JP4855715B2 - Mask correction method - Google Patents

Mask correction method Download PDF

Info

Publication number
JP4855715B2
JP4855715B2 JP2005148928A JP2005148928A JP4855715B2 JP 4855715 B2 JP4855715 B2 JP 4855715B2 JP 2005148928 A JP2005148928 A JP 2005148928A JP 2005148928 A JP2005148928 A JP 2005148928A JP 4855715 B2 JP4855715 B2 JP 4855715B2
Authority
JP
Japan
Prior art keywords
correction
image
defect
charged particle
drift amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005148928A
Other languages
Japanese (ja)
Other versions
JP2006330017A (en
Inventor
孝智 水嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2005148928A priority Critical patent/JP4855715B2/en
Publication of JP2006330017A publication Critical patent/JP2006330017A/en
Application granted granted Critical
Publication of JP4855715B2 publication Critical patent/JP4855715B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、LSI又は超LSI技術において要求される微細パターン形成のためのリソグラフィ技術に係わり、特にパターン露光に供されるマスクに発生した欠陥を荷電粒子ビームを用いて修正するフォトマスク修正方法に関する。   The present invention relates to a lithography technique for forming a fine pattern required in LSI or VLSI technology, and more particularly, to a photomask correction method for correcting a defect generated in a mask used for pattern exposure using a charged particle beam. .

従来、荷電粒子ビームを用いた加工には、位置ドリフト測定用のマークを用いた高精度な加工が行われている(例えば、特許文献1参照)。フォトマスクの欠陥修正では、チャージアップ等によるイメージドリフトや、マスク或いはマスクホルダー等の熱膨張によるドリフトを総合的に補正するため、ワンポイントドリフト補正が用いられている。このワンポイントドリフト補正では、修正する欠陥周辺のパターン内にドリフト測定用のピンホールを開け、このピンホールを作成した参照位置と修正する欠陥の位置関係を一定に保つようにビームを移動させることで、ビーム照射位置を一定に保ち、修正精度を高めてきた。以下、ワンポイントドリフト補正の具体的な例について、簡単に説明する。   Conventionally, processing using a charged particle beam has been performed with high accuracy using a mark for position drift measurement (see, for example, Patent Document 1). In photomask defect correction, one-point drift correction is used to comprehensively correct image drift due to charge-up or the like and drift due to thermal expansion of the mask or mask holder. In this one-point drift correction, a pinhole for drift measurement is opened in the pattern around the defect to be corrected, and the beam is moved so that the positional relationship between the reference position where this pinhole was created and the defect to be corrected is kept constant. Therefore, the beam irradiation position is kept constant and the correction accuracy has been improved. Hereinafter, a specific example of the one-point drift correction will be briefly described.

まず、フォトマスク用の基板上に形成されたパターンの一部にビームを照射して、参照点となるピンホールを形成する。続いて、このピンホールを含むスキャン領域にビームを照射し、ピンホールを含むスキャン領域から放出される二次荷電粒子を検出器で検出し、画像化してピンホールの位置を認識する。欠陥の修正時には、修正の合間に修正範囲と参照点となるピンホールの位置の相対関係を確認し、修正範囲に対するビームの照射位置を補正しながら欠陥の修正を行う。このように欠陥の修正中に、参照点との位置確認を行うことで、ドリフトの影響を最小限にとどめることが可能である。参照点となるピンホールには、特許文献2では円形を、特許文献3では位相シフトマスクの場合、長方形を用いると記載されている。   First, a part of a pattern formed on a photomask substrate is irradiated with a beam to form a pinhole serving as a reference point. Subsequently, the scan region including the pinhole is irradiated with a beam, and secondary charged particles emitted from the scan region including the pinhole are detected by a detector and imaged to recognize the position of the pinhole. When the defect is corrected, the relative relationship between the correction range and the position of the pinhole serving as the reference point is confirmed between corrections, and the defect is corrected while correcting the irradiation position of the beam with respect to the correction range. In this way, by checking the position with the reference point during the defect correction, it is possible to minimize the influence of drift. As a pinhole serving as a reference point, Patent Document 2 describes that a circle is used, and Patent Document 3 describes that a phase shift mask is a rectangle.

しかしながら、パターンの微細化に伴い、パターンの寸法(線幅)が小さいためピンホールを開けることができない場合や、修正位置周辺にパターンがない場合があるといった問題が生じてきた。また、修正範囲に対するビームの照射位置を確認するために、ピンホールの位置に対して複数回イメージングを行うことから、修正範囲以外にもスキャンダメージが生じてしまう。更に、修正時に照射したビームを起因としたチャージアップが加工材料上に生じ、加工位置に正確にビームが照射することが困難な状態となってきている。
特開平7−333120号公報 特公平5−4660号公報 特開2002−229815号公報
However, with the miniaturization of patterns, problems have arisen that pinholes cannot be opened because the pattern dimensions (line width) are small, and there are cases where there is no pattern around the correction position. In addition, in order to confirm the irradiation position of the beam with respect to the correction range, imaging is performed a plurality of times at the position of the pinhole, so that scan damage occurs outside the correction range. Furthermore, charge-up caused by the beam irradiated at the time of correction occurs on the processing material, and it has become difficult to accurately irradiate the processing position with the beam.
JP 7-333120 A Japanese Patent Publication No. 5-4660 JP 2002-229815 A

このように、ワンポイントドリフト補正を用いた従来のフォトマスク修正方法では、フォトマスク上の欠陥以外の箇所にスキャンダメージが生じてしまう問題、ピンホールを開けることができないといった問題や、パターンの微細化に伴い欠陥の修正領域に照射するビーム位置精度を更に向上させなければならないという問題があった。   As described above, in the conventional photomask correction method using the one-point drift correction, there is a problem that a scan damage occurs in a portion other than a defect on the photomask, a problem that a pinhole cannot be opened, and a fine pattern. With this trend, there has been a problem that the position accuracy of the beam applied to the defect correction area must be further improved.

上記目的を達成するために、本発明では、前記ピンホールといったドリフト測定用のマークの作成は行わず、欠陥やパターンCADの情報をドリフト測定用のマークとして利用し、欠陥の修正中に適切な頻度で、修正する欠陥もしくは欠陥周辺のパターンを参照位置として用いて生じたドリフト量を算出し、ビーム照射位置を一定に保つ修正方法を提供することを目的とする。   In order to achieve the above object, the present invention does not create a drift measurement mark such as the pinhole, but uses the information of the defect and the pattern CAD as the drift measurement mark, and is suitable for correcting the defect. An object of the present invention is to provide a correction method for calculating a drift amount generated by using a defect to be corrected or a pattern around the defect as a reference position at a frequency, and keeping the beam irradiation position constant.

前記課題を解決するために、本発明による、フォトマスクの黒欠陥に対するエッチング又は白欠陥に対するデポジションといった欠陥の修正方法は、荷電粒子ビームを前記欠陥及びその周辺に二次元的に照射して、マスクからの二次荷電粒子の検出結果を画像として記録するイメージング工程と、前記画像を用いて、欠陥の修正範囲を指定する工程と、前記画像の中からドリフト量の算出に用いる参照部分を指定する工程と、荷電粒子ビームを前記修正範囲に照射して欠陥を修正加工する工程と、前記参照部分のイメージングの画像を複数枚用いてドリフト量を算出する工程と、算出されたドリフト量をもとにビームの照射位置を補正する工程と前記補正した照射位置にて欠陥を修正する工程と、を有することを特徴とする。   In order to solve the above-mentioned problem, according to the present invention, a defect correction method, such as etching for a black defect in a photomask or deposition for a white defect, irradiates the defect and its periphery two-dimensionally with a charged particle beam, An imaging process for recording the detection result of secondary charged particles from the mask as an image, a process for specifying a defect correction range using the image, and a reference part used for calculating a drift amount from the image A step of correcting a defect by irradiating the correction range with a charged particle beam, a step of calculating a drift amount using a plurality of imaging images of the reference portion, and a calculated drift amount And a step of correcting the irradiation position of the beam and a step of correcting a defect at the corrected irradiation position.

本発明は、以上説明したように構成されているので、以下に記載されるような効果がある。
1.修正する欠陥の観察画像からドリフト量を求めるため、参照部分のイメージングの位置と欠陥の修正位置が一致していることにより、欠陥部分以外にダメージを与えない修正を行うことができる。
2.算出されるドリフト量も、修正位置から求めた値であるため、修正位置に対して、高精度のビーム照射を行うことができる。
3.CADの情報を用いたドリフト量の算出も可能なため、欠陥が多数存在するような箇所の修正も、容易に行うことができる。
Since the present invention is configured as described above, the following effects can be obtained.
1. In order to obtain the drift amount from the observed image of the defect to be corrected, the position where the reference portion is imaged coincides with the position where the defect is corrected, so that it is possible to perform correction that does not damage other than the defective portion.
2. Since the calculated drift amount is also a value obtained from the correction position, high-precision beam irradiation can be performed on the correction position.
3. Since it is possible to calculate the drift amount using CAD information, it is possible to easily correct a portion where there are many defects.

以下、本発明に関わる荷電粒子ビームを用いたフォトマスクの修正方法の実施形態について図面を参照しながら、説明する。
図1は、本発明によるフォトマスク修正方法の実施形態を示すフローチャートである。すなわち、まず、フォトマスク上に生じた黒欠陥もしくは白欠陥に対し、荷電粒子ビームを照射してその観察を開始する。次に、マスクの欠陥及びその周辺からの二次荷電粒子の検出結果の画像Aを取得する。この画像Aを用いて、欠陥の修正範囲を指定する。画像Aの中からドリフト量の算出に用いる参照部分を指定する。次に荷電粒子ビームを修正範囲に照射して欠陥の修正加工を開始する。加工の途中で、参照部分をイメージングして二次荷電粒子画像Bを取得する。ここで取得した画像Aと画像Bを用いて、ドリフトした方向とドリフト量の算出を行う。算出結果からビームの照射位置をドリフト方向にドリフト量分ビーム照射位置をずらして補正を行う。補正した状態で荷電粒子ビームを修正範囲に照射して欠陥を修正する。修正の終了判定を行い、修正が終了していなければ、再度参照部分の画像Bを再度取得する工程にもどり、終了が確認できれば修正を終える。
Embodiments of a photomask correction method using a charged particle beam according to the present invention will be described below with reference to the drawings.
FIG. 1 is a flowchart showing an embodiment of a photomask correction method according to the present invention. That is, first, the black particle or white defect generated on the photomask is irradiated with a charged particle beam to start observation. Next, an image A of the detection result of secondary charged particles from the defect of the mask and its periphery is acquired. Using this image A, a defect correction range is designated. A reference portion used for calculation of the drift amount is designated from the image A. Next, the correction process of the defect is started by irradiating the charged particle beam to the correction range. In the middle of processing, the secondary charged particle image B is acquired by imaging the reference portion. The drift direction and the drift amount are calculated using the images A and B acquired here. From the calculation result, the beam irradiation position is corrected by shifting the beam irradiation position in the drift direction by the drift amount. In the corrected state, the defect is corrected by irradiating the correction range with the charged particle beam. It is determined whether or not the correction has been completed. If the correction has not been completed, the process returns to the step of acquiring the reference portion image B again. If the completion can be confirmed, the correction is completed.

欠陥の修正は順次平面的に修正していく。すなわち、黒欠陥であれば、順に平面的に高さが減る方向に削っていく。白欠陥であれば、順に平面的に堆積膜を積み上げていく。従って、加工の途中途中で、参照部分の画像比較を容易にすることができる。   Defects are corrected sequentially in a planar manner. That is, if it is a black defect, it cuts in the direction where height decreases planarly in order. If it is a white defect, the deposited film is stacked in order on a plane. Therefore, image comparison of the reference portion can be facilitated during processing.

本発明の望ましい実施様態としては、次のものがあげられる。
(1)欠陥の修正工程は、修正時間を比較的短く設定し、長時間の修正を行う場合には、複数回にわけて、修正を行う。
(2)2回目以上のドリフト量の算出が行われる場合には、前回修正前にイメージングしたときの画像を二次荷電粒子画像Aとし、新たに記憶された画像を二次荷電粒子画像Bとして用いてドリフト量を算出する。
(3)欠陥の修正範囲の周辺に、特徴的な形状を示すパターンが確認できる場合には、ドリフト量の算出に用いる範囲は、前記パターンの範囲を用いることとする。
(4)前記パターンの範囲の形状が不確かであった場合には、パターン部分の二次荷電粒子画像の代わりとして、対応する範囲のCADパターンを二次荷電粒子画像Aとして用いることもできる。
Preferred embodiments of the present invention include the following.
(1) In the defect correction step, the correction time is set to be relatively short, and when correction is performed for a long time, the correction is performed in a plurality of times.
(2) When the drift amount is calculated for the second time or more, the image that was imaged before the previous correction is the secondary charged particle image A, and the newly stored image is the secondary charged particle image B To calculate the drift amount.
(3) When a pattern showing a characteristic shape can be confirmed around the defect correction range, the range of the pattern is used as the range for calculating the drift amount.
(4) When the shape of the pattern range is uncertain, the CAD pattern in the corresponding range can be used as the secondary charged particle image A instead of the secondary charged particle image of the pattern portion.

本発明では、マスクに対して低ダメージな欠陥修正を実現するため、サンプルの種類または欠陥の種類や修正に要する時間によって、ドリフト量の補正方法を変える。短時間で修正が可能な欠陥、修正に比較的長時間を要する黒欠陥、修正に比較的長時間を要する白欠陥の実施例を以下で示す。   In the present invention, in order to realize defect correction with low damage to the mask, the drift amount correction method is changed depending on the type of sample, the type of defect, or the time required for correction. Examples of defects that can be corrected in a short time, black defects that require a relatively long time for correction, and white defects that require a relatively long time for correction are shown below.

透光性基板1の上にマスクパターン2が形成されたフォトマスクの比較的短時間で修正可能な欠陥をイメージングした結果、図2に示すような二次荷電粒子画像Aが得られ、黒欠陥3を修正範囲として選択する。ドリフト量の算出のための参照部分として、画像全体もしくは黒欠陥3を選択する。前記修正範囲に対し、修正開始時、再度イメージングを行って、画像Bを取得し、画像Aと画像Bのドリフト量の算出のための参照部分のドリフト量を求める。求められたドリフト量をもとに、ビームの照射位置を補正して欠陥の修正を実行する。このとき、前記画像Aおよび前記画像Bの間に生じるドリフト量の算出には、輪郭もしくは面積重心といった形状情報や画像自身のパターンマッチングといった相互相関関係を用いる。この場合、修正途中におけるドリフト量の算出は行わない。   As a result of imaging defects that can be corrected in a relatively short time of the photomask having the mask pattern 2 formed on the translucent substrate 1, a secondary charged particle image A as shown in FIG. 3 is selected as the correction range. The entire image or the black defect 3 is selected as a reference part for calculating the drift amount. At the start of correction, imaging is performed again on the correction range to acquire the image B, and the drift amount of the reference portion for calculating the drift amount of the images A and B is obtained. Based on the obtained drift amount, the irradiation position of the beam is corrected to correct the defect. At this time, the amount of drift generated between the image A and the image B is calculated by using cross-correlation such as shape information such as contour or area centroid and pattern matching of the image itself. In this case, the drift amount during correction is not calculated.

修正に要する時間が比較的長い黒欠陥をイメージングした結果、図3に示すような二次荷電粒子画像Aが得られ、黒欠陥3a、3bを修正範囲として選択する。ドリフト量の算出には、黒欠陥3a、3bの両方か、もしくは特徴的な形状を示す黒欠陥3bを参照部分として用いる。前記修正範囲3a、3bに対し、修正開始時、再度イメージングを行って、画像Bを取得し、前記画像Aと前記画像Bのドリフト量の算出範囲からドリフト量を求める。求められたドリフト量をもとに、ビームの照射位置を補正して欠陥の修正を実行する。修正に比較的時間を要するため、修正途中に随時イメージング、ドリフト量の算出とビーム照射位置の補正を行う。すなわち、欠陥の修正に要する時間が長くなるのに応じて、参照部分の画像取得頻度を多くすることにより補正頻度を多くして、ビームの照射位置を補正する。このとき、前記画像Aおよび前記画像Bの間に生じるドリフト量の算出には、輪郭もしくは面積重心といった形状情報や画像自身のパターンマッチングといった相互相関関係を用いる。   As a result of imaging a black defect requiring a relatively long time for correction, a secondary charged particle image A as shown in FIG. 3 is obtained, and the black defects 3a and 3b are selected as the correction range. For the calculation of the drift amount, both the black defects 3a and 3b or the black defect 3b having a characteristic shape is used as a reference portion. At the start of correction, the correction ranges 3a and 3b are imaged again to acquire the image B, and the drift amount is obtained from the calculation range of the drift amount of the image A and the image B. Based on the obtained drift amount, the irradiation position of the beam is corrected to correct the defect. Since a relatively long time is required for correction, imaging, drift amount calculation, and beam irradiation position correction are performed as needed during correction. That is, as the time required for defect correction becomes longer, the correction frequency is increased by increasing the image acquisition frequency of the reference portion, and the irradiation position of the beam is corrected. At this time, the amount of drift generated between the image A and the image B is calculated by using cross-correlation such as shape information such as contour or area centroid and pattern matching of the image itself.

修正に要する時間が比較的長い白欠陥をイメージングした結果、図4に示すような二次荷電粒子画像Aが得られ、白欠陥7a、7bを修正範囲として選択する。ドリフト量の算出には、白欠陥7a、7bの両方か、もしくは特徴的な形状を示す白欠陥7bを参照部分として用いる。前記修正範囲7a、7bに対し、修正開始時、再度イメージングを行って、画像Bを取得し、前記画像Aと前記画像Bのドリフト量の算出範囲からドリフト量を求める。求められたドリフト量をもとに、ビームの照射位置を補正して欠陥の修正を実行する。修正に比較的時間を要するため、修正途中に随時イメージング、ドリフト量の算出とビームの照射位置の補正を行う。このとき、前記画像Aおよび前記画像Bの間に生じるドリフト量の算出には、輪郭もしくは面積重心といった形状情報や画像自身を用いたマッチングといった相互相関関係を用いる。   As a result of imaging a white defect that takes a relatively long time to correct, a secondary charged particle image A as shown in FIG. 4 is obtained, and the white defects 7a and 7b are selected as correction ranges. For the calculation of the drift amount, both the white defects 7a and 7b or the white defect 7b having a characteristic shape is used as a reference portion. At the start of correction, the correction ranges 7a and 7b are imaged again to acquire the image B, and the drift amount is obtained from the calculation range of the drift amount of the image A and the image B. Based on the obtained drift amount, the irradiation position of the beam is corrected to correct the defect. Since a relatively long time is required for correction, imaging, drift amount calculation, and beam irradiation position correction are performed as needed during correction. At this time, the amount of drift generated between the image A and the image B is calculated using a cross-correlation such as shape information such as a contour or an area center of gravity and matching using the image itself.

周辺に特徴あるパターンが存在する欠陥をイメージングした結果、図5に示すような二次荷電粒子画像Aが得られ、黒欠陥3を修正範囲として選択する。修正範囲周辺に、特徴的な形状を示すパターン5があるため、ドリフト量の算出のための参照部分として設定する。修正範囲に対し、修正開始時、再度イメージング(画像取得)を行って、画像Bを取得し、画像Aと画像Bのドリフト量の算出のための参照部分のドリフト量を求める。求められたドリフト量をもとに、ビームの照射位置を補正して欠陥の修正を実行する。修正に比較的時間を要するため、修正途中に随時イメージング、ドリフト量の算出とビームの照射位置の補正を行う。このとき、画像Aおよび画像Bの間に生じるドリフト量の算出には、パターン部分の変曲点やエッジ成分といった形状情報や画像自身を用いたパターンマッチングといった相互相関関係を用いる。   As a result of imaging a defect having a characteristic pattern in the periphery, a secondary charged particle image A as shown in FIG. 5 is obtained, and the black defect 3 is selected as a correction range. Since there is a pattern 5 indicating a characteristic shape around the correction range, it is set as a reference portion for calculating the drift amount. At the start of correction, imaging (image acquisition) is performed again on the correction range to acquire the image B, and the drift amount of the reference portion for calculating the drift amount of the images A and B is obtained. Based on the obtained drift amount, the irradiation position of the beam is corrected to correct the defect. Since a relatively long time is required for correction, imaging, drift amount calculation, and beam irradiation position correction are performed as needed during correction. At this time, for calculating the drift amount generated between the images A and B, cross-correlation such as shape information such as inflection points and edge components of the pattern portion and pattern matching using the image itself is used.

周辺に特徴あるパターンが存在する欠陥をイメージングした結果、図6に示すような二次荷電粒子画像Aが得られ、黒欠陥3a、3bを修正範囲として選択する。修正範囲周辺に、特徴的な形状を示すパターン5があるため、このパターン5をドリフト量の算出のための参照部分として設定する。しかしながら、パターン5の部分の形状は不明確で、この部分においても修正を行う必要がある。このとき、図7に示すような対応するCADパターンを参照し、パターン5に対応する範囲6をドリフト量の算出のための参照部分として用いる。前記修正範囲に対し、修正開始時、再度イメージングを行って、画像Bを取得し、CADパターンのドリフト量算出のための参照部分6と前記画像Bのドリフト量の算出のための参照部分からドリフト量を求める。求められたドリフト量をもとに、ビームの照射位置を補正して欠陥の修正を実行する。修正に比較的時間を要するため、修正途中に随時イメージング、ドリフト量の算出とビームの照射位置の補正を行う。このとき、CADパターンのドリフト量算出のための参照部分6と画像Bを用いたドリフト量の算出には、変曲点といった位置情報やエッジ成分を用いたパターンマッチングといった相互相関関係を用いる。   As a result of imaging a defect having a characteristic pattern in the periphery, a secondary charged particle image A as shown in FIG. 6 is obtained, and the black defects 3a and 3b are selected as correction ranges. Since there is a pattern 5 indicating a characteristic shape around the correction range, this pattern 5 is set as a reference portion for calculating the drift amount. However, the shape of the portion of the pattern 5 is unclear, and it is necessary to correct this portion as well. At this time, the corresponding CAD pattern as shown in FIG. 7 is referred to, and the range 6 corresponding to the pattern 5 is used as a reference portion for calculating the drift amount. The correction range is imaged again at the start of correction to acquire an image B, and drifts from the reference portion 6 for calculating the drift amount of the CAD pattern and the reference portion for calculating the drift amount of the image B. Find the amount. Based on the obtained drift amount, the irradiation position of the beam is corrected to correct the defect. Since a relatively long time is required for correction, imaging, drift amount calculation, and beam irradiation position correction are performed as needed during correction. At this time, for the calculation of the drift amount using the reference portion 6 and the image B for calculating the CAD pattern drift amount, cross-correlation such as position information such as an inflection point and pattern matching using an edge component is used.

本発明の基本的な処理の流れを表したフローチャートである。It is a flowchart showing the flow of basic processing of the present invention. 比較的修正時間の短い欠陥をイメージングし、修正範囲を選択したときの画像である。It is an image when a defect having a relatively short correction time is imaged and a correction range is selected. 比較的修正時間の短い黒欠陥をイメージングし、修正範囲を選択したときの画像である。This is an image when a black defect having a relatively short correction time is imaged and a correction range is selected. 比較的修正時間の短い白欠陥をイメージングし、修正範囲を選択したときの画像である。This is an image obtained by imaging a white defect with a relatively short correction time and selecting a correction range. 周辺に特徴あるパターンが存在する欠陥をイメージングし、修正範囲、ドリフト量の算出に用いる範囲を選択したときの画像である。It is an image when a defect having a characteristic pattern in the periphery is imaged and a correction range and a range used for calculating a drift amount are selected. 周辺に特徴あるパターンが存在する欠陥をイメージングし、修正範囲、ドリフト量の算出に用いる範囲を選択したときの画像である。It is an image when a defect having a characteristic pattern in the periphery is imaged and a correction range and a range used for calculating a drift amount are selected. ドリフト量の算出に用いる範囲を、修正位置に対応したCADパターンを用い、対応する範囲を指定したときの画像である。It is an image when the range used for calculation of the drift amount is designated by using the CAD pattern corresponding to the correction position.

符号の説明Explanation of symbols

1 透光性基板
2 マスクパターン
3、3a、3b 黒欠陥
5 修正範囲周辺の特徴的な形状を示すパターン
6 CADパターンのドリフト量算出のための参照部分
7a、7b 白欠陥
DESCRIPTION OF SYMBOLS 1 Translucent board | substrate 2 Mask pattern 3, 3a, 3b Black defect 5 Pattern which shows the characteristic shape around correction range 6 Reference part for calculation of drift amount of CAD pattern 7a, 7b White defect

Claims (4)

荷電粒子ビームを用いてマスクの欠を修正するマスク修正方法において、
前記荷電粒子ビームを前記欠陥を含む領域に二次元的に照射し、前記マスクから発生する二次荷電粒子検出し、検出信号から画像を形成する工程と、
前記欠陥の修正範囲を前記画像内で指定する工程と、
リフト量の算出のための前記欠陥を含む参照部分を前記画像内で範囲指定する工程と、
前記荷電粒子ビームを前記修正範囲に照射し、前記欠陥を修正加工する工程と、
前記修正加工の途中に指定した時間間隔で前記参照部分の二次荷電粒子像を取得し前記二次荷電粒子像移動量からドリフト量を算出する工程と、
記ドリフト量に基づき、前記荷電粒子ビームの照射位置を補する工程と、を有するマスク修正方法。
In mask correcting method for correcting from defects of the mask using a charged particle beam,
It said charged particle beam, comprising the steps of two-dimensionally irradiates the area including the defect, and detecting secondary charged particles generated from the mask to form an image from the detection signal,
A step of designating a correction range of the defect within the image,
A step of designating range reference portion including the defect for drift amount calculated within the image,
A step of said charged particle beam is irradiated to the correction range, correction processing of the defect,
Obtaining a secondary charged particle image of the reference portion at a time interval specified during the correction process, and calculating a drift amount from a movement amount of the secondary charged particle image ;
Based on prior Kido lift, luma disk correction method Yusuke the steps, a to compensation the irradiation position of the charged particle beam.
前記修正加工の加工時間に応じて、前記参照部分の二次荷電粒子像取得の繰り返し頻度を変化させる請求項1記載のマスク修正方法。 The mask correction method according to claim 1, wherein a repetition frequency of acquiring a secondary charged particle image of the reference portion is changed according to a processing time of the correction processing . 前記参照部分の二次荷電粒子像の代わりに、前記参照部分のCADパターンを用いて、前記ドリフト量を算出する請求項1または2に記載のマスク修正方法。 The mask correction method according to claim 1, wherein the drift amount is calculated using a CAD pattern of the reference portion instead of the secondary charged particle image of the reference portion . 前記参照部分の像の輪郭又は変曲点からなる形状情報、または面積重心、から前記ドリフト量を算出する請求項1または2に記載のマスク修正方法。 3. The mask correction method according to claim 1, wherein the drift amount is calculated from shape information including an outline or an inflection point of an image of the reference portion, or an area center of gravity .
JP2005148928A 2005-05-23 2005-05-23 Mask correction method Active JP4855715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005148928A JP4855715B2 (en) 2005-05-23 2005-05-23 Mask correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005148928A JP4855715B2 (en) 2005-05-23 2005-05-23 Mask correction method

Publications (2)

Publication Number Publication Date
JP2006330017A JP2006330017A (en) 2006-12-07
JP4855715B2 true JP4855715B2 (en) 2012-01-18

Family

ID=37551809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148928A Active JP4855715B2 (en) 2005-05-23 2005-05-23 Mask correction method

Country Status (1)

Country Link
JP (1) JP4855715B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4851253B2 (en) * 2006-07-05 2012-01-11 株式会社ニューフレアテクノロジー Drawing apparatus and error detection method in drawing apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2543680B2 (en) * 1985-10-02 1996-10-16 セイコー電子工業株式会社 Mask repair device
JPS63305358A (en) * 1987-06-05 1988-12-13 Seiko Instr & Electronics Ltd Method for working pattern film
JP3041174B2 (en) * 1993-10-28 2000-05-15 株式会社東芝 Pattern correction method in pattern correction device of electron beam lithography system
JP4472882B2 (en) * 2001-01-16 2010-06-02 エスアイアイ・ナノテクノロジー株式会社 Mask defect correction method
JP2004251964A (en) * 2003-02-18 2004-09-09 Seiko Instruments Inc Electron beam processing method

Also Published As

Publication number Publication date
JP2006330017A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
US7673281B2 (en) Pattern evaluation method and evaluation apparatus and pattern evaluation program
JP6527808B2 (en) Inspection method and inspection device
US10572990B2 (en) Pattern inspection apparatus, pattern position measurement apparatus, aerial image measurement system, method for measuring aerial image, pattern position repairing apparatus, method for repairing pattern position, aerial image data processing apparatus, method for processing aerial image data, pattern exposure apparatus, method for exposing pattern, method for manufacturing mask, and mask manufacturing system
JP3998334B2 (en) Defect inspection method
JP5559957B2 (en) Pattern measuring method and pattern measuring device
JP2009194051A (en) Pattern generating apparatus and pattern shape evaluating apparatus
US10444647B2 (en) Methods and apparatus for determining the position of a target structure on a substrate, methods and apparatus for determining the position of a substrate
JP2016194482A (en) Inspection method and inspection device
US8442320B2 (en) Pattern inspection apparatus and pattern inspection method
TW202109596A (en) Charged particle beam system and overlay shift amount measurement method
JP4835481B2 (en) Resist pattern measuring method and resist pattern measuring apparatus
JP2009036572A (en) Pattern measuring method and device
JP2000252203A (en) Alignment mark and alignment method
JP2004228327A (en) Alignment method and device, and aligner
JP3958328B2 (en) Sample inspection apparatus, sample inspection method, and program
JP5651511B2 (en) Photomask pattern contour extraction method and contour extraction device
JP4855715B2 (en) Mask correction method
TWI579558B (en) Inspection method and inspection device
KR20210033907A (en) Mark position determination method, lithography method, method of manufacturing article, program, and lithography apparatus
TWI697744B (en) Charged particle beam drawing device and charged particle beam drawing method
TWI723287B (en) Charged particle beam drawing device and charged particle beam drawing method
US10504219B2 (en) Inspection apparatus and inspection method
JP2007194419A (en) Exposure processing method and manufacturing method of semiconductor device
JP5261891B2 (en) Alignment mark and position measurement method
JP6513982B2 (en) Defect inspection apparatus, management method and management apparatus for defect inspection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4855715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250