝送路のインパルス応答の推定値とすることを特徴とする.
また,前記受信信号は,複数の受信アンテナで受信した受信波を周波数変換した後,各サブキャリア成分に分離して得られる信号とし,前記チャネル情報は,伝送路の周波数応答の推定値とすることを特徴とする.
また,本発明は, MIMO多重信号を受信する受信装置であって,受信信号から伝送路のチャネル情報を算出する伝送路推定手段と,前記受信信号と前記チャネル情報とからビット判定値を求める信号検出手段と,を備え,前記信号検出手段は,前記受信信号と,前記チャネル情報と,複数の送信信号候補とを基に,前記送信信号候補に対応するメトリックを生成するメトリック生成手段と,前記メトリックの最小値を探索し,その最小値に対応する前記送信信号候補のビットを判定値として出力する最小メトリック検出手段と,前記受信信号と前記チャネル情報を基に,線形操作と量子化により複数の前記送信信号候補を生成する送信信号候補生成手段と,を備え前記送信信号候補の数は、同一の前記送信信号候補のうち一つを残してそれ以外を除くと前記量子化の回数以下であることを特徴とする受信装置である.
また,前記送信信号候補生成手段は,前記受信信号に対して前記チャネル情報から求める重み付け係数を用いて線形操作を行い,初期値を求める線形変換手段と,前記初期値と前記チャネル情報と前記受信信号とを基に更新値を算出する更新値演算手段と,前記初期値に前記更新値を加算する加算手段と,前記加算結果を量子化により複数の前記送信信号候補を生成する量子化手段と,を備えることを特徴とする.
また,本発明は,MIMO多重信号を受信する受信方法であって,受信信号から伝送路のチャネル情報を算出する伝送路推定過程と,前記受信信号と前記チャネル情報とからビット判定値を求める信号検出過程と,を備え,前記信号検出過程は,前記受信信号と,前記チャネル情報と,複数の送信信号候補とを基に,前記送信信号候補に対応するメトリックを生成するメトリック生成過程と,前記メトリックの最小値を探索し,その最小値に対応する前記送信信号候補のビットを判定値として出力する最小メトリック検出過程と,前記受信信号と前記チャネル情報を基に,線形操作と量子化により複数の前記送信信号候補を生成する送信信号候補生成過程と,を有し、前記送信信号候補の数は、同一の前記送信信号候補のうち一つを残してそれ以外を除くと前記量子化の回数以下であることを特徴とする受信方法である.
The present invention searches for a minimum value of the metric, metric generation means for generating a metric corresponding to the transmission signal candidate based on the received signal, channel information of the transmission path, and a plurality of transmission signal candidates, Based on the received signal and the channel information, a plurality of transmission signal candidates are generated by linear operation and quantization based on minimum metric detection means for outputting the bit of the transmission signal candidate corresponding to the minimum value as a determination value. Transmission signal candidate generation means , wherein the number of transmission signal candidates is equal to or less than the number of quantizations except for one of the same transmission signal candidates, and the others are excluded. This is a detection method.
The transmission signal candidate generation means performs a linear operation on the reception signal using a weighting coefficient obtained from the channel information, and obtains an initial value, linear conversion means for obtaining an initial value, the initial value, the channel information, and the reception Update value calculating means for calculating an update value based on the signal, addition means for adding the update value to the initial value, and quantization means for generating a plurality of transmission signal candidates by quantizing the addition result; , Is provided.
Further, the transmission signal candidate generation means includes noise generation means for generating a complex Gaussian variable by the number of times of the number of transmission signal candidates, addition means for adding the complex Gaussian variable to the received signal, and weighting obtained from the channel information. A linear conversion unit that performs a linear operation on the addition result using a coefficient; and a quantization unit that generates a plurality of transmission signal candidates by quantizing an output of the linear conversion unit. .
In addition, the transmission signal candidate generating means includes a noise generating means for generating a complex Gaussian variable, an adding means for adding the complex Gaussian variable to the received signal, and a weighting coefficient obtained from the channel information. A linear transformation means for performing a linear operation on the output, and a quantization means for generating a plurality of transmission signal candidates by quantizing the output of the linear transformation means.
The received signal is a signal obtained by frequency-converting received waves received by a plurality of receiving antennas, and the channel information is an estimated value of an impulse response of a transmission path.
The received signal is a signal obtained by frequency-converting a received wave received by a plurality of receiving antennas and then separating it into subcarrier components, and the channel information is an estimated value of the frequency response of the transmission path. It is characterized by this.
The present invention is also a receiving apparatus for receiving a MIMO multiplexed signal, a transmission path estimation means for calculating channel information of a transmission path from the received signal, and a signal for obtaining a bit determination value from the received signal and the channel information. Detecting means, and the signal detecting means generates metric corresponding to the transmission signal candidate based on the received signal, the channel information, and a plurality of transmission signal candidates, and A minimum metric detecting unit that searches for a minimum value of a metric and outputs a bit of the transmission signal candidate corresponding to the minimum value as a determination value, and a plurality of values by linear operation and quantization based on the received signal and the channel information. wherein a transmission signal candidate generating means for generating a transmission signal candidates, comprising a number of said transmitted signal candidates, and leaving one of the same of the transmission signal candidates its Except for this, the receiving apparatus is characterized in that it is less than the number of times of quantization.
The transmission signal candidate generation means performs a linear operation on the reception signal using a weighting coefficient obtained from the channel information, and obtains an initial value, linear conversion means for obtaining an initial value, the initial value, the channel information, and the reception Update value calculating means for calculating an update value based on the signal, addition means for adding the update value to the initial value, and quantization means for generating a plurality of transmission signal candidates by quantizing the addition result; , Is provided.
The present invention is also a receiving method for receiving a MIMO multiplexed signal, a transmission path estimation process for calculating channel information of a transmission path from the received signal, and a signal for obtaining a bit determination value from the received signal and the channel information. A detection process, wherein the signal detection process generates a metric corresponding to the transmission signal candidate based on the received signal, the channel information, and a plurality of transmission signal candidates; A minimum metric detection process for searching for a minimum value of a metric and outputting the bit of the transmission signal candidate corresponding to the minimum value as a determination value, and a plurality of operations by linear operation and quantization based on the received signal and the channel information. wherein a transmission signal candidate generating step of generating a transmission signal candidates, the number of the transmission signal candidates, their leaving one of said same transmission signal candidates A receiving method which is characterized in that less than the number and the quantization excluding non.

本発明は,以下に記載されるような効果を奏する.
(1)最尤検出と同程度のビット誤り率特性を維持しつつ,演算量を大幅に削減できる.
(2)送信信号候補の数をさらに抑え演算量を大幅に削減できる.
(3)送信信号候補の数を抑え演算量を削減できる.
(4)MIMOシングルキャリア伝送に適用できる.
(5)MIMO−OFDM伝送に適用できる.
The present invention has the following effects.
(1) The computational complexity can be greatly reduced while maintaining the bit error rate performance comparable to that of maximum likelihood detection.
(2) The amount of computation can be greatly reduced by further reducing the number of transmission signal candidates.
(3) The amount of computation can be reduced by reducing the number of transmission signal candidates.
(4) Applicable to MIMO single carrier transmission.
(5) Applicable to MIMO-OFDM transmission.

以下,本発明を実施するための最良の形態について説明する.
まず,第1の発明のMIMO検波方式を用いた信号検出器21の構成(請求項4)を図9に示す.図7に示す従来の最尤検出に基づく信号検出器21との違いは,信号候補生成回路34を送信信号候補生成手段に相当する送信信号候補生成回路44に置き換えた点にある.なお,送信信号候補生成回路44は,加算回路37−1から37−L,雑音生成回路38,線形変換回路35,量子化器39−1から39−K,及びパラレル・シリアル変換器40から構成され,以下では送信信号候補生成回路44の動作について詳述する.
The best mode for carrying out the present invention will be described below.
First, FIG. 9 shows the configuration of the signal detector 21 using the MIMO detection system of the first invention (claim 4). The difference from the signal detector 21 based on the conventional maximum likelihood detection shown in FIG. 7 is that the signal candidate generation circuit 34 is replaced with a transmission signal candidate generation circuit 44 corresponding to transmission signal candidate generation means. The transmission signal candidate generation circuit 44 includes adder circuits 37-1 to 37-L, a noise generation circuit 38, a linear conversion circuit 35, quantizers 39-1 to 39-K, and a parallel / serial converter 40. The operation of the transmission signal candidate generation circuit 44 will be described in detail below.

送信信号候補数をC(Cは2以上の整数)とする.雑音生成回路38はC回人工的に複素ガウス信号を生成するが,1回目は値が零となる信号をL個生成し,2回目以降は平均値零,分散ξで互いに無相関となる複素ガウスをL個発生させる.加算回路37−1から37−Lは,受信信号に雑音生成回路38が生成する生成雑音を加算する.具体的には,端子29−1と29−2から入力する受信アンテナ16−1の受信信号の同相成分及び直交成分については,それぞれ1番目の生成雑音の同相成分及び直交成分を加算し,端子29−3と29−4から入力する受信アンテナ16−Lの受信信号の同相成分及び直交成分については,それぞれL番目の生成雑音の同相成分及び直交成分を加算する.加算回路3

Figure 0004863459
信号を生成する.この合成信号を成分とするK次元ベクテルをxとすると
Figure 0004863459
るK×L行列であり,1回目は生成雑音が加わっていないことと等価なので数式7のWと等しくなるが,2回目以降は分散ξの生成雑音が新たに加わっているのでWと異なる.なお,MMSEではなくZF(Zero Forcing)による線形合成を行うこともでき
Figure 0004863459
とすることもできる.量子化器39−1から39−Kはそれぞれ,上記の合成信号に量子化の一種である硬判定を行い,合成信号に最も近い複素シンボルを求め,パラレル・シリアル変換器40へ入力する.パラレル・シリアル変換器40はこの複素シンボルをパラレル・シリアル変換し,送信信号候補として出力する.
このように,従来の最尤検出では全ての送信信号候補に対してメトリックを計算する必要があったが,本発明では送信信号候補数をCに削減でき,演算量を大幅に削減できる.また,従来のMMSEでは送信信号候補の数を実質1としているのに対し,本発明はMMSEによる送信信号候補を含むC個の送信信号候補に対してメトリックを計算し,最小メトリックに相当する送信信号候補を選択するので,MMSEよりもビット誤り率が改善できる.
なお,繰り返し処理を行う場合,受信信号の代わりに,最小メトリックに対応する送信信号候補もしくはそのxを使うこともでき,さらなるビット誤り率改善が期待できる.Let C be the number of transmission signal candidates (C is an integer of 2 or more). The noise generation circuit 38 artificially generates a complex Gaussian signal C times. The first generation generates L signals whose values are zero, and the second and subsequent times are complex values that are uncorrelated with each other with a mean value of zero and a variance ξ. Generate L Gaussians. The adding circuits 37-1 to 37-L add the generated noise generated by the noise generating circuit 38 to the received signal. Specifically, for the in-phase component and the quadrature component of the received signal of the receiving antenna 16-1 input from the terminals 29-1 and 29-2, the in-phase component and the quadrature component of the first generated noise are added, respectively. For the in-phase component and the quadrature component of the received signal of the receiving antenna 16-L input from 29-3 and 29-4, the in-phase component and the quadrature component of the Lth generated noise are added, respectively. Adder circuit 3
Figure 0004863459
Generate a signal. If the K-dimensional vector whose component is this synthesized signal is x,
Figure 0004863459
This is equivalent to the fact that the generated noise is not added at the first time, and is equal to W in Equation 7. However, after the second time, it is different from W because the generated noise of variance ξ is newly added. It is also possible to perform linear synthesis using ZF (Zero Forcing) instead of MMSE.
Figure 0004863459
Can also be used. Each of the quantizers 39-1 to 39-K performs a hard decision which is a kind of quantization on the above synthesized signal, obtains a complex symbol closest to the synthesized signal, and inputs it to the parallel-serial converter 40. The parallel / serial converter 40 performs parallel / serial conversion on the complex symbol and outputs it as a transmission signal candidate.
As described above, in the conventional maximum likelihood detection, it is necessary to calculate metrics for all transmission signal candidates. However, in the present invention, the number of transmission signal candidates can be reduced to C, and the amount of calculation can be greatly reduced. Also, in the conventional MMSE, the number of transmission signal candidates is substantially 1, whereas in the present invention, metrics are calculated for C transmission signal candidates including transmission signal candidates by MMSE, and transmission corresponding to the minimum metric is performed. Since the signal candidate is selected, the bit error rate can be improved compared to MMSE.
When iterative processing is performed, a transmission signal candidate corresponding to the minimum metric or its x can be used instead of the received signal, and further improvement of the bit error rate can be expected.

次に,第2の発明のMIMO検波方式を用いた信号検出器21の構成(請求項5)を図10に示す.図7に示す従来の最尤検出に基づく信号検出器21との違いは,信号候補生成回路34を送信信号候補生成手段に相当する送信信号候補生成回路45に置き換えた点にある.なお,送信信号候補生成回路45は,線形変換回路35,量子化器41−1から41−K,更新値演算回路42,加算回路37−1から37−K,量子化器39−1から39−K,及びパラレル・シリアル変換器40から構成され,以下では送信信号候補生成回路45の動作について詳述する.  Next, FIG. 10 shows the configuration of the signal detector 21 using the MIMO detection system of the second invention (Claim 5). The difference from the signal detector 21 based on the conventional maximum likelihood detection shown in FIG. 7 is that the signal candidate generation circuit 34 is replaced with a transmission signal candidate generation circuit 45 corresponding to transmission signal candidate generation means. The transmission signal candidate generation circuit 45 includes a linear conversion circuit 35, quantizers 41-1 to 41-K, an update value calculation circuit 42, adder circuits 37-1 to 37-K, and quantizers 39-1 to 39. The operation of the transmission signal candidate generation circuit 45 will be described in detail below.

まず,各受信アンテナからの受信信号が端子を介して線形変換回路35へ入力する.具体的には,端子29−1と29−2からは受信アンテナ16−1の受信信号の同相成分及び直交成分が,端子29−3と29−4からは受信アンテナ16−Lの受信信号の同相成分及び直交成分が,それぞれ入力する.線形変換回路35は,端子30から入力するチャネル情報から重み付け係数を算出し,この重み付け係数を用いて受信信号に線形操作である線形合成を行い,K個の合成信号を生成する.この合成信号が初期値xに相当する.量子化器41−1から41−Kはそれぞれ,合成信号に量子化の一種である硬判定を行い,合成信号に最も近い複素シンボルを求め更新値演算回路42に入力する.更新値演算回路42は,初期値を硬判定した複素シンボル,受信信号,並びにチャネル情報から更新値を求める.加算回路37−1から37−Kは初期値に更新値を加算し,量子化器39−1から39−Kはこの加算結果に対して量子化の一種である硬判定を行い,加算結果に最も近い複素シンボルを求めパラレル・シリアル変換器40へ入力する.パラレル・シリアル変換器40はこの複素シンボルをパラレル・シリアル変換し,送信信号候補として出力する.  First, the received signal from each receiving antenna is input to the linear conversion circuit 35 via a terminal. Specifically, the in-phase and quadrature components of the reception signal of the reception antenna 16-1 are received from the terminals 29-1 and 29-2, and the reception signal of the reception antenna 16-L is received from the terminals 29-3 and 29-4. In-phase and quadrature components are input respectively. The linear conversion circuit 35 calculates a weighting coefficient from the channel information input from the terminal 30 and performs linear composition, which is a linear operation, on the received signal using the weighting coefficient to generate K composite signals. This synthesized signal corresponds to the initial value x. Each of the quantizers 41-1 to 41-K performs a hard decision which is a kind of quantization on the synthesized signal, obtains a complex symbol closest to the synthesized signal, and inputs the complex symbol to the update value calculation circuit. The update value calculation circuit 42 obtains an update value from the complex symbol whose initial value is hard-decided, the received signal, and the channel information. The adder circuits 37-1 to 37-K add the updated value to the initial value, and the quantizers 39-1 to 39-K make a hard decision as a kind of quantization for the addition result, Find the nearest complex symbol and input it to the parallel-serial converter 40. The parallel / serial converter 40 performs parallel / serial conversion on the complex symbol and outputs it as a transmission signal candidate.

上記の更新値演算回路42の動作について以下,数式を用いて詳述する.まず,合成信号を硬判定して得られる複素シンボル,即ち量子化器41−1から41−Kの出力を成分

Figure 0004863459
ある.また,Pは数式13で定義するK×K行列である.
μはr=0では0とする.即ち,r=0の送信信号候補はxを単に硬判定したものとなり,MMSEと同じになる.rが1以上では
Figure 0004863459
Figure 0004863459
このように,μはK(M−1)+1個値が存在する.送信信号候補は,xにuを加算した後,硬判定したものであるから,μの数,即ちK(M−1)+1個存在する.したがって,従来の最尤検出では全ての送信信号候補に対してメトリックを計算する必要があったが,本発明では送信信号候補数をK(M−1)+1に削減でき,演算量を大幅に削減できる.また,従来のMMSEでは送信信号候補の数を実質1としているのに対し,本発明はMMSEによる送信信号候補を含むK(M−1)+1個の送信信号候補に対してメトリックを計算し,最小メトリックに相当する送信信号候補を選択するので,MMSEよりもビット誤り率が改善できる.
Figure 0004863459
く線形操作を行ってもよい.また,初期値としてxの代わりにxの硬判定値を用いることも可能である.さらに,数式12のuの代わりに
Figure 0004863459
としてもよい.ただし,eは零ベクトルとならない任意のL次元ベクトルである.The operation of the update value calculation circuit 42 will be described in detail below using mathematical expressions. First, a complex symbol obtained by hard-decision of the synthesized signal, that is, the output of the quantizers 41-1 to 41-K is componentized.
Figure 0004863459
is there. P is a K × K matrix defined by Equation 13.
μ r is set to 0 when r = 0. That is, the transmission signal candidate of r = 0 is a hard decision of x, which is the same as MMSE. When r is 1 or more
Figure 0004863459
Figure 0004863459
Thus, mu r is K (M-1) +1 or value exists. Transmitted signal candidates, after adding u to x, since it is obtained by hard decision, the number of mu r, i.e. K (M-1) +1 or present. Therefore, in the conventional maximum likelihood detection, it is necessary to calculate a metric for all transmission signal candidates. However, in the present invention, the number of transmission signal candidates can be reduced to K (M−1) +1, which greatly increases the amount of calculation. Can be reduced. Further, in the conventional MMSE, the number of transmission signal candidates is substantially 1, whereas the present invention calculates a metric for K (M−1) +1 transmission signal candidates including transmission signal candidates by MMSE, Since the transmission signal candidate corresponding to the minimum metric is selected, the bit error rate can be improved compared to MMSE.
Figure 0004863459
It is also possible to perform linear operations. It is also possible to use a hard decision value of x instead of x as an initial value. Furthermore, instead of u in Equation 12
Figure 0004863459
It is good. However, e is an arbitrary L-dimensional vector that is not a zero vector.

最後に,本発明は上述の発明を実施するための最良の形態に限らず本発明の要旨を逸脱することなくその他種々の構成を採り得ることはもちろんである.  Finally, the present invention is not limited to the best mode for carrying out the invention described above, and various other configurations can be adopted without departing from the gist of the present invention.

従来のMIMO無線送信機のブロック構成図である.It is a block diagram of a conventional MIMO radio transmitter. 図1の変調器のブロック構成図である.It is a block block diagram of the modulator of FIG. MIMOシングルキャリア伝送における,図1のベースバンド変調回路のブロック構成図である.It is a block block diagram of the baseband modulation circuit of FIG. 1 in MIMO single carrier transmission. MIMO−OFDM伝送における,図1のベースバンド変調回路のブロック構成図である.It is a block block diagram of the baseband modulation circuit of FIG. 1 in MIMO-OFDM transmission. MIMOシングルキャリア伝送における,従来の無線受信機のブロック構成図である.It is a block diagram of a conventional radio receiver in MIMO single carrier transmission. MIMO−OFDM伝送における,従来の無線受信機のブロック構成図である.It is a block diagram of a conventional radio receiver in MIMO-OFDM transmission. 図5と図6の信号検出器で,従来の最尤検出を用いたブロック構成図である.It is a block block diagram using the conventional maximum likelihood detection in the signal detector of FIG. 5 and FIG. 図5と図6の信号検出器で,従来のMMSEを用いたブロック構成図である.FIG. 7 is a block diagram of the signal detector shown in FIGS. 5 and 6 using a conventional MMSE. 図5と図6の信号検出器で,第1の発明のブロック構成図である.5 is a block configuration diagram of the first invention in the signal detectors of FIGS. 5 and 6. FIG. 図5と図6の信号検出器で,第2の発明のブロック構成図である.5 is a block diagram of the second invention in the signal detectors of FIGS. 5 and 6. FIG.

符号の説明Explanation of symbols

1入力端子,2シリアル・パラレル変換器,3ベースバンド変調回路,4変調器,5送信アンテナ,6発振器,7端子,8端子,9乗算器,10移相器,11加算器,12増幅器,13複素シンボル生成回路,14IFFT演算回路,15ガードインターバル付加器,16受信アンテナ,17ハイブリッド,18低域通過フィルタ,19A/D変換器,20受信回路,21信号検出器,22出力端子,23入力端子,24ガードインターバル除去回路,25FFT演算回路,26OFDM受信回路,27DFT回路,28パラレル・シリアル変換器,29端子,30端子,31メトリック生成回路,32最小メトリック検出器,33端子,34信号候補生成回路,35線形変換回路,36硬判定器,37加算回路,38雑音生成回路,39量子化器,40パラレル・シリアル変換器,42更新値演算回路,43伝送路推定回路,44送信信号候補生成回路,45送信信号候補生成回路1 input terminal, 2 serial / parallel converter, 3 baseband modulation circuit, 4 modulator, 5 transmitting antenna, 6 oscillator, 7 terminal, 8 terminal, 9 multiplier, 10 phase shifter, 11 adder, 12 amplifier, 13 complex symbol generation circuit, 14 IFFT arithmetic circuit, 15 guard interval adder, 16 receiving antenna, 17 hybrid, 18 low-pass filter, 19 A / D converter, 20 receiving circuit, 21 signal detector, 22 output terminals, 23 inputs Terminal, 24 guard interval removal circuit, 25 FFT operation circuit, 26 OFDM reception circuit, 27 DFT circuit, 28 parallel-serial converter, 29 terminal, 30 terminal, 31 metric generation circuit, 32 minimum metric detector, 33 terminal, 34 signal candidate generation Circuit, 35 linear conversion circuit, 36 hard discriminator, 37 addition circuit, 38 noise generation circuit, 39 quantity Encoder, 40 a parallel-serial converter, 42 update value calculation circuit, 43 channel estimator 44 transmits the signal candidate generator circuit, 45 the transmission signal candidate generator circuit

Claims (8)

受信信号と,伝送路のチャネル情報と,複数の送信信号候補とを基に,前記送信信号候補に対応するメトリックを生成するメトリック生成手段と,
前記メトリックの最小値を探索し,その最小値に対応する前記送信信号候補のビットを判定値として出力する最小メトリック検出手段と,
前記受信信号と前記チャネル情報を基に,線形操作と量子化により複数の前記送信信号候補を生成する送信信号候補生成手段と,
を備え
前記送信信号候補の数は、同一の前記送信信号候補のうち一つを残してそれ以外を除くと前記量子化の回数以下であることを特徴とするMIMO検波方式.
Metric generation means for generating a metric corresponding to the transmission signal candidate based on the received signal, channel information of the transmission path, and a plurality of transmission signal candidates;
A minimum metric detecting means for searching for a minimum value of the metric and outputting a bit of the transmission signal candidate corresponding to the minimum value as a determination value;
Transmission signal candidate generation means for generating a plurality of transmission signal candidates by linear operation and quantization based on the received signal and the channel information;
Equipped with a,
The number of the transmission signal candidates is equal to or less than the number of times of quantization except for one of the same transmission signal candidates and the rest of the candidates .
前記送信信号候補生成手段は,
前記受信信号に対して前記チャネル情報から求める重み付け係数を用いて線形操作を行い,初期値を求める線形変換手段と,
前記初期値と前記チャネル情報と前記受信信号とを基に更新値を算出する更新値演算手段と,
前記初期値に前記更新値を加算する加算手段と,
前記加算結果を量子化により複数の前記送信信号候補を生成する量子化手段と,
を備えることを特徴とする請求項1に記載のMIMO検波方式.
The transmission signal candidate generation means includes:
Performing linear operation on the received signal using a weighting coefficient obtained from the channel information, and obtaining a linear conversion means for obtaining an initial value;
Update value calculation means for calculating an update value based on the initial value, the channel information, and the received signal;
Adding means for adding the updated value to the initial value;
Quantization means for generating a plurality of transmission signal candidates by quantizing the addition result;
The MIMO detection system according to claim 1, comprising:
前記送信信号候補生成手段は,
前記送信信号候補数の回数だけ複素ガウス変数を生成する雑音生成手段と,
前記受信信号に前記複素ガウス変数を加算する加算手段と,
前記チャネル情報から求める重み付け係数を用いて前記加算結果に対して線形操作を行う線形変換手段と,
前記線形変換手段の出力を量子化により複数の前記送信信号候補を生成する量子化手段と,
を備えることを特徴とする請求項1に記載のMIMO検波方式.
The transmission signal candidate generation means includes:
Noise generating means for generating complex Gaussian variables as many times as the number of transmission signal candidates;
Adding means for adding the complex Gaussian variable to the received signal;
Linear conversion means for performing a linear operation on the addition result using a weighting coefficient obtained from the channel information;
Quantization means for generating a plurality of transmission signal candidates by quantizing the output of the linear transformation means;
The MIMO detection system according to claim 1, comprising:
前記受信信号は,複数の受信アンテナで受信した受信波を周波数変換して得られる信号とし,
前記チャネル情報は,伝送路のインパルス応答の推定値とすること
を特徴とする請求項1から請求項3のいずれかに記載のMIMO検波方式.
The received signal is a signal obtained by frequency-converting received waves received by a plurality of receiving antennas,
4. The MIMO detection system according to claim 1, wherein the channel information is an estimated value of an impulse response of a transmission path.
前記受信信号は,
複数の受信アンテナで受信した受信波を周波数変換した後,各サブキャリア成分に分離して得られる信号とし,
前記チャネル情報は,伝送路の周波数応答の推定値とすること
を特徴とする請求項1から請求項3のいずれかに記載のMIMO検波方式.
The received signal is
After frequency conversion of the received waves received by multiple receiving antennas, it is a signal obtained by separating each subcarrier component,
4. The MIMO detection system according to claim 1, wherein the channel information is an estimated value of a frequency response of a transmission path.
MIMO多重信号を受信する受信装置であって,
受信信号から伝送路のチャネル情報を算出する伝送路推定手段と,
前記受信信号と前記チャネル情報とからビット判定値を求める信号検出手段と,
を備え,
前記信号検出手段は,
前記受信信号と,前記チャネル情報と,複数の送信信号候補とを基に,前記送信信号候補に対応するメトリックを生成するメトリック生成手段と,
前記メトリックの最小値を探索し,その最小値に対応する前記送信信号候補のビットを判定値として出力する最小メトリック検出手段と,
前記受信信号と前記チャネル情報を基に,線形操作と量子化により複数の前記送信信号候補を生成する送信信号候補生成手段と,
を備え
前記送信信号候補の数は、同一の前記送信信号候補のうち一つを残してそれ以外を除くと前記量子化の回数以下であることを特徴とする受信装置.
A receiving device for receiving a MIMO multiplexed signal,
A channel estimation means for calculating channel information of the channel from the received signal;
Signal detection means for obtaining a bit determination value from the received signal and the channel information;
With
The signal detection means includes
Metric generation means for generating a metric corresponding to the transmission signal candidate based on the received signal, the channel information, and a plurality of transmission signal candidates;
A minimum metric detecting means for searching for a minimum value of the metric and outputting a bit of the transmission signal candidate corresponding to the minimum value as a determination value;
Transmission signal candidate generation means for generating a plurality of transmission signal candidates by linear operation and quantization based on the received signal and the channel information;
Equipped with a,
The number of the transmission signal candidates is equal to or less than the number of times of quantization when one of the same transmission signal candidates is left and the others are excluded .
前記送信信号候補生成手段は,
前記受信信号に対して前記チャネル情報から求める重み付け係数を用いて線形操作を行い,初期値を求める線形変換手段と,
前記初期値と前記チャネル情報と前記受信信号とを基に更新値を算出する更新値演算手段と,
前記初期値に前記更新値を加算する加算手段と,
前記加算結果を量子化により複数の前記送信信号候補を生成する量子化手段と,
を備えることを特徴とする請求項6に記載の受信装置.
The transmission signal candidate generation means includes:
Performing linear operation on the received signal using a weighting coefficient obtained from the channel information, and obtaining a linear conversion means for obtaining an initial value;
Update value calculation means for calculating an update value based on the initial value, the channel information, and the received signal;
Adding means for adding the updated value to the initial value;
Quantization means for generating a plurality of transmission signal candidates by quantizing the addition result;
The receiving apparatus according to claim 6, further comprising:
MIMO多重信号を受信する受信方法であって,
受信信号から伝送路のチャネル情報を算出する伝送路推定過程と,
前記受信信号と前記チャネル情報とからビット判定値を求める信号検出過程と,
を備え,
前記信号検出過程は,
前記受信信号と,前記チャネル情報と,複数の送信信号候補とを基に,前記送信信号候補に対応するメトリックを生成するメトリック生成過程と,
前記メトリックの最小値を探索し,その最小値に対応する前記送信信号候補のビットを判定値として出力する最小メトリック検出過程と,
前記受信信号と前記チャネル情報を基に,線形操作と量子化により複数の前記送信信号候補を生成する送信信号候補生成過程と,
を有し、
前記送信信号候補の数は、同一の前記送信信号候補のうち一つを残してそれ以外を除くと前記量子化の回数以下であることを特徴とする受信方法.
A reception method for receiving a MIMO multiplexed signal,
A channel estimation process for calculating channel information from the received signal,
A signal detection process for obtaining a bit decision value from the received signal and the channel information;
With
The signal detection process includes:
A metric generation step of generating a metric corresponding to the transmission signal candidate based on the received signal, the channel information, and a plurality of transmission signal candidates;
Searching for a minimum value of the metric and detecting a bit of the transmission signal candidate corresponding to the minimum value as a determination value;
A transmission signal candidate generation process for generating a plurality of transmission signal candidates by linear operation and quantization based on the received signal and the channel information;
Have
The number of transmission signal candidates is equal to or less than the number of times of quantization when one of the same transmission signal candidates is left and the others are excluded .
JP2006152638A 2006-05-01 2006-05-01 MIMO detection method, receiving apparatus and receiving method Expired - Fee Related JP4863459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006152638A JP4863459B2 (en) 2006-05-01 2006-05-01 MIMO detection method, receiving apparatus and receiving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006152638A JP4863459B2 (en) 2006-05-01 2006-05-01 MIMO detection method, receiving apparatus and receiving method

Publications (3)

Publication Number Publication Date
JP2007300586A JP2007300586A (en) 2007-11-15
JP2007300586A5 JP2007300586A5 (en) 2009-12-03
JP4863459B2 true JP4863459B2 (en) 2012-01-25

Family

ID=38769668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006152638A Expired - Fee Related JP4863459B2 (en) 2006-05-01 2006-05-01 MIMO detection method, receiving apparatus and receiving method

Country Status (1)

Country Link
JP (1) JP4863459B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5043702B2 (en) 2008-02-05 2012-10-10 国立大学法人東京工業大学 Receiving apparatus, receiving method, and communication system
JP5367474B2 (en) * 2009-06-18 2013-12-11 国立大学法人東京工業大学 Receiving apparatus and receiving method
US8972215B2 (en) * 2011-03-30 2015-03-03 Mitsubishi Electric Research Laboratories, Inc. Method and system for determining parameters of sinusoidal signals

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3412586B2 (en) * 1999-12-02 2003-06-03 日本電気株式会社 Receiver
JP4198583B2 (en) * 2003-12-05 2008-12-17 日本電信電話株式会社 Wireless communication apparatus and wireless communication method
JP4188371B2 (en) * 2003-12-05 2008-11-26 日本電信電話株式会社 Wireless communication apparatus and wireless communication method
JP4230343B2 (en) * 2003-12-05 2009-02-25 日本電信電話株式会社 Wireless communication method, wireless communication system, and reception processing program
JP4275542B2 (en) * 2004-01-27 2009-06-10 日本電信電話株式会社 Wireless communication apparatus and method
JP2006081131A (en) * 2004-09-06 2006-03-23 Tokyo Institute Of Technology Mimo-ofdm transceiver using phase hopping transmitting diversity

Also Published As

Publication number Publication date
JP2007300586A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
CA2341086C (en) Clustered ofdm with channel estimation
US8422595B2 (en) Channel estimation for communication systems with multiple transmit antennas
JP2007110664A (en) Mimo (multiple input multiple output) precoding system
US8125883B2 (en) OFDM in fast fading channel
US7852906B2 (en) Wireless communication device and channel estimation and separation method in multi input system
JP5122428B2 (en) Mobile communication system, receiving apparatus and method
US7889799B2 (en) Method and apparatus for OFDM channel estimation
US20020003843A1 (en) Method and apparatus for high data rate wireless communications over wavefield spaces
JP4582354B2 (en) Equalizer and equalization method
EP2211512B1 (en) Method and arrangement of delay spread compensation
US9294318B2 (en) Symbol detection for alleviating inter-symbol interference
KR20070122532A (en) Adaptive time-filtering for channel estimation in ofdm system
KR101062049B1 (en) Receiving device and receiving method
JP6996496B2 (en) LOS-MIMO demodulation device, communication device, LOS-MIMO transmission system, LOS-MIMO demodulation method and program
JP4673616B2 (en) MIMO receiver having one or more additional receive paths
JP4863459B2 (en) MIMO detection method, receiving apparatus and receiving method
US8472577B2 (en) Apparatus and method for detecting reception signal symbol synchronization in wireless communication system
JP2020174290A (en) Wireless communication system, wireless communication method, transmission station device, and reception station device
GB2472102A (en) Receiver for Single Carrier Frequency Division Multiple Access (SC-FDMA) wireless transmission
Mollen et al. Performance of linear receivers for wideband massive MIMO with one-bit ADCs
EP2391047A2 (en) Method for estimating a received signal and corresponding device
KR20080021323A (en) Apparatus and method for receiving for detection of transmitted signal in multiple antenna telecommunication system
US9001866B2 (en) Multi-standard communication
WO2008038110A2 (en) Wireless transceiver
EP2244432A1 (en) Compensating carrier frequency offsets in OFDM systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090416

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20091116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4863459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees