JP4861031B2 - Nozzle device - Google Patents

Nozzle device Download PDF

Info

Publication number
JP4861031B2
JP4861031B2 JP2006085339A JP2006085339A JP4861031B2 JP 4861031 B2 JP4861031 B2 JP 4861031B2 JP 2006085339 A JP2006085339 A JP 2006085339A JP 2006085339 A JP2006085339 A JP 2006085339A JP 4861031 B2 JP4861031 B2 JP 4861031B2
Authority
JP
Japan
Prior art keywords
gas
branch
pipe
nozzle device
branch pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006085339A
Other languages
Japanese (ja)
Other versions
JP2007260487A (en
Inventor
清孝 島津
裕全 高田
正夫 山口
Original Assignee
大阪ガスエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪ガスエンジニアリング株式会社 filed Critical 大阪ガスエンジニアリング株式会社
Priority to JP2006085339A priority Critical patent/JP4861031B2/en
Publication of JP2007260487A publication Critical patent/JP2007260487A/en
Application granted granted Critical
Publication of JP4861031B2 publication Critical patent/JP4861031B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Nozzles (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nozzle device that enables a uniform treatment of gas by making gas flow-rate distribution uniform in a gas treatment tower. <P>SOLUTION: The nozzle device N disposed in the lower part of a gas treatment tower 1 for carrying out a contact treatment of gas charged therein from below in contact with liquid from above is constituted of at least three horizontal branched-pipe passages X each comprising a base pipe 6 that allows the gas to flow horizontally therethrough and a pair of right and left branch pipes 8 that split the gas coming from the base pipe 6 into right and left streams and allow the gas to flow horizontally therethrough. Either of the branch pipes 8 of the first horizontal branched-pipe passage X is connected to the base pipe 6 of the second horizontal branched-pipe passage X and the other of the branch pipes 8 is connected to the base pipe 6 of the third horizontal branched-pipe passage X so that the gas coming from the base pipe 6 of the first horizontal branched-pipe passage X is horizontally split at least twice and is discharged out of a discharge opening 5 at least downwardly. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、ガスを下方から送入して上方からの液体と接触処理するガス処理塔の下方に配置されるノズル装置に関する。   The present invention relates to a nozzle device disposed below a gas processing tower that feeds gas from below and performs contact processing with a liquid from above.

このようなノズル装置は、例えば、充填塔やスプレー塔などのようなガス処理塔の下方に配置されて、硫化水素を含む燃料ガスを下方から吹き出して送入し、上方からの水や吸収液と接触させて硫化水素を除去する脱硫処理用などに使用され、従来、図13および図14に示す構造のものが知られている(適切な特許文献が見当たらないため、図示して説明する)。   Such a nozzle device is, for example, disposed below a gas processing tower such as a packed tower or a spray tower, and blows in a fuel gas containing hydrogen sulfide from below to supply water or an absorbing liquid from above. It is used for desulfurization treatment that removes hydrogen sulfide by bringing it into contact with a conventional structure, and the structure shown in FIGS. 13 and 14 is conventionally known (since no appropriate patent document is found, this is illustrated and described) .

図13に示す従来技術では、ノズル装置Nが1本の管路11で構成され、その管路11の端部に吹き出し口5がひとつ設けられて、そのひとつの吹き出し口5がガス処理塔1内に臨んでいる。
また、図14に示す従来技術では、ノズル装置Nが1本の管路11で構成され、その管路11の下方に多数の吹き出し口5が設けられてガス処理塔1内に挿入されている。
なお、図13および図14において、2は液噴霧ノズルを示し、3は充填材層を示す。
In the prior art shown in FIG. 13, the nozzle device N is composed of a single pipe 11, and one outlet 5 is provided at the end of the pipe 11, and that one outlet 5 is the gas processing tower 1. It faces inside.
Further, in the prior art shown in FIG. 14, the nozzle device N is constituted by a single pipe 11, and a number of outlets 5 are provided below the pipe 11 and inserted into the gas processing tower 1. .
In FIG. 13 and FIG. 14, 2 indicates a liquid spray nozzle, and 3 indicates a filler layer.

しかし、図13に示す従来技術では、ガス処理塔1の側部において横方向に向くひとつの吹き出し口5からガスを吹き出して送入するため、図の上方に示すように、ガス処理塔1内でのガスの流速分布が不均一となり、ガス処理塔1内でのガス処理能力が著しく低下するという問題がある。
同様に、図14に示す従来技術でも、図の上方に示すように、ガス処理塔1内でのガスの流速分布が不均一で、すべてのガスに対して均一な処理の実行がむずかしいという問題がある。
However, in the prior art shown in FIG. 13, gas is blown out and sent from one blowout port 5 that faces in the lateral direction at the side of the gas treatment tower 1. There is a problem that the gas flow velocity distribution in the gas processing chamber becomes uneven and the gas processing capacity in the gas processing tower 1 is remarkably lowered.
Similarly, in the prior art shown in FIG. 14, as shown in the upper part of the figure, the gas flow velocity distribution in the gas processing tower 1 is not uniform, and it is difficult to perform uniform processing on all the gases. There is.

本発明は、このような従来の問題点に着目したもので、その目的は、ガス処理塔内におけるガスの流速分布を均一化し、ガスに対する均一な処理を可能にするノズル装置を提供することにある。   The present invention pays attention to such conventional problems, and an object of the present invention is to provide a nozzle device that makes the gas flow velocity distribution in the gas processing tower uniform and enables uniform processing on the gas. is there.

本発明の第1の特徴構成は、ガスを下方から送入して上方からの液体と接触処理するガス処理塔の下方に配置されるノズル装置であって、流入口から流入されるガスを横方向に通流させる基管と、その基管からのガスを左右に分岐して横方向に通流させる左右一対の枝管とからなる第1横分岐管路によって形成される1回目の分岐を設け、前記第1横分岐管路の全ての枝管夫々を基管としてそれらの基管からのガスを夫々左右に分岐して横方向に通流させる各々左右一対の枝管を備えた各横分岐管路からなる2回目の分岐を設けて、前記第1横分岐管路の基管からのガスを少なくとも2回以上横方向に分岐して吹き出し口から少なくとも下方に吹き出すように構成してあるところにある。 A first characteristic configuration of the present invention is a nozzle device that is disposed below a gas processing tower that feeds gas from below and performs contact processing with a liquid from above, and the gas that flows in from an inflow port is transversal. A first branch formed by a first horizontal branch pipe consisting of a base pipe that flows in the direction and a pair of left and right branch pipes that branch the gas from the base pipe to the left and right to flow in the horizontal direction Each lateral pipe provided with a pair of left and right branch pipes, each of which has a branch pipe to the left and right to flow in the lateral direction, with each branch pipe of the first horizontal branch pipe as a base pipe. A second branch consisting of a branch pipe is provided, and the gas from the base pipe of the first horizontal branch pipe is branched at least twice in the lateral direction and blown out at least downward from the outlet. By the way.

本発明の第1の特徴構成によれば、ガス処理塔の下方に配置されるノズル装置が、流入口から流入されるガスを横方向に通流させる基管と、その基管からのガスを左右に分岐して横方向に通流させる左右一対の枝管とからなる第1横分岐管路によって形成される1回目の分岐を設け、前記第1横分岐管路の全ての枝管夫々を基管としてそれらの基管からのガスを夫々左右に分岐して横方向に通流させる各々左右一対の枝管を備えた各横分岐管路からなる2回目の分岐を設けて、前記第1横分岐管路の基管からのガスを少なくとも2回以上横方向に分岐して吹き出し口から少なくとも下方に吹き出すように構成してあるので、ノズル装置に流入したガスは、1回目の分岐により第1横分岐管路において左右に分岐され、その左右に分岐されたガスは、さらに、2回目の分岐により横方向に分岐されることになる。
そして、その2回以上横方向に分岐されたガスが、吹き出し口から少なくとも下方に向けて吹き出されるので、このノズル装置をガス処理塔の下方に配置することによって、ガス処理塔内におけるガスの流速分布は均一化され、上方からの液体による均一な処理が可能となる。
According to the first characteristic configuration of the present invention, the nozzle device disposed below the gas processing tower includes a base tube that allows the gas flowing in from the inlet to flow in the lateral direction, and the gas from the base tube. A first branch formed by a first horizontal branch pipe consisting of a pair of left and right branch pipes branching left and right to flow in the horizontal direction is provided, and all the branch pipes of the first horizontal branch pipe are provided. As a base tube, a second branch is formed which includes each lateral branch pipe having a pair of left and right branch pipes for branching the gas from the base pipes to the left and right and flowing in the lateral direction . since the gas from the group pipe of the horizontal branch conduit at least twice transversely branched and outlet are configured to at least blown downward, gas that has flowed into the nozzle device, the by the first branch In one horizontal branch pipe, it is branched to the left and right, and the right and left branches Furthermore, the branch is branched in the lateral direction by the second branch .
Then, since the gas branched in the lateral direction two or more times is blown out at least downward from the blowing port, by disposing this nozzle device below the gas processing tower, the gas in the gas processing tower The flow velocity distribution is made uniform, and uniform processing with the liquid from above is possible.

本発明の第2の特徴構成は前記ノズル装置が、ガスを上下に分岐して縦方向に通流させる上下一対の枝管からなる縦分岐管路を少なくとも4つ備え、それらの縦分岐管路を、前記2回目の分岐以降において、末端の横分岐管路の枝管にそれぞれ接続して、前記末端の横分岐管路の枝管からのガスをそれぞれ上下方向に分岐して吹き出し口から下方と上方へ吹き出すように構成してあるところにある。 The second characteristic configuration of said nozzle device, comprising at least four vertical branch conduit comprising a pair of upper and lower lateral pipe to flow through in the longitudinal direction branches the gas up and down, their vertical branch conduit of the present invention Are connected to the branch pipe of the terminal lateral branch pipe after the second branch, respectively, and the gas from the branch pipe of the terminal horizontal branch pipe is branched in the vertical direction and downward from the outlet. It is in the place where it is configured to blow out upward.

本発明の第2の特徴構成によれば、ノズル装置が、ガスを上下に分岐して縦方向に通流させる上下一対の枝管からなる縦分岐管路を少なくとも4つ備え、それらの縦分岐管路を、前記2回目の分岐以降において、末端の横分岐管路の枝管にそれぞれ接続して、前記末端の横分岐管路の枝管からのガスをそれぞれ上下方向に分岐して吹き出し口から下方と上方へ吹き出すように構成してあるので、横分岐管路によって少なくとも2回以上横方向に分岐されたガスは、さらに、縦分岐管路においてそれぞれ上下に分岐されて吹き出し口から下方と上方へ向けて吹き出され、ガス処理塔内におけるガスの流速分布は一層均一化され、上方からの液体による均一な処理がより一層確実となる。 According to the second characterizing feature of the present invention, the nozzle device comprises at least four longitudinal branch conduit comprising a pair of upper and lower lateral pipe to flow through in the longitudinal direction branches the gas up and down, their longitudinal branch After the second branch, the pipes are respectively connected to the branch pipes of the terminal lateral branch pipes, and the gas from the branch pipes of the terminal horizontal branch pipes are branched in the vertical direction, respectively. The gas branched in the lateral direction at least twice by the horizontal branch pipe is further branched in the vertical direction in the vertical branch pipe so that the gas flows downward from the outlet. Blowing upward, the gas flow velocity distribution in the gas processing tower is made more uniform, and uniform treatment with liquid from above is further ensured.

本発明の第3の特徴構成は、上記第2の特徴構成に加えて、前記吹き出し口において、下方への吹き出し口の開口面積が大で、上方への吹き出し口の開口面積が小であるところにある。   In the third characteristic configuration of the present invention, in addition to the second characteristic configuration described above, the opening area of the downward outlet is large and the opening area of the upward outlet is small in the outlet. It is in.

本発明の第3の特徴構成によれば、下方への吹き出し口の開口面積が大で、上方への吹き出し口の開口面積が小であるから、各縦分岐管路の下方への吹き出し口からのガスは多量で、かつ、周囲に分散しながら上昇するのに対し、上方への吹き出し口からのガスは少量で、かつ、ほぼ真っ直ぐに上昇することになり、その結果、下方と上方への吹き出し口から吹き出すガスの流速が均一化され、ガス処理塔内におけるガスの流速分布は一層確実に均一化される。   According to the third characteristic configuration of the present invention, since the opening area of the downward outlet is large and the opening area of the upward outlet is small, from the downward outlet of each vertical branch pipe The amount of gas in the air rises while being dispersed in the surrounding area, while the amount of gas from the upper outlet is small and almost straightly rises. The flow velocity of the gas blown out from the outlet is made uniform, and the flow velocity distribution of the gas in the gas processing tower is more evenly made uniform.

本発明の第4の特徴構成は、前記横分岐管路における基管と枝管の管径が、ノズル装置への流入口側ほど大径で、吹き出し口側ほど小径に構成してあるところにある。 The fourth characteristic configuration of the present invention, where the pipe diameter of the lateral branch pipe to definitive base pipe and the branch pipe, a larger diameter as the inlet side to the nozzle device, are configured to diameter as balloon port side It is in.

本発明の第4の特徴構成によれば、横分岐管路における基管と枝管の管径が、ノズル装置への流入口側ほど大径で、吹き出し口側ほど小径に構成してあるので、ノズル装置を通流するガスの流速は、流入口側から吹き出し口側に至るまで均一化され、管径を必要以上に大径にすることもなく、非常に合理的なノズル装置を提供することができる。 According to the fourth characteristic configuration of the present invention, the diameters of the base pipe and the branch pipe in the lateral branch pipe are configured to be larger on the inlet side to the nozzle device and smaller on the outlet side. The flow velocity of the gas flowing through the nozzle device is made uniform from the inlet side to the outlet side, providing a very reasonable nozzle device without making the pipe diameter larger than necessary. be able to.

本発明の第5の特徴構成は、上記第1の特徴構成に加えて、前記ノズル装置が、ガスを下方へのみ通流させる下向き管路を少なくとも4つ備え、それらの下向き管路を、前記2回目の分岐以降において、末端の横分岐管路の枝管にそれぞれ接続して、前記末端の横分岐管路の枝管からのガスをそれぞれ吹き出し口から下方へのみ吹き出すように構成し、各下向き管路が、前記末端の横分岐管路の枝管からのガスに対して、そのガスの流れ方向に垂直なガス衝突面を備えているところにある。 The fifth characteristic configuration of the present invention, in addition to the first feature structure, the nozzle device comprises at least four downwardly conduit to flow seen through the downward gas, their downward conduit, wherein After the second branch, each is connected to a branch pipe of the terminal lateral branch pipe, and the gas from the branch pipe of the terminal horizontal branch pipe is blown only downward from the outlet, The downward pipe is provided with a gas collision surface perpendicular to the gas flow direction with respect to the gas from the branch pipe of the terminal lateral branch pipe .

本発明の第5の特徴構成によれば、ノズル装置が、ガスを下方へのみ通流させる下向き管路を少なくとも4つ備え、それらの下向き管路を、前記2回目の分岐以降において、末端の横分岐管路の枝管にそれぞれ接続して、前記末端の横分岐管路の枝管からのガスをそれぞれ吹き出し口から下方へのみ吹き出すように構成してあるので、横分岐管路によって少なくとも2回以上横方向に分岐されたガスは、各下向き管路の吹き出し口から下方へ向けて吹き出される。
そして、その各下向き管路が末端の横分岐管路の枝管からのガスに対して、そのガスの流れ方向に垂直なガス衝突面を備えているので、横分岐管路の枝管からのガスは、その流れ方向を下方へ向けて円滑に変えるのではなくて、流れに垂直なガス衝突面に衝突することにより分散しながら変えることになり、その結果、後述するシミュレーションからも明らかなように、ガスの流速分布は、ガス処理塔の全体にわたって均一化される。
According to a fifth characterizing feature of the present invention, the nozzle device comprises at least four downwardly conduit to flow seen through the downward gas, their downward conduit, in the second and subsequent branches, end Since the gas is connected to the branch pipes of the lateral branch pipes, and the gas from the branch pipes of the terminal lateral branch pipes is blown out only downward from the outlet, at least 2 by the horizontal branch pipes. The gas branched in the horizontal direction more than once is blown downward from the blowout port of each downward pipe.
Then, for the gas from the downward conduit is terminated horizontal branch conduit branch of the is provided with the vertical gas impact surface in the flow direction of the gas, from the branch pipe of the lateral branch pipe Instead of smoothly changing the flow direction downward, the gas will change in a dispersed manner by colliding with a gas collision surface perpendicular to the flow, and as a result, it will be clear from the simulation described later. In addition, the gas flow velocity distribution is made uniform throughout the gas processing tower.

本発明の第6の特徴構成は、上記第5の特徴構成に加えて、前記第1横分岐管路において、その左右一対の枝管の中心軸が基管の中心軸よりも上方に位置するように構成してあるところにある。   According to a sixth characteristic configuration of the present invention, in addition to the fifth characteristic configuration, in the first horizontal branch pipe, the central axis of the pair of left and right branch pipes is located above the central axis of the base pipe. It is in the place where it is configured as follows.

本発明の第6の特徴構成によれば、第1横分岐管路において、その左右一対の枝管の中心軸が基管の中心軸よりも上方に位置するように構成してあるので、第1横分岐管路の基管の上端から下向き管路の下端に至るまでの上下高さ、言い換えると、ガス処理塔内に配置するノズル装置全体の上下高さを低くすることができ、その分、ガス処理塔の内部空間が上下方向に長くなって、その長くなった内部空間の有効利用が可能となる。   According to the sixth characteristic configuration of the present invention, in the first horizontal branch pipe, the center axis of the pair of left and right branch pipes is located above the center axis of the base pipe. The vertical height from the upper end of the base pipe of one horizontal branch pipe to the lower end of the downward pipe, in other words, the vertical height of the entire nozzle device arranged in the gas processing tower can be reduced. In addition, the internal space of the gas processing tower becomes longer in the vertical direction, and the extended internal space can be effectively used.

本発明の第7の特徴構成は、上記第1〜第6の特徴構成に加えて、前記ガス処理塔内のガスの平均流速が、乾燥状態の標準換算(0℃、1気圧)において0.6m/秒以下の緩い流れであり、前記ノズル装置が、その緩い流れのガス処理塔に配置されるものである。   In the seventh characteristic configuration of the present invention, in addition to the first to sixth characteristic configurations described above, the average flow velocity of the gas in the gas processing tower is 0. 0 in dry standard conversion (0 ° C, 1 atm). The flow rate is 6 m / second or less, and the nozzle device is arranged in the gas treatment tower of the gentle flow.

すなわち、ガス処理塔内のガスの平均流速が、乾燥状態の標準換算において0.6m/秒より速い場合は、充填材層を通過する際の圧力損失が大きく、そのため、充填材層によってガスが整流作用を受け、ノズル装置の構成の如何にかかわらず、ガスの流速分布において極端な偏流が生じることはない。
しかしながら、ガスの平均流速が0.6m/秒以下になると、充填材層を通過する際の圧力損失が少なくなるため、充填材層による整流作用を期待することができず、その結果、ノズル装置によってはガスの流速分布に極端な偏流が生じやすくなる。
That is, when the average flow velocity of the gas in the gas processing tower is faster than 0.6 m / sec in the standard conversion of the dry state, the pressure loss when passing through the filler layer is large, and therefore the gas is absorbed by the filler layer. Regardless of the configuration of the nozzle device, no extreme drift occurs in the gas flow velocity distribution due to the rectifying action.
However, when the average gas flow velocity is 0.6 m / sec or less, the pressure loss when passing through the filler layer is reduced, so that the rectifying action by the filler layer cannot be expected. As a result, the nozzle device In some cases, extreme drift tends to occur in the gas flow velocity distribution.

本発明の第7の特徴構成によれば、ガス処理塔内のガスの平均流速が、乾燥状態の標準換算(0℃、1気圧)において0.6m/秒以下の緩い流れであり、前記ノズル装置が、その緩い流れのガス処理塔に配置されるので、本発明によるノズル装置の特徴が顕著に現れ、充填材層による整流作用が期待できないにもかかわらず、ノズル装置そのものによって偏流の発生が抑制され、後述するシミュレーションからも明らかなように、ガスの流速分布は、ガス処理塔の全体にわたってより一層均一化される。   According to the seventh characteristic configuration of the present invention, the average flow velocity of the gas in the gas processing tower is a gentle flow of 0.6 m / sec or less in a standard conversion of dry state (0 ° C., 1 atm), and the nozzle Since the apparatus is arranged in the gas processing tower of the gentle flow, the characteristic of the nozzle apparatus according to the present invention appears remarkably, and the occurrence of drifting is generated by the nozzle apparatus itself even though the rectifying action by the filler layer cannot be expected. As is clear from the simulation described later, the gas flow velocity distribution is made more uniform throughout the gas processing tower.

本発明の第8の特徴構成は、上記第1〜第7の特徴構成に加えて、前記ガス処理塔が、燃料ガスから硫化水素を吸収除去する脱硫処理用の吸収塔であり、前記ノズル装置が、燃料ガスを送入するためにその吸収塔に配置されるものである。   According to an eighth feature of the present invention, in addition to the first to seventh features, the gas treatment tower is an absorption tower for desulfurization treatment that absorbs and removes hydrogen sulfide from a fuel gas, and the nozzle device However, it is arranged in the absorption tower for sending fuel gas.

本発明の第8の特徴構成によれば、ガス処理塔が、燃料ガスから硫化水素を吸収除去する脱硫処理用の吸収塔であり、前記ノズル装置が、燃料ガスを送入するためにその吸収塔に配置されることにより、燃料ガス中の硫化水素を良好に吸収除去することが可能となる。
すなわち、燃料ガスから硫化水素を吸収除去する場合、アンモニアなどの物質を吸収除去する場合に比べて、その吸収除去が比較的緩慢であり、そのため、吸収塔内における燃料ガスの流速を速くすることが困難となる。具体的には、乾燥状態の標準換算において0.6m/秒以下の緩い流れに設定することが多く、本発明によるノズル装置であれば、上記第7の特徴構成に関連して記述したように、たとえ0.6m/秒以下の緩い流れであっても、吸収塔の全体にわたって均一化された速度分布を現出することができ、その結果、燃料ガス中の硫化水素を良好に吸収除去することができる。
According to the eighth characteristic configuration of the present invention, the gas processing tower is an absorption tower for desulfurization treatment that absorbs and removes hydrogen sulfide from the fuel gas, and the nozzle device absorbs the fuel gas for feeding it in. By disposing in the tower, it is possible to absorb and remove hydrogen sulfide in the fuel gas satisfactorily.
That is, when absorbing and removing hydrogen sulfide from the fuel gas, the absorption and removal is relatively slow compared to when absorbing and removing substances such as ammonia, and therefore the flow rate of the fuel gas in the absorption tower is increased. It becomes difficult. Specifically, it is often set to a gentle flow of 0.6 m / second or less in standard conversion of the dry state, and the nozzle device according to the present invention is as described in relation to the seventh characteristic configuration. Even with a slow flow of 0.6 m / sec or less, a uniform velocity distribution can be obtained throughout the absorption tower, and as a result, hydrogen sulfide in the fuel gas can be absorbed and removed well. be able to.

本発明によるノズル装置の実施の形態を図面に基づいて説明する。
このノズル装置Nは、図1に示すように、充填塔、スプレー塔、吸収塔などのようなガス処理塔1の下方に配置されて、例えば、硫化水素(H2S)を含む燃料ガスから硫化水
素を除去する脱硫処理に使用される。
燃料ガスの脱硫処理用に使用される吸収塔1の場合、液体としての脱硫液を散布する液噴霧ノズル2が上方に配置され、液噴霧ノズル2の下方に充填材層3が、充填材層3の下方にノズル装置Nがそれぞれ配置されて、流入口4から流入される燃焼ガスをノズル装置Nの吹き出し口5から吹き出して吸収塔1内へ送入し、上方からの脱硫液と接触させて、脱硫液中に硫化水素を溶け込ませて吸収除去するように構成されている。
An embodiment of a nozzle device according to the present invention will be described with reference to the drawings.
As shown in FIG. 1, the nozzle device N is disposed below a gas processing tower 1 such as a packed tower, a spray tower, an absorption tower, etc., for example, from a fuel gas containing hydrogen sulfide (H 2 S). Used for desulfurization treatment to remove hydrogen sulfide.
In the case of the absorption tower 1 used for the desulfurization treatment of the fuel gas, the liquid spray nozzle 2 for spraying the desulfurization liquid as a liquid is disposed above, and the filler layer 3 is disposed below the liquid spray nozzle 2. Nozzle devices N are respectively arranged below 3, and combustion gas flowing in from the inlet 4 is blown out from the outlet 5 of the nozzle device N and sent into the absorption tower 1 to be brought into contact with the desulfurization liquid from above. Thus, the hydrogen sulfide is dissolved in the desulfurization solution and absorbed and removed.

そのノズル装置Nは、図2に示すように、燃料ガスをほぼ水平な横方向に通流させる基管6と、その基管6に連通されて燃料ガスをほぼ水平な横方向に通流させる左右一対の枝管8からなるほぼT字状の横分岐管路Xを備え、基管6の出口に対面する枝管8の内面が、基管6からの燃料ガスを衝突させて左右の流れに分岐させる衝突分岐部7として機能するように構成されている。
つまり、横分岐管路Xは、燃料ガスを横方向に通流させる基管6と、基管6からの燃料ガスを衝突させて左右の流れに分岐させる衝突分岐部7と、その左右の流れに分岐された燃料ガスのそれぞれを横方向に通流させる左右一対の枝管8を備えている。
なお、横分岐管路Xは、必ずしもT字状にする必要はなく、例えば、ほぼY字状にするなど種々の形状を採用することができる。
As shown in FIG. 2, the nozzle device N has a base pipe 6 that allows fuel gas to flow in a substantially horizontal lateral direction, and a fuel pipe that is connected to the base pipe 6 and flows in a substantially horizontal lateral direction. A substantially T-shaped horizontal branch pipe X composed of a pair of left and right branch pipes 8 is provided, and the inner surface of the branch pipe 8 facing the outlet of the base pipe 6 collides fuel gas from the base pipe 6 to It is comprised so that it may function as the collision branch part 7 branched to a flow.
That is, the lateral branch pipe X includes a base pipe 6 that allows fuel gas to flow in the lateral direction, a collision branch section 7 that causes the fuel gas from the base pipe 6 to collide and branch into left and right flows, and the left and right flows thereof. and a pair of left and right branch pipe 8 to flow through the horizontal direction of each of the branched fuel gas.
The horizontal branch pipe X does not necessarily have a T shape, and various shapes such as a substantially Y shape can be employed.

さらに、ノズル装置Nは、図3に示すように、横分岐管路Xの枝管8に接続されて燃料ガスをほぼ垂直な縦方向に通流させる上下一対の枝管10からなる縦分岐管路Yを備え、横分岐管路Xの枝管8の出口に対面する枝管10の内面が、枝管8からの燃料ガスを衝突させて上下の流れに分岐させる衝突分岐部9として機能するように構成されている。
つまり、縦分岐管路Yは、横分岐管路Xの枝管8からの燃料ガスを衝突させて上下の流れに分岐させる衝突分岐部9と、上下の流れに分岐された燃料ガスのそれぞれを縦方向に通流させる上下一対の枝管10とを備え、各枝管10には吹き出し口5が設けられている。
各枝管10に設けられる吹き出し口5は、上方への枝管10に設けられる上向き吹き出し口5aの開口面積が小で、下方への枝管10に設けられる下向き吹き出し口5bの開口面積が大に形成されている。
Further, as shown in FIG. 3, the nozzle device N is connected to the branch pipe 8 of the horizontal branch pipe X and has a vertical branch pipe composed of a pair of upper and lower branch pipes 10 for flowing fuel gas in a substantially vertical vertical direction. The inner surface of the branch pipe 10 that includes the path Y and faces the outlet of the branch pipe 8 of the horizontal branch pipe X functions as a collision branching section 9 that causes fuel gas from the branch pipe 8 to collide and branch into an upper and lower flow. It is configured as follows.
In other words, the vertical branch pipe Y causes the collision branch portion 9 that causes the fuel gas from the branch pipe 8 of the horizontal branch pipe X to collide and branch into the upper and lower flows, and the fuel gas branched into the upper and lower flows, respectively. A pair of upper and lower branch pipes 10 that flow in the vertical direction are provided, and each branch pipe 10 is provided with an outlet 5.
The outlet 5 provided in each branch pipe 10 has a small opening area of the upward outlet 5a provided in the upward branch pipe 10, and a large opening area of the downward outlet 5b provided in the downward branch pipe 10. Is formed.

そして、ノズル装置Nは、横分岐管路Xを少なくとも3つ備え、流入口4から流入された燃料ガスは、少なくとも2回以上横方向に分岐されて吹き出し口5から吹き出されるように構成され、好ましくは、縦分岐管路Yも備えていて、その縦分岐管路Yが、横分岐管路Xの枝管8に接続されている。
例えば、図4および図5に示す実施形態では、横分岐管路Xを7つ備え、流入口4にひとつの第1横分岐管路X(図中、「A」で示す)の基管6が接続されて、その第1横分岐管路X(A)による基管6と左右一対の枝管8により1回目の分岐が形成され、その第1横分岐管路Xの枝管8の一方を基管6としてその基管6からのガスを左右に分岐して横方向に通流させる左右一対の枝管8を備えた第2横分岐管路X(図中、「B」で示す)を設けると共に第1横分岐管路の枝管の他方を基管6としてその基管6からのガスを左右に分岐して横方向に通流させる左右一対の枝管8を備えた第3横分岐管路X(図中、「C」で示す)を備えた2回目の分岐を設け、さらに、第2横分岐管路Xの夫々の枝管8を基管6としてそれらの基管6からのガスを夫々左右に分岐して横方向に通流させる左右一対の枝管8を備えた第4と第5横分岐管路X(図中、「D」と「E」で示す)を設け、第3横分岐管路Xの夫々の枝管8を基管6としてその基管6からのガスを左右に分岐して横方向に通流させる左右一対の枝管8を備えた第6と第7横分岐管路X(図中、「F」と「G」で示す)を設けてある。
そして、このノズル装置Nは、縦分岐管路Yを合計8つ備えていて、各縦分岐管路Yが第4〜第7横分岐管路Xの枝管8に接続され、各枝管8からの燃料ガスをそれぞれ上下に分岐して上向き吹き出し口5aと下向き吹き出し口5bから吹き出すように構成されている。
The nozzle device N includes at least three lateral branch pipes X, and the fuel gas flowing in from the inflow port 4 is configured to be branched in the lateral direction at least twice and blown out from the blowing port 5. Preferably, a vertical branch pipe Y is also provided, and the vertical branch pipe Y is connected to the branch pipe 8 of the horizontal branch pipe X.
For example, in the embodiment shown in FIG. 4 and FIG. 5, seven side branch pipes X are provided, and the base pipe 6 of one first side branch pipe X (indicated by “A” in the figure) at the inlet 4. Are connected to form a first branch by the base pipe 6 and the pair of left and right branch pipes 8 of the first horizontal branch pipe X (A), and one of the branch pipes 8 of the first horizontal branch pipe X is formed. As a base pipe 6 and a second horizontal branch pipe X (indicated by “B” in the figure) provided with a pair of left and right branch pipes 8 branching the gas from the base pipe 6 left and right and flowing in the lateral direction . the provided Rutotomoni, first with a first lateral branch pipe pair of branch pipes 8 to flow through the horizontal direction and the other branch pipe branches the gas from the group pipe 6 to the left and right as Motokan 6 A second branch having three horizontal branch pipes X (indicated by “C” in the figure) is provided, and each branch pipe 8 of the second horizontal branch pipe X is used as a base pipe 6 and those base pipes. From 6 Fourth and fifth lateral branch conduit X (in the figure, "D" and indicated by "E") having a laterally through the pair of right and left branch pipes 8 to flow branches to scan respective right and left to provided, Each of the sixth and second branch pipes 8 is provided with a pair of left and right branch pipes 8 that branch the gas from the base pipe 6 to the left and right to flow in the lateral direction by using the branch pipes 8 of the third horizontal branch pipe X as the base pipe 6. Seven horizontal branch lines X (indicated by “F” and “G” in the figure) are provided.
The nozzle device N includes a total of eight vertical branch pipes Y, and each vertical branch pipe Y is connected to the branch pipes 8 of the fourth to seventh horizontal branch pipes X. The fuel gas from each is branched up and down and blown out from the upward blowing port 5a and the downward blowing port 5b.

したがって、この図4および図5に示す実施形態では、ノズル装置Nが7つの横分岐管路Xと8つの縦分岐管路Yを備え、流入口4から流入された燃料ガスは、横方向に3回分岐され、かつ、上下方向に1回分岐されて、縦分岐管路Yの上下の吹き出し口5a,5bから吹き出されることになる。
具体的には、流入口4からノズル装置Nへ流入された燃料ガスは、「A」で示す第1横分岐管路Xにおいてほぼ等量の2つの流れに分岐され、その分岐された燃料ガスのそれぞれが、「B」と「C」で示す第2と第3横分岐管路Xにおいてほぼ等量の2つの流れに分岐され、さらに、その分岐された燃料ガスのそれぞれが、「D」〜「G」で示す第4〜第7横分岐管路Xにおいてほぼ等量の2つの流れに分岐される。つまり、第4〜第7横分岐管路Xの枝管8には、流入口4から流入された燃料ガスのほぼ1/8の量の燃料ガスが流入される。
Therefore, in the embodiment shown in FIGS. 4 and 5, the nozzle device N is provided with seven horizontal branch pipes X and eight vertical branch pipes Y, and the fuel gas flowing in from the inflow port 4 flows in the lateral direction. It branches three times and branches once in the vertical direction, and is blown out from the upper and lower outlets 5a and 5b of the vertical branch pipe Y.
Specifically, the fuel gas that has flowed into the nozzle device N from the inlet 4 is branched into two substantially equal flows in the first horizontal branch pipe X indicated by “A”, and the branched fuel gas Are branched into two substantially equal flows in the second and third lateral branch lines X indicated by “B” and “C”, and each of the branched fuel gases is further divided into “D”. In the fourth to seventh horizontal branch pipes X indicated by “G”, the flow is branched into two substantially equal flows. That is, the amount of fuel gas that is approximately 1/8 of the amount of fuel gas that flows in from the inflow port 4 flows into the branch pipe 8 of the fourth to seventh horizontal branch pipes X.

さらに、第4〜第7横分岐管路Xの各枝管8に流入された燃料ガスが、縦分岐管路Yの上向き吹き出し口5aと下向き吹き出し口5bから吹き出されて上方からの脱硫液と接触し、燃料ガス中の硫化水素が脱硫液に溶け込んで吸収塔1から排出され、つぎの処理が実行される。
そして、このような構成のノズル装置Nが、図5に示す吸収塔1の平面視において、断面円形のガス処理塔1の中心TLに対してノズル装置Nの全吹き出し口5a,5bの中心NLがノズル装置Nへの燃料ガスの流入口4側に片寄る位置に配置されている。
すなわち、ノズル装置Nの全吹き出し口5a,5bの中心NLが吸収塔1の中心TLと一致していると、全吹き出し口5a,5bから吹き出される燃料ガスの流速分布は、流入口4と反対の側へ少し片寄ることになるが、このような片寄りが補正されて、燃料ガスの流速分布は吸収塔1の全体にわたって均一化される。
Further, the fuel gas that has flowed into each branch pipe 8 of the fourth to seventh horizontal branch pipes X is blown out from the upward outlet 5a and the downward outlet 5b of the vertical branch pipe Y, and the desulfurized liquid from above The hydrogen sulfide in the fuel gas is dissolved in the desulfurization liquid and discharged from the absorption tower 1, and the next processing is executed.
And the nozzle apparatus N of such a structure is the center NL of all the outlets 5a and 5b of the nozzle apparatus N with respect to the center TL of the gas processing tower 1 having a circular cross section in the plan view of the absorption tower 1 shown in FIG. Is arranged at a position offset toward the fuel gas inlet 4 side to the nozzle device N.
That is, when the center NL of all the outlets 5a and 5b of the nozzle device N coincides with the center TL of the absorption tower 1, the flow velocity distribution of the fuel gas blown from all the outlets 5a and 5b is Although it is slightly offset toward the opposite side, such a deviation is corrected, and the flow velocity distribution of the fuel gas is made uniform throughout the absorption tower 1.

〔別実施形態〕
つぎに、別の実施形態について説明するが、重複説明を避けるため、先の実施形態で説明した構成や同じ作用を有する構成については、同じ符号を付すことにより説明を省略し、主として先の実施形態と異なる構成について説明する。
[Another embodiment]
Next, although another embodiment will be described, in order to avoid redundant description, the description of the configuration described in the previous embodiment and the configuration having the same action is omitted by attaching the same reference numerals, and the previous implementation is mainly performed. A configuration different from the form will be described.

(1)先の実施形態では、ノズル装置Nが7つの横分岐管路Xを備え、燃料ガスが横方向に3回分岐されて吹き出される構成のものを示したが、横分岐管路Xを少なくとも3つ備え、横方向に少なくとも2回以上分岐されて吹き出される構成のものであれば、燃料ガスの流速分布の均一化を図ることができる。
また、ノズル装置Nが縦分岐管路Yを備え、燃料ガスが上向き吹き出し口5aと下向き吹き出し口5bから吹き出される構成のものを示したが、図6に示すように、縦分岐管路Yを使用せずに、横分岐管路Xの左右一対の枝管8に燃料ガスを下方へのみ通流させる下向き管路12を接続し、その下向き管路12の先端部に吹き出し口5を設けて実施することもできる。要するに、燃料ガスの吹き出し方向に関しては、少なくとも下方に吹き出すように構成すればよい。
(1) In the previous embodiment, the nozzle device N is provided with seven lateral branch lines X, and the fuel gas is branched three times in the lateral direction and blown out. The fuel gas flow velocity distribution can be made uniform if it is configured to be provided with at least three and branched and blown at least twice in the lateral direction.
In addition, the nozzle device N is provided with the longitudinal branch pipe Y, and the fuel gas is blown out from the upward outlet 5a and the downward outlet 5b. However, as shown in FIG. Is connected to the pair of left and right branch pipes 8 of the lateral branch pipe X, and a downward pipe 12 for allowing the fuel gas to flow only downward is connected, and an outlet 5 is provided at the tip of the downward pipe 12 Can also be implemented. In short, the fuel gas may be blown out at least downward in the blowing direction.

また、横分岐管路Xの枝管8に下向き管路12を接続する場合、図7に示すように、例えば、1本の斜め管13を介して枝管8と下向き管路12を接続し、枝管8からの燃料ガスの流れ(図中、矢印で示す)に垂直なガス衝突面12aが下向き管路12の内面に形成されるように構成することもできる。
このような構成であれば、枝管8からの燃料ガスは、ガス衝突面12aに衝突して分散しながら下方へ方向を変えて吹き出し口5から吸収塔1へ送入されることになり、その結果、吸収塔1内を上昇する燃料ガスの流速分布が、吸収塔1の全体にわたって均一化される。
なお、斜め管13は、下向き管路12の内面にガス衝突面12aを形成するためのものであるから、特に1本に限るものではなく、2本以上であってもよい。
Further, when connecting the downward pipe 12 to the branch pipe 8 of the lateral branch pipe X, as shown in FIG. 7, for example, the branch pipe 8 and the downward pipe 12 are connected via a single oblique pipe 13. The gas collision surface 12a perpendicular to the flow of fuel gas from the branch pipe 8 (indicated by an arrow in the figure) may be formed on the inner surface of the downward pipe 12.
With such a configuration, the fuel gas from the branch pipe 8 collides with the gas collision surface 12a and changes its direction downward while being dispersed, and is sent from the outlet 5 to the absorption tower 1, As a result, the flow velocity distribution of the fuel gas rising in the absorption tower 1 is made uniform throughout the absorption tower 1.
In addition, since the diagonal pipe | tube 13 is for forming the gas collision surface 12a in the inner surface of the downward pipe line 12, it is not restricted to one especially, Two or more may be sufficient.

このガス衝突面12aを備えた下向き管路12を有するノズル装置Nを使用すると、燃料ガスの流速分布が、吸収塔1の全体にわたって均一化されるのであるが、特に、乾燥状態の標準換算(0℃、1気圧)において0.6m/秒以下の緩い流れにおいて顕著な効果を期待することができる。
図8と図9は、従来のノズル装置(従来型ノズル)とガス衝突面12aを備えた下向き管路12を有するノズル装置N(本件ノズル)を使用した場合の塔内におけるガスの流速分布をシミュレーションした図である。
なお、従来型ノズルは、図14に示した従来のノズル装置において、吹き出し口5を4つ設けたものであり、図8と図9において、(イ)はその従来型ノズルの流速分布を示し、(ロ)は本件ノズルの流速分布を示す。そして、図中における数値は、塔内のガスの流速(m/秒)を示し、曲線は各流速における等速線を示す。
この図8と図9から、従来型のノズルでは、ガスの流速が塔の内壁に沿って極端に速くなり、塔の中心部と塔の内壁近傍との間で極端な偏流が生じているのに対し、本件ノズルでは、ガスの流速が塔の中心部から内壁近傍にわたって非常に均一化されていることが理解できる。
When the nozzle device N having the downward pipe 12 provided with the gas collision surface 12a is used, the flow velocity distribution of the fuel gas is made uniform throughout the absorption tower 1, but in particular, the standard conversion of the dry state ( A remarkable effect can be expected in a slow flow of 0.6 m / sec or less at 0 ° C. and 1 atm).
FIG. 8 and FIG. 9 show the flow velocity distribution of gas in the tower when the conventional nozzle device (conventional nozzle) and the nozzle device N (the present nozzle) having the downward pipe 12 having the gas collision surface 12a are used. It is the figure which simulated.
The conventional nozzle is provided with four outlets 5 in the conventional nozzle device shown in FIG. 14. In FIGS. 8 and 9, (a) shows the flow velocity distribution of the conventional nozzle. , (B) shows the flow velocity distribution of this nozzle. And the numerical value in a figure shows the flow velocity (m / sec) of the gas in a tower, and a curve shows the constant velocity line in each flow velocity.
From FIG. 8 and FIG. 9, in the conventional nozzle, the gas flow velocity becomes extremely fast along the inner wall of the tower, and an extreme drift occurs between the center of the tower and the vicinity of the inner wall of the tower. In contrast, in the present nozzle, it can be understood that the gas flow velocity is very uniform from the center of the tower to the vicinity of the inner wall.

また、ガス衝突面12aを備えた下向き管路12を有するノズル装置Nを使用する場合、図10に示すように、横分岐管路Xにおいて、その左右一対の枝管8の中心軸L8が基管6の中心軸L6よりも上方に位置するように構成することができる。
このように構成すれば、横分岐管路Xの基管6の上端から下向き管路12の下端に至るまでの上下高さ、つまり、ノズル装置Nの全体の上下高さを低くすることができ、その分、吸収塔1の内部空間が上下方向に長くなって、その長くなった内部空間の有効利用が可能となる。
Further, when the nozzle device N having the downward pipe 12 having the gas collision surface 12a is used, the central axis L8 of the pair of left and right branch pipes 8 is based on the horizontal branch pipe X as shown in FIG. It can be configured to be positioned above the central axis L6 of the tube 6.
If comprised in this way, the vertical height from the upper end of the base pipe 6 of the horizontal branch pipe X to the lower end of the downward pipe line 12, ie, the whole vertical height of the nozzle device N, can be made low. Accordingly, the internal space of the absorption tower 1 becomes longer in the vertical direction, so that the extended internal space can be effectively used.

(2)先の実施形態では、横分岐管路Xの基管6と枝管8および縦分岐管路Yの枝管10の管径をほぼ同一に構成した例を示したが、図11に示すように、各管6,8,10の管径を流入口4側ほど大径で、吹き出し口5側ほど小径に構成し、例えば、各管6,8,10内を通流する燃料ガスの流速が、流入口4から吹き出し口5までほぼ等速になるように構成することもできる。
その場合、図12に示すように、縦分岐管路Yが接続される横分岐管路Xの枝管8については、垂直方向の下方内面を水平にし、上方内面側を絞って管径を小径にするのが好ましい。なぜなら、上向き吹き出し口5aから水が流入した場合、枝管8内に滞留するのを防止し、下向き吹き出し口5bからの流出を容易にするからである。
(2) In the previous embodiment, an example in which the pipe diameters of the base pipe 6 and the branch pipe 8 of the horizontal branch pipe X and the branch pipe 10 of the vertical branch pipe Y are configured to be substantially the same is shown in FIG. As shown, the pipe diameters of the pipes 6, 8, 10 are configured such that the diameter is larger toward the inlet 4 side and the diameter is smaller as the outlet 5 side, for example, fuel gas flowing through the pipes 6, 8, 10. It is also possible to configure so that the flow velocity of the air becomes substantially constant from the inlet 4 to the outlet 5.
In that case, as shown in FIG. 12, for the branch pipe 8 of the horizontal branch pipe X to which the vertical branch pipe Y is connected, the lower inner surface in the vertical direction is made horizontal and the upper inner surface side is narrowed to reduce the pipe diameter. Is preferable. This is because, when water flows in from the upward outlet 5a, it is prevented from staying in the branch pipe 8, and the outflow from the downward outlet 5b is facilitated.

ノズル装置を使用するガス処理塔の概略説明図Schematic illustration of a gas processing tower using a nozzle device ノズル装置を構成する横方向分離ユニットの斜視図The perspective view of the horizontal direction separation unit which comprises a nozzle apparatus ノズル装置を構成する縦方向分離ユニットの斜視図Perspective view of a vertical separation unit constituting the nozzle device ノズル装置の斜視図Perspective view of nozzle device ノズル装置の平面図Top view of nozzle device 別の実施形態によるノズル装置の要部の斜視図The perspective view of the principal part of the nozzle apparatus by another embodiment. 別の実施形態によるノズル装置の要部の断面図Sectional drawing of the principal part of the nozzle apparatus by another embodiment. (イ)従来型ノズルの塔内のガス流速分布を示す図、(ロ)本件ノズルの塔内のガス流速分布を示す図(B) Diagram showing gas flow velocity distribution in the tower of the conventional nozzle, (b) Diagram showing gas flow velocity distribution in the nozzle nozzle tower (イ)従来型ノズルの塔内のガス流速分布を示す図、(ロ)本件ノズルの塔内のガス流速分布を示す図(B) Diagram showing gas flow velocity distribution in the tower of the conventional nozzle, (b) Diagram showing gas flow velocity distribution in the nozzle nozzle tower 別の実施形態によるノズル装置の要部の正面図The front view of the principal part of the nozzle device by another embodiment 別の実施形態によるノズル装置の斜視図The perspective view of the nozzle device by another embodiment 別の実施形態によるノズル装置の要部の側面図The side view of the principal part of the nozzle apparatus by another embodiment 従来のノズル装置を使用するガス処理塔の概略説明図Schematic explanatory diagram of a gas processing tower using a conventional nozzle device 従来のノズル装置を使用するガス処理塔の概略説明図Schematic explanatory diagram of a gas processing tower using a conventional nozzle device

1 ガス処理塔としての吸収塔
5 吹き出し口
5a 上方への吹き出し口
5b 下方への吹き出し口
6 横分岐管路の基管
8 横分岐管路の枝管
10 縦分岐管路の枝管
12 下向き管路
12a ガス衝突面
N ノズル装置
X 横分岐管路
Y 縦分岐管路
L6 横分岐管路の基管の中心軸
L8 横分岐管路の枝管の中心軸
DESCRIPTION OF SYMBOLS 1 Absorption tower as a gas processing tower 5 Outlet 5a Outlet 5b Outlet 6b Outlet 6 Base branch of horizontal branch pipe 8 Branch pipe of horizontal branch pipe 10 Branch pipe of vertical branch pipe 12 Downward pipe Road 12a Gas collision surface N Nozzle device X Horizontal branch pipe Y Vertical branch pipe L6 Central axis of base pipe of horizontal branch pipe L8 Central axis of branch pipe of horizontal branch pipe

Claims (8)

ガスを下方から送入して上方からの液体と接触処理するガス処理塔の下方に配置されるノズル装置であって、
流入口から流入されるガスを横方向に通流させる基管と、その基管からのガスを左右に分岐して横方向に通流させる左右一対の枝管とからなる第1横分岐管路によって形成される1回目の分岐を設け、
前記第1横分岐管路の全ての枝管夫々を基管としてそれらの基管からのガスを夫々左右に分岐して横方向に通流させる各々左右一対の枝管を備えた各横分岐管路からなる2回目の分岐を設けて、
前記第1横分岐管路の基管からのガスを少なくとも2回以上横方向に分岐して吹き出し口から少なくとも下方に吹き出すように構成してあるノズル装置。
A nozzle device disposed below a gas processing tower for injecting gas from below and contacting the liquid from above;
A first horizontal branch pipe composed of a base pipe through which the gas flowing in from the inflow port flows in the horizontal direction and a pair of left and right branch pipes that branch the gas from the base pipe to the left and right to flow in the horizontal direction Providing a first branch formed by
Each horizontal branch pipe provided with a pair of left and right branch pipes each branching left and right to let the gas from the respective branch pipes flow laterally by using all branch pipes of the first horizontal branch pipes as base pipes. Set up a second branch consisting of roads,
A nozzle device configured to branch the gas from the base pipe of the first horizontal branch pipe line in the horizontal direction at least twice and blow out at least downward from the blowout port.
前記ノズル装置が、ガスを上下に分岐して縦方向に通流させる上下一対の枝管からなる縦分岐管路を少なくとも4つ備え、それらの縦分岐管路を、前記2回目の分岐以降において、末端の横分岐管路の枝管にそれぞれ接続して、前記末端の横分岐管路の枝管からのガスをそれぞれ上下方向に分岐して吹き出し口から下方と上方へ吹き出すように構成してある請求項1に記載のノズル装置。 The nozzle device is provided with at least four vertical branch pipes composed of a pair of upper and lower branch pipes for branching gas vertically and flowing in the vertical direction, and these vertical branch pipes are provided after the second branch. Each of which is connected to the branch pipe of the terminal lateral branch pipe, and the gas from the branch pipe of the terminal horizontal branch pipe is branched vertically and blown downward and upward from the outlet. The nozzle device according to claim 1. 前記吹き出し口において、下方への吹き出し口の開口面積が大で、上方への吹き出し口の開口面積が小である請求項2に記載のノズル装置。   3. The nozzle device according to claim 2, wherein an opening area of the downward outlet is large and an opening area of the upward outlet is small in the outlet. 前記横分岐管路における基管と枝管の管径が、ノズル装置への流入口側ほど大径で、吹き出し口側ほど小径に構成してある請求項2または3に記載のノズル装置。 Pipe diameter of the lateral branch pipe to definitive base pipe and the branch pipe, a larger diameter as the inlet side to the nozzle device, the nozzle device according to claim 2 or 3 are constituted in diameter as balloon port side. 前記ノズル装置が、ガスを下方へのみ通流させる下向き管路を少なくとも4つ備え、それらの下向き管路を、前記2回目の分岐以降において、末端の横分岐管路の枝管にそれぞれ接続して、前記末端の横分岐管路の枝管からのガスをそれぞれ吹き出し口から下方へのみ吹き出すように構成し、各下向き管路が、前記末端の横分岐管路の枝管からのガスに対して、そのガスの流れ方向に垂直なガス衝突面を備えている請求項1に記載のノズル装置。 The nozzle device includes at least four downward pipes that allow gas to flow only downward, and these downward pipes are respectively connected to the branch pipes of the terminal lateral branch pipes after the second branch. The gas from the branch pipe of the terminal lateral branch pipe is blown only downward from the outlet, and each downward pipe is connected to the gas from the branch pipe of the terminal horizontal branch pipe. The nozzle device according to claim 1, further comprising a gas collision surface perpendicular to the gas flow direction. 前記第1横分岐管路において、その左右一対の枝管の中心軸が基管の中心軸よりも上方に位置するように構成してある請求項5に記載のノズル装置。   6. The nozzle device according to claim 5, wherein in the first horizontal branch pipe, the center axis of the pair of left and right branch pipes is positioned above the center axis of the base pipe. 前記ガス処理塔内のガスの平均流速が、乾燥状態の標準換算(0℃、1気圧)において0.6m/秒以下の緩い流れであり、前記ノズル装置が、その緩い流れのガス処理塔に配置されるものである請求項1〜6のいずれか1項に記載のノズル装置。   The average flow velocity of the gas in the gas processing tower is a slow flow of 0.6 m / second or less in standard conversion (0 ° C., 1 atm) in a dry state, and the nozzle device is installed in the gas processing tower of the slow flow. The nozzle device according to claim 1, which is arranged. 前記ガス処理塔が、燃料ガスから硫化水素を吸収除去する脱硫処理用の吸収塔であり、前記ノズル装置が、燃料ガスを送入するためにその吸収塔に配置されるものである請求項1〜7のいずれか1項に記載のノズル装置。   2. The gas treatment tower is an absorption tower for desulfurization treatment that absorbs and removes hydrogen sulfide from a fuel gas, and the nozzle device is disposed in the absorption tower for feeding the fuel gas. The nozzle apparatus of any one of -7.
JP2006085339A 2006-03-27 2006-03-27 Nozzle device Active JP4861031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085339A JP4861031B2 (en) 2006-03-27 2006-03-27 Nozzle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006085339A JP4861031B2 (en) 2006-03-27 2006-03-27 Nozzle device

Publications (2)

Publication Number Publication Date
JP2007260487A JP2007260487A (en) 2007-10-11
JP4861031B2 true JP4861031B2 (en) 2012-01-25

Family

ID=38634013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085339A Active JP4861031B2 (en) 2006-03-27 2006-03-27 Nozzle device

Country Status (1)

Country Link
JP (1) JP4861031B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142405A1 (en) * 2010-05-13 2011-11-17 戸田工業株式会社 Wet-type flue-gas desulfurization device using three-way spray nozzle
JP6293643B2 (en) * 2014-11-05 2018-03-14 株式会社東芝 Nozzle device and processing device
KR102116534B1 (en) * 2018-06-25 2020-05-28 주식회사 에이치에스하이테크 Nozzle for cleaning substrate and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136737A (en) * 1983-12-22 1985-07-20 Fuji Photo Film Co Ltd Silver halide photographic printing paper
DE3706371A1 (en) * 1987-02-27 1988-09-08 Steinmueller Gmbh L & C DEVICE FOR INJECTING A GASEOUS MEDIUM FOR A FLUIDIZED LAYER PROCESS

Also Published As

Publication number Publication date
JP2007260487A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
US8128071B2 (en) Method and apparatus for improved gas/fluid contact
CN101439259B (en) Honeycomb-shaped Venturi dedusting and desulphurization washer
BR112012015206B1 (en) liquid manifold, mass and / or heat transfer tower, sulfuric acid facility, and carbon dioxide capture facility
JP4861031B2 (en) Nozzle device
JPH02290218A (en) Gas absorption tower
CN111471499A (en) Tubular parallel flow type gas-liquid contact absorber
CN106669405B (en) Wet flue gas desulfurization purification system
KR20150070110A (en) A flue gas purification device
JP2007296447A (en) Two-chamber type wet flue gas desulfurization apparatus
CN202590581U (en) Defogger adapted to changes in gas flow
AU2015200212B2 (en) Distributor tray for gas/liquid exchange column with liquid deflector
US20210146273A1 (en) Distributor tray for a fractionating column, comprising a compartment for distributing gas
SG178748A1 (en) Exhaust gas desulfurizer
CN101254354A (en) Stuffing type guide column plate
JP6632452B2 (en) Packing material for packed tower and seawater desulfurization equipment
CN202909571U (en) Jetting flow guiding pipe
CN207980666U (en) A kind of demister arrangements
CN204563884U (en) A kind of desulfurizing tower
CN101007229A (en) Wave baffle type mist eliminator
JP2019141817A (en) Water treatment tank and desulphurization apparatus
CN205500779U (en) A area buffering tubular acid distributor for concentrated sulfuric acid production
CN204247064U (en) A kind of smoke absorption tower of gas-liquid bidirectional guide
CN104368236B (en) A kind of smoke absorption tower of gas-liquid bidirectional guide
CN206492293U (en) Desulfurization combined defroster
CN216572417U (en) Three-dimensional mass transfer column plate for wet flue gas desulfurization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111104

R150 Certificate of patent or registration of utility model

Ref document number: 4861031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250