JP4863171B2 - 固体電解質型燃料電池 - Google Patents

固体電解質型燃料電池 Download PDF

Info

Publication number
JP4863171B2
JP4863171B2 JP2009087413A JP2009087413A JP4863171B2 JP 4863171 B2 JP4863171 B2 JP 4863171B2 JP 2009087413 A JP2009087413 A JP 2009087413A JP 2009087413 A JP2009087413 A JP 2009087413A JP 4863171 B2 JP4863171 B2 JP 4863171B2
Authority
JP
Japan
Prior art keywords
temperature
pox
reformer
fuel cell
restart
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009087413A
Other languages
English (en)
Other versions
JP2010238623A5 (ja
JP2010238623A (ja
Inventor
陽祐 赤木
直樹 渡邉
修一郎 西願
暢夫 井坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2009087413A priority Critical patent/JP4863171B2/ja
Priority to CN201080019134.8A priority patent/CN102414894B/zh
Priority to US13/262,014 priority patent/US8927162B2/en
Priority to PCT/JP2010/055906 priority patent/WO2010114039A1/ja
Priority to EP10758810.5A priority patent/EP2416418B1/en
Publication of JP2010238623A publication Critical patent/JP2010238623A/ja
Publication of JP2010238623A5 publication Critical patent/JP2010238623A5/ja
Application granted granted Critical
Publication of JP4863171B2 publication Critical patent/JP4863171B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04373Temperature; Ambient temperature of auxiliary devices, e.g. reformers, compressors, burners
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2428Grouping by arranging unit cells on a surface of any form, e.g. planar or tubular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1604Starting up the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1609Shutting down the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1619Measuring the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1685Control based on demand of downstream process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Description

本発明は、固体電解質型燃料電池に係わり、特に、燃料ガスと酸化剤ガスを電気化学的に反応させることにより発電する固体電解質型燃料電池に関する。
固体電解質型燃料電池(Solid Oxide Fuel Cell:以下「SOFC」とも言う)は、電解質として酸化物イオン導電性固体電解質を用い、その両側に電極を取り付け、一方の側に燃料ガスを供給し、他方の側に酸化剤(空気、酸素等)を供給して、比較的高温で動作する燃料電池である。
このSOFCにおいては、酸化物イオン導電性固体電解質を通過した酸素イオンと燃料との反応によって水蒸気又は二酸化炭素を生成し、電気エネルギー及び熱エネルギーが発生する。電気エネルギーは、SOFC外部に取り出されて、各種電気的用途に使用される。一方、熱エネルギーは、改質器、燃料、酸化剤等に伝達され、これらの温度上昇に使用される。
従来のSOFCにおいては、運転中に燃料ガスの供給系統のマイコンメータが異常を検知したり、地震等に伴う異常が発生した際、或いは補機類のメンテナンスなどを行う際には、運転を一時的に停止させる必要がある。そして、これらの異常などの一時的な要因が解消した後、或いは、メンテナンスが終了した後には、安定した発電に向けて、できるだけ短い時間での迅速な運転の再起動が要求される。
そこで、燃料電池システムにおける運転の再起動の迅速化を図るために、従来のSOFCにおいては、例えば、特許文献1に記載されているように、燃料電池システムの所定の制御処理中に再起動要求がなされた場合には、燃料電池システムの停止処理ルーチンをすべて実行した後に最初の起動処理ルーチンから起動処理を実行するのではなく、起動処理を再起動要求がなされた時点の制御処理と同条件の時点に移行して実行するようにしたものが提案されている。
一方、例えば、特許文献2に記載されている従来のSOFCでは、燃料電池セルスタックを収容している収容容器内に配置することによって熱効率を高めると共に、余剰ガスを収容容器内で燃焼させることによって従来よりも高温の燃焼ガスで加熱でき、低負荷運転時にも水蒸気改質に必要な熱量を得ることができるものが提案されている。この従来のSOFCにおいては、迅速な起動を行うために、起動時に燃料改質器の温度が部分酸化反応開始温度未満の場合には燃焼ガスによる燃焼熱によって燃料改質器を加熱する加熱運転を行い、燃料改質器の温度が部分酸化反応開始温度以上で水蒸気改質可能温度未満の温度帯域内の温度まで上昇すると、部分酸化反応の反応熱と燃焼ガスによる燃焼熱によって燃料改質器を加熱して部分酸化改質反応(以下「POX」と呼ぶ)を行うようになっている。さらに、燃料改質器の温度が水蒸気改質可能温度以上で定常温度未満の温度帯域まで上昇すると、部分酸化反応の反応熱と燃焼ガスによる燃焼熱と水蒸気改質反応の吸熱を制御して燃料改質器を加熱し、部分酸化改質と水蒸気改質とを併用したオートサーマル改質反応(以下「ATR」と呼ぶ)を行い、燃料改質器の温度が定常状態になると、燃焼ガスによる燃焼熱により燃料改質器を加熱し、水蒸気改質反応(以下「SR」と呼ぶ)を行うようになっている。すなわち、このような従来のSOFCにおいては、起動時の燃料改質器の温度上昇に伴ってPOX、ATR、SRという順序を踏まえて燃料の改質を行いながら起動を実行するため、安定した迅速な起動ができるようになっている。
特開2006−269196号公報 特開2004−319420号公報
しかしながら、上述した特許文献1及び特許文献2のSOFCにおいては、運転の再起動時には、停止中の燃料電池セルやスタックに残存している余熱も考慮すると燃料電池セルやスタックの一部が高温状態になっていることが少なくない。
これに関し、本発明者らは、このような燃料電池セルやスタックが高温状態にあるときに、特にPOXによって再起動を行うとセルに大きな負担を与えてしまうという重要な新たな課題を見出した。
より具体的には、制御上の改質器温度はPOX運転が可能な状態に見えても、停止運転制御中からの再起動では燃料電池セルやスタックの一部が高温状態となっていることがあるため、燃料改質器の温度が部分酸化反応開始温度以上で水蒸気改質可能温度未満の温度帯域内にあるとしてPOXを行ってしまうと、POXは空気を投入して部分酸化を伴う発熱反応であるため、セルに酸化影響を与えたり、異常な高温状態になることがあり、これがセル自身の耐久性や発電能力を除々に低下させてしまうという重要な課題を見出した。この課題を解決し、さらに再起動に要する時間をも大幅に短縮させることをも実現すべくなされたものである。
一方、上述した特許文献1及び特許文献2においては、再起動時にセルを保護しつつ、再起動の更なる迅速化を図るために高温からの温度低下時における再起動時にあっては、通常起動時のPOX温度帯域であるとしても通常起動時のPOXを禁止して、通常起動時のPOXとは異なる再起動制御を実行するという思想については何ら開示も示唆もされておらず、上述した新たな課題を解決するものではない。
そこで、本発明は、上述した新たな課題を解決するためになされたものであり、高温からの温度低下を伴った停止時にあっては、通常起動時のPOXとは異なる再起動制御を代わりに実行することにより、セルへの負担を軽減して耐久性を向上させると共に、再起動用に設定された再起動用制御によって再起動を行うため起動時間をセルへの影響を防止しつつ短縮することができる固体電解質型燃料電池(SOFC)を提供することを目的としている。
上記の目的を達成するために、本発明は、燃料ガスと酸化剤ガスを電気化学的に反応させることにより発電する固体電解質型燃料電池であって、固体電解質型の燃料電池モジュール内に配置された固体電解質型の燃料電池セルと、燃料ガスを改質して上記燃料電池セルに供給する改質器であって、所定の温度帯域に応じて燃料ガスと酸化剤ガスを化学反応させることにより燃料ガスを部分酸化改質する改質反応であるPOX、及び、燃料ガスと水蒸気を化学反応させることにより燃料ガスを水蒸気改質する改質反応であるSR、及び、上記POXと上記SRとを併用させることにより燃料ガスをオートサーマル改質する改質反応であるATRのいずれかの改質反応によって燃料ガスを水素に改質する上記改質器と、上記改質器による改質状態を変更するための改質器温度を検出する改質器温度検出手段と、上記燃料電池モジュールの運転を制御する制御手段と、を有し、上記制御手段は、上記燃料電池モジュールの運転の起動を制御する起動制御手段と、上記燃料電池モジュールの運転の停止を制御する停止制御手段と、を備え、上記起動制御手段は、燃料ガスを着火して燃焼させた後、上記改質器温度検出手段が検出した上記改質器温度が、上記POXが開始するPOX開始温度よりも低い場合には、燃料ガスと酸化剤ガスとの燃焼により生じる燃焼熱によって上記改質器を昇温させる燃焼運転を実行し、上記改質器温度が上記POX開始温度以上であり且つ上記水蒸気改質が可能な温度未満のPOX温度帯域内にある場合には、上記改質器を昇温させるために通常起動時のPOXを実行し、上記改質器温度が上記水蒸気改質が可能な温度以上であり且つ所定の定常温度未満のATR温度帯域内にある場合には、上記改質器を昇温させるために通常起動時のATRを実行し、上記改質器温度が、上記所定の定常温度以上である場合には、上記改質器を昇温させるために通常起動時のSRを実行し、上記起動制御手段は、更に、上記燃料電池モジュールが高温状態からの停止に伴って上記停止制御手段による停止処理が実行され、上記通常起動時のPOX温度帯域内で運転の再起動が実行された場合には、上記通常起動時のPOXによる起動を禁止し、上記通常起動時のPOX温度帯域から、この通常起動時のPOX温度帯域の下限値よりも低い下限値を備えた再起動時のPOX温度帯域に変更すると共に、上記通常起動時のATR温度帯域から、この通常起動時のATR温度帯域の下限値よりも低く且つ上記通常起動時のPOX温度帯域内にある下限値を備えた再起動時のATR温度帯域に変更することにより、上記通常起動時のPOXによる通常起動制御とは異なる再起動制御を実行し、この再起動制御は、再起動制御開始時の改質器温度が上記通常起動時のPOX温度帯域内の温度あり且つ上記再起動時のATR温度帯域の下限値以上である場合には、上記通常起動時のPOXによる起動を禁止すると共に、上記再起動時のATR温度帯域に基づいたATRによる再起動を実行し、上記再起動制御は、この再起動制御開始時の改質器温度が上記通常起動時のPOX温度帯域内の温度であり且つ上記再起動時のATR温度帯域の下限値よりも低い場合には、上記通常起動時のPOXによる起動を禁止すると共に、上記改質器温度が上記再起動時のPOX温度帯域の下限値よりも高い所定温度に低下するまで上記停止制御手段による運転の停止を継続した後に、上記再起動時のPOX温度帯域に基づいたPOXによる再起動を実行することを特徴している。
このように構成された本発明においては、燃料電池モジュールが高温の状態から停止され停止制御手段によって停止処理が実行されている際に、通常起動時のPOX温度帯域内で再起動が発生した際には、改質器温度が通常起動時のPOX温度帯域内にあっても、通常起動時のPOXによる起動を禁止して、通常起動時のPOX温度帯域から、この通常起動時のPOX温度帯域の下限値よりも低い下限値を備えた再起動時のPOX温度帯域に変更すると共に、通常起動時のATR温度帯域から、この通常起動時のATR温度帯域の下限値よりも低く且つ通常起動時のPOX温度帯域内にある下限値を備えた再起動時のATR温度帯域に変更することにより、通常起動時のPOXによる通常起動制御とは異なる再起動制御を実行するようにしている。この結果、本発明によれば、通常起動時のPOXをそのまま実行した場合に比べて、見かけ上の温度が低くても燃料電池セルや改質器の一部などに蓄えられた大きな余熱に起因して燃料電池セルに酸化の影響を与えたり、予期しない高温状態にしてしまうことによるセルへの負担を軽減することができ、セルの耐久性を向上させることができる。また、燃料電池セルや改質器に残存している余熱を積極的に利用した再起動制御を実行するように工夫したことにより、セルに影響を与えることなく燃料電池モジュールの温度回復を早めて起動時間を短縮することができる。
また、本発明においては、この再起動制御は、再起動制御開始時の改質器温度が上記通常起動時のPOX温度帯域内の温度あり且つ上記再起動時のATR温度帯域の下限値以上である場合には、上記通常起動時のPOXによる起動を禁止すると共に、上記再起動時のATR温度帯域に基づいたATRによる再起動を実行し、上記再起動制御は、この再起動制御開始時の改質器温度が上記通常起動時のPOX温度帯域内の温度であり且つ上記再起動時のATR温度帯域の下限値よりも低い場合には、上記通常起動時のPOXによる起動を禁止すると共に、上記改質器温度が上記再起動時のPOX温度帯域の下限値よりも高い所定温度に低下するまで上記停止制御手段による運転の停止を継続した後に、上記再起動時のPOX温度帯域に基づいたPOXによる再起動を実行するようにしたので、高温状態でPOXを実行することによるセルへのダメージを抑制しつつ、POXによる発熱反応によって迅速に燃料電池モジュールの温度回復を図り速やかに通常運転に移行させることができる。
本発明において、好ましくは、上記再起動制御で行われるPOXは、上記通常起動時のPOXよりも酸化剤ガスの供給量を少なくするように構成されている。
このように構成された本発明においては、固体電解質型燃料電池セルや改質器に残存している余熱を積極的に利用することにより迅速な起動を可能にする一方で、酸化剤ガスが多く投入されることによって余熱の影響で燃料電池セルに酸化影響を与えることを防止できる。
本発明の固体電解質型燃料電池(SOFC)によれば、高温状態からの停止時における再起動時にあっては、通常起動時のPOXを禁止する代わりに、この通常起動時のPOXとは異なる再起動制御を実行することにより、セルへの負担を軽減して耐久性を向上させることができる共に、余熱を積極的に利用した運転によって再起動時の起動時間を大幅に短縮することができる。
本発明の一実施形態による固体電解質型燃料電池(SOFC)を示す全体構成図である。 本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池モジュールを示す正面断面図である。 図2のIII-III線に沿った断面図である。 本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池セルユニットを示す部分断面図である。 本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池セルスタックを示す斜視図である。 本発明の一実施形態による固体電解質型燃料電池(SOFC)を示すブロック図である。 本発明の一実施形態による固体電解質型燃料電池(SOFC)の起動時の動作を示すタイムチャートである。 本発明の一実施形態による固体電解質型燃料電池(SOFC)の運転停止時の動作を示すタイムチャートである。 本発明の一実施形態による固体電解質型燃料電池(SOFC)の通常起動時と再起動時の動作の各運転状態における燃料流量、改質用空気流量、発電用空気流量、水流量、及び、改質器及びスタックの移行温度条件を示すデータテーブルである。 本発明の一実施形態による固体電解質型燃料電池(SOFC)において再起動を行うための再起動制御フローを示すフローチャートである。 図10に示す本発明の一実施形態による固体電解質型燃料電池(SOFC)の再起動制御フローに基づいて再起動を実行した場合の動作を示すタイムチャートについて、通常起動時の動作を示すタイムチャートと比較した図である。
次に、添付図面を参照して、本発明の実施形態による固体電解質型燃料電池(SOFC)を説明する。
図1は、本発明の一実施形態による固体電解質型燃料電池(SOFC)を示す全体構成図である。この図1に示すように、本発明の一実施形態による固体電解質型燃料電池(SOFC)1は、燃料電池モジュール2と、補機ユニット4を備えている。
燃料電池モジュール2は、ハウジング6を備え、このハウジング6内部には、断熱材(図示せず但し断熱材は必須の構成ではなく、なくても良いものである。)を介して密封空間8が形成されている。なお、断熱材は設けないようにしても良い。この密閉空間8の下方部分である発電室10には、燃料ガスと酸化剤(空気)とにより発電反応を行う燃料電池セル集合体12が配置されている。この燃料電池セル集合体12は、10個の燃料電池セルスタック14(図5参照)を備え、この燃料電池セルスタック14は、16本の燃料電池セルユニット16(図4参照)から構成されている。このように、燃料電池セル集合体12は、160本の燃料電池セルユニット16を有し、これらの燃料電池セルユニット16の全てが直列接続されている。
燃料電池モジュール2の密封空間8の上述した発電室10の上方には、燃焼室18が形成され、この燃焼室18で、発電反応に使用されなかった残余の燃料ガスと残余の酸化剤(空気)とが燃焼し、排気ガスを生成するようになっている。
また、この燃焼室18の上方には、燃料ガスを改質する改質器20が配置され、前記残余ガスの燃焼熱によって改質器20を改質反応が可能な温度となるように加熱している。さらに、この改質器20の上方には、燃焼熱を受けて空気を加熱するための空気用熱交換器22が配置されている。
次に、補機ユニット4は、水道等の水供給源24からの水を貯水してフィルターにより純水とする純水タンク26と、この貯水タンクから供給される水の流量を調整する水流量調整ユニット28(モータで駆動される「水ポンプ」等)を備えている。また、補機ユニット4は、都市ガス等の燃料供給源30から供給された燃料ガスを遮断するガス遮断弁32と、燃料ガスから硫黄を除去するための脱硫器36と、燃料ガスの流量を調整する燃料流量調整ユニット38(モータで駆動される「燃料ポンプ」等)を備えている。さらに、補機ユニット4は、空気供給源40から供給される酸化剤である空気を遮断する電磁弁42と、空気の流量を調整する改質用空気流量調整ユニット44及び発電用空気流量調整ユニット45(モータで駆動される「空気ブロア」等)と、改質器20に供給される改質用空気を加熱する第1ヒータ46と、発電室に供給される発電用空気を加熱する第2ヒータ48とを備えている。これらの第1ヒータ46と第2ヒータ48は、起動時の昇温を効率よく行うために設けられているが、省略しても良い。
次に、燃料電池モジュール2には、排気ガスが供給される温水製造装置50が接続されている。この温水製造装置50には、水供給源24から水道水が供給され、この水道水が排気ガスの熱により温水となり、図示しない外部の給湯器の貯湯タンクへ供給されるようになっている。
また、燃料電池モジュール2には、燃料ガスの供給量等を制御するための制御ボックス52が取り付けられている。
さらに、燃料電池モジュール2には、燃料電池モジュールにより発電された電力を外部に供給するための電力取出部(電力変換部)であるインバータ54が接続されている。
次に、図2及び図3により、本発明の実施形態による固体電解質型燃料電池(SOFC)の燃料電池モジュールの内部構造を説明する。図2は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池モジュールを示す側面断面図であり、図3は、図2のIII-III線に沿って断面図である。
図2及び図3に示すように、燃料電池モジュール2のハウジング6内の密閉空間8には、上述したように、下方から順に、燃料電池セル集合体12、改質器20、空気用熱交換器22が配置されている。
改質器20は、その上流端側に純水を導入するための純水導入管60と改質される燃料ガスと改質用空気を導入するための被改質ガス導入管62が取り付けられ、また、改質器20の内部には、上流側から順に、蒸発部20aと改質部20bを形成され、改質部20bには改質触媒が充填されている。この改質器20に導入された水蒸気(純水)が混合された燃料ガス及び空気は、改質器20内に充填された改質触媒により改質される。改質触媒としては、アルミナの球体表面にニッケルを付与したものや、アルミナの球体表面にルテニウムを付与したものが適宜用いられる。
この改質器20の下流端側には、燃料ガス供給管64が接続され、この燃料ガス供給管64は、下方に延び、さらに、燃料電池セル集合体12の下方に形成されたマニホールド66内で水平に延びている。燃料ガス供給管64の水平部64aの下方面には、複数の燃料供給孔64bが形成されており、この燃料供給孔64bから、改質された燃料ガスがマニホールド66内に供給される。
このマニホールド66の上方には、上述した燃料電池セルスタック14を支持するための貫通孔を備えた下支持板68が取り付けられており、マニホールド66内の燃料ガスが、燃料電池セルユニット16内に供給される。
次に、改質器20の上方には、空気用熱交換器22が設けられている。この空気用熱交換器22は、上流側に空気集約室70、下流側に2つの空気分配室72を備え、これらの空気集約室70と空気分配室72は、6個の空気流路管74により接続されている。ここで、図3に示すように、3個の空気流路管74が一組(74a,74b,74c,74d,74e,74f)となっており、空気集約室70内の空気が各組の空気流路管74からそれぞれの空気分配室72へ流入する。
空気用熱交換器22の6個の空気流路管74内を流れる空気は、燃焼室18で燃焼して上昇する排気ガスにより予熱される。
空気分配室72のそれぞれには、空気導入管76が接続され、この空気導入管76は、下方に延び、その下端側が、発電室10の下方空間に連通し、発電室10に余熱された空気を導入する。
次に、マニホールド66の下方には、排気ガス室78が形成されている。また、図3に示すように、ハウジング6の長手方向に沿った面である前面6aと後面6bの内側には、上下方向に延びる排気ガス通路80が形成され、この排気ガス通路80の上端側は、空気用熱交換器22が配置された空間と連通し、下端側は、排気ガス室78と連通している。また、排気ガス室78の下面のほぼ中央には、排気ガス排出管82が接続され、この排気ガス排出管82の下流端は、図1に示す上述した温水製造装置50に接続されている。
図2に示すように、燃料ガスと空気との燃焼を開始するための点火装置83が、燃焼室18に設けられている。
次に図4により燃料電池セルユニット16について説明する。図4は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池セルユニットを示す部分断面図である。
図4に示すように、燃料電池セルユニット16は、燃料電池セル84と、この燃料電池セル84の上下方向端部にそれぞれ接続された内側電極端子86とを備えている。
燃料電池セル84は、上下方向に延びる管状構造体であり、内部に燃料ガス流路88を形成する円筒形の内側電極層90と、円筒形の外側電極層92と、内側電極層90と外側電極層92との間にある電解質層94とを備えている。この内側電極層90は、燃料ガスが通過する燃料極であり、(−)極となり、一方、外側電極層92は、空気と接触する空気極であり、(+)極となっている。
燃料電池セル16の上端側と下端側に取り付けられた内側電極端子86は、同一構造であるため、ここでは、上端側に取り付けられた内側電極端子86について具体的に説明する。内側電極層90の上部90aは、電解質層94と外側電極層92に対して露出された外周面90bと上端面90cとを備えている。内側電極端子86は、導電性のシール材96を介して内側電極層90の外周面90bと接続され、さらに、内側電極層90の上端面90cとは直接接触することにより、内側電極層90と電気的に接続されている。内側電極端子86の中心部には、内側電極層90の燃料ガス流路88と連通する燃料ガス流路98が形成されている。
内側電極層90は、例えば、Niと、CaやY、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニアとの混合体、Niと、希土類元素から選ばれる少なくとも一種をドープしたセリアとの混合体、Niと、Sr、Mg、Co、Fe、Cuから選ばれる少なくとも一種をドープしたランタンガレードとの混合体、の少なくとも一種から形成される。
電解質層94は、例えば、Y、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニア、希土類元素から選ばれる少なくとも一種をドープしたセリア、Sr、Mgから選ばれる少なくとも一種をドープしたランタンガレート、の少なくとも一種から形成される。
外側電極層92は、例えば、Sr、Caから選ばれた少なくとも一種をドープしたランタンマンガナイト、Sr、Co、Ni、Cuから選ばれた少なくとも一種をドープしたランタンフェライト、Sr、Fe、Ni、Cuから選ばれた少なくとも一種をドープしたランタンコバルタイト、銀、などの少なくとも一種から形成される。
次に図5により燃料電池セルスタック14について説明する。図5は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の燃料電池セルスタックを示す斜視図である。
図5に示すように、燃料電池セルスタック14は、16本の燃料電池セルユニット16を備え、これらの燃料電池セルユニット16の下端側及び上端側が、それぞれ、セラミック製の下支持板68及び上支持板100により支持されている。これらの下支持板68及び上支持板100には、内側電極端子86が貫通可能な貫通穴68a及び100aがそれぞれ形成されている。
さらに、燃料電池セルユニット16には、集電体102及び外部端子104が取り付けられている。この集電体102は、燃料極である内側電極層90に取り付けられた内側電極端子86と電気的に接続される燃料極用接続部102aと、空気極である外側電極層92の外周面全体と電気的に接続される空気極用接続部102bとにより一体的に形成されている。空気極用接続部102bは、外側電極層92の表面を上下方向に延びる鉛直部102cと、この鉛直部102cから外側電極層92の表面に沿って水平方向に延びる多数の水平部102dとから形成されている。また、燃料極用接続部102aは、空気極用接続部102bの鉛直部102cから燃料電池セルユニット16の上下方向に位置する内側電極端子86に向って斜め上方又は斜め下方に向って直線的に延びている。
さらに、燃料電池セルスタック14の端(図5では左端の奥側及び手前側)に位置する2個の燃料電池セルユニット16の上側端及び下側端の内側電極端子86には、それぞれ外部端子104が接続されている。これらの外部端子104は、隣接する燃料電池セルスタック14の端にある燃料電池セルユニット16の外部端子104(図示せず)に接続され、上述したように、160本の燃料電池セルユニット16の全てが直列接続されるようになっている。
次に図6により本実施形態による固体電解質型燃料電池(SOFC)に取り付けられたセンサ類等について説明する。図6は、本発明の一実施形態による固体電解質型燃料電池(SOFC)を示すブロック図である。
図6に示すように、固体電解質型燃料電池1は、制御部110を備え、この制御部110には、使用者が操作するための「ON」や「OFF」等の操作ボタンを備えた操作装置112、発電出力値(ワット数)等の種々のデータを表示するための表示装置114、及び、異常状態のとき等に警報(ワーニング)を発する報知装置116が接続されている。なお、この報知装置116は、遠隔地にある管理センタに接続され、この管理センタに異常状態を通知するようなものであっても良い。
次に、制御部110には、以下に説明する種々のセンサからの信号が入力されるようになっている。
先ず、可燃ガス検出センサ120は、ガス漏れを検知するためのもので、燃料電池モジュール2及び補機ユニット4に取り付けられている。
CO検出センサ122は、本来排気ガス通路80等を経て外部に排出される排気ガス中のCOが、燃料電池モジュール2及び補機ユニット4を覆う外部ハウジング(図示せず)へ漏れたかどうかを検知するためのものである。
貯湯状態検出センサ124は、図示しない給湯器におけるお湯の温度や水量を検知するためのものである。
電力状態検出センサ126は、インバータ54及び分電盤(図示せず)の電流及び電圧等を検知するためのものである。
発電用空気流量検出センサ128は、発電室10に供給される発電用空気の流量を検出するためのものである。
改質用空気流量センサ130は、改質器20に供給される改質用空気の流量を検出するためのものである。
燃料流量センサ132は、改質器20に供給される燃料ガスの流量を検出するためのものである。
水流量センサ134は、改質器20に供給される純水(水蒸気)の流量を検出するためのものである。
水位センサ136は、純水タンク26の水位を検出するためのものである。
圧力センサ138は、改質器20の外部の上流側の圧力を検出するためのものである。
排気温度センサ140は、温水製造装置50に流入する排気ガスの温度を検出するためのものである。
発電室温度センサ142は、図3に示すように、燃料電池セル集合体12の近傍の前面側と背面側に設けられ、燃料電池セルスタック14の近傍の温度を検出して、燃料電池セルスタック14(即ち燃料電池セル84自体)の温度を推定するためのものである。
燃焼室温度センサ144は、燃焼室18の温度を検出するためのものである。
排気ガス室温度センサ146は、排気ガス室78の排気ガスの温度を検出するためのものである。
改質器温度センサ148は、改質器20の温度を検出するためのものであり、改質器20の入口温度と出口温度から改質器20の温度を算出する。
外気温度センサ150は、固体電解質型燃料電池(SOFC)が屋外に配置された場合、外気の温度を検出するためのものである。また、外気の湿度等を測定するセンサを設けるようにしても良い。
これらのセンサ類からの信号は、制御部110に送られ、制御部110は、これらの信号によるデータに基づき、水流量調整ユニット28、燃料流量調整ユニット38、改質用空気流量調整ユニット44、発電用空気流量調整ユニット45に、制御信号を送り、これらのユニットにおける各流量を制御するようになっている。
また、制御ユニット110は、インバータ54に、制御信号を送り、電力供給量を制御するようになっている。
次に図7により本実施形態による固体電解質型燃料電池(SOFC)による起動時の動作を説明する。図7は、本発明の一実施形態による固体電解質型燃料電池(SOFC)の起動時の動作を示すタイムチャートである。
最初は、燃料電池モジュール2を温めるために、無負荷状態で、即ち、燃料電池モジュール2を含む回路を開いた状態で、運転を開始する。このとき、回路に電流が流れないので、燃料電池モジュール2は発電を行わない。
先ず、改質用空気流量調整ユニット44から改質用空気を第1ヒータ46を経由して燃料電池モジュール2の改質器20へ供給する。また、同時に、発電用空気流量調整ユニット45から発電用空気を第2ヒータ48を経由して燃料電池モジュール2の空気用熱交換器22へ供給し、この発電用空気が、発電室10及び燃焼室18に到達する。
この直ぐ後、燃料流量調整ユニット38からも燃料ガスが供給され、改質用空気が混合された燃料ガスが、改質器20及び燃料電池セルスタック14、燃料電池セルユニット16を通過して、燃焼室18に到達する。
次に、点火装置83により着火して、燃焼室18にある燃料ガスと空気(改質用空気及び発電用空気)とを燃焼させる。この燃料ガスと空気との燃焼により排気ガスが生じ、この排気ガスにより、発電室10が暖められ、また、排気ガスが燃料電池モジュール2の密封空間8内を上昇する際、改質器20内の改質用空気を含む燃料ガスを暖めると共に、空気熱交換器22内の発電用空気も暖める。
このとき、燃料流量調整ユニット38及び改質用空気流量調整ユニット44により、改質用空気が混合された燃料ガスが改質器20に供給されているので、改質器20において、式(1)に示す部分酸化改質反応POXが進行する。この部分酸化改質反応POXは、発熱反応であるので、起動性が良好となる。また、この昇温した燃料ガスが燃料ガス供給管64により燃料電池セルスタック14の下方に供給され、これにより、燃料電池セルスタック14が下方から加熱され、また、燃焼室18も燃料ガスと空気が燃焼して昇温されているので、燃料電池セルスタック14は、上方からも加熱され、この結果、燃料電池セルスタック14は、上下方向において、ほぼ均等に昇温可能となっている。この部分酸化改質反応POXが進行しても、燃焼室18では継続して燃料ガスと空気との燃焼反応が持続される。
mn+xO2 → aCO2+bCO+cH2 (1)
部分酸化改質反応POXの開始後、改質器温度センサ148により改質器20が所定温度(例えば、600℃)になったことを検知したとき、水流量調整ユニット28、燃料流量調整ユニット38及び改質用空気流量調整ユニット44により、燃料ガスと改質用空気と水蒸気とを予め混合したガスを改質器20に供給する。このとき、改質器20においては、上述した部分酸化改質反応POXと後述する水蒸気改質反応SRとが併用されたオートサーマル改質反応ATRが進行する。このオートサーマル改質反応ATRは、熱的に内部バランスが取れるので、改質器20内では熱的に自立した状態で反応が進行する。即ち、酸素(空気)が多い場合には部分酸化改質反応POXによる発熱が支配的となり、水蒸気が多い場合には水蒸気改質反応SRによる吸熱反応が支配的となる。この段階では、既に起動の初期段階は過ぎており、発電室10内がある程度の温度まで昇温されているので、吸熱反応が支配的であっても大幅な温度低下を引き起こすことはない。また、オートサーマル改質反応ATRが進行中も、燃焼室18では燃焼反応が継続して行われている。
式(2)に示すオートサーマル改質反応ATRの開始後、改質器温度センサ146により改質器20が所定温度(例えば、700℃)になったことを検知したとき、改質用空気流量調整ユニット44による改質用空気の供給を停止すると共に、水流量調整ユニット28による水蒸気の供給を増加させる。これにより、改質器20には、空気を含まず燃料ガスと水蒸気のみを含むガスが供給され、改質器20において、式(3)の水蒸気改質反応SRが進行する。
mn+xO2+yH2O → aCO2+bCO+cH2 (2)
mn+xH2O → aCO2+bCO+cH2 (3)
この水蒸気改質反応SRは吸熱反応であるので、燃焼室18からの燃焼熱と熱バランスをとりながら反応が進行する。この段階では、燃料電池モジュール2の起動の最終段階であるため、発電室10内が十分高温に昇温されているので、吸熱反応が進行しても、発電室10が大幅な温度低下を招くこともない。また、水蒸気改質反応SRが進行しても、燃焼室18では継続して燃焼反応が進行する。
このようにして、燃料電池モジュール2は、点火装置83により点火した後、部分酸化改質反応POX、オートサーマル改質反応ATR、水蒸気改質反応SRが、順次進行することにより、発電室10内の温度が徐々に上昇する。次に、発電室10内及び燃料電池セル84の温度が燃料電池モジュール2を安定的に作動させる定格温度よりも低い所定の発電温度に達したら、燃料電池モジュール2を含む回路を閉じ、燃料電池モジュール2による発電を開始し、それにより、回路に電流が流れる。燃料電池モジュール2の発電により、燃料電池セル84自体も発熱し、燃料電池セル84の温度も上昇する。この結果、燃料電池モジュール2を作動させる定格定格温度、例えば、600℃〜800℃になる。
この後、定格温度を維持するために、燃料電池セル84で消費される燃料ガス及び空気の量よりも多い燃料ガス及び空気を供給し、燃焼室18での燃焼を継続させる。なお、発電中は、改質効率の高い水蒸気改質反応SRで発電が進行する。
次に、図8により本実施形態による固体電解質型燃料電池(SOFC)の運転停止時の動作を説明する。図8は、本実施形態により固体電解質型燃料電池(SOFC)の運転停止時の動作を示すタイムチャートである。
図8に示すように、燃料電池モジュール2の運転停止を行う場合には、先ず、燃料流量調整ユニット38及び水流量調整ユニット28を操作して、燃料ガス及び水蒸気の改質器20への供給量を減少させる。
また、燃料電池モジュール2の運転停止を行う場合には、燃料ガス及び水蒸気の改質器20への供給量を減少させると同時に、改質用空気流量調整ユニット44による発電用空気の燃料電池モジュール2内への供給量を増大させて、燃料電池セル集合体12及び改質器20を空気により冷却し、これらの温度を低下させる。その後、発電室の温度が所定温度、例えば、400℃まで低下したとき、燃料ガス及び水蒸気の改質器20への供給を停止し、改質器20の水蒸気改質反応SRを終了する。この発電用空気の供給は、改質器20の温度が所定温度、例えば、200℃まで低下するまで、継続し、この所定温度となったとき、発電用空気流量調整ユニット45からの発電用空気の供給を停止する。
このように、本実施形態においては、燃料電池モジュール2の運転停止を行うとき、改質器20による水蒸気改質反応SRと発電用空気による冷却とを併用しているので、比較的短時間に、燃料電池モジュールの運転を停止させることができる。
次に、図9〜図11を参照して、本実施形態による固体電解質型燃料電池(SOFC)による再起動時の動作を説明する。図9は、本実施形態による固体電解質型燃料電池(SOFC)の通常起動時と再起動時の動作の各運転状態における燃料流量、改質用空気流量、発電用空気流量、水流量、及び、改質器及びスタックの移行温度条件を示すデータテーブルである。
まず、図9に示すように、本実施形態による固体電解質型燃料電池(SOFC)は、上述した図7に示す本実施形態による固体電解質型燃料電池(SOFC)の起動時の動作と同一の動作を運転の通常起動時の動作として実行する制御モード(以下「通常起動モード」)を備えている。
また、本実施形態による固体電解質型燃料電池(SOFC)は、図8に示す本実施形態による固体電解質型燃料電池(SOFC)の停止動作が実行されている状態で運転の起動(いわゆる「再起動」)が要求された場合にこの運転の再起動を実行する再起動制御モード(以下「再起動モード」)を備え、これらの再起動モードのそれぞれは、対応する再起動制御フローに基づいて実行されるようになっている。
なお、図9における通常起動モード及び再起動モードの詳細については後述する。
つぎに、図10により、本実施形態による固体電解質型燃料電池(SOFC)の再起動制御フローを具体的に説明する。図10は、本発明の一実施形態による固体電解質型燃料電池(SOFC)において再起動を行うための再起動制御フローを示すフローチャートである。図10において、Sは各ステップを示している。
まず、S1において、燃料電池モジュール2が停止運転中か否かを判定し、停止運転中である場合には、S2に進み、再起動を要求するか否かを判定する。
S2において、再起動を要求すると判定した場合には、S3に進み、改質器20による改質状態を変更するための改質状態温度を検出する改質状態温度検出手段の一部である改質器温度センサ148により改質器20の温度(以下「改質器温度Tr」)を測定した後、S4に進み、改質器20による改質状態を変更するための改質状態温度を検出する改質状態温度検出手段の一部である発電室温度センサ142により燃料電池セルスタック14(即ち燃料電池セル84自体)の近傍の温度であるスタック温度Tsを測定する。
つぎに、S5に進み、改質器温度Trが500℃以上であるか否かを判定する。
S5において、改質器温度Trが500℃以上でないと判定した場合には、S6に進み、改質器温度Trが200℃未満であるか否かを判定する。
S6において、改質器温度Trが200℃未満でない、すなわち、改質器温度Trが200℃以上500℃未満であると判定した場合には、S7に進み、改質器温度Trが200℃以上230℃未満であるか否かを判定する。
S7において、改質器温度Trが200℃以上230℃未満でない、すなわち、改質器温度Trが230℃以上500℃未満であると判定した場合には、S8に進み、点火装置83による燃料ガスの着火を禁止して再起動を保留し、停止運転を継続させる。
そして、改質器温度Trが200℃以上230℃未満の温度帯域内まで低下した時点で、S7からS9に進み、点火装置83による燃料ガスの着火を開始し、この着火直後に図9に示すデータテーブル中の「再起動モード」による「再起動POX」を実行する。
また、S5において、改質器温度Trが500℃以上であると判定した場合には、S10に進み、改質器温度Trが600℃以上であるか否かを判定する。
S10において、改質器温度Trが600℃以上でない、すなわち、改質器温度Trが500℃以上600℃未満であると判定した場合には、S11に進み、図9に示すデータテーブル中の「再起動モード」による「通常起動ATR」を実行する。
一方、S10において、改質器温度Trが600℃以上であると判定した場合には、S12に進み、発電室温度センサ142により測定されたスタック温度Tsが600℃以上であるか否かを判定する。
S12において、スタック温度Tsが600℃以上であると判定した場合には、S13に進み、図9に示すデータテーブル中の「再起動モード」による「通常起動SR」を実行する。一方、S12において、スタック温度Tsが600℃以上でない、すなわち、改質器温度Trが600℃以上であるにもかかわらず、スタック温度Tsが600℃未満であると判定した場合には、S11に進み、図9に示すデータテーブル中の「再起動モード」による「通常起動ATR」を実行する。
つぎに、S1において、燃料電池モジュール2が停止運転中か否かを判定し、停止運転中でない場合には、S14に進み、起動中の失火に基づく再起動の要求があるか否かを判定する。
S14において、失火に基づく再起動の要求があると判定した場合、及び、S6において、改質器温度Trが200℃未満であると判定した場合には、温度センサーの値は見かけ上高くても燃料電池モジュール全てが長時間高温状態になっているわけではないので満遍なく蓄熱されている状況にないことから余熱に基く再起動制御が実行できる状況にはないのでS15に進み、図9に示すデータテーブル中の「通常起動モード」に基いて再起動を実行する。
つぎに、図9〜図11を参照しながら、図10に示す本実施形態による固体電解質型燃料電池(SOFC)の再起動制御フローに基づいて再起動を実行した場合の動作をより具体的に説明する。
図11は、図10に示す本実施形態による固体電解質型燃料電池(SOFC)の再起動制御フローに基づいて再起動を実行した場合の動作を示すタイムチャートについて、通常起動時の動作を示すタイムチャートと比較した図である。
なお、図11の上段のタイムチャートは、図9に示すデータテーブル中の「通常起動モード」を実行した場合における固体電解質型燃料電池(SOFC)の通常起動の動作を示すタイムチャートであり、図11の下段のタイムチャートは、図9に示すデータテーブル中の「再起動モード」を実行した場合における固体電解質型燃料電池(SOFC)の再起動の動作を示すタイムチャートである。
また、以下の本実施形態による固体電解質型燃料電池(SOFC)の再起動制御フローに基づく再起動の動作の説明については、図9に示す「通常起動モード」と「再起動モード」に関するデータテーブルのみを参照すると共に、図11に示す本実施形態の固体電解質型燃料電池(SOFC)の「再起動モード」による再起動時の動作について、「通常起動モード」による通常起動時の動作と比較しながら説明する。
まず、図9に示す「通常起動モード」のデータテーブルの見方について説明する。
図9に示す「通常起動モード」の「状態」という欄は、上段から下段に向かって時系列順に通常起動時の各運転状態をそれぞれ表したものであり、各運転状態について、「着火時」、「燃焼運転」、「通常起動POX」、「通常起動ATR」、「通常起動SR」と略記して区別している。
ちなみに、図11における「通常起動モード」のタイムチャートの横軸である時間tについては、「着火時」の時間をt1とし、順次「通常起動POX」、「通常起動ATR」、及び、「通常起動SR」へと移行するときの時間をそれぞれt2、t3、及び、t4とし、時間tにおいて改質器温度センサ148が検出した改質器20の温度をTr(t)とし、時間tにおいて発電室温度センサ142により測定されたスタック温度をTs(t)とする。
図9に示す「通常起動モード」の「着火時」という運転状態は、点火装置83を点火し、燃料ガスが着火して燃焼を開始した状態であり、この着火時(t=t1)に改質器温度センサ148が検出した改質器20の温度を「着火時温度Tr(t1)」とすると、この着火時温度Tr(t1)は、POXが開始するとき(t=t2)の改質器20の温度(以下「POX開始温度Tr(t2)」)(=300℃)よりも低くなっている。
つぎに、「通常起動モード」の「燃焼運転」という運転状態は、燃料ガスの着火後に燃焼を開始してから、この燃料ガスの燃焼熱によって改質器20を加熱して燃焼運転を実行する制御帯域(以下「燃焼運転制御帯域B1」)で起動を制御しており、改質器温度センサ148が検出した改質器20の温度が着火時温度Tr(t1)からPOX開始温度Tr(t2)(=300℃)未満までの温度帯域W1で実行されるものである。
つぎに、「通常起動モード」の「通常起動POX」という運転状態は、改質器温度センサ148が検出した改質器20の温度Tr(t)がPOX開始温度Tr(t2)(=300℃)以上であり且つSRが可能なSR可能温度(以下「SR可能温度Tr(t3)」)(=600℃)未満までの温度帯域(以下「通常起動POX温度帯域W2」)内にあるとき(300℃≦Tr(t)<600℃)、POXによる反応熱と燃料ガスの燃焼熱によって改質器20を加熱してPOXを実行する制御帯域(以下「通常起動モードPOX制御帯域B2」)で起動を制御している。
つぎに、「通常起動モード」の「通常起動ATR」という運転状態は、改質器温度センサ148が検出した改質器20の温度Tr(t)がSR可能温度Tr(t3)(=600℃)以上であり且つ所定の定常温度Tr(t4)(=650℃)未満までの温度帯域(600℃≦Tr(t)<650℃)(以下「通常起動ATR温度帯域W3」)にあり、且つ、発電室温度センサ142により測定されたスタック温度Tsが250℃以上600℃未満までの温度帯域(250℃≦Ts<600℃)にあるとき、POXによる反応熱と燃料ガスの燃焼熱とSRによる吸熱を制御して改質器20を加熱し、ATRを実行する制御帯域(以下「通常起動モードATR制御帯域B3」)で起動を制御している。
つぎに、「通常起動モード」の「通常起動SR」という運転状態は、改質器温度センサ148が検出した改質器20の温度Tr(t)が650℃以上の所定の定常温度Tr(t4)であり、且つ、発電室温度センサ142により測定されたスタック温度Tsが600℃以上にある場合にSRを実行する制御帯域(以下「通常起動モードSR制御帯域B4」)で起動を制御している。
なお、図9に示す「燃料流量」という欄は、補機ユニット4の燃料ガス供給手段である燃料流量調整ユニット38から改質器20に供給される燃料ガスの流量[L/min]を示している。
また、図9に示す「改質用空気流量」という欄は、各運転状態において、補機ユニット4の酸化剤ガス供給手段である空気流量調整ユニット44から、酸化剤ガス加熱手段である第1ヒータ46を経て改質器20に供給される酸化剤ガス(改質用空気)の流量[L/min]を示している。
さらに、図9に示す「発電用空気流量」という欄は、各運転状態において、補機ユニット4の発電用空気流量調整ユニット45から第2ヒータ48を経て発電室10に供給される発電用空気の流量[L/min]を示している。
また、図9に示す「水流量」という欄は、各運転状態において、補機ユニット4の純水を生成して改質器20に供給する水供給手段である水流量調整ユニット28から改質器20に供給される純水の流量[cc/min]を示している。
さらに、図9に示す「移行温度条件」の「改質器温度」及び「スタック温度」という欄については、運転状態が次の運転状態に移行する際の改質器20の温度及び燃料電池セルスタック14の温度を示している。
より具体的に説明すると、例えば、「通常起動モード」の「燃焼運転」の状態欄における「移行温度条件」の「改質器温度」は「300℃以上」と示されているが、このことは、改質器温度センサ148が検出した改質器20の温度Tr(t)が300℃以上になると、「燃焼運転」の運転状態が「通常起動POX」の運転状態へ移行されることを意味している。
同様に、「通常起動モード」の「通常起動POX」の状態欄における「移行温度条件」の「改質器温度」は「600℃以上」と示されており、「スタック温度」は「250℃以上」と示されているが、このことは、改質器温度センサ148が検出した改質器20の温度Tr(t)が600℃以上になり、発電室温度センサ142により測定されたスタック温度Tsが250℃以上になると、「通常起動POX」の運転状態から「通常起動ATR」の運転状態へ移行されることを意味している。
つぎに、図9に示す「再起動モード」のデータテーブルの見方について説明するが、上述した「通常起動モード」のデータテーブルの見方と基本的には同様であるため、「通常起動モード」のデータテーブルとの相違点や特徴的な点に着目して説明する。
まず、図9に示す「再起動モード」の「状態」という欄は、上段から下段に向かって時系列順に再起動時の各運転状態をそれぞれ表したものであり、各運転状態について、「着火時」、「再起動POX」、「着火禁止」、「通常起動ATR」、「通常起動SR」と略記している。
ちなみに、図11における「再起動モード」のタイムチャートの横軸である時間tについては、「着火時」の時間をt11とし、順次「再起動POX」、「通常起動ATR」、及び、「通常起動SR」へと移行するときの時間をそれぞれt12、t13、及び、t14とする。
つぎに、図9に示す「再起動モード」の「着火時」という運転状態は、燃料電池モジュール2の停止運転中に再起動が要求された場合に、改質器温度センサ148が検出した改質器20の温度Tr(t)が、上述した「通常起動モード」の通常起動モードPOX制御帯域B2のPOX開始温度Tr(t2)(=300℃)よりも低い所定温度Tr(t11)(=200℃)未満である場合には、「通常起動モード」に基づく通常起動が「通常起動モード」の着火後の「燃焼運転」から実行されるようになっている(図10のS6及びS15参照)。
一方、改質器20の温度Tr(t11)が所定温度(=200℃)以上である場合には、点火装置83を点火し、燃料ガスの着火後、直ちに「再起動モード」の「再起動POX」の運転状態に移行される(図10のS7及びS9参照)。
なお、図9に示す「再起動モード」の「着火時」の「燃料流量」は5.5[L/min]であり、「通常起動モード」の「着火時」の「燃料流量」(6.0[L/min])よりも少なくなっている。
つぎに、図9及び図10のS9に示す「再起動モード」の「再起動POX」という運転状態は、改質器温度センサ148が検出した改質器20の温度Tr(t11)が所定温度(=200℃)以上である場合に、点火装置83を点火し、燃料ガスの着火後、直ちに移行してPOXを実行する制御帯域(以下「再起動モードPOX制御帯域B12」)で再起動を制御している。
この「再起動モード」の再起動モードPOX制御帯域B12で実行される「再起動POX」の運転状態は、「通常起動モード」の通常起動モードPOX制御帯域B2で実行される「通常起動POX」とは異なる運転状態となっている。
より具体的に説明すると、「再起動モード」の再起動モードPOX制御帯域B12で「再起動POX」が実行される改質器20の温度帯域(以下「再起動POX温度帯域W12」)は、「通常起動モード」の通常起動モードPOX制御帯域B2で「通常起動POX」が実行される通常起動POX温度帯域W2(300℃≦Tr(t)<600℃)よりも低温側の温度帯域(200℃≦Tr(t)<500℃)となっている。
また、「再起動モード」の「再起動POX」の運転状態における「燃料流量」は5.5[L/min]であり、「通常起動モード」の「着火時」及び「燃焼運転」の運転状態における「燃料流量」(6.0[L/min])よりは少ないが、「通常起動モード」の「通常起動POX」の運転状態における「燃料流量」(5.0[L/min])よりは多くなっている。
さらに、「再起動モード」の「再起動POX」の運転状態における「改質用空気流量」は17.0[L/min]であり、「通常起動モード」の「通常起動POX」の運転状態における「改質用空気流量」(18.0[L/min])よりは少なくなっている。
つぎに、図9に示す「再起動モード」の「着火禁止」という運転状態は、点火装置83による燃料ガスの着火を禁止して再起動を禁止し、停止運転を継続させている制御帯域((以下「再起動モード着火禁止制御帯域」)で再起動を制御している(図10のS8参照)。
より具体的に説明すると、「再起動モード」の再起動モード着火禁止制御帯域で「着火禁止」が実行される改質器20の温度帯域(以下「着火禁止温度帯域」)は、「再起動モード」の再起動POX温度帯域W12よりも高温側にある230℃以上500℃未満の温度帯域となっている。
また、「再起動モード」の再起動モード着火禁止制御帯域においては、特に、「再起動モード」の着火禁止温度帯域内の230℃以上500℃未満の部分が「通常起動モード」の通常起動POX温度帯域W2(300℃≦Tr(t)<600℃)内の一部分の温度帯域と重複しているにもかかわらず、「通常起動モード」の「通常起動POX」は実行されない。
さらに、「再起動モード」の再起動モード着火禁止制御帯域においては、改質器温度Trが着火禁止温度帯域内(230℃≦Tr<500℃)から230℃未満に低下した時点で、点火装置83による燃料ガスの着火を開始し、この着火直後に図9に示すデータテーブル中の「再起動モード」による「再起動POX」を実行するようになっている(図10のS7及びS9参照)。
つぎに、図9及び図10のS11に示す「再起動モード」の「通常起動ATR」という運転状態は、改質器20の温度Tr(t)が「通常起動モード」の通常起動POX温度帯域W2に相当する温度帯域内にあり、且つ「再起動モード」の着火禁止温度帯域よりも高温側にある500℃以上600℃未満の温度帯域(以下「再起動ATR温度帯域W13」内にあるときに、「通常起動モード」の「通常起動ATR」と同一のATRを実行する制御帯域(以下「再起動モードATR制御帯域B13」)で再起動を制御している。
つぎに、図9及び図10のS13に示す「再起動モード」の「通常起動SR」という運転状態は、「通常起動モード」の「通常起動SR」の「移行温度条件」と同一の条件によって「通常起動モード」の「通常起動SR」と同一のSRを実行する制御帯域(以下「再起動モードSR制御帯域B14」)で再起動を制御している。
また、図11に示すように、「再起動モード」の「再起動POX」から「通常起動ATR」に移行するときの時間t13は、「通常起動モード」の「通常起動POX」から「通常起動ATR」に移行するときの時間t3よりも少ない時間となっている。
さらに、「再起動モード」の「通常起動ATR」から「通常起動SR」に移行するときの時間t14についても、「通常起動モード」の「通常起動ATR」から「通常起動SR」に移行するときの時間t4よりも少ない時間となっており、再起動による起動時間が通常起動による起動時間に比べて短くなっている。
上述した本実施形態の固体電解質型燃料電池(SOFC)における再起動制御フローによる再起動制御によれば、燃料電池モジュール2の運転の停止により改質器20の温度Tr(t)が「通常起動モード」の通常起動POX温度帯域W2に相当する温度帯域内にあるときには、燃料電池セルスタック14や改質器20に残存している余熱を積極的に利用することにより、たとえ改質器20の温度Tr(t)が通常起動POX温度帯域W2内にあっても、「通常起動モード」による通常起動モードPOX制御帯域B2の「通常起動POX」の実行を禁止し、この禁止した「通常起動モード」の「通常起動POX」の代わりに、この「通常起動POX」とは異なる再起動制御を実行することができる。
この結果、再起動時に「通常起動モード」による通常起動モードPOX制御帯域B2の通常起動POXの実行を禁止することなくそのまま通常起動POXを実行した場合に比べて、燃料電池セル84の酸化や異常高温による燃料電池セル84への負担を軽減することができ、燃料電池セル84の耐久性を向上させることができる。
また、燃料電池セル84や改質器20に残存している余熱を積極的に利用して「通常起動モード」の「通常起動POX」とは異なる再起動制御を実行することにより、起動時間を大幅に短縮することができる。
さらに、例えば、起動時の失火に基づいて再起動を行った場合(図10のS14及びS15参照)には、「再起動モード」による再起動を禁止して、「通常起動モード」による起動を実行することができるため、燃料電池セルユニット16のダメージを抑制することができる。
また、本実施形態の固体電解質型燃料電池(SOFC)における再起動制御フローによる再起動制御によれば、「再起動モード」の着火禁止温度帯域(230℃≦Tr<500℃)よりも高温側にある「再起動モード」の再起動ATR温度帯域W13(500℃≦Tr<600℃)においては、「通常起動モード」の通常起動モードATR制御帯域B3の通常起動ATRと同一のATRによる再起動を実行する一方で、「再起動モード」の着火禁止温度帯域(230℃≦Tr<500℃)では「通常起動モード」の「通常起動POX」による再起動を禁止すると共に、改質器20の温度Tr(t)が230℃未満に低下するのを待った後に、「再起動モード」の「再起動POX」による再起動を実行するため、高温状態でPOXを実行することによる燃料電池セル84へのダメージを抑制しつつ、POXによる発熱反応によって迅速に燃料電池モジュールの温度回復を図り、速やかに再起動を行うことができる。
さらに、本実施形態の固体電解質型燃料電池(SOFC)における再起動制御フローによる再起動制御によれば、再起動時に燃料電池セル84や改質器20に残存している余熱を積極的に利用して、「再起動モード」の「通常起動ATR」を実行する温度範囲を「通常起動モード」の「通常起動POX」のPOX温度帯域W2内の所定温度以上の範囲(500℃≦Tr<600℃)まで拡大することにより、燃料電池セル84への影響を抑えながら安定した状態で、かつ短時間で温度上昇を図ることができる。
すなわち、再起動時に改質器20や燃料電池セルスタック14に残存している余熱が積極的に利用できる「通常起動モード」のPOXの温度帯域W2(300℃≦Tr<600℃、Ts<250℃)では、「再起動モード」の「通常起動ATR」を実行するように「通常起動モード」のPOXの温度帯域W2(300℃≦Tr<600℃、Ts<250℃)内の所定温度以上(500℃≦Tr<600℃、500℃≦Tr<600℃)まで「再起動モード」の「通常起動ATR」の運転範囲を拡大し、酸化影響のない所定温度以下(200℃≦Tr<230℃)では「再起動モード」の「再起動POX」による再起動を図り、中間温度(230℃≦Tr<500℃)では再起動を禁止して停止処理制御によって温度降下を図った上で再起動を行うことによって、燃料電池セルスタック14への影響を抑えながら安定した状態でかつ短時間で温度上昇を図ることができる。
また、本実施形態の固体電解質型燃料電池(SOFC)における再起動制御フローによる再起動制御によれば、「再起動モード」の「再起動POX」が実行される再起動モードPOX制御帯域B12においては、燃料電池セル84や改質器20に残存している余熱を積極的に利用することにより迅速な起動を可能にする一方で、「通常起動モード」の「通常起動POX」が実行される通常起動モードPOX制御帯域B2で酸化剤ガス供給手段である改質用空気流量調整ユニット44から改質器20に供給される酸化剤ガス(改質用空気)の供給量よりも少ない酸化剤ガス(改質用空気)によって「再起動POX」を実行することができ、酸化剤ガスが多く投入されることによって余熱の影響で燃料電池セルスタック14に酸化影響を与えることを防止することができる。
1 固体電解質型燃料電池
2 燃料電池モジュール
4 補機ユニット
8 密封空間
10 発電室
12 燃料電池セル集合体
14 燃料電池セルスタック
16 燃料電池セルユニット
18 燃焼室
20 改質器
22 空気用熱交換器
24 水供給源
26 純水タンク
28 水流量調整ユニット
30 燃料供給源
38 燃料流量調整ユニット
40 空気供給源
44 改質用空気流量調整ユニット
45 発電用空気流量調整ユニット
46 第1ヒータ
48 第2ヒータ
50 温水製造装置
52 制御ボックス
54 インバータ
83 点火装置
84 燃料電池セル
110 制御部
112 操作装置
114 表示装置
116 警報装置
126 電力状態検出センサ
142 セル温度センサ
150 外気温度センサ

Claims (2)

  1. 燃料ガスと酸化剤ガスを電気化学的に反応させることにより発電する固体電解質型燃料電池であって、
    固体電解質型の燃料電池モジュール内に配置された固体電解質型の燃料電池セルと、
    燃料ガスを改質して上記燃料電池セルに供給する改質器であって、所定の温度帯域に応じて燃料ガスと酸化剤ガスを化学反応させることにより燃料ガスを部分酸化改質する改質反応であるPOX、及び、燃料ガスと水蒸気を化学反応させることにより燃料ガスを水蒸気改質する改質反応であるSR、及び、上記POXと上記SRとを併用させることにより燃料ガスをオートサーマル改質する改質反応であるATRのいずれかの改質反応によって燃料ガスを水素に改質する上記改質器と、
    上記改質器による改質状態を変更するための改質器温度を検出する改質器温度検出手段と、
    上記燃料電池モジュールの運転を制御する制御手段と、を有し、
    上記制御手段は、上記燃料電池モジュールの運転の起動を制御する起動制御手段と、上記燃料電池モジュールの運転の停止を制御する停止制御手段と、を備え、
    上記起動制御手段は、燃料ガスを着火して燃焼させた後、上記改質器温度検出手段が検出した上記改質器温度が、上記POXが開始するPOX開始温度よりも低い場合には、燃料ガスと酸化剤ガスとの燃焼により生じる燃焼熱によって上記改質器を昇温させる燃焼運転を実行し、
    上記改質器温度が上記POX開始温度以上であり且つ上記水蒸気改質が可能な温度未満のPOX温度帯域内にある場合には、上記改質器を昇温させるために通常起動時のPOXを実行し、
    上記改質器温度が上記水蒸気改質が可能な温度以上であり且つ所定の定常温度未満のATR温度帯域内にある場合には、上記改質器を昇温させるために通常起動時のATRを実行し、
    上記改質器温度が、上記所定の定常温度以上である場合には、上記改質器を昇温させるために通常起動時のSRを実行し、
    上記起動制御手段は、更に、上記燃料電池モジュールが高温状態からの停止に伴って上記停止制御手段による停止処理が実行され、上記通常起動時のPOX温度帯域内で運転の再起動が実行された場合には、上記通常起動時のPOXによる起動を禁止し、上記通常起動時のPOX温度帯域から、この通常起動時のPOX温度帯域の下限値よりも低い下限値を備えた再起動時のPOX温度帯域に変更すると共に、上記通常起動時のATR温度帯域から、この通常起動時のATR温度帯域の下限値よりも低く且つ上記通常起動時のPOX温度帯域内にある下限値を備えた再起動時のATR温度帯域に変更することにより、上記通常起動時のPOXによる通常起動制御とは異なる再起動制御を実行し、この再起動制御は、再起動制御開始時の改質器温度が上記通常起動時のPOX温度帯域内の温度あり且つ上記再起動時のATR温度帯域の下限値以上である場合には、上記通常起動時のPOXによる起動を禁止すると共に、上記再起動時のATR温度帯域に基づいたATRによる再起動を実行し、上記再起動制御は、この再起動制御開始時の改質器温度が上記通常起動時のPOX温度帯域内の温度であり且つ上記再起動時のATR温度帯域の下限値よりも低い場合には、上記通常起動時のPOXによる起動を禁止すると共に、上記改質器温度が上記再起動時のPOX温度帯域の下限値よりも高い所定温度に低下するまで上記停止制御手段による運転の停止を継続した後に、上記再起動時のPOX温度帯域に基づいたPOXによる再起動を実行することを特徴とする固体電解質型燃料電池。
  2. 上記再起動制御で行われるPOXは、上記通常起動時のPOXよりも酸化剤ガスの供給量を少なくするように構成されている請求項記載の固体電解質型燃料電池。
JP2009087413A 2009-03-31 2009-03-31 固体電解質型燃料電池 Expired - Fee Related JP4863171B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009087413A JP4863171B2 (ja) 2009-03-31 2009-03-31 固体電解質型燃料電池
CN201080019134.8A CN102414894B (zh) 2009-03-31 2010-03-31 固体电解质型燃料电池
US13/262,014 US8927162B2 (en) 2009-03-31 2010-03-31 Solid oxide fuel cell system performing different restart operations depending on operation temperature
PCT/JP2010/055906 WO2010114039A1 (ja) 2009-03-31 2010-03-31 固体電解質型燃料電池
EP10758810.5A EP2416418B1 (en) 2009-03-31 2010-03-31 Solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087413A JP4863171B2 (ja) 2009-03-31 2009-03-31 固体電解質型燃料電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011205110A Division JP5505872B2 (ja) 2011-09-20 2011-09-20 固体電解質型燃料電池

Publications (3)

Publication Number Publication Date
JP2010238623A JP2010238623A (ja) 2010-10-21
JP2010238623A5 JP2010238623A5 (ja) 2010-12-02
JP4863171B2 true JP4863171B2 (ja) 2012-01-25

Family

ID=42828328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009087413A Expired - Fee Related JP4863171B2 (ja) 2009-03-31 2009-03-31 固体電解質型燃料電池

Country Status (5)

Country Link
US (1) US8927162B2 (ja)
EP (1) EP2416418B1 (ja)
JP (1) JP4863171B2 (ja)
CN (1) CN102414894B (ja)
WO (1) WO2010114039A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4761259B2 (ja) * 2009-05-28 2011-08-31 Toto株式会社 固体電解質型燃料電池
JP4707023B2 (ja) * 2009-09-30 2011-06-22 Toto株式会社 固体電解質型燃料電池
WO2012043647A1 (ja) * 2010-09-30 2012-04-05 Toto株式会社 固体酸化物形燃料電池装置
JP5561655B2 (ja) * 2010-09-30 2014-07-30 Toto株式会社 固体酸化物形燃料電池装置
JP5721825B2 (ja) * 2011-05-30 2015-05-20 京セラ株式会社 燃料電池装置
JP6145683B2 (ja) * 2011-12-14 2017-06-14 パナソニックIpマネジメント株式会社 燃料電池発電システム
JP5902581B2 (ja) * 2012-08-02 2016-04-13 本田技研工業株式会社 燃料電池システム及びその制御方法
JP6183774B2 (ja) * 2013-03-25 2017-08-23 Toto株式会社 固体酸化物型燃料電池システム
JP6183775B2 (ja) * 2013-03-25 2017-08-23 Toto株式会社 固体酸化物型燃料電池システム
JP2015127999A (ja) * 2013-12-27 2015-07-09 Toto株式会社 固体酸化物型燃料電池システム
JP2015127998A (ja) * 2013-12-27 2015-07-09 Toto株式会社 固体酸化物型燃料電池システム
DE102014218726A1 (de) * 2014-09-18 2016-04-07 Robert Bosch Gmbh Brennstoffzellenvorrichtung mit verbessertem Anodengasprozessor
KR102587217B1 (ko) * 2016-05-24 2023-10-12 주식회사 미코파워 연료전지 시스템
US10840528B2 (en) 2016-12-19 2020-11-17 Cummins Enterprise Llc Method and apparatus for detecting damage in fuel cell stacks, and adjusting operational characteristics in fuel cell systems

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095611A (ja) * 2001-09-19 2003-04-03 Toyota Motor Corp 水素生成装置の起動方法
JP4369685B2 (ja) * 2003-02-25 2009-11-25 京セラ株式会社 燃料電池の運転方法
JP4232528B2 (ja) * 2003-05-13 2009-03-04 住友ベークライト株式会社 合わせガラス
JP2004338975A (ja) * 2003-05-13 2004-12-02 Mitsubishi Kakoki Kaisha Ltd 水素製造装置の起動方法
JP2006086016A (ja) * 2004-09-16 2006-03-30 Kyocera Corp 固体酸化物形燃料電池の運転方法
JP4767543B2 (ja) 2005-01-07 2011-09-07 Jx日鉱日石エネルギー株式会社 固体酸化物形燃料電池システムの起動方法
JP2006269196A (ja) 2005-03-23 2006-10-05 Nissan Motor Co Ltd 燃料電池システム
JP2007311072A (ja) * 2006-05-16 2007-11-29 Acumentrics Corp 燃料電池システム及びその運転方法
JP2008243597A (ja) * 2007-03-27 2008-10-09 Kyocera Corp 燃料電池装置
JP5213865B2 (ja) * 2007-08-29 2013-06-19 京セラ株式会社 燃料電池装置

Also Published As

Publication number Publication date
US20120028143A1 (en) 2012-02-02
US8927162B2 (en) 2015-01-06
EP2416418A1 (en) 2012-02-08
JP2010238623A (ja) 2010-10-21
CN102414894A (zh) 2012-04-11
WO2010114039A1 (ja) 2010-10-07
EP2416418B1 (en) 2015-10-14
CN102414894B (zh) 2015-09-16
EP2416418A4 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP4863171B2 (ja) 固体電解質型燃料電池
JP6044771B2 (ja) 固体酸化物型燃料電池
JP4650799B2 (ja) 固体電解質型燃料電池
JP4692938B2 (ja) 固体電解質型燃料電池
JP5418960B2 (ja) 固体電解質型燃料電池
JP4707023B2 (ja) 固体電解質型燃料電池
JP6070923B2 (ja) 固体酸化物型燃料電池
JP6048662B2 (ja) 固体酸化物型燃料電池
WO2012043645A1 (ja) 燃料電池装置
JP2010277843A (ja) 固体電解質型燃料電池
JP2011009136A (ja) 固体電解質型燃料電池
JP2013218861A (ja) 固体酸化物型燃料電池
JP2012079422A (ja) 固体酸化物形燃料電池装置
JP5594648B2 (ja) 固体酸化物形燃料電池装置
JP2012142217A (ja) 固体酸化物形燃料電池装置
JP5618069B2 (ja) 固体酸化物形燃料電池装置
JP5565759B2 (ja) 固体電解質型燃料電池
JP5505872B2 (ja) 固体電解質型燃料電池
JP2014026982A (ja) 固体酸化物形燃料電池装置
JP2012079409A (ja) 燃料電池システム
JP5517096B2 (ja) 固体電解質型燃料電池
JP6080090B2 (ja) 固体酸化物型燃料電池
JP5846535B2 (ja) 固体電解質形燃料電池装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100906

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100906

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111017

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4863171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111030

LAPS Cancellation because of no payment of annual fees