JP4855204B2 - Method for closing the penetration of the electromagnetic shield wall - Google Patents

Method for closing the penetration of the electromagnetic shield wall Download PDF

Info

Publication number
JP4855204B2
JP4855204B2 JP2006279433A JP2006279433A JP4855204B2 JP 4855204 B2 JP4855204 B2 JP 4855204B2 JP 2006279433 A JP2006279433 A JP 2006279433A JP 2006279433 A JP2006279433 A JP 2006279433A JP 4855204 B2 JP4855204 B2 JP 4855204B2
Authority
JP
Japan
Prior art keywords
conductor wire
electromagnetic wave
wave absorber
closing
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006279433A
Other languages
Japanese (ja)
Other versions
JP2008098458A (en
Inventor
治 岡田
哲夫 遠藤
裕二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2006279433A priority Critical patent/JP4855204B2/en
Publication of JP2008098458A publication Critical patent/JP2008098458A/en
Application granted granted Critical
Publication of JP4855204B2 publication Critical patent/JP4855204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は電磁シールド壁を貫通する電線などの導体線の引き込みに際し、電磁シールド壁の貫通部の閉塞方法に関する。   The present invention relates to a method for closing a penetration portion of an electromagnetic shield wall when a conductor wire such as an electric wire penetrating the electromagnetic shield wall is drawn.

無線LANなどの無線通信を室内で良好に行なうためには、送信器が発信した信号波を受信器で確実に受信できるようにすることが必要である。しかし、無線LANなどが普及し、複数の近接するビルなどで同時に無線通信を行なうと、自身以外の無線通信機器が送信した電波がノイズとなり、送受信に支障をきたす場合がある。この対策として、建物の壁等を電磁シールド材で作ることが行われている。
一方、電磁シールド空間内部で無線LANなどを使用するために、外部から電源、通信ケーブルなどの導体線を引き込む必要がある。この場合、不要なノイズをカットするために電源フィルタもしくは通信線フィルタを使用することが有効であるが、コストが高くまた施工が困難という問題点がある。
In order to perform wireless communication such as a wireless LAN satisfactorily in a room, it is necessary to ensure that a signal wave transmitted from a transmitter can be received by a receiver. However, when a wireless LAN or the like becomes widespread and wireless communication is simultaneously performed in a plurality of adjacent buildings, radio waves transmitted from wireless communication devices other than itself become noise, which may interfere with transmission / reception. As a countermeasure, building walls and the like are made of electromagnetic shielding materials.
On the other hand, in order to use a wireless LAN or the like inside the electromagnetic shield space, it is necessary to draw in a conductor wire such as a power source and a communication cable from the outside. In this case, it is effective to use a power supply filter or a communication line filter to cut unnecessary noise, but there is a problem that the cost is high and the construction is difficult.

上記問題点に対し、電磁シールド空間と非電磁シールド空間とを画する電磁シールド層に、導体線を貫通させるに際して、電磁シールドの破壊を防止できる技術として、電磁シールド空間と非電磁シールド空間とを画する電磁シールド層の貫通部を電線などの導体線を貫通させる電磁シールド層の貫通部処理構造であって、前記貫通部を貫通する前記導体線の前記非電磁シールド空間に出ている側に、前記導体線の絶縁部外周に絶縁性磁性体が設けられていることを特徴とする電磁シールド層の貫通部処理構造が提案されている(特許文献1、特許請求の範囲参照)。   As a technique for preventing the destruction of the electromagnetic shield when passing the conductor wire through the electromagnetic shield layer that defines the electromagnetic shield space and the non-electromagnetic shield space, the electromagnetic shield space and the non-electromagnetic shield space are An electromagnetic shield layer penetrating portion treatment structure for penetrating a conductor wire such as an electric wire through a penetrating portion of an electromagnetic shield layer to be drawn, on the side of the conductor wire penetrating the penetrating portion that is exposed to the non-electromagnetic shield space An electromagnetic shield layer penetrating portion processing structure has been proposed in which an insulating magnetic body is provided on the outer periphery of the insulating portion of the conductor wire (see Patent Document 1 and Claims).

特開平2003−60379号公報Japanese Patent Laid-Open No. 2003-60379

上述の電磁シールド層の貫通部処理構造においては、電磁シールド材として、絶縁性を有し、かつ、高い透磁率を有するフェライトが用いられる。しかしながら、フェライトなどの絶縁性磁性体においては、該絶縁性磁性体の長さ、厚さ及び取り付けピッチを、シールド対象とする電磁波の波長及び電磁シールド層を構成する電磁シールド材の性能に応じて適宜設定することが必要である。従って、フェライトなどの絶縁性磁性体では、標準的な形状及びサイズの成型体を形状ごとに都度作製することが必要であり、種々の形状を有する貫通部には適用が困難であった。特に事前に貫通するケーブルの径や本数等が不明な場合には、現場での施行が困難であった。
本発明は上記問題点に鑑み、柔軟で加工性が容易な電磁波吸収体を用い、現場にてケーブルなどの導体線の貫通部を効率的、かつ効果的に閉塞する方法を提供することを目的とする。
In the above-described electromagnetic shielding layer penetration structure, ferrite having high insulating properties and high magnetic permeability is used as the electromagnetic shielding material. However, in an insulating magnetic body such as ferrite, the length, thickness, and mounting pitch of the insulating magnetic body depend on the wavelength of the electromagnetic wave to be shielded and the performance of the electromagnetic shielding material constituting the electromagnetic shielding layer. It is necessary to set appropriately. Therefore, in the insulating magnetic material such as ferrite, it is necessary to produce a standard shape and size molded body for each shape, and it has been difficult to apply to penetrating portions having various shapes. In particular, when the diameter and number of cables penetrating in advance are unknown, it was difficult to perform on-site.
The present invention has been made in view of the above problems, and an object thereof is to provide a method for efficiently and effectively closing a penetration portion of a conductor wire such as a cable in the field using an electromagnetic wave absorber that is flexible and easy to process. And

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、特定の電磁波吸収体を用いることで、その目的を達成し得ることを見出した。本発明はかかる知見に基づいて完成したものである。
すなわち、本発明は、電磁シールド空間と非電磁シールド空間とを画する電磁シールド壁における導体線の貫通部の閉塞方法であって、(A)室温で硬化する流動性ポリマー又はゴム及び(B)磁性体を含有する電磁波吸収体を用いることを特徴とする導体線の貫通部の閉塞方法を提供するものである。
As a result of intensive studies to achieve the above object, the present inventors have found that the object can be achieved by using a specific electromagnetic wave absorber. The present invention has been completed based on such findings.
That is, the present invention is a method for closing a through portion of a conductor wire in an electromagnetic shield wall that defines an electromagnetic shield space and a non-electromagnetic shield space, and includes (A) a fluid polymer or rubber that cures at room temperature and (B) An electromagnetic wave absorber containing a magnetic material is used, and a method for closing a through portion of a conductor wire is provided.

本発明によれば、現場にてケーブルなどの導体線の貫通部を効率的、かつ効果的に閉塞することができる。   ADVANTAGE OF THE INVENTION According to this invention, the penetration part of conductor wires, such as a cable, can be obstruct | occluded efficiently and effectively in the field.

本発明は電磁シールド空間と非電磁シールド空間とを画する電磁シールド壁における導体線の貫通部を閉塞する方法に関する。
図1は電磁シールド空間を示すシールドルーム10の模式図である。シールドルーム10内は電磁シールド空間であり、非電磁シールド空間である外部とは電磁シールド壁11によって画されている。電磁シールド壁11には、ケーブルなどの導体線13が貫通する貫通部12が設けられている。ここで導体線13とは、電源系ケーブル、通信系ケーブル、弱電系ケーブル、制御用ケーブル等のケーブル類をいう。但し、空調用冷媒管のような接地が困難な配管等においては、上記ケーブル類と同様に電磁シールドを破壊する作用があるため、このような配管類は本発明における導体線に包含される。
The present invention relates to a method for closing a penetration portion of a conductor wire in an electromagnetic shield wall that defines an electromagnetic shield space and a non-electromagnetic shield space.
FIG. 1 is a schematic view of a shield room 10 showing an electromagnetic shield space. The inside of the shield room 10 is an electromagnetic shield space, and the outside which is a non-electromagnetic shield space is defined by an electromagnetic shield wall 11. The electromagnetic shield wall 11 is provided with a through portion 12 through which a conductor wire 13 such as a cable penetrates. Here, the conductor wire 13 refers to cables such as a power supply system cable, a communication system cable, a weak electrical system cable, and a control cable. However, pipes that are difficult to ground, such as air conditioning refrigerant pipes, have the effect of destroying the electromagnetic shield in the same manner as the above cables, and therefore such pipes are included in the conductor wires in the present invention.

本発明では、上記貫通部12に導体線13を通した後の該貫通部12を、(A)室温で硬化する流動性ポリマー又はゴム及び(B)磁性体を含有する電磁波吸収体を用いて閉塞することを特徴とする。
(A)室温で硬化する流動性ポリマーとしては、種々のものが用いられるが、例えば、変成シリコーン樹脂、ポリサルファイド樹脂、ポリウレタン樹脂などの室温で硬化性を有する液状樹脂を用いることができる。
In the present invention, the penetration part 12 after passing the conductor wire 13 through the penetration part 12 is (A) a fluid polymer or rubber that cures at room temperature, and (B) an electromagnetic wave absorber containing a magnetic substance. It is characterized by occlusion.
(A) Although various things are used as a fluid polymer hardened | cured at room temperature, For example, liquid resin which has sclerosis | hardenability at room temperature, such as a modified silicone resin, a polysulfide resin, and a polyurethane resin, can be used.

変成シリコーン樹脂としては、加水分解ケイ素を少なくとも1分子以上有するものであって、「MSポリマーS810」((株)カネカ製)などのポリオキシアルキレン系樹脂、「エピオンSタイプ」((株)カネカ製)などのポリイソブチレン系樹脂などが挙げられ、その他、ポリアクリル系樹脂、ジエン系樹脂、飽和炭化水素系樹脂などでそれぞれ加水分解ケイ素を少なくとも1分子以上有するものを挙げることができる。
ポリサルファイド樹脂としては、例えば「チオコールLP282」(東レファインケミカル(株)製)などを、ポリウレタン樹脂としては、例えば、分子量3000程度のポリプロピレングリコールとポリプロピレングリコールの末端をトリレンジイソシアネートで変性したポリイソシアネートの反応生成物があげられ、市販品としては「エクセノール3020、エクセノール3030」(旭硝子(株)製)が挙げられる。
上記室温で硬化する流動性ポリマーのうち、変成シリコーン樹脂が屈曲疲労性及び低温特性の点で好ましい。
なお、上記室温で硬化する流動性ポリマーは1種を単独で、又は2種以上を組み合わせて使用することができる。
Examples of the modified silicone resin include those having at least one molecule of hydrolyzed silicon, such as “MS polymer S810” (manufactured by Kaneka Corp.) and other polyoxyalkylene resins, “Epion S type” (Kaneka Corp.), and the like. And polyisobutylene resins such as polyacrylic resins, diene resins, saturated hydrocarbon resins, and the like, each having at least one molecule of hydrolyzed silicon.
As polysulfide resin, for example, “Thiocol LP282” (manufactured by Toray Fine Chemical Co., Ltd.) and the like, as polyurethane resin, for example, reaction of polyisocyanate in which polypropylene glycol having a molecular weight of about 3000 and end of polypropylene glycol are modified with tolylene diisocyanate. Examples of such products include “Exenol 3020, Exenol 3030” (manufactured by Asahi Glass Co., Ltd.).
Of the fluid polymers that cure at room temperature, modified silicone resins are preferred in terms of flex fatigue and low temperature properties.
In addition, the fluid polymer which hardens | cures at the said room temperature can be used individually by 1 type or in combination of 2 or more types.

室温で硬化する流動性ポリマーの分子量については、GPCにおけるポリスチレン換算での数平均分子量で、3000〜50000の範囲が好ましい。数平均分子量がこの範囲内であると、良好なゴム的性質を有する硬化物が得られるとともに、適度な重合体の粘度が得られ、後に詳述する施工性が良好となる。以上の点から、数平均分子量はさらに5000〜30000の範囲がさらに好ましい。
また、室温で硬化する流動性ポリマーには所望に応じて揺変剤(チクソトロピック剤)を含有することができる。揺変剤は流動性ポリマーの流動に対して揺変性を与えるもので、揺変性とは(A)成分系に連続的な構造を作ることにより、せん断時には一旦流動するが、再び構造を回復し、見かけの粘度を上昇させる性質をいう。
揺変剤としては、有機系及び無機系のものがあり、有機系のものとしては、アマイドワックス、硬化ひまし油、酸化ポリエチレン、ポリエーテル、ポリエステルなどが上げられ、また、無機系としては、クレー、シリカ、ベントナイトなどが挙げられる。
About the molecular weight of the fluid polymer hardened | cured at room temperature, the range of 3000-50000 is preferable at the number average molecular weight in polystyrene conversion in GPC. When the number average molecular weight is within this range, a cured product having good rubber properties can be obtained, an appropriate polymer viscosity can be obtained, and workability described in detail later can be improved. In view of the above, the number average molecular weight is more preferably in the range of 5000 to 30000.
The flowable polymer that cures at room temperature can contain a thixotropic agent (thixotropic agent) as desired. The thixotropic agent imparts thixotropic properties to the flow of the flowable polymer. The thixotropic property is (A) by creating a continuous structure in the component system. , A property that increases the apparent viscosity.
As the thixotropic agent, there are organic type and inorganic type. As the organic type, amide wax, hydrogenated castor oil, oxidized polyethylene, polyether, polyester, etc. are raised, and as inorganic type, clay, Examples thereof include silica and bentonite.

(A)成分として用いられるゴムは、特に限定されず汎用のゴムを用いることができる。具体的には、天然ゴム、スチレンブタジエンゴム、イソプレンゴム、ブタジエンゴムなどが例示される。これらのゴムは1種単独で又は2種以上を組み合わせて使用することができる。
また、(A)成分として用いられるゴムは、上記汎用ゴムからなるゴム成分100質量部に対して、耐候性ゴムを5質量部以上含有することが好ましい。耐候性ゴムを含有することで、耐オゾン性、耐候性、耐熱性等を向上させることができる。以上の点から耐候性ゴムの含有量は、汎用ゴムからなるゴム成分100質量部に対して、20質量部以上であることがさらに好ましい。
耐候性ゴムの種類としては、ブチルゴム、クロロプレンゴム、エチレンプロピレンゴム、エチレンプロピレンジエンゴム、塩素化ポリエチレンゴム、臭素化ブチルゴム、クロロスルホン化ポリエチレンゴムなどが挙げられ、これらは1種単独で又は2種以上を組み合わせて使用することができる。
The rubber used as the component (A) is not particularly limited, and general-purpose rubber can be used. Specifically, natural rubber, styrene butadiene rubber, isoprene rubber, butadiene rubber and the like are exemplified. These rubbers can be used alone or in combination of two or more.
Moreover, it is preferable that the rubber used as the component (A) contains 5 parts by mass or more of weather resistant rubber with respect to 100 parts by mass of the rubber component made of the general-purpose rubber. By containing the weather resistant rubber, ozone resistance, weather resistance, heat resistance and the like can be improved. From the above points, the content of the weather resistant rubber is more preferably 20 parts by mass or more with respect to 100 parts by mass of the rubber component made of general-purpose rubber.
Examples of the weather resistant rubber include butyl rubber, chloroprene rubber, ethylene propylene rubber, ethylene propylene diene rubber, chlorinated polyethylene rubber, brominated butyl rubber, chlorosulfonated polyethylene rubber, and the like. The above can be used in combination.

本発明の電磁波吸収体は(B)成分として磁性体を含有する。磁性体としては、特に限定されず、例えばNd−Fe−B系、Sm−Cm系、Fe系、Cr系、Co系、Ba系、Sr系、La−Co置換系、Fe−Mn系、Fe−Cr−Co系、フェライト系、Mn−Zn系、Ni−Zn系、Sm−Fe−N系、Al−Ni−Co系などが挙げられる。これらのうち、下記に示すような特徴を有する点から、特に、カルボニル鉄及びフェライトが好適に用いられる。また、これらの磁性体はそれぞれを1種単独で又は2種以上を組み合わせて使用することができる。   The electromagnetic wave absorber of the present invention contains a magnetic substance as the component (B). The magnetic material is not particularly limited, and for example, Nd—Fe—B, Sm—Cm, Fe, Cr, Co, Ba, Sr, La—Co substitution, Fe—Mn, Fe -Cr-Co system, ferrite system, Mn-Zn system, Ni-Zn system, Sm-Fe-N system, Al-Ni-Co system and the like. Of these, carbonyl iron and ferrite are particularly preferably used because they have the following characteristics. Moreover, these magnetic materials can be used individually by 1 type or in combination of 2 or more types, respectively.

上記カルボニル鉄としては、有機金属化合物であるカルボニル化鉄を熱分解して得られる平均粒径1〜10μm程度の粒状の微粉末であることが好ましく、その磁性損失により電磁波を効率的に吸収するとともに、その導電性で電磁波を抵抗損失として吸収する優れた電磁波吸収材料である。
また、上記フェライトはMO・Fe23の構造を有する鉄の酸化物であり、Mは2価の金属イオン、例えば、Mn2+、Fe2+、Co2+、Ni2+、Cu2+、Zn2+などが例示される。マグネタイトとFe34は代表的なフェライトであり、磁性体としてカルボニル鉄と同様の特性を有する。フェライトの平均粒径としては、0.1〜1.0μmの範囲のものが好適に用いられる。
なお、本発明の電磁波吸収体として、上記カルボニル鉄とフェライトを併用することもできる。
The carbonyl iron is preferably a granular fine powder having an average particle diameter of about 1 to 10 μm obtained by pyrolyzing carbonyl iron, which is an organometallic compound, and efficiently absorbs electromagnetic waves due to its magnetic loss. In addition, it is an excellent electromagnetic wave absorbing material that absorbs electromagnetic waves as resistance loss due to its conductivity.
The ferrite is an iron oxide having a MO · Fe 2 O 3 structure, and M is a divalent metal ion such as Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Cu 2. Examples include + and Zn 2+ . Magnetite and Fe 3 O 4 are typical ferrites and have the same characteristics as carbonyl iron as a magnetic substance. As an average particle diameter of a ferrite, the thing of the range of 0.1-1.0 micrometer is used suitably.
In addition, the said carbonyl iron and ferrite can also be used together as an electromagnetic wave absorber of this invention.

本発明にかかる電磁波吸収体において、(B)成分の含有量は(A)成分100質量部に対して、200〜1500質量部の範囲であることが好ましい。(B)成分の含有量が200質量部以上であると、十分な電磁波吸収性能が得られ、1500質量部以下であると、施行時又は施工後においても十分な柔軟性が得られる。以上の点から、(B)成分の含有量は(A)成分100質量部に対して400〜1500質量部の範囲がさらに好ましく、700〜1200質量部の範囲が特に好ましい。   In the electromagnetic wave absorber according to the present invention, the content of the component (B) is preferably in the range of 200 to 1500 parts by mass with respect to 100 parts by mass of the component (A). When the content of the component (B) is 200 parts by mass or more, sufficient electromagnetic wave absorption performance is obtained, and when it is 1500 parts by mass or less, sufficient flexibility is obtained even at the time of enforcement or after construction. From the above points, the content of the component (B) is more preferably in the range of 400 to 1500 parts by mass, particularly preferably in the range of 700 to 1200 parts by mass with respect to 100 parts by mass of the component (A).

また、本発明にかかる電磁波吸収体は硬化後のJIS K6253(タイプA)による硬度が80度以下であることが好ましい。該硬度が80度以下であると施工に際し、十分な柔軟性を有する。以上の点から硬度は75度以下であることがさらに好ましい。一方、硬度の下限値については、一般に40度以上であり、強度等を考慮すると45度以上であることが好ましい。   Moreover, it is preferable that the electromagnetic wave absorber concerning this invention is 80 degrees or less of hardness by JISK6253 (type A) after hardening. When the hardness is 80 degrees or less, the construction has sufficient flexibility. From the above points, the hardness is more preferably 75 degrees or less. On the other hand, the lower limit of hardness is generally 40 degrees or more, and preferably 45 degrees or more in consideration of strength and the like.

本発明にかかる電磁波吸収体を製造するに際し、(A)成分中に(B)成分を均一に混練することが好ましい。均一に分散させるためには、104Pa以上のせん断応力をかけることが好ましい。混練方法については特に制限はなく、例えばプラネタリーミキサーなどの混練機を用いて行うことができる。 In producing the electromagnetic wave absorber according to the present invention, it is preferable to uniformly knead the component (B) in the component (A). In order to uniformly disperse, it is preferable to apply a shear stress of 10 4 Pa or more. There is no restriction | limiting in particular about the kneading | mixing method, For example, it can carry out using kneading machines, such as a planetary mixer.

本発明の電磁波吸収体は所望によりさらにカーボンブラックを含有させることができる。カーボンブラックは紫外線を吸収し、電磁波吸収体の耐候性を向上させる。カーボンブラックの含有量は(A)成分100質量部に対して1〜10質量部の範囲であることが好ましい。この範囲であると電磁波吸収性能を維持しつつ、カーボンブラックの添加効果を十分発揮させることができる。   The electromagnetic wave absorber of the present invention can further contain carbon black if desired. Carbon black absorbs ultraviolet rays and improves the weather resistance of the electromagnetic wave absorber. The content of carbon black is preferably in the range of 1 to 10 parts by mass with respect to 100 parts by mass of component (A). Within this range, the effect of adding carbon black can be sufficiently exhibited while maintaining electromagnetic wave absorption performance.

また、本発明にかかる電磁波吸収体には、さらに、光安定剤、紫外線吸収剤、酸化防止剤等を添加することができる。光安定剤としては、ラジカル捕捉剤であるヒンダードアミン系のもの、紫外線吸収剤としては、サリチル酸エステル系、ヒドロキシベンゾフェノン系、ベンゾトリアゾール系など、酸化防止剤としては、キノン系、アミン系、フェノール系、リン系、硫黄系などが挙げられる。
また、本発明にかかる電磁波吸収体には可塑剤を配合することができる。可塑剤としては、ポリアルキレン系、パラフィン系、ナフテン系、フタル酸エステル系、脂肪族2塩基酸エステル系、アクリル系、ポリアルキレングリコールのエステル、リン酸エステル系などを用いることができる。
Moreover, a light stabilizer, an ultraviolet absorber, an antioxidant, and the like can be further added to the electromagnetic wave absorber according to the present invention. As a light stabilizer, a hindered amine type radical scavenger, as an ultraviolet absorber, salicylic acid ester type, hydroxybenzophenone type, benzotriazole type, etc., as an antioxidant, quinone type, amine type, phenol type, Phosphorus series, sulfur series, etc. are mentioned.
Moreover, a plasticizer can be mix | blended with the electromagnetic wave absorber concerning this invention. As the plasticizer, polyalkylene, paraffin, naphthene, phthalate ester, aliphatic dibasic acid ester, acrylic, polyalkylene glycol ester, phosphate ester, and the like can be used.

次に、本発明の導体線の貫通部の閉塞方法の具体的態様について説明する。まず、本発明の導体線の貫通部の閉塞方法の第一の態様として、前記電磁波吸収体が室温で流動性を有し、かつ経時的に硬化するものを使用する方法がある。この方法では、電磁シールド空間と非電磁シールド空間とを画する電磁シールド壁における導体線の貫通部に導体線を貫通させた後に、該貫通部に流動性のある電磁波吸収体を打設するものである。   Next, a specific aspect of the method for closing a through portion of a conductor wire according to the present invention will be described. First, as a first aspect of the method for closing a through portion of a conductor wire of the present invention, there is a method using the electromagnetic wave absorber having fluidity at room temperature and being cured with time. In this method, after passing a conductor wire through a through-hole of a conductor wire in an electromagnetic shield wall that defines an electromagnetic shield space and a non-electromagnetic shield space, a fluid electromagnetic wave absorber is placed in the through-hole. It is.

これは、主に(A)成分として流動性ポリマーを用いた場合の態様であって、電磁波吸収体は未硬化の状態では不定形であり、導体線を貫通させた後の該貫通部に容易に打設することができる。電磁波吸収体の硬化方法としては、電磁波吸収体に硬化触媒を配合しておき、打設後に空気中の水分などにより硬化反応が進むようにする1成分系を用いる場合と、流動性のある電磁波吸収体と硬化触媒を現場で混合して施工する2成分系を用いる場合がある。
打設はコーキングガンのような治具を用いて上記貫通部に打設することができる。さらに、打設後、ヘラなどで形や表面を整えることができ、形状や表面を整えた後、室温で硬化反応が進行し、数時間から数日で硬化する。
なお、硬化前の電磁波吸収体の粘性については、前述のように、室温で硬化する流動性ポリマーの分子量及び揺変剤の種類及び配合量によって調整することがき、施工時に液だれが生じない範囲に調整することが好ましい。
This is an embodiment in which a fluid polymer is mainly used as the component (A), and the electromagnetic wave absorber is indefinite in an uncured state, and easily penetrates through the conductor wire. Can be placed. As a method for curing the electromagnetic wave absorber, a case where a one-component system in which a curing catalyst is blended in the electromagnetic wave absorber and a curing reaction proceeds by moisture in the air after placement is used, or a fluid electromagnetic wave is used. There are cases where a two-component system in which an absorber and a curing catalyst are mixed and applied on site is used.
Placing can be performed in the penetrating portion using a jig such as a caulking gun. Furthermore, after placement, the shape and surface can be adjusted with a spatula, etc., and after the shape and surface are adjusted, the curing reaction proceeds at room temperature and is cured in several hours to several days.
As described above, the viscosity of the electromagnetic wave absorber before curing can be adjusted according to the molecular weight of the fluid polymer that cures at room temperature and the type and blending amount of the thixotropic agent. It is preferable to adjust to.

また、本発明の導体線の貫通部の閉塞方法における第二の態様として、硬化前の電磁波吸収体の粘性が低い場合などは、貫通部に導体線を巻くように袋体を配し、該袋体に室温で流動性を有する前記電磁波吸収体を注入し、硬化させる方法をとることができる。袋体の形状については特に限定はないが、例えば浮き輪状の袋体の中央部に導体線を貫通させておき、該袋体に室温で流動性を有する前記電磁波吸収体を注入する方法がある。
この方法によれば、硬化前の電磁波吸収体の粘性が低くても液だれを起こすことがない。なお、該袋体は電磁波吸収体の硬化後に取り除いてもよいし、そのままの状態で残しておくこともできる。
Further, as a second aspect in the method for closing a through-hole of a conductor wire of the present invention, when the viscosity of the electromagnetic wave absorber before curing is low, a bag body is arranged so as to wind a conductor wire around the through-hole, A method can be used in which the electromagnetic wave absorber having fluidity at room temperature is injected into a bag and cured. The shape of the bag body is not particularly limited. For example, there is a method in which a conductor wire is passed through the center of a floating ring-shaped bag body and the electromagnetic wave absorber having fluidity is injected into the bag body at room temperature. .
According to this method, dripping does not occur even if the viscosity of the electromagnetic wave absorber before curing is low. The bag may be removed after the electromagnetic wave absorber is cured, or may be left as it is.

また、施工する貫通部が大きい場合などは、電磁波吸収体を未硬化の状態で貫通部に打設する際に、電磁波吸収体の粘性を上記の方法で調整したとしても液だれが生じる場合がある。このような場合には、本発明の導体線の貫通部の閉塞方法における参考例として、電磁波吸収体を予め硬化させ、成形体を形成しておいて貫通部を閉塞する方法がある。この方法は、(A)成分としてゴムを用いる場合にも有効である。 In addition, when the penetrating part to be constructed is large, when the electromagnetic wave absorber is placed in the penetrating part in an uncured state, dripping may occur even if the viscosity of the electromagnetic wave absorber is adjusted by the above method. is there. In such a case, as a reference example in the method for closing the through portion of the conductor wire of the present invention, there is a method in which the electromagnetic wave absorber is cured in advance and a molded body is formed to close the through portion. This method is also effective when rubber is used as the component (A).

具体的には、図2に示すように、電磁波吸収体をドーナツ形状に予め成形した成形体20(成形体C)を用いる。成形体Cは貫通部の大きさがわかっている場合には、外径を貫通部の径に合わせてあらかじめ作製することができ、また、貫通部の大きさがわからない場合には、貫通部よりも大きく作製しておいて、現場での施工時に貫通部の大きさに合うように外周をカットすることができる。本発明の電磁波吸収体はポリマー又はゴムを主成分とするために、外周のカットは容易である。
そして、成形体Cを用いて貫通部を塞ぐとともに、成形体Cの中央部22に導体線を貫通させる。この際、導体線の径や本数に応じて、中央部22の径を適宜調整することができる。
また、図2に示すように、成形体Cの外周部から中央部22に切り込み21があると成形体Cの中央部に導体線を貫通させることが容易であり好ましい。
Specifically, as shown in FIG. 2, a molded body 20 (molded body C) obtained by previously molding an electromagnetic wave absorber into a donut shape is used. When the size of the penetration part is known, the molded body C can be prepared in advance according to the diameter of the penetration part. When the size of the penetration part is not known, the molded body C is larger than the penetration part. The outer periphery can be cut to fit the size of the penetrating part during construction on site. Since the electromagnetic wave absorber of the present invention is mainly composed of a polymer or rubber, the outer periphery can be easily cut.
Then, the molded body C is used to block the penetrating portion, and the conductor wire is passed through the central portion 22 of the molded body C. At this time, the diameter of the central portion 22 can be appropriately adjusted according to the diameter and the number of conductor wires.
In addition, as shown in FIG. 2, it is preferable that the cut portion 21 is provided from the outer peripheral portion of the molded body C to the central portion 22 because it is easy to penetrate the conductor wire into the central portion of the molded body C.

成形体Cの中央部22に導体線を貫通させた後は、該中央部の隙間を埋めることが好ましく、例えば、本発明の電磁波吸収体で用いる(A)室温で硬化する流動性ポリマーを打設し、硬化させることで塞ぐことができる。さらには、該中央部の隙間を前記第一の態様で用いた流動性のある電磁波吸収体、すなわち、(A)室温で硬化する流動性ポリマー及び(B)磁性体を含有する流動性を有する電磁波吸収体を打設し、硬化させることもできる。この場合には、電磁波をより完全にシールドすることができ好ましい。   After passing the conductor wire through the central portion 22 of the molded body C, it is preferable to fill the gap in the central portion. For example, (A) a fluid polymer that cures at room temperature is used in the electromagnetic wave absorber of the present invention. It can be closed by installing and curing. Furthermore, the fluid electromagnetic wave absorber using the gap in the central portion in the first aspect, that is, (A) a fluid polymer that cures at room temperature and (B) a fluid containing a magnetic material. An electromagnetic wave absorber can be placed and cured. In this case, electromagnetic waves can be shielded more completely, which is preferable.

また、上記中央部22の隙間を塞ぐ方法として、前記電磁波吸収体を予めシート状に成形した成形体Dを用いる方法も好適である。すなわち、図3に示すようにあらかじめ電磁波吸収体をシート状に成形した成形体30(成形体D)を作製しておき、成形体Cの中央部22の形状及び大きさに合わせてカットして、閉塞部材31を得る。さらに、閉塞部材31の中央部を、導体線を貫通させた後の隙間の形状及び大きさに合わせてくり抜くか、又はカットして穴部32を設ける。これを図4に示すように、導体線13を挟むように又は導体線13が貫通するように穴部32に通して、該隙間を塞ぐものである。   Further, as a method for closing the gap between the central portions 22, a method using a molded body D in which the electromagnetic wave absorber is previously formed into a sheet shape is also suitable. That is, as shown in FIG. 3, a molded body 30 (molded body D) in which an electromagnetic wave absorber is molded into a sheet shape is prepared in advance, and cut according to the shape and size of the central portion 22 of the molded body C. Then, the blocking member 31 is obtained. Further, the hole 32 is formed by cutting out or cutting the central portion of the closing member 31 in accordance with the shape and size of the gap after passing through the conductor wire. As shown in FIG. 4, this is passed through the hole 32 so as to sandwich the conductor wire 13 or penetrate the conductor wire 13, thereby closing the gap.

また、本発明の導体線の貫通部の閉塞方法の参考例として、図5に示すように、前記電磁波吸収体を予めシート状に成形したシート又はテープ40(シート又はテープE)により導体線を巻き、貫通部を塞ぐ方法がある。シート又はテープEは0.5〜5mm程度の厚さであることが好ましく、裏面に接着剤を塗布しておくこともできる。該シート又はテープEは導体線に巻きつけられ、ロール状となったシート又はテープEの外径が貫通部の内径とほぼ等しくなるまで巻きつける。このようにシート又はテープEによって塞がれた貫通部の隙間については、上記と同様に、本発明の電磁波吸収体で用いる(A)室温で硬化する流動性ポリマーや第一の態様で用いた流動性のある電磁波吸収体を打設し、硬化させることで埋めることもできる。 In addition, as a reference example of the method for closing a through portion of a conductor wire according to the present invention, as shown in FIG. There is a method of closing the winding and penetration part. The sheet or tape E preferably has a thickness of about 0.5 to 5 mm, and an adhesive can be applied to the back surface. The sheet or tape E is wound around the conductor wire and wound until the outer diameter of the rolled sheet or tape E is substantially equal to the inner diameter of the through portion. Thus, about the clearance of the penetration part blocked | closed with the sheet | seat or the tape E, it was used by the fluid polymer which hardens | cures at room temperature used by the electromagnetic wave absorber of this invention, and the 1st aspect similarly to the above. It can also be filled by placing and curing a fluid electromagnetic wave absorber.

次に、本発明を参考例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
参考例
変成シリコーン樹脂(「MSポリマーS810」、(株)カネカ製)100質量部にカルボニル鉄(「R−1470」、戸田工業(株)製)1000質量部、可塑剤(フタル酸ジイソノニル)20質量部、老化防止剤(「イルガノックス245」チバスペシャリティケミカルズ社製)1質量部及び硬化剤(「ニッカオクチックスズ」、日本化学産業(株)製)0.05質量部を配合して、プラネタリーミキサーを用いて混練し、室温で流動性を有する電磁波吸収体を得た。該電磁波吸収体を図2に示すようなドーナツ状に成形し、硬化させた。該ドーナツ状電磁波吸収体の外径を100mm、中央部の穴の内径を30mm、及び厚さを40mmとした。
次に、電磁波吸収体の外径を導体線の貫通部の内径である72mmに切断し、導体線であるUTPケーブル(外径5.5mm)を該成形体の中央部に貫通させた。次いで、他のドーナツ状電磁波吸収体から、その一部を図3に示すように閉塞部材31として切り出した。そして、閉塞部材31を2つに切断し、また中央部をUTPケーブルの形状及び外径に合わせてカットし、穴部32を設けた。
UTPケーブルをドーナツ状電磁波吸収体の中央部を貫通させ、2つに切断した閉塞部材31で挟むように配して接着剤で固定した(図4参照)。
以下の方法により電磁シールド特性を評価した結果、38dBであり良好な結果を示した。
Next, the present invention will be described in more detail with reference examples , but the present invention is not limited to these examples.
Reference example 1
Modified silicone resin (“MS polymer S810”, manufactured by Kaneka Corporation) 100 parts by mass Carbonyl iron (“R-1470”, manufactured by Toda Kogyo Co., Ltd.) 1000 parts by mass, plasticizer (diisononyl phthalate) 20 parts by mass 1 part by weight of an anti-aging agent ("Irganox 245" manufactured by Ciba Specialty Chemicals) and 0.05 part by weight of a curing agent ("Nikka Octic Tin", manufactured by Nippon Chemical Industry Co., Ltd.) The mixture was kneaded using a mixer to obtain an electromagnetic wave absorber having fluidity at room temperature. The electromagnetic wave absorber was formed into a donut shape as shown in FIG. 2 and cured. The outer diameter of the doughnut-shaped electromagnetic wave absorber was 100 mm, the inner diameter of the central hole was 30 mm, and the thickness was 40 mm.
Next, the outer diameter of the electromagnetic wave absorber was cut to 72 mm, which is the inner diameter of the through portion of the conductor wire, and a UTP cable (outer diameter of 5.5 mm) as the conductor wire was passed through the central portion of the molded body. Next, a part of the doughnut-shaped electromagnetic wave absorber was cut out as a closing member 31 as shown in FIG. Then, the blocking member 31 was cut into two parts, and the center part was cut according to the shape and outer diameter of the UTP cable, and the hole part 32 was provided.
The UTP cable was passed through the central part of the donut-shaped electromagnetic wave absorber, and was sandwiched between two cut-off members 31 and fixed with an adhesive (see FIG. 4).
As a result of evaluating the electromagnetic shielding characteristics by the following method, it was 38 dB and a good result was shown.

本発明によれば、簡易な方法で十分な電磁波シールドが得られ、しかも作業コストを低くすることができる。また、貫通部の正確な大きさや導体線の径、本数などが予め正確にわからなくても、現場にて容易に施行することができる。   According to the present invention, a sufficient electromagnetic shield can be obtained by a simple method, and the operating cost can be reduced. Moreover, even if the exact size of the penetrating part, the diameter of the conductor wire, the number of conductors, etc. are not known in advance, it can be easily implemented at the site.

シールドルームを示す概念図である。It is a conceptual diagram which shows a shield room. ドーナツ状の電磁波吸収体を示す概念図である。It is a conceptual diagram which shows a donut-shaped electromagnetic wave absorber. 閉塞部材の切り出し方法を示す概念図である。It is a conceptual diagram which shows the cutting-out method of a closure member. 本発明の参考例の閉塞方法を示す図である。It is a figure which shows the obstruction | occlusion method of the reference example of this invention. 本発明の参考例の閉塞方法を示す図である。It is a figure which shows the obstruction | occlusion method of the reference example of this invention.

符合の説明Explanation of sign

10:シールドルーム
11:電磁シールド壁
12:貫通部
13:導体線
20:ドーナツ状成形体C
21:切り込み
22:中央部
30:シート状成形体D
31:閉塞部材
32:穴部
40:シート又はテープE
10: Shield room 11: Electromagnetic shield wall 12: Penetration part 13: Conductor wire 20: Donut shaped molded body C
21: Notch 22: Center part 30: Sheet-like molded object D
31: Closure member 32: Hole 40: Sheet or tape E

Claims (6)

電磁シールド空間と非電磁シールド空間とを画する電磁シールド壁における導体線の貫通部の閉塞方法であって、
(A)室温で硬化する流動性ポリマー又はゴム及び(B)磁性体、を含有する電磁波吸収体を用い
前記貫通部に導体線を貫通させた後に、該貫通部に導体線を巻くように袋体を配し、該袋体に室温で流動性を有する前記電磁波吸収体を注入し、硬化させることを特徴とする導体線の貫通部の閉塞方法。
A method of closing a through-hole of a conductor wire in an electromagnetic shield wall that defines an electromagnetic shield space and a non-electromagnetic shield space,
Using an electromagnetic wave absorber containing (A) a fluid polymer or rubber that cures at room temperature and (B) a magnetic substance ,
After passing a conductor wire through the penetrating portion, a bag body is arranged so that the conductor wire is wound around the penetrating portion, and the electromagnetic wave absorber having fluidity at room temperature is injected into the bag body and cured. A method for closing a through portion of a conductor wire, which is characterized.
前記電磁波吸収体の硬化後のJIS K6253(タイプA)による硬度が80度以下である請求項1に記載の導体線の貫通部の閉塞方法。 The method for blocking a through portion of a conductor wire according to claim 1, wherein the hardness of the electromagnetic wave absorber after curing is JIS K6253 (type A) is 80 degrees or less. 室温で硬化する流動性ポリマーが、変成シリコーン樹脂、ポリサルファイド樹脂及びポリウレタン樹脂からなる群より選ばれる少なくとも1種である請求項1又は2に記載の導体線の貫通部の閉塞方法。 The method for closing a through portion of a conductor wire according to claim 1 or 2 , wherein the fluid polymer that cures at room temperature is at least one selected from the group consisting of a modified silicone resin, a polysulfide resin, and a polyurethane resin. 変成シリコーン樹脂が、加水分解性ケイ素基を少なくとも1分子以上有する、ポリオキシアルキレン系樹脂、ポリイソブチレン系樹脂、ポリアクリル系樹脂、ジエン系樹脂及び飽和炭化水素系樹脂からなる群より選ばれる少なくとも1種である請求項に記載の導体線の貫通部の閉塞方法。 The modified silicone resin is at least one selected from the group consisting of a polyoxyalkylene resin, a polyisobutylene resin, a polyacrylic resin, a diene resin, and a saturated hydrocarbon resin having at least one hydrolyzable silicon group. The method for closing a through portion of a conductor wire according to claim 3 , which is a seed. 前記磁性体がカルボニル鉄及び/又はフェライトである請求項1〜4のいずれかに記載の導体線の貫通部の閉塞方法。 The said magnetic body is carbonyl iron and / or a ferrite, The closing method of the penetration part of the conductor wire in any one of Claims 1-4 . 前記電磁波吸収体中の(B)成分の含有量が(A)成分100質量部に対して200〜1500質量部である請求項1〜5のいずれかに記載の導体線の貫通部の閉塞方法。
The content of the (B) component in the said electromagnetic wave absorber is 200-1500 mass parts with respect to 100 mass parts of (A) component, The closure method of the penetration part of the conductor wire in any one of Claims 1-5. .
JP2006279433A 2006-10-13 2006-10-13 Method for closing the penetration of the electromagnetic shield wall Active JP4855204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006279433A JP4855204B2 (en) 2006-10-13 2006-10-13 Method for closing the penetration of the electromagnetic shield wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006279433A JP4855204B2 (en) 2006-10-13 2006-10-13 Method for closing the penetration of the electromagnetic shield wall

Publications (2)

Publication Number Publication Date
JP2008098458A JP2008098458A (en) 2008-04-24
JP4855204B2 true JP4855204B2 (en) 2012-01-18

Family

ID=39380975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006279433A Active JP4855204B2 (en) 2006-10-13 2006-10-13 Method for closing the penetration of the electromagnetic shield wall

Country Status (1)

Country Link
JP (1) JP4855204B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5687531B2 (en) * 2011-03-09 2015-03-18 トヨタ自動車株式会社 Noise reduction device and bus bar module

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593999A (en) * 1982-06-29 1984-01-10 日本電気株式会社 Shield cover for cable
US5106437A (en) * 1987-11-25 1992-04-21 Minnesota Mining And Manufacturing Company Electromagnetic radiation suppression cover
JPH02130000A (en) * 1988-11-09 1990-05-18 Mitsubishi Electric Corp Noise reducing device
JPH03106800A (en) * 1989-09-20 1991-05-07 Hitachi Ltd Running control of mobile body
JP2662110B2 (en) * 1991-07-10 1997-10-08 大成建設株式会社 Electromagnetic wave leakage prevention structure
JPH07166613A (en) * 1993-12-15 1995-06-27 Inaba Denki Sangyo Co Ltd Hydraulic material filling method and filler
JPH07312497A (en) * 1994-05-17 1995-11-28 Sekisui Chem Co Ltd Method and structure for shielding electromagnetic wave at joint
JPH07321490A (en) * 1994-05-26 1995-12-08 Shinano Polymer Kk Electric connector
JPH10275994A (en) * 1997-03-28 1998-10-13 Nec Corp Core for emi countermeasure
JPH11317116A (en) * 1998-04-30 1999-11-16 Tsuchiya Rubber Kk Electromagnetic wave shield material, and electromagnetic wave shield sheet, wire and cable, and cable cover using this
JP2000013081A (en) * 1998-06-17 2000-01-14 Kenichi Ito Electronic part
JP2003043934A (en) * 2001-07-23 2003-02-14 Three M Innovative Properties Co Optical filter and double-faced adhesive tape with tab
JP4794771B2 (en) * 2001-08-17 2011-10-19 株式会社熊谷組 Electromagnetic shield layer penetration structure
JP2003313442A (en) * 2002-04-25 2003-11-06 Auto Kagaku Kogyo Kk Curable composition, its production method, and sealing material composition
JP3866154B2 (en) * 2002-05-16 2007-01-10 オート化学工業株式会社 Curable composition and sealant composition
EP1588984B1 (en) * 2002-12-25 2009-12-16 Hakusui Tech Co., Ltd. Electroconductive zinc oxide powder and method for production thereof, and electroconductive composition
JP4967254B2 (en) * 2004-11-05 2012-07-04 日本軽金属株式会社 Electronic equipment test box
JP2006253283A (en) * 2005-03-09 2006-09-21 Taisei Corp Electromagnetic shielding wire-through mechanism of cable

Also Published As

Publication number Publication date
JP2008098458A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
US5910524A (en) Corrosion-resistant, form-in-place EMI shielding gasket
US7425604B2 (en) Preformed EMI/RFI shielding compositions in shaped form
DE602005004560T2 (en) PREPARED COMPOSITIONS IN SHAPED MOLD WITH POLYMERMAL
JP5360947B2 (en) Resin composition
JPH02209962A (en) Electrically conductive polyurethane form foamable at proper place
WO2008069059A1 (en) Resin composition
US20090223629A1 (en) Preformed compositions in shaped form comprising polymer blends
JP4855204B2 (en) Method for closing the penetration of the electromagnetic shield wall
DE60030481T2 (en) IN-SITU-PREPARATION OF AN ELECTROMAGNETIC SHIELDED SEAL WITH LOW CLOSURE POWER
JP2010077198A (en) Resin composition
EP1131828A1 (en) Composite magnetic body and electromagnetic interference suppressing body using the same
DE60125376T2 (en) IMPLEMENTING DEVICE
JP4465023B2 (en) Organic damping material
US7928327B2 (en) Shielding device
JP2004095847A (en) Electromagnetic wave shield gasket and manufacturing method thereof
CN202721947U (en) Halogen-free flame-retardant electromagnetic interference protection gasket for electronic instrument
WO2013061918A1 (en) Electromagnetic wave absorber and method for manufacturing electromagnetic wave absorber
JP3550179B2 (en) Electroconductive sealing material composition and method for shielding electromagnetic waves at joints using the conductive sealing material composition
CN110483980B (en) Composite electromagnetic shielding material and preparation method and application thereof
JP2003232444A (en) Laminated plate for gasket, and gasket
CN109971055A (en) A kind of high intensity stable type waterproof communication cable material and preparation method thereof
JP7089129B2 (en) Refractory resin compositions, refractory materials, and fittings
JP6700158B2 (en) Bonded magnet and manufacturing method thereof
JP2003262274A (en) Gasket
CN104202958A (en) Shielding device applied to electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091013

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111024

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20171104

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4855204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250