JP4856692B2 - Power supply system and power switching device - Google Patents

Power supply system and power switching device Download PDF

Info

Publication number
JP4856692B2
JP4856692B2 JP2008304591A JP2008304591A JP4856692B2 JP 4856692 B2 JP4856692 B2 JP 4856692B2 JP 2008304591 A JP2008304591 A JP 2008304591A JP 2008304591 A JP2008304591 A JP 2008304591A JP 4856692 B2 JP4856692 B2 JP 4856692B2
Authority
JP
Japan
Prior art keywords
power
source
commercial
power supply
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008304591A
Other languages
Japanese (ja)
Other versions
JP2010130836A (en
Inventor
信行 江▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Electric Co Ltd
Original Assignee
Seiko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Electric Co Ltd filed Critical Seiko Electric Co Ltd
Priority to JP2008304591A priority Critical patent/JP4856692B2/en
Publication of JP2010130836A publication Critical patent/JP2010130836A/en
Application granted granted Critical
Publication of JP4856692B2 publication Critical patent/JP4856692B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

出願人は、これまで、太陽光発電など、新エネルギーにより得られる電力を有効活用するための技術について研究・開発してきた(特許文献1及び特許文献2参照)。   The applicant has so far researched and developed a technique for effectively utilizing electric power obtained by new energy such as solar power generation (see Patent Document 1 and Patent Document 2).

特許第3759151号Japanese Patent No. 3759151 実用新案登録第3122815号Utility model registration No. 3122815

しかしながら、このような新エネルギーより得られる電力を大量に導入した場合、系統に与える影響は様々なものが考えられる。   However, when a large amount of electric power obtained from such new energy is introduced, there are various effects on the system.

まず、軽負荷時に、余剰電力を配電線へ逆潮流することにより、電圧が上昇することがある。例えば、需要が低い土日、年末年始や5月連休期間での余剰電力による電圧抑制が必要である。特に、太陽光発電は5月が年間でも一番発電量が多く、その対策が求められる。現状の電圧上昇対策は、例えば、太陽光パワコンにて発生する電力を絞って電圧上昇を防いでいる。しかし、これは、発生可能なCO2を発生しない自然エネルギーを無駄に処分するものである。   First, when the load is light, the voltage may rise by causing the surplus power to flow backward to the distribution line. For example, it is necessary to suppress the voltage due to surplus power during low-demand weekends, the year-end and New Year holidays, and the May consecutive holidays. In particular, solar power generation has the largest power generation even in May, and countermeasures are required. The current voltage rise countermeasures, for example, prevent the voltage rise by reducing the power generated by the solar power conditioner. However, this wastes natural energy that does not generate possible CO2.

また、新エネルギー出力の急変による周波数急変での連系点での一斉解列がある。さらに、配電線故障停電時の単独運転による保安上の問題もある。   Moreover, there is a simultaneous solution at the connection point at the sudden frequency change due to the sudden change in the new energy output. In addition, there is a security problem due to independent operation in the event of a power failure.

現在、これらの課題に対して、系統側・需要側における対応について、経済性、効果を考慮して検討されている。   Currently, in response to these issues, the response on the system side and the demand side is being considered in consideration of economics and effects.

そこで、本願発明は、太陽光発電などの自然エネルギーの大量導入による系統電圧上昇などの課題の解決に適した電力供給システム等を提案することを目的とする。   Accordingly, an object of the present invention is to propose a power supply system and the like suitable for solving problems such as a system voltage increase due to a large amount of introduction of natural energy such as solar power generation.

請求項1に係る発明は、商用電力供給源と、前記商用電力供給源とは異なる発電源と、少なくとも前記発電源から供給された電力を蓄電可能な蓄電手段を備える電力供給システムであって、負荷に対して前記商用電力供給源、前記発電源及び前記蓄電手段の少なくとも一つから電力を供給させる電力切替手段と、前記発電源が発電した電力を前記電力切替手段に供給する電力変換手段と、前記蓄電手段が蓄電した電力を前記電力切替手段に供給し、又は、前記蓄電手段に余剰電力を供給する双方向電力変換手段を備え、前記電力切替手段は、一端を前記商用電力供給源に接続し、他端を前記電力変換手段及び第2切替手段に接続する前記第1切替手段と、一端を前記電力変換手段及び前記第1切替手段に接続し、他端を前記双方向電力供給源及び前記負荷に接続する前記第2切替手段と、前記商用電力供給源との間の電圧、潮流及び停電を検知可能な第1検知手段と、前記蓄電手段の放電と前記負荷に供給される電力を検知可能な第2検知手段を備えるものであり、前記電力切替手段は、前記第1検知手段が前記商用電力供給源との間で逆潮流及び電圧上昇を検知した場合は、前記第1切替手段により前記商用電力供給源を解列し、前記発電源から供給された余剰電力を前記蓄電手段に蓄電させ、前記第1検知手段が前記商用電力供給源の停電を検知した場合は、前記第1切替手段により前記商用電力供給源を解列し、前記発電源及び前記蓄電手段の少なくとも一方から電力を供給させ、前記第2検知手段が前記蓄電手段の放電が前記負荷に供給される電力より大きいことを検知した場合に、前記第2切替手段により前記商用電源供給源及び前記発電源を解列して前記蓄電手段から前記負荷に対して電力を供給させるものであるThe invention according to claim 1 is a power supply system including a commercial power supply source, a power generation source different from the commercial power supply source, and a power storage unit capable of storing at least power supplied from the power generation source, the load, the commercial power supply, the power source and the at least one electric power switch means for supplying power from the power conversion means supplies power the power source is power to the power switching means of said storage means And bi-directional power conversion means for supplying the power stored in the power storage means to the power switching means or supplying surplus power to the power storage means, and the power switching means has one end connected to the commercial power supply source. The other end connected to the power conversion means and the second switching means, one end connected to the power conversion means and the first switching means, and the other end connected to the bidirectional power supply. And the second switching means connected to the load, the first detection means capable of detecting the voltage, power flow and power failure between the commercial power supply source, the discharge of the power storage means and the power supplied to the load It is those comprising a second detection means which can detect the power switching means, when said first detection means detects the reverse power flow and voltage rise between the commercial power source, the first switch Resshi solution the commercial power supply by means of the surplus power supplied from the power source is accumulated in the accumulator unit, when the first detection means detects the power failure of the commercial power source, the first The commercial power supply source is disconnected by one switching means, power is supplied from at least one of the power generation source and the power storage means, and the second detection means is based on the power supplied to the load by the discharge of the power storage means. Detect big If the one in which to supply electric power to the load from the storage means by Kairetsu the commercial power supply and the calling power by the second switching means.

請求項に係る発明は、商用電力供給源と、前記商用電力供給源とは異なる発電源と、少なくとも前記発電源から供給された電力を蓄電可能な蓄電手段の少なくとも一つから生じる電力を負荷に供給する電力切替装置であって、前記発電源は、電力変換手段を経由して、発電した電力を供給するものであり、前記蓄電手段は、双方向電力変換手段を経由して、蓄電した電力を供給し、又は、余剰電力が供給されるものであり、前記負荷に対して、前記商用電力供給源、前記発電源及び前記蓄電手段の少なくとも一つから電力を供給させる制御手段と、一端を前記商用電力供給源に接続し、他端を、前記電力変換手段及び第2切替手段に接続する第1切替手段と、一端を前記電力変換手段及び前記第1切替手段に接続し、他端を前記双方向電力供給源及び前記負荷に接続する前記第2切替手段と、前記商用電力供給源との間の電圧、潮流及び停電を検知可能な第1検知手段と、前記蓄電手段の放電と前記負荷に供給される電力を検知可能な第2検知手段を備え、前記制御手段は、前記第1検知手段が前記商用電力供給源との間で逆潮流及び電圧上昇を検知した場合は、前記第1切替手段により前記商用電力供給源を解列し前記発電源から供給された余剰電力を前記蓄電手段に蓄電させ、前記第1検知手段が前記商用電力供給源の停電を検知した場合は、前記第1切替手段により前記商用電力供給源を解列し前記発電源及び前記蓄電手段の少なくとも一方から電力を供給させ、前記第2検知手段が前記蓄電手段の放電が前記負荷に供給される電力より大きいことを検知した場合に、前記第2切替手段により前記商用電源供給源及び前記発電源を解列して前記蓄電手段から前記負荷に対して電力を供給させるものである。 The invention according to claim 2 loads electric power generated from at least one of a commercial power supply source, a power generation source different from the commercial power supply source, and at least power storage means capable of storing power supplied from the power generation source. The power generation device supplies power generated through power conversion means, and the power storage means stores power via bidirectional power conversion means. Control means for supplying power or surplus power, and for supplying power from at least one of the commercial power supply source, the power generation source and the power storage means to the load; and one end Is connected to the commercial power supply source, the other end is connected to the power conversion means and the second switching means, one end is connected to the power conversion means and the first switching means, and the other end is connected. The bidirectional power The second switching means connected to the power source and the load, the first detection means capable of detecting the voltage, power flow and power failure between the commercial power supply source, the discharge of the power storage means and the load are supplied to the load A second detection unit capable of detecting electric power; and when the first detection unit detects a reverse power flow and a voltage increase with the commercial power supply source , the control unit controls the first switching unit to When the commercial power supply source is disconnected , the surplus power supplied from the power generation source is stored in the power storage means, and the first detection means detects the power failure of the commercial power supply source, the first switching means the commercial power supply Resshi the solution by, the power generating source and to supply electric power from at least one of said storage means, said second detecting means is greater than the power discharge is supplied to the load of the accumulator unit If detected, Serial is the commercial power supply and to Kairetsu the onset power from the accumulator unit by the second switching means which is supplying power to the load.

本願発明によれば、例えば家庭用太陽光発電システムのような既存の発電源に電力貯蔵装置を併設して制御手段の動作により、その地点(ポイント)で電圧を抑制し、出力変動への対策を行うことが可能となる。さらに、例えば深夜電力で蓄電手段に貯蔵することにより、需要側は電力料金を削減することが可能となり、電力供給側は深夜電力を底上げし、昼間電力のピークシフトが可能となり、負荷平準化が効果的に動作することとなる。さらに、太陽光発電や電力貯蔵システムによりCO2の削減効果があり、環境保全に寄与することができる。   According to the present invention, for example, a power storage device is provided in addition to an existing power generation source such as a home solar power generation system, and the voltage is suppressed at that point (point) by the operation of the control means, and measures against output fluctuations are made. Can be performed. Furthermore, for example, by storing in the power storage means with midnight power, the demand side can reduce the electricity charge, the power supply side can raise the midnight power, the peak shift of the daytime power is possible, and load leveling can be performed. It will work effectively. Furthermore, there is an effect of reducing CO2 by solar power generation or a power storage system, which can contribute to environmental conservation.

このように、本願発明によれば、例えば既存の太陽光発電システムなどを活用しつつ、太陽光発電などの自然エネルギーの大量導入により生じる様々な問題点を解決する自律制御を実現することが可能となる。   As described above, according to the present invention, it is possible to realize autonomous control that solves various problems caused by the large-scale introduction of natural energy such as solar power generation while utilizing an existing solar power generation system, for example. It becomes.

以下では、図面を参照して、本願発明の実施の形態の一例について説明する。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.

図1は、本願発明の実施の形態に係る電力供給システム1の構成を示したブロック図である。   FIG. 1 is a block diagram showing a configuration of a power supply system 1 according to an embodiment of the present invention.

電力供給システム1は、太陽光発電システム3と、商用電力供給源5(AC200V、1φ3W)と、電力貯蔵装置7と、負荷9を備える。太陽光発電システム3は、既存のものを流用することができる。負荷9は、例えば家電負荷である。   The power supply system 1 includes a solar power generation system 3, a commercial power supply source 5 (AC 200 V, 1φ3 W), a power storage device 7, and a load 9. The existing solar power generation system 3 can be used. The load 9 is, for example, a home appliance load.

太陽光発電システム3は、太陽光発電パネル11と電力変換装置13を備える。太陽光発電パネル11により生じた電力は、電力変換装置13により変換され、電力貯蔵装置7に供給される。   The solar power generation system 3 includes a solar power generation panel 11 and a power conversion device 13. The electric power generated by the solar power generation panel 11 is converted by the power conversion device 13 and supplied to the power storage device 7.

電力貯蔵装置7は、本実施例では、例えばエネ・パック(登録商標)のような小電力蓄電システムである。電力貯蔵装置7は、コントローラ部21と電力貯蔵電池23を備える。電力貯蔵電池23は、例えば約10kWhのものであり、昼間放電し、夜間充電するものである。   In this embodiment, the power storage device 7 is a low-power storage system such as an energy pack (registered trademark). The power storage device 7 includes a controller unit 21 and a power storage battery 23. The power storage battery 23 is, for example, about 10 kWh, and is discharged during the day and charged at night.

コントローラ部21は、受電用ELCB31と、電力切替器33と、インバータトランス35と、双方向コンバータ37と、双方向コンバータ37を制御する制御装置39を備える。太陽光発電システム3は電力切替器33と電気的に接続し(矢印a参照)、商用電力供給源5は受電用ELCB31を介して電力切替器33と電気的に接続し(矢印b及び矢印c参照)、電力貯蔵電池23は、双方向コンバータ37とインバータトランス35を介して電力切替器33に電気的に接続する(矢印d及び矢印e参照)。負荷9には、太陽光発電システム3、商用電力供給源5及び電力貯蔵電池23から供給される電力の少なくとも一つが供給される(矢印b参照)。   The controller unit 21 includes a power receiving ELCB 31, a power switch 33, an inverter transformer 35, a bidirectional converter 37, and a control device 39 that controls the bidirectional converter 37. The photovoltaic power generation system 3 is electrically connected to the power switch 33 (see arrow a), and the commercial power supply source 5 is electrically connected to the power switch 33 via the power receiving ELCB 31 (arrow b and arrow c). The power storage battery 23 is electrically connected to the power switch 33 via the bidirectional converter 37 and the inverter transformer 35 (see arrows d and e). The load 9 is supplied with at least one of electric power supplied from the solar power generation system 3, the commercial power supply source 5, and the power storage battery 23 (see arrow b).

以下では、電力切替器33について具体的に説明する。   Below, the electric power switch 33 is demonstrated concretely.

まず、電力切替器33の構成について説明する。電力切替器33は、単独運転防止での解列及び投入用のスイッチである第1スイッチ41(MS)と、静止型のスイッチで逆潮流防止用の高速スイッチである第2スイッチ43(TS)と、第1スイッチ・第2スイッチ等の内部異常時のバイパススイッチである第3スイッチ45(MS)と、電圧、潮流、単独運転(停電)を計測する第1センサ46と、電圧、潮流を計測する第2センサ47と、電圧、潮流を計測する第3センサ48と、電力切替器33の動作を制御する制御部49を備える。制御部49は、例えば、第1センサ46、第2センサ47及び第3センサ48により計測される、太陽光発電電力a、負荷b、バッテリー放電e、バッテリー放電fなどの値に基づいて、各スイッチの開閉を制御する。これらの接続関係について説明する。第1センサ46は、商用電力供給源5に対して入力側に位置し、一方を受電用ELCB31と接続し、他方を第1スイッチ41及び第3スイッチ45と接続する。第1スイッチ41は、一方を第1センサ46及び第3スイッチ45に接続し、他方を太陽光発電システム3及び第2センサ47と接続する。第2センサ47は、一方を太陽光発電システム3及び第1スイッチ41と接続し、他方を第2スイッチ43と接続する。第2スイッチ43は、一方を第2センサ47と接続し、他方を第3センサ48及び負荷9と接続する。第3センサ48は、一方を第2スイッチ43及び負荷9と接続し、他方をインバータトランス35と接続する。第3スイッチ45は、一方を第1センサ46及び第1スイッチ41と接続し、他方を負荷9と接続する。   First, the configuration of the power switch 33 will be described. The power switch 33 includes a first switch 41 (MS) that is a switch for disconnecting and turning on to prevent isolated operation, and a second switch 43 (TS) that is a static switch and a high-speed switch for preventing reverse power flow. A third switch 45 (MS) that is a bypass switch in case of internal abnormality such as the first switch and the second switch, a first sensor 46 that measures voltage, power flow, and single operation (power failure), and voltage and power flow. A second sensor 47 for measuring, a third sensor 48 for measuring voltage and power flow, and a control unit 49 for controlling the operation of the power switch 33 are provided. The control unit 49, for example, based on values measured by the first sensor 46, the second sensor 47, and the third sensor 48, such as photovoltaic power generation power a, load b, battery discharge e, battery discharge f, etc. Controls opening and closing of switches. These connection relationships will be described. The first sensor 46 is positioned on the input side with respect to the commercial power supply source 5, one of which is connected to the power receiving ELCB 31 and the other is connected to the first switch 41 and the third switch 45. One of the first switches 41 is connected to the first sensor 46 and the third switch 45, and the other is connected to the photovoltaic power generation system 3 and the second sensor 47. One of the second sensors 47 is connected to the photovoltaic power generation system 3 and the first switch 41, and the other is connected to the second switch 43. One of the second switches 43 is connected to the second sensor 47 and the other is connected to the third sensor 48 and the load 9. One of the third sensors 48 is connected to the second switch 43 and the load 9, and the other is connected to the inverter transformer 35. One of the third switches 45 is connected to the first sensor 46 and the first switch 41, and the other is connected to the load 9.

続いて、電力切替器33の動作について説明する。   Next, the operation of the power switch 33 will be described.

まず、通常運転時の動作について説明する。基本的には、余剰電力を売電する。具体的には、各スイッチの状態は、第1スイッチ41及び第2スイッチ43が閉、第3スイッチ45が開である。太陽光発電電力aが(負荷b−バッテリー放電f)より大きい場合は、余剰電力cは電力会社へ売電される(なお、バッテリー放電fは電力会社には売電できない。)。太陽光発電電力aが(負荷b−バッテリー放電f)より小さい場合は、不足電力dは電力会社から買電される。バッテリー放電fが負荷bより大きくなったら瞬時に第2スイッチ43を開して、上位への逆潮流を防止する。夜間時間になれば、電力貯蔵電池に電力は充電される。太陽光発電システム3、電力貯蔵電池23などの装置異常の場合は、第3スイッチ45を閉、第1スイッチ44を開してバイパス回路を形成し、負荷9に電力を支障なく供給することができる。   First, the operation during normal operation will be described. Basically, surplus power is sold. Specifically, the state of each switch is that the first switch 41 and the second switch 43 are closed and the third switch 45 is open. When the photovoltaic power a is larger than (load b−battery discharge f), surplus power c is sold to the power company (note that the battery discharge f cannot be sold to the power company). When the photovoltaic power a is smaller than (load b−battery discharge f), the insufficient power d is purchased from an electric power company. When the battery discharge f becomes larger than the load b, the second switch 43 is instantly opened to prevent the reverse power flow to the upper level. At night time, the power storage battery is charged with power. In the case of a device abnormality such as the photovoltaic power generation system 3 or the power storage battery 23, the third switch 45 is closed, the first switch 44 is opened to form a bypass circuit, and power can be supplied to the load 9 without any problem. it can.

次に、系統電圧上昇時の動作について説明する。基本的には、第1スイッチ41を解列し、太陽光発電システム3の余剰電力を電力貯蔵電池23に貯蔵する。具体的には、各スイッチの状態は、最初は、通常運転時と同様に、第1スイッチ41及び第2スイッチ43が閉、第3スイッチ45が開である。上記のように、太陽光発電電力aが(負荷b−バッテリー放電f)より大きい場合は、余剰電力cは電力会社へ売電される。このとき、第1センサ46は電圧を検出する。第1センサ46が検出した電圧が規定値より高くなりうると判断された場合、第1スイッチ41を開して系統側から切り離し、電力貯蔵電池23に太陽光で発電した余剰電力を充電し貯蔵する。その後、第1センサ46により検出された電圧が規定値に戻れば、再度第1スイッチ41を閉して通常運転に戻り、貯蔵された電力を使用する。このように、新エネルギー発電と電力貯蔵装置の併設での自立運転による系統への影響除去対策が可能になる。   Next, the operation when the system voltage rises will be described. Basically, the first switch 41 is disconnected and the surplus power of the photovoltaic power generation system 3 is stored in the power storage battery 23. Specifically, the state of each switch is initially that the first switch 41 and the second switch 43 are closed and the third switch 45 is opened, as in the normal operation. As described above, when the photovoltaic power a is larger than (load b−battery discharge f), surplus power c is sold to an electric power company. At this time, the first sensor 46 detects the voltage. When it is determined that the voltage detected by the first sensor 46 can be higher than the specified value, the first switch 41 is opened and disconnected from the system side, and the power storage battery 23 is charged with excess power generated by sunlight and stored. To do. Thereafter, when the voltage detected by the first sensor 46 returns to the specified value, the first switch 41 is closed again to return to the normal operation, and the stored power is used. In this way, it is possible to take measures to remove the influence on the system by the independent operation with the new energy power generation and the power storage device.

次に、系統側停電時(系統瞬断時)の動作について説明する。基本的には、第1スイッチ41を解列し、負荷9への電力供給は太陽光発電システム3及び電力貯蔵電池23から無停電にて行う。具体的には、各スイッチの状態は、最初は、通常運転時と同様に、第1スイッチ41及び第2スイッチ43が閉、第3スイッチ45が開である。太陽光発電電力aが(負荷b−バッテリー放電f)より大きい場合は、余剰電力cは電力会社へ売電される。第1センサ46が単独運転を感知した場合は、第1スイッチ41を開して系統側から切り離し、太陽光発電aとバッテリー放電fによって自立運転を開始する。停電が復旧したことを規定時間確認できたら通常運転に戻る。これにより、需要側は、無瞬断電源装置(UPS)機能により自立運転が可能となる。   Next, the operation at the time of a system-side power outage (at the time of an instantaneous power failure) will be described. Basically, the first switch 41 is disconnected, and power is supplied to the load 9 from the photovoltaic power generation system 3 and the power storage battery 23 without any power failure. Specifically, the state of each switch is initially that the first switch 41 and the second switch 43 are closed and the third switch 45 is opened, as in the normal operation. When the photovoltaic power a is larger than (load b−battery discharge f), surplus power c is sold to an electric power company. When the first sensor 46 senses the isolated operation, the first switch 41 is opened and disconnected from the system side, and the independent operation is started by the photovoltaic power generation a and the battery discharge f. After confirming that the power failure has been restored, return to normal operation. Thereby, the demand side can be operated independently by an uninterruptible power supply (UPS) function.

このように、例えば家庭用太陽光発電システムのような既存の太陽光発電システム3に、例えばエネ・パック(登録商標)のような電力貯蔵装置を併設して、電力切替器33の動作により、その地点(ポイント)で電圧を抑制し、出力変動への対策が可能となる。さらに、電気自動車やヒートポンプなどの夜間電力需要と同様に、深夜電力で貯蔵することにより、需要側は電力料金を削減することが可能となり、電力供給側は深夜電力を底上げし、昼間電力のピークシフトが可能となり、負荷平準化が効果的に動作することとなる。さらに、太陽光発電や電力貯蔵システムによりCO2の削減効果があり、環境保全に寄与することができる。特に、電圧上昇抑制対策は、発生余剰電力を電力貯蔵装置7に蓄電し、後で放電することにより、従来技術では発生していたCO2を発生させずに済むこととなる。そのため、自然エネルギーを有効に利用することができる。   As described above, for example, an existing solar power generation system 3 such as a home solar power generation system is provided with a power storage device such as ENE PACK (registered trademark), and the operation of the power switch 33 The voltage is suppressed at that point (point), and countermeasures against output fluctuation are possible. Furthermore, as with nighttime power demand such as electric vehicles and heat pumps, storage at midnight power enables the demand side to reduce electricity charges, while the power supply side raises midnight power, peaking daytime power. Shifting is possible and load leveling works effectively. Furthermore, there is an effect of reducing CO2 by solar power generation or a power storage system, which can contribute to environmental conservation. In particular, the voltage rise suppression measure stores the generated surplus power in the power storage device 7 and discharges it later, so that it is not necessary to generate CO2 generated in the prior art. Therefore, natural energy can be used effectively.

なお、電力貯蔵電池23は、汎用的な鉛蓄電池を使用してもよく、リチウムイオン蓄電池を使用してもよい。リチウムイオン蓄電池であれば、設置面積が少なく、エネルギー密度の高いものとなる。   The power storage battery 23 may be a general-purpose lead storage battery or a lithium ion storage battery. If it is a lithium ion storage battery, the installation area is small and the energy density is high.

また、本実施例では、電力供給システム1において、太陽光発電システム3により発電された場合を例にして説明したが、例えば、風力発電システムなど、その他の自然エネルギーにより発電される場合であってもよい。   Further, in the present embodiment, the case where power is generated by the solar power generation system 3 in the power supply system 1 has been described as an example. However, for example, the case where power is generated by other natural energy such as a wind power generation system. Also good.

このように、電力供給システム1のように太陽光発電システム3を接続することにより、例えば既存の太陽光発電システムなどを活用しつつ、太陽光発電などの自然エネルギーの大量導入により生じる様々な問題点を解決する自律制御を実現することが可能となる。   As described above, by connecting the solar power generation system 3 as in the power supply system 1, various problems caused by introducing a large amount of natural energy such as solar power generation while utilizing an existing solar power generation system, for example. It becomes possible to realize autonomous control that solves the problem.

本願発明の実施の形態に係る電力供給システム1の構成を示したブロック図である。It is the block diagram which showed the structure of the electric power supply system 1 which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 電力供給システム、3 太陽光発電システム、5 商用電力供給源、7 電力貯蔵装置、9 負荷、23 電力貯蔵電池、33 電力切替器、41 第1スイッチ、43 第2スイッチ、45 第3スイッチ、46 第1センサ、47 第2センサ、48 第3センサ   DESCRIPTION OF SYMBOLS 1 Electric power supply system, 3 Solar power generation system, 5 Commercial power supply source, 7 Electric power storage apparatus, 9 Load, 23 Electric power storage battery, 33 Electric power switch, 41 1st switch, 43 2nd switch, 45 3rd switch, 46 1st sensor, 47 2nd sensor, 48 3rd sensor

Claims (2)

商用電力供給源と、前記商用電力供給源とは異なる発電源と、少なくとも前記発電源から供給された電力を蓄電可能な蓄電手段を備える電力供給システムであって、
負荷に対して前記商用電力供給源、前記発電源及び前記蓄電手段の少なくとも一つから電力を供給させる電力切替手段と、
前記発電源が発電した電力を前記電力切替手段に供給する電力変換手段と、
前記蓄電手段が蓄電した電力を前記電力切替手段に供給し、又は、前記蓄電手段に余剰電力を供給する双方向電力変換手段を備え、
前記電力切替手段は、
一端を前記商用電力供給源に接続し、他端を前記電力変換手段及び第2切替手段に接続する前記第1切替手段と、
一端を前記電力変換手段及び前記第1切替手段に接続し、他端を前記双方向電力供給源及び前記負荷に接続する前記第2切替手段と、
前記商用電力供給源との間の電圧、潮流及び停電を検知可能な第1検知手段と、
前記蓄電手段の放電と前記負荷に供給される電力を検知可能な第2検知手段を備えるものであり、
前記電力切替手段は、
前記第1検知手段が前記商用電力供給源との間で逆潮流及び電圧上昇を検知した場合は、前記第1切替手段により前記商用電力供給源を解列し、前記発電源から供給された余剰電力を前記蓄電手段に蓄電させ、
前記第1検知手段が前記商用電力供給源の停電を検知した場合は、前記第1切替手段により前記商用電力供給源を解列し、前記発電源及び前記蓄電手段の少なくとも一方から電力を供給させ
前記第2検知手段が前記蓄電手段の放電が前記負荷に供給される電力より大きいことを検知した場合に、前記第2切替手段により前記商用電源供給源及び前記発電源を解列して前記蓄電手段から前記負荷に対して電力を供給させる、電力供給システム。
A power supply system comprising a commercial power supply source, a power generation source different from the commercial power supply source, and a storage means capable of storing at least the power supplied from the power generation source,
The load, the commercial power supply, a power switching means for supplying power from at least one of the power generating source and the accumulator unit,
Power conversion means for supplying power generated by the power source to the power switching means;
Bidirectional power conversion means for supplying the power stored in the power storage means to the power switching means or supplying surplus power to the power storage means ,
The power switching means is
The first switching means for connecting one end to the commercial power supply source and the other end to the power conversion means and the second switching means;
One end connected to the power conversion means and the first switching means, the other end connected to the bidirectional power supply source and the load, the second switching means;
First detection means capable of detecting voltage, power flow and power failure with the commercial power supply source;
Comprising a second detection means capable of detecting the discharge of the power storage means and the power supplied to the load;
The power switching means is
Excess when said first detecting means detects the reverse power flow and voltage rise between the commercial power source, wherein the first switching means Resshi solutions the commercial power source, is supplied from the power source Storing power in the power storage means;
When the first detection means detects the power failure of the commercial power source, the commercial power supply source Resshi solution, is powered from at least one of the power source and the storage means by the first switching means ,
When the second detection unit detects that the discharge of the power storage unit is greater than the power supplied to the load, the second switching unit disconnects the commercial power supply source and the power generation source and stores the power storage An electric power supply system for supplying electric power from the means to the load .
商用電力供給源と、前記商用電力供給源とは異なる発電源と、少なくとも前記発電源から供給された電力を蓄電可能な蓄電手段の少なくとも一つから生じる電力を負荷に供給する電力切替装置であって、
前記発電源は、電力変換手段を経由して、発電した電力を供給するものであり、
前記蓄電手段は、双方向電力変換手段を経由して、蓄電した電力を供給し、又は、余剰電力を供給されるものであり、
前記負荷に対して、前記商用電力供給源、前記発電源及び前記蓄電手段の少なくとも一つから電力を供給させる制御手段と、
一端を前記商用電力供給源に接続し、他端を、前記電力変換手段及び第2切替手段に接続する第1切替手段と、
一端を前記電力変換手段及び前記第1切替手段に接続し、他端を前記双方向電力供給源及び前記負荷に接続する前記第2切替手段と、
前記商用電力供給源との間の電圧、潮流及び停電を検知可能な第1検知手段と、
前記蓄電手段の放電と前記負荷に供給される電力を検知可能な第2検知手段を備え、
前記制御手段は、
前記第1検知手段が前記商用電力供給源との間で逆潮流及び電圧上昇を検知した場合は、前記第1切替手段により前記商用電力供給源を解列し前記発電源から供給された余剰電力を前記蓄電手段に蓄電させ、
前記第1検知手段が前記商用電力供給源の停電を検知した場合は、前記第1切替手段により前記商用電力供給源を解列し前記発電源及び前記蓄電手段の少なくとも一方から電力を供給させ
前記第2検知手段が前記蓄電手段の放電が前記負荷に供給される電力より大きいことを検知した場合に、前記第2切替手段により前記商用電源供給源及び前記発電源を解列して前記蓄電手段から前記負荷に対して電力を供給させる、電力切替装置。
A power switching device that supplies, to a load , power generated from at least one of a commercial power supply source, a power generation source different from the commercial power supply source, and at least power storage means capable of storing power supplied from the power generation source. And
The power generation source supplies generated power via power conversion means,
The power storage means supplies the stored power via the bidirectional power conversion means, or is supplied with surplus power,
Control means for supplying power from at least one of the commercial power supply source, the power generation source and the power storage means to the load;
A first switching means for connecting one end to the commercial power supply source and connecting the other end to the power conversion means and the second switching means;
One end connected to the power conversion means and the first switching means, the other end connected to the bidirectional power supply source and the load, the second switching means;
First detection means capable of detecting voltage, power flow and power failure with the commercial power supply source;
A second detection means capable of detecting the discharge of the power storage means and the power supplied to the load;
The control means includes
Excess when said first detecting means detects the reverse power flow and voltage rise between the commercial power source, wherein the first switching means Resshi solutions the commercial power source, is supplied from the power source Storing power in the power storage means;
When the first detection means detects the power failure of the commercial power source, the commercial power supply source Resshi solution, is powered from at least one of the power source and the storage means by the first switching means ,
When the second detection unit detects that the discharge of the power storage unit is greater than the power supplied to the load, the second switching unit disconnects the commercial power supply source and the power generation source and stores the power storage A power switching device for supplying power from the means to the load .
JP2008304591A 2008-11-28 2008-11-28 Power supply system and power switching device Expired - Fee Related JP4856692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008304591A JP4856692B2 (en) 2008-11-28 2008-11-28 Power supply system and power switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008304591A JP4856692B2 (en) 2008-11-28 2008-11-28 Power supply system and power switching device

Publications (2)

Publication Number Publication Date
JP2010130836A JP2010130836A (en) 2010-06-10
JP4856692B2 true JP4856692B2 (en) 2012-01-18

Family

ID=42330794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008304591A Expired - Fee Related JP4856692B2 (en) 2008-11-28 2008-11-28 Power supply system and power switching device

Country Status (1)

Country Link
JP (1) JP4856692B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5672087B2 (en) * 2010-04-02 2015-02-18 オムロン株式会社 Control apparatus and control method
JP5473141B2 (en) * 2010-08-31 2014-04-16 ニチコン株式会社 Storage power conditioner system
JP5380413B2 (en) * 2010-09-30 2014-01-08 株式会社日立製作所 Electric energy calculation device, electric energy calculation server, electric energy calculation system, and electric energy calculation method
AT509697B1 (en) * 2010-11-19 2011-11-15 Roland Ing Ochenbauer DEVICE AND METHOD FOR CONTROLLING ELECTRICAL CONSUMERS
JP5306314B2 (en) * 2010-12-22 2013-10-02 中国電力株式会社 Indoor power transmission system
JP5461445B2 (en) * 2011-01-07 2014-04-02 中国電力株式会社 Power usage system
EP2605359B1 (en) * 2011-07-15 2016-12-28 Nec Corporation Battery system and its control method
JP5719714B2 (en) * 2011-07-22 2015-05-20 京セラ株式会社 Startup control method, grid interconnection device, and control device
JP5960958B2 (en) * 2011-07-27 2016-08-02 京セラ株式会社 Power management system
JP5681069B2 (en) * 2011-08-31 2015-03-04 ニチコン株式会社 Multi-power conditioner system
KR20140074361A (en) * 2011-09-28 2014-06-17 교세라 가부시키가이샤 Power conditioner system and power-storage power conditioner
JP5914821B2 (en) * 2011-12-15 2016-05-11 パナソニックIpマネジメント株式会社 Power supply system
JP5680525B2 (en) * 2011-12-22 2015-03-04 株式会社正興電機製作所 Power storage system, power storage control device, and power control method
WO2013128589A1 (en) * 2012-02-29 2013-09-06 三洋電機株式会社 Power conversion system
JP6503095B2 (en) * 2016-09-21 2019-04-17 三菱電機株式会社 Charge / discharge device
JP6101539B2 (en) * 2013-03-29 2017-03-22 株式会社Nttファシリティーズ Power feeding system and power feeding method
JP5967716B2 (en) * 2013-03-29 2016-08-10 Necプラットフォームズ株式会社 Power control system, power control apparatus, power control method, and program
FR3016702B1 (en) * 2014-01-17 2017-08-04 Blue Solutions METHOD AND SYSTEM FOR MANAGING A PLURALITY OF ENERGY STORAGE ASSEMBLY
JP2015220821A (en) * 2014-05-15 2015-12-07 三菱電機株式会社 Power supply system and power supply control device
US11101660B2 (en) 2017-05-29 2021-08-24 Sumitomo Electric Industries, Ltd. Storage battery system and power display device
JP6432099B2 (en) * 2017-09-22 2018-12-05 大和ハウス工業株式会社 Power supply system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156983A (en) * 1998-11-18 2000-06-06 Meidensha Corp Photovoltaic power generating system
JP4253598B2 (en) * 2004-02-20 2009-04-15 株式会社明電舎 Solar power generation system with power storage function
JP2008283764A (en) * 2007-05-09 2008-11-20 Nippon Oil Corp Power conditioner for dispersed power sources and dispersed power system

Also Published As

Publication number Publication date
JP2010130836A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
JP4856692B2 (en) Power supply system and power switching device
JP4795312B2 (en) Power storage type solar power generation system
JP4837632B2 (en) Power storage type solar power generation system
JP5945594B2 (en) Power supply system
JP2013123355A (en) Power management apparatus and method of controlling the same
JP3759151B1 (en) Power storage system
JP2015186427A (en) power supply system
JP6032745B2 (en) Power storage system
JP2005237121A (en) Solar power generation system with power storage function
JP2014230455A (en) Power generator
JP2019198223A (en) Power conversion system
JP2017121171A (en) Storage battery charge-discharge system, and interconnection system
JP2017118598A (en) Power supply system
JP2016134990A (en) Power supply system
KR20150085227A (en) The control device and method for Energy Storage System
JP5787575B2 (en) Power control system and control method of power storage device
JP2017135888A (en) Power conversion system
JP3827676B2 (en) Power storage system
CN211183508U (en) Power supply control device
JP2007288932A (en) Charge control device of photovoltaic power generation facility
JP2003153448A (en) Power generation system
JP3122815U (en) Power storage device
JP2003092831A (en) Power supply system and its operation method
JP2018186678A (en) Power supply system
JP5939938B2 (en) Power supply system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees