JP4853976B2 - Method for producing anisotropic film - Google Patents

Method for producing anisotropic film Download PDF

Info

Publication number
JP4853976B2
JP4853976B2 JP2009076524A JP2009076524A JP4853976B2 JP 4853976 B2 JP4853976 B2 JP 4853976B2 JP 2009076524 A JP2009076524 A JP 2009076524A JP 2009076524 A JP2009076524 A JP 2009076524A JP 4853976 B2 JP4853976 B2 JP 4853976B2
Authority
JP
Japan
Prior art keywords
film
liquid crystal
light
polarizing element
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009076524A
Other languages
Japanese (ja)
Other versions
JP2009199087A (en
Inventor
俊介 首藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2009076524A priority Critical patent/JP4853976B2/en
Publication of JP2009199087A publication Critical patent/JP2009199087A/en
Application granted granted Critical
Publication of JP4853976B2 publication Critical patent/JP4853976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、異方性フィルムの製造方法に関する。   The present invention relates to a method for producing an anisotropic film.

従来の異方性フィルムを製造する方法としては、ポリマーフィルムを延伸(一軸、二軸)する方法や、ポリイミドもしくはポリビニル薄膜をラビング処理する方法がある。しかし、延伸方法には、所望の異方性を得るための延伸条件を制御することが難しく、得られるポリマーフィルムの異方性の精度が低下するという問題があり、一方、ラビング処理方法には、ラビングによりフィルムに帯電が発生し、塵発生という問題があった。   As a conventional method for producing an anisotropic film, there are a method of stretching a polymer film (uniaxial or biaxial) and a method of rubbing a polyimide or polyvinyl thin film. However, the stretching method has a problem that it is difficult to control the stretching conditions for obtaining the desired anisotropy, and the accuracy of the anisotropy of the resulting polymer film is reduced. The film was charged by rubbing, and there was a problem of dust generation.

このような問題を解決するために、近年、延伸やラビングを必要としない、異方性フィルムの製造方法が開発されている。例えば、偏光紫外線を照射し、光架橋性ポリマーの架橋形成方向を制御して異方性フィルムを製造する方法(例えば、非特許文献1および2参照)や、偏光紫外線を照射し、光分解性ポリマーの分子内結合の分解方向を制御して異方性フィルムを製造する方法(例えば、非特許文献3、特許文献1参照)、偏光紫外線を照射し、光異性化ポリマーの異性化方向を制御して異方性フィルムを製造する方法(例えば、非特許文献4、特許文献2,3参照)等がある。   In order to solve such problems, in recent years, methods for producing anisotropic films that do not require stretching or rubbing have been developed. For example, a method of producing an anisotropic film by irradiating polarized ultraviolet rays and controlling the cross-linking direction of the photocrosslinkable polymer (for example, see Non-Patent Documents 1 and 2), or irradiating polarized ultraviolet rays and photodegradable A method for producing an anisotropic film by controlling the decomposition direction of the intramolecular bond of the polymer (see, for example, Non-Patent Document 3 and Patent Document 1), irradiating polarized ultraviolet light, and controlling the isomerization direction of the photoisomerized polymer Thus, there is a method of manufacturing an anisotropic film (see, for example, Non-Patent Document 4, Patent Documents 2 and 3).

しかし、このような方法には、偏光紫外線を照射するための、特殊な機構の紫外線照射装置が必要となる。また、このような方法には、光を照射する際、ポリマーフィルムに対し、照射光の入射方向を詳細に調整する高度なアラインメント調整も必要となる。   However, such a method requires an ultraviolet irradiation device having a special mechanism for irradiating polarized ultraviolet rays. Such a method also requires a high degree of alignment adjustment for adjusting the incident direction of the irradiation light in detail with respect to the polymer film when the light is irradiated.

特開平9−230353号公報Japanese Patent Laid-Open No. 9-230353 特許2990270号公報Japanese Patent No. 2990270 特許3113539号公報Japanese Patent No. 3131539

M.Schadtら、Jpn.J.Appl.Phys.、31, p.2155-2164 (1992)M. Schadt et al., Jpn.J.Appl.Phys., 31, p.2155-2164 (1992) M.Schadt、Nature、381, p.212,1996M. Schadt, Nature, 381, p.212, 1996 M.Nishikawaら、Liquid Crystals、26, p.575-580 (1992)M. Nishikawa et al., Liquid Crystals, 26, p.575-580 (1992) 市村國宏著、「応用物理」、1993年、第62巻、第10号、p.998Kunihiro Ichimura, “Applied Physics”, 1993, Vol. 62, No. 10, p.998

そこで、本発明は、特殊な装置を用いることなく、簡単に異方性フィルムを製造することが可能な方法を提供することを目的とする。   Then, an object of this invention is to provide the method which can manufacture an anisotropic film easily, without using a special apparatus.

前記目的を達成するために、本発明の異方性フィルムの製造方法は、
偏光素子上に形成された光反応性物質フィルムを準備し、
これに前記偏光素子を介して光を照射することにより、前記光反応性物質フィルムに異方性を付与することを特徴とする。
In order to achieve the above object, the method for producing an anisotropic film of the present invention comprises:
Prepare a photoreactive material film formed on the polarizing element,
Anisotropy is imparted to the photoreactive substance film by irradiating light through the polarizing element.

本発明の製造方法は、前記のように、偏光素子上に形成された光反応性物質フィルムに、偏光素子を介して光を照射するので、光照射装置に特別な装備は不要である。従って、本発明の製造方法では、汎用の光照射装置を用いることができる。さらに、光反応性物質フィルムは前記偏光素子の上に形成されており、これに光を照射するので、高度なアラインメント調整を必要とせず、かつ軸精度が良好な異方性を形成できる。さらに、本発明の製造方法は、従来の方法のように延伸やラビング処理も行わないので、得られる異方性の
精度も向上し、かつ塵発生も抑制できる。
In the production method of the present invention, as described above, the photoreactive substance film formed on the polarizing element is irradiated with light through the polarizing element, so that no special equipment is required for the light irradiation apparatus. Therefore, a general-purpose light irradiation apparatus can be used in the manufacturing method of the present invention. Furthermore, since the photoreactive substance film is formed on the polarizing element and irradiates the light with this, an anisotropy with good axial accuracy can be formed without requiring a high degree of alignment adjustment. Furthermore, since the production method of the present invention does not perform stretching or rubbing treatment as in the conventional method, the accuracy of the obtained anisotropy is improved and the generation of dust can be suppressed.

なお、本発明の異方性フィルムは、液晶配向能および光学異方性の少なくとも一方を有する。     The anisotropic film of the present invention has at least one of liquid crystal alignment ability and optical anisotropy.

本発明の製造方法における、光照射の一例を示す概念図である。It is a conceptual diagram which shows an example of light irradiation in the manufacturing method of this invention.

本発明の製造方法において、前記光反応性物質フィルムは、前記偏光素子上に、光反応性物質の溶液または溶融液を塗工し、これを固化させることにより形成されてもよい。   In the production method of the present invention, the photoreactive substance film may be formed by applying a solution or melt of a photoreactive substance on the polarizing element and solidifying it.

本発明の製造方法において、前記光反応性物質は、例えば、1〜780nmの範囲にある波長を有する光で反応しうる物質である。   In the production method of the present invention, the photoreactive substance is a substance that can react with light having a wavelength in the range of 1 to 780 nm, for example.

本発明の製造方法において、前記偏光素子は、例えば、プリズム偏光子、偏光フィルタまたは偏光子である。   In the manufacturing method of the present invention, the polarizing element is, for example, a prism polarizer, a polarizing filter, or a polarizer.

本発明の製造方法において、前記光反応性物質フィルムは、前記偏光素子上に直接形成されてもよいし、保護層を介して前記偏光素子上に形成されてもよい。   In the production method of the present invention, the photoreactive substance film may be directly formed on the polarizing element, or may be formed on the polarizing element via a protective layer.

本発明の製造方法において、前記光反応性物質フィルムは、前記光反応性物質に加えて液晶性化合物を含んでもよい。   In the production method of the present invention, the photoreactive substance film may contain a liquid crystalline compound in addition to the photoreactive substance.

本発明の製造方法において、前記液晶性化合物は、液晶性モノマー、液晶性オリゴマーおよび液晶性ポリマーからなる群から選択される少なくとも1つの液晶性化合物であってもよい。   In the production method of the present invention, the liquid crystal compound may be at least one liquid crystal compound selected from the group consisting of a liquid crystal monomer, a liquid crystal oligomer, and a liquid crystal polymer.

本発明の製造方法において、前記光反応性物質フィルムは、前記光反応性物質に加えて液晶性モノマーまたは液晶性オリゴマーから製造された非液晶性ポリマーを含んでもよい。   In the production method of the present invention, the photoreactive substance film may include a non-liquid crystalline polymer produced from a liquid crystalline monomer or a liquid crystalline oligomer in addition to the photoreactive substance.

本発明の製造方法において、前記光反応性物質は、光反応性部位を有する液晶性モノマー、光反応性部位を有する液晶性オリゴマー、光反応性部位を有する液晶性ポリマー、および光反応性部位を有する、液晶性モノマーまたは液晶性オリゴマーから製造された非液晶性ポリマーからなる群から選択される少なくとも1つの物質であってもよい。   In the production method of the present invention, the photoreactive substance includes a liquid crystalline monomer having a photoreactive site, a liquid crystalline oligomer having a photoreactive site, a liquid crystalline polymer having a photoreactive site, and a photoreactive site. It may be at least one substance selected from the group consisting of a non-liquid crystalline polymer produced from a liquid crystalline monomer or a liquid crystalline oligomer.

本発明の異方性フィルムは、前記本発明の製造方法により製造されたものである。   The anisotropic film of the present invention is produced by the production method of the present invention.

本発明の異方性フィルムは、例えば、液晶配向膜または光学異方性フィルムとして使用することができる。   The anisotropic film of the present invention can be used as, for example, a liquid crystal alignment film or an optical anisotropic film.

本発明の光学フィルムは、本発明の異方性フィルムを含む光学フィルムである。   The optical film of the present invention is an optical film including the anisotropic film of the present invention.

本発明の光学フィルムは、異方性フィルム単独で構成されてもよい。   The optical film of the present invention may be composed of an anisotropic film alone.

本発明の液晶パネルは、液晶セルおよび光学部材を含み、前記液晶セルの少なくとも一方の表面に前記光学部材が配置された液晶パネルであって、前記光学部材は、本発明の光学フィルムである。   The liquid crystal panel of the present invention is a liquid crystal panel including a liquid crystal cell and an optical member, and the optical member is disposed on at least one surface of the liquid crystal cell, and the optical member is the optical film of the present invention.

本発明の液晶表示装置は、液晶パネルを含む液晶表示装置であって、前記液晶パネルは本発明の液晶パネルである。   The liquid crystal display device of the present invention is a liquid crystal display device including a liquid crystal panel, and the liquid crystal panel is the liquid crystal panel of the present invention.

本発明の画像表示装置は、本発明の光学フィルムを含む。   The image display device of the present invention includes the optical film of the present invention.

本発明の製造方法は、例えば、以下のようにして行うことができる。   The production method of the present invention can be performed, for example, as follows.

まず、偏光素子上に形成された光反応性物質フィルムを、例えば、以下のようにして準備する。   First, the photoreactive substance film formed on the polarizing element is prepared as follows, for example.

偏光素子上に形成された光反応性物質フィルムは、例えば、前述のように、偏光素子の上に、光反応性物質の溶液または溶融液を塗工し、これを固化させることにより、形成してもよい。   The photoreactive substance film formed on the polarizing element is formed by, for example, applying a photoreactive substance solution or melt on the polarizing element and solidifying it as described above. May be.

前記光反応性物質は、前述のように、例えば、1〜780nmの範囲にある波長を有する光で反応しうる物質が挙げられ、そのような光反応性物質としては、アゾベンゼン、スチルベン、スピロピラン、アントラセンやそれらの誘導体など光で異性化する物質、シンナメート誘導体(例えば、ポリビニルシンナメート)、クマリン誘導体、カルコン誘導体など光で二量化若しくは重合する物質などの物質、ポリイミド、ポリシロキサンなど光で分解する物質、下式(IV)で示す直線光重合ポリマーなどが挙げられる。光反応性物質は、1種類でもよいし、2種類以上の混合物であってもよい。   Examples of the photoreactive substance include, as described above, a substance that can react with light having a wavelength in the range of 1 to 780 nm. Examples of such a photoreactive substance include azobenzene, stilbene, spiropyran, Substances that isomerize by light such as anthracene and derivatives thereof, cinnamate derivatives (for example, polyvinyl cinnamate), coumarin derivatives, chalcone derivatives and other substances that dimerize or polymerize by light, polyimide, polysiloxane, etc. Examples thereof include materials and linear photopolymerization polymers represented by the following formula (IV). The photoreactive substance may be one kind or a mixture of two or more kinds.

Figure 0004853976
Figure 0004853976

前記光反応性物質フィルムは、前述のように、前記光反応性物質に加えて液晶性化合物を含んでもよい。従って、前記光反応性物質の溶液または溶融液に、液晶性化合物を含んでもよい。その液晶性化合物は、例えば、液晶性モノマー、液晶性オリゴマー、液晶性ポリマーなどである。液晶性モノマーとしては、それ自体が液晶性を示すものであり、例えば、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類などが挙げられる。また、液晶性オリゴマーとしては、前記液晶性モノマーーが、例えば、1個以上十数個程度重合したものであり、それ自体が液晶性を示すものである。前記液晶性ポリマーとしては、前記液晶性モノマーが、前記液晶性オリゴマー以上に重合し、それ自体が液晶性を示すものである。液晶性化合物は、1種類でもよいし、2種類以上の混合物であってもよい。2種類以上の液晶性化合物の混合物の例としては、特表2002−517605号に記載のものが挙げられる。この混合物としては、例えば、下記の式(I)、(II)および(III)に示す化合物の混合物が挙げられる。   As described above, the photoreactive substance film may contain a liquid crystal compound in addition to the photoreactive substance. Therefore, a liquid crystalline compound may be included in the solution or melt of the photoreactive substance. Examples of the liquid crystal compound include a liquid crystal monomer, a liquid crystal oligomer, and a liquid crystal polymer. As the liquid crystalline monomer, the liquid crystalline monomer itself exhibits liquid crystallinity, for example, azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes. Cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines, phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles. Moreover, as a liquid crystalline oligomer, the said liquid crystalline monomer is what polymerized about 1 or more dozens, for example, and itself shows liquid crystallinity. As the liquid crystalline polymer, the liquid crystalline monomer is polymerized more than the liquid crystalline oligomer, and itself exhibits liquid crystallinity. One kind of liquid crystalline compound may be used, or a mixture of two or more kinds may be used. Examples of the mixture of two or more kinds of liquid crystalline compounds include those described in JP-T-2002-517605. Examples of the mixture include a mixture of compounds represented by the following formulas (I), (II) and (III).

Figure 0004853976
Figure 0004853976

また、前記光反応性物質フィルムは、前述のように、前記光反応性物質に加えて、液晶性モノマーまたは液晶性オリゴマーから形成された非液晶性ポリマーを含んでもよい。従って、前記光反応性物質の溶液または溶融液に、そのような非液晶性ポリマーを含んでもよい。ここで、液晶性モノマーまたは液晶性オリゴマーから形成された非液晶性ポリマーは、モノマーやオリゴマーの際には液晶性を示すが、重合によりポリマーになると、非液晶性を示すものである。非液晶性ポリマーは、1種類でもよいし、2種類以上の混合物であってもよい。   In addition to the photoreactive substance, the photoreactive substance film may include a non-liquid crystalline polymer formed from a liquid crystalline monomer or a liquid crystalline oligomer as described above. Therefore, the non-liquid crystalline polymer may be included in the solution or melt of the photoreactive substance. Here, the non-liquid crystalline polymer formed from the liquid crystalline monomer or the liquid crystalline oligomer exhibits liquid crystallinity in the case of the monomer or oligomer, but exhibits non-liquid crystalline properties when polymerized by polymerization. One type of non-liquid crystalline polymer may be used, or a mixture of two or more types may be used.

または、その光反応性物質は、前述のように、例えば、光反応性部位を有する液晶性モノマー、光反応性部位を有する液晶性オリゴマー、光反応性部位を有する液晶性ポリマーなどであってもよい。または、その光反応性物質は、光反応性部位を有する、液晶性モノマーまたは液晶性オリゴマーから形成された非液晶性ポリマーであってもよい。   Alternatively, the photoreactive substance may be, for example, a liquid crystalline monomer having a photoreactive site, a liquid crystalline oligomer having a photoreactive site, or a liquid crystalline polymer having a photoreactive site, as described above. Good. Alternatively, the photoreactive substance may be a non-liquid crystalline polymer formed from a liquid crystalline monomer or liquid crystalline oligomer having a photoreactive site.

前記光反応性部位とは、光照射により異性化、分解、二量化若しくは重合等を引き起こすような部位を意味する。光照射により異性化を引き起こすような部位の例は、アゾ、スチルベン、光照射により二量化若しくは重合を引き起こすような基の例は、ビニル基、シンナモイル基、カルコニル基、光照射により分解を引き起こすような基の例は、イミド基である。前記光反応性物質は、1種類で使用してもよいし、2種類以上の併用してもよい。   The photoreactive site means a site that causes isomerization, decomposition, dimerization, polymerization or the like by light irradiation. Examples of sites that cause isomerization by light irradiation are azo, stilbene, examples of groups that cause dimerization or polymerization by light irradiation are vinyl groups, cinnamoyl groups, chalconyl groups, and light irradiation causes decomposition. An example of such a group is an imide group. The photoreactive substance may be used alone or in combination of two or more.

前記偏光素子は、例えば、1〜780nmの範囲にある波長を有する光を透過させることができる偏光素子である。光反応性物質フィルムに照射する光としては、200〜400nmの範囲が好ましく、290〜400nmの範囲がより好ましい。これは、前記の光反応性物質が、紫外線領域に吸収波長を有するものが多いからである。   The polarizing element is, for example, a polarizing element that can transmit light having a wavelength in the range of 1 to 780 nm. As light irradiated to a photoreactive substance film, the range of 200-400 nm is preferable, and the range of 290-400 nm is more preferable. This is because many of the photoreactive substances have an absorption wavelength in the ultraviolet region.

前記偏光素子は、前述のように、例えば、プリズム偏光子、偏光フィルタ、偏光子等である。プリズム偏光子としては、例えば、方解石など無機結晶を用いたグラントムソンプリズム、グランレーザプリズム、およびグランテーラープリズムなどが挙げられ、なかでも、接着剤層を除去したグランテーラープリズムが好ましい。偏光フィルタとしては、二色性色素を含有する偏光フィルムなどが挙げられる。   As described above, the polarizing element is, for example, a prism polarizer, a polarizing filter, a polarizer, or the like. Examples of the prism polarizer include a Glan-Thompson prism using an inorganic crystal such as calcite, a Glan-Laser prism, and a Glan-Taylor prism. Among these, a Glan-Taylor prism from which the adhesive layer is removed is preferable. Examples of the polarizing filter include a polarizing film containing a dichroic dye.

前記偏光子としては、例えば、従来公知の方法により、各種フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて染色し、架橋、延伸、乾燥することによって調製したもの等が使用できる。この中でも、自然光を入射させると直線偏光を透過するフィルムが好ましく、光透過率や偏光度に優れるものが好ましい。前記二色性物質を吸着させる各種フィルムとしては、例えば、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム、セルロース系フィルム等の親水性高分子フィルム等が挙げられ、これらの他にも、例えば、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等のポリエン配向フィルム等も使用できる。これらの中でも、好ましくはPVA系フィルムである。また、前記偏光子としては、例えば、特開2000−162432号に記載の偏光子が挙げられる。この偏光子は、アスペクト比が2以上で、短径が0.5μm以下の針状物質を、屈折率が0.05以上相違する紫外線透過膜中に、所定方向に配向した状態にて分散含有することを特徴とする紫外線偏光子である。このような偏光子は、例えば、ポリメチルペンテン100重量部と、短径0.1μm、長径10μmの針状酸化チタン3重量部を二軸混練してTダイを介し270℃で厚さ300μmのフィルムに成形した後、それを190℃で6倍に延伸して、製造することができる。   Examples of the polarizer include those prepared by adsorbing and dying dichroic substances such as iodine and dichroic dyes on various films, crosslinking, stretching, and drying by a conventionally known method. Can be used. Among these, a film that transmits linearly polarized light when natural light is incident is preferable, and a film that is excellent in light transmittance and degree of polarization is preferable. Examples of the various films that adsorb the dichroic substance include high hydrophilicity such as polyvinyl alcohol (PVA) film, partially formalized PVA film, ethylene / vinyl acetate copolymer partially saponified film, and cellulose film. In addition to these, for example, polyene oriented films such as PVA dehydrated products and polyvinyl chloride dehydrochlorinated products can be used. Among these, PVA film is preferable. Moreover, as said polarizer, the polarizer of Unexamined-Japanese-Patent No. 2000-162432 is mentioned, for example. This polarizer contains a needle-like substance having an aspect ratio of 2 or more and a minor axis of 0.5 μm or less dispersed in an ultraviolet transmission film having a refractive index of 0.05 or more and oriented in a predetermined direction. This is an ultraviolet polarizer. Such a polarizer is, for example, biaxially kneaded with 100 parts by weight of polymethylpentene and 3 parts by weight of acicular titanium oxide having a minor axis of 0.1 μm and a major axis of 10 μm, and a thickness of 300 μm at 270 ° C. via a T-die. After being formed into a film, it can be produced by stretching it 6 times at 190 ° C.

前記偏光素子の厚みは、特に制限されないが、例えば、1〜1000μmの範囲であり、好ましくは、5〜500μmの範囲であり、より好ましくは、10〜300μmの範囲である。   Although the thickness in particular of the said polarizing element is not restrict | limited, For example, it is the range of 1-1000 micrometers, Preferably, it is the range of 5-500 micrometers, More preferably, it is the range of 10-300 micrometers.

前記光反応性物質溶液の溶媒としては、特に制限されず、例えば、前記光反応性物質等を溶解できればよく、前記光反応性物質等の種類に応じて適宜決定できる。具体例としては、例えば、クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタン、テトラクロロエタン、トリクロロエチレン、テトラクロロエチレン、クロロベンゼン、オルソジクロロベンゼン等のハロゲン化炭化水素類;フェノール、パラクロロフェノール等のフェノール類;ベンゼン、トルエン、キシレン、メトキシベンゼン、1,2−ジメトキシベンゼン等の芳香族炭化水素類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン、2−ピロリドン、N−メチル−2−ピロリドン等のケトン類;酢酸エチル、酢酸ブチル等のエステル類;t−ブチルアルコール、グリセリン、エチレングリコール、トリエチレングリコール、エチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコール、ジプロピレングリコール、2−メチル−2,4−ペンタンジオールのようなアルコール類;ジメチルホルムアミド、ジメチルアセトアミドのようなアミド類;アセトニトリル、ブチロニトリルのようなニトリル類;ジエチルエーテル、ジブチルエーテル、テトラヒドロフランのようなエーテル類;あるいは二硫化炭素、エチルセルソルブ、ブチルセルソルブ等が挙げられる。これらの溶媒は、一種類でもよいし、二種類以上を併用してもよい。また、前記偏光素子を侵食しないものが好ましい。   The solvent of the photoreactive substance solution is not particularly limited, and may be appropriately determined depending on the type of the photoreactive substance or the like, for example, as long as the photoreactive substance or the like can be dissolved. Specific examples include, for example, halogenated hydrocarbons such as chloroform, dichloromethane, carbon tetrachloride, dichloroethane, tetrachloroethane, trichloroethylene, tetrachloroethylene, chlorobenzene, and orthodichlorobenzene; phenols such as phenol and parachlorophenol; benzene, toluene, Aromatic hydrocarbons such as xylene, methoxybenzene, 1,2-dimethoxybenzene; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclopentanone, 2-pyrrolidone, N-methyl-2-pyrrolidone; acetic acid Esters such as ethyl and butyl acetate; t-butyl alcohol, glycerin, ethylene glycol, triethylene glycol, ethylene glycol monomethyl ether, diethylene glycol Alcohols such as coal dimethyl ether, propylene glycol, dipropylene glycol, 2-methyl-2,4-pentanediol; Amides such as dimethylformamide and dimethylacetamide; Nitriles such as acetonitrile and butyronitrile; Diethyl ether, Di Examples include ethers such as butyl ether and tetrahydrofuran; carbon disulfide, ethyl cellosolve, butyl cellosolve, and the like. One type of these solvents may be used, or two or more types may be used in combination. Moreover, what does not corrode the said polarizing element is preferable.

前記光反応性物質溶液における光反応性物質濃度は、特に制限されないが、例えば、塗工が容易な粘度となることから、その溶媒に対して、前記光反応性物質が、例えば、0.1〜30重量%、好ましくは0.5〜15重量%、より好ましくは、1〜5重量%である。5重量%以下であると、滑らかな塗工面を形成できる粘度が得られるからである。   The concentration of the photoreactive substance in the photoreactive substance solution is not particularly limited. For example, since the viscosity is easy to apply, the photoreactive substance is, for example, 0.1% with respect to the solvent. -30 wt%, preferably 0.5-15 wt%, more preferably 1-5 wt%. It is because the viscosity which can form a smooth coating surface is obtained as it is 5 weight% or less.

なお、前記光反応性物質溶液は、前述のように、前記液晶性化合物や、液晶性モノマーまたは液晶性オリゴマーから製造された前記非液晶性ポリマーを含んでもよい。   Note that, as described above, the photoreactive substance solution may include the non-liquid crystalline polymer produced from the liquid crystalline compound, a liquid crystalline monomer, or a liquid crystalline oligomer.

前記光反応性物質溶液は、必要に応じて、さらに安定剤、可塑剤、金属類等の種々の添加剤を配合してもよい。   The photoreactive substance solution may further contain various additives such as stabilizers, plasticizers, metals and the like, if necessary.

前記光反応性物質が液晶オリゴマー、液晶モノマー等を含み、これを後で光照射により重合させる場合は、前記光反応性物質溶液に光重合開始剤を加えておくことがより好ましい。前記光重合開始剤は特に限定されないが、例えば、チバスペシャリティーケミカルズ社製Irgacure907、Irgacure369、Irgacure184(いずれも商品名)、またはこれらの混合物等が好ましい。前記光重合開始剤の添加量も特に限定されない。   In the case where the photoreactive substance includes a liquid crystal oligomer, a liquid crystal monomer, and the like and is polymerized later by light irradiation, it is more preferable to add a photopolymerization initiator to the photoreactive substance solution. Although the said photoinitiator is not specifically limited, For example, Irgacure907, Irgacure369, Irgacure184 (all are brand names) by Ciba Specialty Chemicals, or a mixture thereof etc. are preferable. The addition amount of the photopolymerization initiator is not particularly limited.

また、前記光反応性物質溶液は、例えば、他の樹脂を含有してもよい。前記他の樹脂としては、例えば、各種汎用樹脂、エンジニアリングプラスチック、熱可塑性樹脂、熱硬化性樹脂等が挙げられる。   The photoreactive substance solution may contain other resins, for example. Examples of the other resin include various general-purpose resins, engineering plastics, thermoplastic resins, and thermosetting resins.

前記汎用樹脂としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリメチルメタクリレート(PMMA)、ABS樹脂、およびAS樹脂等が挙げられる。前記エンジニアリングプラスチックとしては、例えば、ポリアセテート(POM)、ポリカーボネート(PC)、ポリアミド(PA:ナイロン)、ポリエチレンテレフタレート(PET)、およびポリブチレンテレフタレート(PBT)等が挙げられる。前記熱可塑性樹脂としては、例えば、ポリフェニレンスルフィド(PPS)、ポリエーテルスルホン(PES)、ポリケトン(PK)、ポリイミド(PI)、ポリシクロヘキサンジメタノールテレフタレート(PCT)、ポリアリレート(PAR)、および液晶ポリマー(LCP)等が挙げられる。前記熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ノボラック樹脂等が挙げられる。   Examples of the general-purpose resin include polyethylene (PE), polypropylene (PP), polystyrene (PS), polymethyl methacrylate (PMMA), ABS resin, and AS resin. Examples of the engineering plastic include polyacetate (POM), polycarbonate (PC), polyamide (PA: nylon), polyethylene terephthalate (PET), and polybutylene terephthalate (PBT). Examples of the thermoplastic resin include polyphenylene sulfide (PPS), polyethersulfone (PES), polyketone (PK), polyimide (PI), polycyclohexanedimethanol terephthalate (PCT), polyarylate (PAR), and liquid crystal polymer. (LCP) and the like. Examples of the thermosetting resin include an epoxy resin, a phenol resin, and a novolac resin.

前記光反応性物質溶液の塗工方法としては、例えば、スピンコート法、ロールコート法、フローコート法、ダイコート法、ブレードコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法、押出法等が挙げられる。   Examples of the coating method of the photoreactive substance solution include a spin coating method, a roll coating method, a flow coating method, a die coating method, a blade coating method, a printing method, a dip coating method, a casting film forming method, and a bar coating method. , Gravure printing method, extrusion method and the like.

また、前記光反応性物質の溶融液の塗工方法としては、前記偏光素子の上に塗工可能な方法であれば限定されないが、例えば、キャスティング法、溶融押し出し法等が挙げられる。前記光反応性物質の溶融液は、例えば、前記のような、液晶性化合物や、液晶性モノマーまたは液晶性オリゴマーから製造された非液晶性ポリマーを含んでもよい。また、前記光反応性物質の溶融液は、必要に応じて、上述の安定剤、可塑剤、金属類等の種々の添加剤および異なる他の樹脂をさらに含有してもよい。   The method for applying the melt of the photoreactive substance is not limited as long as it can be applied onto the polarizing element, and examples thereof include a casting method and a melt extrusion method. The melt of the photoreactive substance may include, for example, the above-described liquid crystal compound, a non-liquid crystal polymer manufactured from a liquid crystal monomer or a liquid crystal oligomer. In addition, the melt of the photoreactive substance may further contain various additives such as the above-described stabilizer, plasticizer, metals, and other different resins as necessary.

そして、前記偏光素子上に塗工された前記光反応性物質の溶液または溶融液を固化させて、前記偏光素子上に光反応性物質フィルムを形成することができる。   Then, the photoreactive substance solution or melt applied on the polarizing element can be solidified to form a photoreactive substance film on the polarizing element.

前記固化の方法としては、例えば、自然乾燥や加熱乾燥等の乾燥が挙げられる。その条件も、例えば、前記偏光素子の材料の種類、前記光反応性物質の種類や、溶液の場合には前記溶媒の種類等に応じて適宜決定できるが、例えば、温度は、偏光子を劣化させない程度にすることが好ましく、具体的には、0〜150℃の範囲が好ましく、より好ましくは、20〜60℃である。   Examples of the solidification method include drying such as natural drying and heat drying. The conditions can also be appropriately determined according to, for example, the type of material of the polarizing element, the type of the photoreactive substance, and the type of the solvent in the case of a solution. For example, the temperature deteriorates the polarizer. It is preferable to make it a grade which does not make it, and specifically, the range of 0-150 degreeC is preferable, More preferably, it is 20-60 degreeC.

前記光反応性物質フィルムの厚みは、特に制限されないが、例えば、0.005〜5μmの範囲であり、好ましくは、0.010〜0.5μmの範囲であり、より好ましくは、0.050〜0.1μmの範囲である。   The thickness of the photoreactive substance film is not particularly limited, and is, for example, in the range of 0.005 to 5 μm, preferably in the range of 0.010 to 0.5 μm, more preferably 0.050 to 0.050. The range is 0.1 μm.

このようにして、偏光素子上に光反応性物質フィルムを形成できるが、その他の方法で形成してもよい。例えば、光反応性物質フィルムを偏光素子の上に貼着してもよい。前記光反応性物質フィルムは、市販品を使用してもよいし、別途作製してもよい。   Thus, although a photoreactive substance film can be formed on a polarizing element, it may be formed by other methods. For example, you may stick a photoreactive substance film on a polarizing element. The photoreactive substance film may be a commercially available product or may be prepared separately.

偏光素子と光反応性物質フィルムとの貼着は、接着剤もしくは粘着剤を用いることができる。前記接着剤としては、例えば、アクリル系、ビニルアルコール系、シリコーン系、ポリエステル系、ポリウレタン系、ポリエーテル系等のポリマー製接着剤や、ゴム系接着剤等が挙げられる。前記粘着剤としては、例えば、アクリル系ポリマーやシリコーン系ポリマー、ポリエステル、ポリウレタン、ポリエーテル、合成ゴム等のポリマーを適宜ベースポリマーとして調製された粘着剤等が挙げられる。前記接着剤や粘着剤は、光学的透明性に優れ、光照射による光反応性物質フィルムに異方性を付与することを妨げないものが好ましい。   An adhesive or a pressure-sensitive adhesive can be used for attaching the polarizing element and the photoreactive substance film. Examples of the adhesive include polymer adhesives such as acrylic, vinyl alcohol, silicone, polyester, polyurethane, and polyether, and rubber adhesives. Examples of the pressure-sensitive adhesive include pressure-sensitive adhesives prepared by appropriately using a polymer such as acrylic polymer, silicone polymer, polyester, polyurethane, polyether, and synthetic rubber as a base polymer. The adhesive and the pressure-sensitive adhesive are preferably excellent in optical transparency and do not hinder the application of anisotropy to the photoreactive substance film by light irradiation.

なお、前記光反応性物質フィルムは、前述のように、前記偏光素子上に直接、形成されていてもよく、または、前記別の層を介して、前記偏光素子上に形成されていてもよい。前記別の層を介して前記偏光素子上に形成された前記光反応性物質フィルムは、例えば、まず偏光素子上に別の層、例えば保護層を形成し、その上に、光反応性物質の溶液または溶融液を塗工し、これを固化させることにより形成できる。この他、例えば、前記偏光素子と、前記別の層と、前記光反応性物質フィルムを準備し、それらを順次、前記のような接着剤や粘着剤を介して接着させて製造してもよい。   The photoreactive substance film may be formed directly on the polarizing element as described above, or may be formed on the polarizing element via the another layer. . The photoreactive substance film formed on the polarizing element through the another layer, for example, first forms another layer, for example, a protective layer, on the polarizing element, and on the photoreactive substance film, It can be formed by applying a solution or melt and solidifying it. In addition, for example, the polarizing element, the separate layer, and the photoreactive substance film may be prepared and sequentially bonded to each other via the adhesive or the pressure-sensitive adhesive as described above. .

前記別の層としては、前記偏光素子を透過できる波長を有する光が透過できるものが好ましく、例えば、偏光素子の保護層が挙げられる。前記保護層としては、特に制限されず、従来公知の透明フィルムを使用できるが、例えば、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れるものが好ましい。このような保護層の材質の具体例としては、トリアセチルセルロール等のセルロース系樹脂や、ポリエステル系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、アクリル系、アセテート系、ポリビニルアルコール等の透明樹脂等が挙げられる。また、保護層の材質の具体例としては、前記アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。   As said another layer, what can permeate | transmit the light which has the wavelength which can permeate | transmit the said polarizing element is preferable, For example, the protective layer of a polarizing element is mentioned. The protective layer is not particularly limited, and a conventionally known transparent film can be used. For example, a protective layer having excellent transparency, mechanical strength, thermal stability, moisture barrier property, isotropy and the like is preferable. Specific examples of the material of such a protective layer include cellulose resins such as triacetyl cellulose, polyester, polycarbonate, polyamide, polyimide, polyethersulfone, polysulfone, polystyrene, and polynorbornene. And transparent resins such as polyolefin, acrylic, acetate, and polyvinyl alcohol. Specific examples of the material for the protective layer include the acrylic, urethane, acrylurethane, epoxy, and silicone thermosetting resins or ultraviolet curable resins.

また、前記保護層としては、例えば、特開2001−343529号公報(WO01/37007)に記載のポリマーフィルムが挙げられる。このポリマー材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有す熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN−メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。なお、前記ポリマーフィルムは、例えば、前記樹脂組成物の押出成形物であってもよい。   Moreover, as said protective layer, the polymer film as described in Unexamined-Japanese-Patent No. 2001-343529 (WO01 / 37007) is mentioned, for example. Examples of the polymer material include a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in the side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and a nitrile group in the side chain. For example, a resin composition having an alternating copolymer composed of isobutene and N-methylmaleimide and an acrylonitrile / styrene copolymer can be mentioned. The polymer film may be, for example, an extruded product of the resin composition.

また、前記保護層は、色付きが無いことが好ましい。具体的には、下記式で表されるフィルム厚み方向の位相差値(Rth)が、−90nm〜+75nmの範囲であることが好ましく、より好ましくは−80nm〜+60nmであり、特に好ましくは−70nm〜+45nmの範囲である。前記位相差値が−90nm〜+75nmの範囲であれば、十分に保護フィルムに起因する着色(光学的な着色)を解消できる。なお、下記式において、nx,ny,nzは、前述と同様であり、dは、その膜厚を示す。
Rth=[{(nx+ny)/2}-nz]・d
また、前記保護層は、さらに光学補償機能を有するものでもよい。このように光学補償機能を有する保護層としては、例えば、液晶セルにおける位相差に基づく視認角の変化が原因である、着色等の防止や、良視認の視野角の拡大等を目的とした公知のものが使用できる。具体的には、例えば、前述した樹脂を一軸延伸または二軸延伸した各種延伸フィルムや、液晶ポリマー等の配向フィルム、透明基材上に液晶ポリマー等の配向層を配置した積層体等が挙げられる。これらの中でも、良視認の広い視野角を達成できることから、前記液晶ポリマーの配向フィルムが好ましく、特に、ディスコティック系やネマチック系の液晶ポリマーの傾斜配向層から構成される光学補償層を、前述のトリアセチルセルロースフィルム等で支持した光学補償位相差板が好ましい。このような光学補償位相差板としては、例えば、富士写真フィルム株式会社製の商品名「WVフィルム」等の市販品が挙げられる。なお、前記光学補償位相差板は、位相差フィルムやトリアセチルセルロースフィルム等のフィルム支持体を2層以上積層させることによって、位相差等の光学特性を制御したもの等でもよい。
Moreover, it is preferable that the said protective layer does not have coloring. Specifically, the retardation value (Rth) in the film thickness direction represented by the following formula is preferably in the range of −90 nm to +75 nm, more preferably −80 nm to +60 nm, and particularly preferably −70 nm. It is in the range of ˜ + 45 nm. When the retardation value is in the range of −90 nm to +75 nm, coloring (optical coloring) caused by the protective film can be sufficiently eliminated. In the following formula, nx, ny, and nz are the same as described above, and d indicates the film thickness.
Rth = [{(nx + ny) / 2} -nz] · d
The protective layer may further have an optical compensation function. As such a protective layer having an optical compensation function, for example, known for the purpose of preventing coloring and the like and increasing the viewing angle for good viewing due to a change in viewing angle based on a phase difference in a liquid crystal cell Can be used. Specifically, for example, various stretched films obtained by uniaxially or biaxially stretching the above-described resins, alignment films such as liquid crystal polymers, and laminates in which alignment layers such as liquid crystal polymers are disposed on a transparent substrate are exemplified. . Among these, the alignment film of the liquid crystal polymer is preferable because it can achieve a wide viewing angle with good visual recognition. An optical compensation retardation plate supported by a triacetyl cellulose film or the like is preferable. Examples of such an optical compensation retardation plate include commercially available products such as “WV film” manufactured by Fuji Photo Film Co., Ltd. The optical compensation retardation plate may be one in which optical properties such as retardation are controlled by laminating two or more film supports such as a retardation film and a triacetyl cellulose film.

前記保護層は、例えば、偏光素子上に前記各種樹脂を塗布する方法、前記偏光素子に前記樹脂製フィルムを積層する方法等の従来公知の方法によって適宜形成でき、また市販品を使用することもできる。   The protective layer can be appropriately formed by a conventionally known method such as a method of applying the various resins on a polarizing element, a method of laminating the resin film on the polarizing element, or a commercially available product may be used. it can.

前記保護層の厚みは、特に制限されず、例えば500μm以下であり、好ましくは5〜300μm、より好ましくは5〜150μmの範囲であるまた、前記保護層は、さらに、例えば、ハードコート処理、反射防止処理、スティッキングの防止や拡散、アンチグレア等を目的とした処理等が施されたものでもよい。前記ハードコート処理とは、偏光板表面の傷付き防止等を目的とし、例えば、前記保護層の表面に、硬化型樹脂から構成される、硬度や滑り性に優れた硬化被膜を形成する処理である。前記硬化型樹脂としては、例えば、シリコーン系、ウレタン系、アクリル系、エポキシ系等の紫外線硬化型樹脂等が使用でき、前記処理は、従来公知の方法によって行うことができる。スティッキングの防止は、隣接する層との密着防止を目的とする。前記反射防止処理とは、偏光板表面での外光の反射防止を目的とし、従来公知の反射防止層等の形成により行うことができる。 The thickness of the protective layer is not particularly limited, and is, for example, 500 μm or less, preferably 5 to 300 μm, more preferably 5 to 150 μm. Further, the protective layer further includes, for example, hard coat treatment, reflection It may be subjected to prevention treatment, treatment for prevention of sticking, diffusion, anti-glare and the like. The hard coat treatment is for the purpose of preventing scratches on the surface of the polarizing plate. For example, the hard coat treatment is a treatment for forming a cured film made of a curable resin and having excellent hardness and slipperiness on the surface of the protective layer. is there. As the curable resin, for example, a silicone-based, urethane-based, acrylic-based, or epoxy-based ultraviolet curable resin can be used, and the treatment can be performed by a conventionally known method. The purpose of preventing sticking is to prevent adhesion between adjacent layers. The antireflection treatment is intended to prevent reflection of external light on the surface of the polarizing plate, and can be performed by forming a conventionally known antireflection layer or the like.

前記アンチグレア処理とは、偏光板表面において外光が反射することによる、偏光板透過光の視認妨害を防止すること等を目的とし、例えば、従来公知の方法によって、前記保護層の表面に、微細な凹凸構造を形成することによって行うことができる。このような凹凸構造の形成方法としては、例えば、サンドブラスト法やエンボス加工等による粗面化方式や、前述のような透明樹脂に透明微粒子を配合して前記保護層を形成する方式等が挙げられる。 The anti-glare treatment is intended to prevent visual interference of light transmitted through the polarizing plate due to reflection of external light on the surface of the polarizing plate. For example, the anti-glare treatment can be applied to the surface of the protective layer by a conventionally known method. This can be done by forming an uneven structure. Examples of the method for forming such a concavo-convex structure include a roughening method by sandblasting or embossing, a method of forming the protective layer by blending transparent fine particles in the transparent resin as described above, and the like. .

前記透明微粒子としては、例えば、シリカ、アルミナ、チタニア、ジルコニア、酸化錫、酸化インジウム、酸化カドミウム、酸化アンチモン等が挙げられ、この他にも導電性を有する無機系微粒子や、架橋または未架橋のポリマー粒状物等から構成される有機系微粒子等を使用することもできる。前記透明微粒子の平均粒径は、特に制限されないが、例えば、0.5〜20μmの範囲である。また、前記透明微粒子の配合割合は、特に制限されないが、前述のような透明樹脂100重量部に対して2〜70重量部の範囲が好ましく、より好ましくは5〜50重量部の範囲である。   Examples of the transparent fine particles include silica, alumina, titania, zirconia, tin oxide, indium oxide, cadmium oxide, antimony oxide, and the like. In addition, conductive inorganic fine particles, crosslinked or uncrosslinked Organic fine particles composed of polymer particles and the like can also be used. The average particle size of the transparent fine particles is not particularly limited, but is, for example, in the range of 0.5 to 20 μm. The blending ratio of the transparent fine particles is not particularly limited, but is preferably in the range of 2 to 70 parts by weight, more preferably in the range of 5 to 50 parts by weight with respect to 100 parts by weight of the transparent resin as described above.

前記透明微粒子を配合したアンチグレア層は、例えば、保護層そのものとして使用することもでき、また、保護層表面に塗工層等として形成されてもよい。さらに、前記アンチグレア層は、偏光板透過光を拡散して視角を拡大するための拡散層(視覚補償機能等)を兼ねるものであってもよい。   The antiglare layer containing the transparent fine particles can be used as, for example, the protective layer itself, or may be formed as a coating layer on the surface of the protective layer. Furthermore, the anti-glare layer may also serve as a diffusion layer (visual compensation function or the like) for diffusing the light transmitted through the polarizing plate to expand the viewing angle.

なお、前記反射防止層、スティッキング防止層、拡散層、アンチグレア層等は、前記保護層とは別個に、例えば、これらの層を設けたシート等から構成される光学フィルムとして、偏光素子に積層してもよい。 The antireflection layer, anti-sticking layer, diffusion layer, antiglare layer, etc. are laminated on the polarizing element as an optical film composed of, for example, a sheet provided with these layers, separately from the protective layer. May be.

つぎに、前記偏光素子上に形成された光反応性物質フィルムに、前記偏光素子を介して、光を照射する。例えば、図1に示すように、偏光素子2の片面上に、光反応性物質フィルム3を形成し、光照射装置1により、偏光素子2の側から照射光4を照射する。照射光4は、偏光素子2を透過することにより偏光5となり、その偏光5は光反応性物質フィルム3に部分的に照射される。これによって、照射部分の分子構造と、非照射部分の分子構造を異ならせて、光反応性物質フィルム3に異方性を付与し、異方性フィルムとすることができる。   Next, light is irradiated to the photoreactive substance film formed on the polarizing element through the polarizing element. For example, as shown in FIG. 1, a photoreactive substance film 3 is formed on one surface of a polarizing element 2, and irradiation light 4 is irradiated from the polarizing element 2 side by a light irradiation device 1. The irradiation light 4 passes through the polarizing element 2 to become polarized light 5, and the polarized light 5 is partially irradiated to the photoreactive substance film 3. Thereby, the molecular structure of the irradiated portion and the molecular structure of the non-irradiated portion are made different so that anisotropy is imparted to the photoreactive substance film 3 to obtain an anisotropic film.

前記光は、例えば、1〜780nmの範囲の波長を有する光である。この波長は、200〜400nmの範囲の波長が好ましく、290〜400nmの範囲の波長がより好ましい。照射光の波長は、光反応性物質の種類により適宜選択することが好ましい。例えば、シンナメートの場合、250〜330nmの範囲が好ましく、アゾ系の物質の場合、380〜450nmの範囲が好ましく、ポリイミドの場合、1〜300nmの範囲が好ましい。光照射装置は特に制限されず、例えば、200〜400nmの範囲の波長を照射するには、汎用の紫外線照射装置を用いることができ、例えば、400〜780nmの範囲の波長を照射するには、汎用の可視光照射装置を用いることができる。前記光の波長は、前記偏光素子を透過できる光の波長内に含まれるのが好ましい。   The light is light having a wavelength in the range of 1 to 780 nm, for example. This wavelength is preferably in the range of 200 to 400 nm, and more preferably in the range of 290 to 400 nm. The wavelength of the irradiation light is preferably selected as appropriate depending on the type of the photoreactive substance. For example, in the case of cinnamate, a range of 250 to 330 nm is preferable. In the case of an azo-based substance, a range of 380 to 450 nm is preferable, and in the case of polyimide, a range of 1 to 300 nm is preferable. The light irradiation apparatus is not particularly limited. For example, a general-purpose ultraviolet irradiation apparatus can be used to irradiate a wavelength in the range of 200 to 400 nm. For example, to irradiate a wavelength in the range of 400 to 780 nm, A general-purpose visible light irradiation device can be used. The wavelength of the light is preferably included in the wavelength of light that can be transmitted through the polarizing element.

前記偏光素子を介して照射された光は、前記偏光素子を透過し、偏光になる。偏光の種類や度合いは、前記偏光素子の種類により、種々異なる。その偏光によって、光反応物質フィルム中の光反応性物資が、分解、異性化、二量化若しくは重合反応を起こし、分子が所定の形態に配向する。これによって、前記フィルムに屈折率異方性が生じる。   The light irradiated through the polarizing element passes through the polarizing element and becomes polarized light. The type and degree of polarization vary depending on the type of polarizing element. The polarized light causes the photoreactive substance in the photoreactive material film to undergo decomposition, isomerization, dimerization, or polymerization reaction, and the molecules are oriented in a predetermined form. This causes refractive index anisotropy in the film.

本発明の異方性フィルムは、例えば、その上に形成された液晶層の液晶分子を配向させることができるので、異方性フィルムを液晶配向膜として使用できる。   Since the anisotropic film of this invention can align the liquid crystal molecule of the liquid crystal layer formed on it, for example, an anisotropic film can be used as a liquid crystal aligning film.

また、光反応性物質フィルムが、光反応性物質に加えて液晶性化合物を含む場合、光反応性物質に加えて液晶性モノマーもしくは液晶性オリゴマーから製造された非液晶性ポリマーを含む場合、光反応性物質が光反応性部位を有する液晶性化合物である場合、または、光反応性物質が、光反応性部位を有する、液晶性モノマーもしくは液晶性オリゴマーから製造された非液晶性ポリマーである場合、本発明の異方性フィルムは光学的異方性を示しうるので、異方性フィルムを、例えば、光学異方性フィルムとして使用できる。前記光学異方性とは、光学的一軸性や光学的二軸性を意味する。前記光学的一軸性とは、主屈折率nxとnyがほぼ同一であり、かつnzより大きい(nx≒ny>nz)負の一軸性と、主屈折率nxとnyがほぼ同一であり、かつnzより小さい(nx≒ny<nz)正の一軸性がある。また、前記光学的二軸性とは、三方向の主屈折率nx、nyおよびnzが異なり、例えば、負の二軸性(nx>ny>nz)、正の二軸性(nz>nx>ny)がある。なお、前記nx、ny、nzとは、光学異方性フィルムにおける3つの光軸方向における屈折率をそれぞれ示す。屈折率nx、ny、nzは、それぞれX軸、Y軸およびZ軸方向の屈折率を示し、前記X軸とは面内において最大の屈折率を示す軸方向であり、Y軸は、前記面内において前記X軸に対して垂直な軸方向であり、Z軸は、前記X軸およびY軸に垂直な厚み方向を示す。   In addition, when the photoreactive substance film contains a liquid crystalline compound in addition to the photoreactive substance, when the photoreactive substance film contains a non-liquid crystalline polymer produced from a liquid crystalline monomer or a liquid crystalline oligomer in addition to the photoreactive substance, When the reactive substance is a liquid crystalline compound having a photoreactive moiety, or when the photoreactive substance is a non-liquid crystalline polymer produced from a liquid crystalline monomer or liquid crystalline oligomer having a photoreactive moiety. Since the anisotropic film of the present invention can exhibit optical anisotropy, the anisotropic film can be used as, for example, an optically anisotropic film. The optical anisotropy means optical uniaxiality or optical biaxiality. The optical uniaxiality means that the main refractive indexes nx and ny are substantially the same, and the negative uniaxiality larger than nz (nx≈ny> nz), the main refractive indexes nx and ny are substantially the same, and There is a positive uniaxiality smaller than nz (nx≈ny <nz). Further, the optical biaxiality is different from the principal refractive indexes nx, ny and nz in three directions, for example, negative biaxiality (nx> ny> nz), positive biaxiality (nz> nx> ny). In addition, said nx, ny, and nz show the refractive index in the three optical axis directions in an optical anisotropic film, respectively. Refractive indexes nx, ny, and nz represent refractive indexes in the X-axis, Y-axis, and Z-axis directions, respectively. The X-axis is an axial direction that indicates the maximum refractive index in the plane, and the Y-axis is the surface. The Z-axis is an axial direction perpendicular to the X-axis, and the Z-axis indicates a thickness direction perpendicular to the X-axis and the Y-axis.

つぎに、本発明の光学フィルムは、本発明の製造方法により製造された異方性フィルムを含み、例えば、光学補償フィルムや位相差板として有用である。   Next, the optical film of the present invention includes an anisotropic film manufactured by the manufacturing method of the present invention, and is useful as, for example, an optical compensation film or a retardation plate.

本発明の光学フィルムは、前述のように、本発明の製造方法によって製造された異方性フィルムを含んでいれば、それ以外の構成は特に制限されない。例えば、本発明の光学フィルムは、前述のように、例えば、前記異方性フィルム単独でもよいし、本発明の製造方法で用いた偏光子付き異方性フィルムであってもよい。   As long as the optical film of this invention contains the anisotropic film manufactured by the manufacturing method of this invention as mentioned above, a structure other than that will not be restrict | limited in particular. For example, as described above, the optical film of the present invention may be, for example, the anisotropic film alone or an anisotropic film with a polarizer used in the production method of the present invention.

本発明の光学フィルムは、実用に際して、前記本発明の異方性フィルムの他に、さらに他の光学フィルムを含んでもよい。前記他の光学フィルムとしては、例えば、偏光板、反射板、半透過反射板、輝度向上フィルム等、液晶表示装置等に使用される、従来公知の各種光学フィルムが挙げられる。これらの他の光学フィルムは、一種類でもよいし、二種類以上を併用してもよく、また、一層でもよいし、二層以上を積層してもよい。このような他の光学フィルムをさらに含む本発明の光学フィルムは、例えば、光学補償機能を有する一体型偏光板として使用することが好ましく、例えば、液晶セル表面に配置する等、各種画像表示装置への使用に適している。   In practical use, the optical film of the present invention may further contain other optical films in addition to the anisotropic film of the present invention. Examples of the other optical films include conventionally known various optical films used for liquid crystal display devices such as polarizing plates, reflecting plates, transflective plates, and brightness enhancement films. These other optical films may be of one type, may be used in combination of two or more, may be a single layer, or may be a laminate of two or more layers. The optical film of the present invention further including such other optical films is preferably used as, for example, an integrated polarizing plate having an optical compensation function. For example, the optical film is disposed on the surface of a liquid crystal cell. Suitable for use.

本発明の異方性フィルムと他の光学フィルム等の積層方法は、特に制限されず、従来公知の方法によって行うことができる。例えば、前述と同様の粘着剤や接着剤等が使用でき、その種類は、前記各構成物の材質等によって適宜決定できる。前記接着剤としては、例えば、アクリル系、ビニルアルコール系、シリコーン系、ポリエステル系、ポリウレタン系、ポリエーテル系等のポリマー製接着剤や、ゴム系接着剤等が挙げられる。また、前記接着剤として、ホウ酸、ホウ砂、グルタルアルデヒド、メラミン、シュウ酸等のビニルアルコール系ポリマーの水溶性架橋剤等から構成される接着剤等も使用できる。前述のような粘着剤、接着剤は、例えば、湿度や熱の影響によっても剥がれ難く、光透過率や偏光度にも優れる。具体的には、前記他の光学フィルムがPVA系フィルムの場合、例えば、接着処理の安定性等の点から、PVA系接着剤が好ましい。これらの接着剤や粘着剤は、例えば、そのまま他の光学フィルムや保護層の表面に塗布してもよいし、前記接着剤や粘着剤から構成されたテープやシートのような層を前記表面に配置してもよい。また、例えば、接着剤液や粘着剤液として調製した場合、必要に応じて、他の添加剤や、酸等の触媒を配合してもよい。なお、前記接着剤を塗布する場合は、例えば、前記接着剤液に、さらに、他の添加剤や、酸等の触媒を配合してもよい。このような接着層の厚みは、特に制限されないが、例えば、1nm〜500nmであり、好ましくは10nm〜300nmであり、より好ましくは20nm〜100nmである。これらの接着剤は、例えば、その水溶液を前記各構成物表面に塗工し、乾燥すること等によって使用できる。前記水溶液には、例えば、必要に応じて、他の添加剤や、酸等の触媒も配合できる。これらの中でも、前記接着剤としては、PVAフィルムとの接着性に優れる点から、PVA系接着剤が好ましい。   The lamination method of the anisotropic film of the present invention and other optical films is not particularly limited, and can be performed by a conventionally known method. For example, the same pressure-sensitive adhesives and adhesives as described above can be used, and the type thereof can be appropriately determined depending on the material of each component. Examples of the adhesive include polymer adhesives such as acrylic, vinyl alcohol, silicone, polyester, polyurethane, and polyether, and rubber adhesives. Moreover, as the adhesive, an adhesive composed of a water-soluble crosslinking agent of vinyl alcohol polymer such as boric acid, borax, glutaraldehyde, melamine, oxalic acid, or the like can be used. The pressure-sensitive adhesives and adhesives as described above are hardly peeled off due to, for example, the influence of humidity and heat, and are excellent in light transmittance and degree of polarization. Specifically, when the other optical film is a PVA-based film, for example, a PVA-based adhesive is preferable from the viewpoint of the stability of the adhesion treatment. For example, these adhesives and pressure-sensitive adhesives may be directly applied to the surface of another optical film or a protective layer, or a layer such as a tape or sheet composed of the adhesive or pressure-sensitive adhesive is applied to the surface. You may arrange. For example, when prepared as an adhesive liquid or a pressure-sensitive adhesive liquid, other additives or a catalyst such as an acid may be blended as necessary. In addition, when apply | coating the said adhesive agent, you may mix | blend other additives and catalysts, such as an acid, with the said adhesive liquid further, for example. The thickness of such an adhesive layer is not particularly limited, but is, for example, 1 nm to 500 nm, preferably 10 nm to 300 nm, and more preferably 20 nm to 100 nm. These adhesives can be used by, for example, applying the aqueous solution to the surface of each component and drying. In the aqueous solution, for example, other additives and a catalyst such as an acid can be blended as necessary. Among these, as the adhesive, a PVA adhesive is preferable from the viewpoint of excellent adhesiveness with a PVA film.

つぎに、本発明の異方性フィルムと偏光板とが積層された、異方性フィルム付き偏光板(一体型偏光板)について説明する。   Next, a polarizing plate with an anisotropic film (integrated polarizing plate) in which the anisotropic film of the present invention and a polarizing plate are laminated will be described.

まず、反射型偏光板または半透過反射型偏光板の一例について説明する。前記反射型偏光板は、本発明の異方性フィルム付き偏光板にさらに反射板が、前記半透過反射型偏光板は、本発明の異方性フィルム付き偏光板にさらに半透過反射板が、それぞれ積層されている。 First, an example of a reflective polarizing plate or a transflective polarizing plate will be described. The reflective polarizing plate further includes a reflective plate on the polarizing plate with an anisotropic film of the present invention, and the transflective polarizing plate further includes a semi-transmissive reflective plate on the polarizing plate with an anisotropic film of the present invention, Each is laminated.

前記反射型偏光板は、例えば、液晶セルの裏側に配置され、視認側(表示側)からの入射光を反射させて表示するタイプの液晶表示装置(反射型液晶表示装置)等に使用できる。このような反射型偏光板は、例えば、バックライト等の光源の内蔵を省略できるため、液晶表示装置の薄型化を可能にする等の利点を有する。   The reflective polarizing plate can be used, for example, in a liquid crystal display device (reflective liquid crystal display device) that is disposed on the back side of a liquid crystal cell and reflects incident light from the viewing side (display side). Such a reflective polarizing plate, for example, has an advantage that the liquid crystal display device can be thinned because the built-in light source such as a backlight can be omitted.

前記反射型偏光板は、例えば、前記弾性率を示す偏光板の片面に、金属等から構成される反射板を形成する方法等、従来公知の方法によって作成できる。具体的には、例えば、前記偏光板における保護層の片面(露出面)を、必要に応じてマット処理し、前記面に、アルミニウム等の反射性金属からなる金属箔や蒸着膜を反射板として形成した反射型偏光板等が挙げられる。 The reflective polarizing plate can be prepared by a conventionally known method such as a method of forming a reflective plate made of metal or the like on one surface of a polarizing plate exhibiting the elastic modulus. Specifically, for example, one surface (exposed surface) of the protective layer in the polarizing plate is mat-treated as necessary, and a metal foil or a vapor deposition film made of a reflective metal such as aluminum is used as a reflective plate on the surface. Examples include the formed reflective polarizing plate.

また、前述のように各種透明樹脂に微粒子を含有させて表面を微細凹凸構造とした保護層の上に、その微細凹凸構造を反映させた反射板を形成した、反射型偏光板等も挙げられる。その表面が微細凹凸構造である反射板は、例えば、入射光を乱反射により拡散させ、指向性やギラギラした見栄えを防止し、明暗のムラを抑制できるという利点を有する。このような反射板は、例えば、前記保護層の凹凸表面に、真空蒸着方式、イオンプレーティング方式、スパッタリング方式等の蒸着方式やメッキ方式等、従来公知の方法により、直接、前記金属箔や金属蒸着膜として形成することができる。 In addition, as described above, a reflective polarizing plate in which a reflective plate reflecting the fine concavo-convex structure is formed on the protective layer containing fine particles in various transparent resins and having a fine concavo-convex structure on the surface is also included. . A reflector having a fine concavo-convex structure on its surface has an advantage that, for example, incident light can be diffused by irregular reflection to prevent directivity and glaring appearance and to suppress uneven brightness. For example, such a reflection plate is formed on the uneven surface of the protective layer directly by a conventionally known method such as a vacuum deposition method, an ion plating method, a sputtering method, or a deposition method. It can be formed as a deposited film.

また、前述のように偏光板の保護層に前記反射板を直接形成する方式に代えて、反射板として、透明保護フィルムのような適当なフィルムに反射層を設けた反射シート等を使用してもよい。前記反射板における前記反射層は、通常、金属から構成されるため、例えば、酸化による反射率の低下防止、ひいては初期反射率の長期持続や、保護層の別途形成を回避する点等から、その使用形態は、前記反射層の反射面が前記フィルムや偏光板等で被覆された状態であることが好ましい。 Moreover, instead of the method of directly forming the reflection plate on the protective layer of the polarizing plate as described above, a reflection sheet having a reflection layer provided on a suitable film such as a transparent protective film is used as the reflection plate. Also good. Since the reflection layer in the reflection plate is usually made of metal, for example, from the viewpoint of preventing the decrease in reflectivity due to oxidation, and thus the long-term maintenance of the initial reflectivity, and the separate formation of a protective layer, etc. The usage form is preferably a state in which the reflective surface of the reflective layer is covered with the film, a polarizing plate or the like.

一方、前記半透過型偏光板は、前記反射型偏光板において、反射板に代えて、半透過型の反射板を有するものである。前記半透過型反射板としては、例えば、反射層で光を反射し、かつ、光を透過するハーフミラー等が挙げられる。 On the other hand, the transflective polarizing plate has a transflective reflective plate instead of the reflective plate in the reflective polarizing plate. Examples of the transflective reflector include a half mirror that reflects light through a reflective layer and transmits light.

前記半透過型偏光板は、例えば、液晶セルの裏側に設けられ、液晶表示装置等を比較的明るい雰囲気で使用する場合には、視認側(表示側)からの入射光を反射して画像を表示し、比較的暗い雰囲気においては、半透過型偏光板のバックサイドに内蔵されているバックライト等の内蔵光源を使用して画像を表示するタイプの液晶表示装置等に使用できる。すなわち、前記半透過型偏光板は、明るい雰囲気下では、バックライト等の光源使用のエネルギーを節約でき、一方、比較的暗い雰囲気下においても、前記内蔵光源を用いて使用できるタイプの液晶表示装置等の形成に有用である。 The transflective polarizing plate is provided on the back side of a liquid crystal cell, for example, and reflects an incident light from the viewing side (display side) when using a liquid crystal display device or the like in a relatively bright atmosphere. In a relatively dark atmosphere, it can be used for a liquid crystal display device of a type that displays an image using a built-in light source such as a backlight built in the back side of the transflective polarizing plate. That is, the transflective polarizing plate can save the energy of using a light source such as a backlight in a bright atmosphere, and can be used with the built-in light source in a relatively dark atmosphere. It is useful for the formation of etc.

つぎに、本発明の異方性フィルム付き偏光板に、さらに輝度向上フィルムが積層された偏光板の一例を説明する。   Next, an example of a polarizing plate in which a brightness enhancement film is further laminated on the polarizing plate with an anisotropic film of the present invention will be described.

前記輝度向上フィルムとしては、特に限定されず、例えば、誘電体の多層薄膜や、屈折率異方性が相違する薄膜フィルムの多層積層体のような、所定偏光軸の直線偏光を透過して、他の光は反射する特性を示すもの等が使用できる。このような輝度向上フィルムとしては、例えば、3M社製の商品名「D-BEF」等が挙げられる。また、コレステリック液晶層、特にコレステリック液晶ポリマーの配向フィルムや、その配向液晶層をフィルム基材上に支持したもの等が使用できる。これらは、左右一方の円偏光を反射して、他の光は透過する特性を示すものであり、例えば、日東電工社製の商品名「PCF350」、Merck社製の商品名「Transmax」等が挙げられる。 The brightness enhancement film is not particularly limited, and for example, a linear multi-layer thin film of dielectric material or a multi-layer laminate of thin film films having different refractive index anisotropy transmits linearly polarized light having a predetermined polarization axis, Other light can be used that reflects light. As such a brightness enhancement film, for example, trade name “D-BEF” manufactured by 3M Co., Ltd. may be mentioned. Also, a cholesteric liquid crystal layer, in particular an oriented film of a cholesteric liquid crystal polymer, or a film in which the oriented liquid crystal layer is supported on a film substrate can be used. These reflect the right and left circularly polarized light and transmit the other light. For example, the product name “PCF350” manufactured by Nitto Denko Corporation, the product name “Transmax” manufactured by Merck, etc. Can be mentioned.

本発明の異方性フィルム付き偏光板は、例えば、前述のような本発明の異方性フィルム付き偏光板と、さらに他の光学フィルムとを積層して、2以上の光学フィルムを含む光学部材であってもよい。   The polarizing plate with an anisotropic film of the present invention is, for example, an optical member comprising two or more optical films obtained by laminating the polarizing plate with an anisotropic film of the present invention as described above and another optical film. It may be.

このように2以上の光学フィルムを積層した光学部材は、例えば、液晶表示装置等の製造過程において、順次別個に積層する方式によっても形成できるが、予め積層した光学部材として使用すれば、例えば、品質の安定性や組立作業性等に優れ、液晶表示装置等の製造効率を向上できるという利点がある。なお、積層には、前述と同様に、粘着層等の各種接着手段を用いることができる。   In this way, an optical member in which two or more optical films are laminated can be formed by a method of sequentially laminating them in the manufacturing process of, for example, a liquid crystal display device, but if used as a pre-laminated optical member, for example, There is an advantage that it is excellent in stability of quality, assembly workability, etc., and can improve the manufacturing efficiency of a liquid crystal display device or the like. For the lamination, various adhesive means such as an adhesive layer can be used as described above.

前述のような異方性フィルム付き偏光板は、例えば、液晶セル等の他の部材への積層が容易になることから、さらに粘着剤層や接着剤層を有していることが好ましく、これらは、前記異方性フィルム付き偏光板の片面または両面に配置することができる。前記粘着層の材料としては、特に制限されず、アクリル系ポリマー等の従来公知の材料が使用できる。前記粘着層は、吸湿による発泡や剥離の防止、熱膨張差等による光学特性の低下や液晶セルの反り防止、ひいては高品質で耐久性に優れる液晶表示装置の形成性等の点より、例えば、吸湿率が低くて耐熱性に優れる粘着層が好ましい。また、前記粘着層としては、微粒子を含有して光拡散性を示す粘着層等でもよい。前記異方性フィルム付き偏光板表面への前記粘着剤層の形成は、例えば、各種粘着材料の溶液または溶融液を、流延や塗工等の展開方式により、前記異方性フィルム付き偏光板の所定の面に直接添加して層を形成する方式や、同様にして後述するセパレータ上に粘着剤層を形成させて、それを前記異方性フィルム付き偏光板の所定面に移着する方式等によって行うことができる。なお、このような層は、異方性フィルム付き偏光板のいずれの表面に形成してもよく、例えば、前記異方性フィルムの露出面に形成してもよい。   The polarizing plate with an anisotropic film as described above preferably has a pressure-sensitive adhesive layer or an adhesive layer since it can be easily laminated to other members such as a liquid crystal cell. Can be disposed on one or both sides of the polarizing plate with an anisotropic film. The material for the adhesive layer is not particularly limited, and a conventionally known material such as an acrylic polymer can be used. From the viewpoint of prevention of foaming and peeling due to moisture absorption, deterioration of optical characteristics due to thermal expansion difference and the like, prevention of warpage of liquid crystal cells, and formation of a liquid crystal display device with high quality and excellent durability, for example, An adhesive layer having a low moisture absorption rate and excellent heat resistance is preferred. The adhesive layer may be an adhesive layer containing fine particles and exhibiting light diffusibility. The pressure-sensitive adhesive layer is formed on the surface of the polarizing plate with an anisotropic film by, for example, applying a solution or a melt of various pressure-sensitive adhesive materials by a developing method such as casting or coating. A method in which a layer is formed by directly adding to a predetermined surface, and a method in which a pressure-sensitive adhesive layer is formed on a separator, which will be described later, and transferred to a predetermined surface of the polarizing plate with an anisotropic film. Etc. Such a layer may be formed on any surface of the polarizing plate with an anisotropic film, for example, on the exposed surface of the anisotropic film.

このように異方性フィルム付き偏光板に設けた粘着剤層等の表面が露出する場合は、前記粘着層を実用に供するまでの間、汚染防止等を目的として、セパレータによって前記表面をカバーすることが好ましい。このセパレータは、前記粘着剤層の表面と接する面上に、剥離コートを設けるのが好ましい。その剥離コートは、前記セパレータに、シリコーン系、長鎖アルキル系、フッ素系、硫化モリブデン等の剥離剤を塗布して、形成できる。   When the surface of the pressure-sensitive adhesive layer or the like provided on the polarizing plate with an anisotropic film is exposed as described above, the surface is covered with a separator for the purpose of preventing contamination until the pressure-sensitive adhesive layer is put to practical use. It is preferable. This separator is preferably provided with a release coat on the surface in contact with the surface of the pressure-sensitive adhesive layer. The release coat can be formed by applying a release agent such as silicone, long chain alkyl, fluorine, or molybdenum sulfide to the separator.

前記粘着剤層等は、例えば、単層体でもよいし、積層体でもよい。前記積層体としては、例えば、異なる組成や異なる種類の単層を組合せた積層体を使用することもできる。また、前記異方性フィルム付き偏光板の両面に配置する場合は、例えば、それぞれ同じ粘着剤層でもよいし、異なる組成や異なる種類の粘着剤層であってもよい。   For example, the pressure-sensitive adhesive layer may be a single layer or a laminate. As the laminate, for example, a laminate in which different compositions and different types of single layers are combined can be used. Moreover, when arrange | positioning on the both surfaces of the said polarizing plate with an anisotropic film, the same adhesive layer may respectively be sufficient, for example, a different composition and a different kind of adhesive layer may be sufficient.

前記粘着剤層の厚みは、例えば、異方性フィルム付き偏光板の構成等に応じて適宜に決定でき、例えば、1〜500μmである。 The thickness of the pressure-sensitive adhesive layer can be appropriately determined according to, for example, the configuration of the polarizing plate with an anisotropic film, and is, for example, 1 to 500 μm.

前記粘着剤層を形成する粘着剤としては、例えば、光学的透明性に優れ、適度な濡れ性、凝集性や接着性の粘着特性を示すものが挙げられる。具体的な例としては、アクリル系ポリマーやシリコーン系ポリマー、ポリエステル、ポリウレタン、ポリエーテル、合成ゴム等のポリマーを適宜ベースポリマーとして調製された粘着剤等が挙げられる。   Examples of the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer include those that are excellent in optical transparency and exhibit appropriate wettability, cohesiveness, and adhesive pressure-sensitive adhesive properties. Specific examples include pressure-sensitive adhesives that are appropriately prepared using a polymer such as an acrylic polymer, silicone polymer, polyester, polyurethane, polyether, and synthetic rubber as a base polymer.

前記粘着剤層の粘着特性の制御は、例えば、前記粘着剤層を形成するベースポリマーの組成や分子量、架橋方式、架橋性官能基の含有割合、架橋剤の配合割合等によって、その架橋度や分子量を調節するというような、従来公知の方法によって適宜行うことができる。   Control of the adhesive property of the pressure-sensitive adhesive layer is, for example, the degree of cross-linking depending on the composition and molecular weight of the base polymer forming the pressure-sensitive adhesive layer, the crosslinking method, the content ratio of the crosslinkable functional group, the blending ratio of the cross-linking agent, It can be suitably carried out by a conventionally known method such as adjusting the molecular weight.

以上のような本発明の光学フィルムや、他の光学フィルム、粘着剤層等の各層は、例えば、サリチル酸エステル系化合物、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等の紫外線吸収剤で適宜処理することによって、紫外線吸収能を持たせたものでもよい。   Each of the optical film of the present invention as described above, other optical films, pressure-sensitive adhesive layers, etc. is, for example, a salicylic acid ester compound, a benzophenone compound, a benzotriazole compound, a cyanoacrylate compound, a nickel complex compound, etc. It may be made to have an ultraviolet absorbing ability by appropriately treating with an ultraviolet absorber.

本発明の光学フィルムは、前述のように、液晶表示装置等の各種装置の形成に使用することが好ましく、例えば、異方性フィルム付き偏光板を液晶セルの片側または両側に配置して液晶パネルとし、反射型や半透過型、あるいは透過・反射両用型等の液晶表示装置に用いることができる。   As described above, the optical film of the present invention is preferably used for forming various devices such as a liquid crystal display device. For example, a polarizing plate with an anisotropic film is disposed on one side or both sides of a liquid crystal cell to form a liquid crystal panel. It can be used for a liquid crystal display device such as a reflective type, a transflective type, or a transmissive / reflective type.

液晶表示装置を形成する前記液晶セルの種類は、任意で選択でき、例えば、薄膜トランジスタ型に代表されるアクティブマトリクス駆動型のもの、ツイストネマチック(TN)型やスーパーツイストネマチック(STN)型に代表される単純マトリクス駆動型のもの、OCB(Optically Controlled Birefringence)セル、HAN(Hybrid Aligned Nematic)セル、VA(垂直配向;Vertical Aligned)セル等、種々のタイプの液晶セルが使用できる。   The type of the liquid crystal cell forming the liquid crystal display device can be arbitrarily selected. For example, it is represented by an active matrix driving type represented by a thin film transistor type, a twisted nematic (TN) type, or a super twisted nematic (STN) type. Various types of liquid crystal cells such as a simple matrix driving type, an OCB (Optically Controlled Birefringence) cell, a HAN (Hybrid Aligned Nematic) cell, and a VA (Vertical Aligned) cell can be used.

また、前記液晶セルは、通常、対向する液晶セル基板の間隙に液晶が注入された構造であって、前記液晶セル基板としては、特に制限されず、例えば、ガラス基板やプラスチック基板が使用できる。なお、前記プラスチック基板の材質としては、特に制限されず、従来公知の材料が挙げられる。   In addition, the liquid crystal cell has a structure in which liquid crystal is usually injected into a gap between opposing liquid crystal cell substrates, and the liquid crystal cell substrate is not particularly limited, and for example, a glass substrate or a plastic substrate can be used. The material for the plastic substrate is not particularly limited, and conventionally known materials can be used.

また、液晶セルの両面に偏光板や光学部材を設ける場合、それらは同じ種類のものでもよいし、異なっていてもよい。さらに、液晶表示装置の形成に際しては、例えば、プリズムアレイシートやレンズアレイシート、光拡散板やバックライト等の適当な部品を、適当な位置に1層または2層以上配置することができる。   Moreover, when providing a polarizing plate and an optical member on both surfaces of a liquid crystal cell, they may be the same kind and may differ. Furthermore, when forming the liquid crystal display device, for example, appropriate components such as a prism array sheet, a lens array sheet, a light diffusing plate, and a backlight can be arranged in one or more layers at appropriate positions.

さらに、本発明の液晶表示装置は、液晶パネルを含み、前記液晶パネルとして、本発明の液晶パネルを使用する以外は、特に制限されない。また、さらに光源を有する場合には、特に制限されないが、例えば、光のエネルギーが有効に使用できることから、例えば、偏光を出射する平面光源であることが好ましい。   Furthermore, the liquid crystal display device of the present invention includes a liquid crystal panel, and is not particularly limited except that the liquid crystal panel of the present invention is used as the liquid crystal panel. Further, when the light source is further provided, the light source is not particularly limited. However, for example, a plane light source that emits polarized light is preferable because light energy can be used effectively.

本発明の液晶パネルの一例としては、以下のような構成が挙げられる。例えば、液晶セル、本発明の光学フィルム、偏光子および保護層を有しており、前記液晶セルの一方の面に前記光学フィルムが積層されており、前記光学フィルムの他方の面に、前記偏光子および前記保護層が、この順序で積層されている構造である。前記液晶セルは、二枚の液晶セル基板の間に、液晶が保持された構成となっている。また、前記光学フィルムが、前述のように複屈折層と基材との積層体である場合、その配置は特に制限されないが、例えば、前記複屈折層側が前記液晶セルに面しており、前記基材側が前記偏光子に面している形態が挙げられる。   Examples of the liquid crystal panel of the present invention include the following configurations. For example, it has a liquid crystal cell, the optical film of the present invention, a polarizer and a protective layer, the optical film is laminated on one surface of the liquid crystal cell, and the polarizing film on the other surface of the optical film. The child and the protective layer are stacked in this order. The liquid crystal cell has a configuration in which liquid crystal is held between two liquid crystal cell substrates. In addition, when the optical film is a laminate of a birefringent layer and a substrate as described above, the arrangement thereof is not particularly limited. For example, the birefringent layer side faces the liquid crystal cell, The form which the base material side faces the said polarizer is mentioned.

本発明の液晶表示装置は、視認側の光学フィルム(偏光板)の上に、例えば、さらに拡散板、アンチグレア層、反射防止膜、保護層や保護板を配置したり、または液晶パネルにおける液晶セルと偏光板との間に補償用位相差板等を適宜配置することもできる。   In the liquid crystal display device of the present invention, for example, a diffusion plate, an antiglare layer, an antireflection film, a protective layer and a protective plate are further arranged on the viewing-side optical film (polarizing plate), or a liquid crystal cell in a liquid crystal panel. A compensation retardation plate or the like may be appropriately disposed between the polarizing plate and the polarizing plate.

なお、本発明の光学フィルムは、前述のような液晶表示装置には限定されず、例えば、有機エレクトロルミネッセンス(EL)ディスプレイ、プラズマディスプレイ(PD)、FED(電界放出ディスプレイ:Field Emission Display)等の自発光型表示装置にも使用できる。自発光型フラットディスプレイに使用する場合は、例えば、本発明の光学フィルムの面内位相差値Δndをλ/4にすることで、円偏光を得ることができるため、反射防止フィルターとして利用できる。   The optical film of the present invention is not limited to the liquid crystal display device as described above, and examples thereof include an organic electroluminescence (EL) display, a plasma display (PD), and an FED (Field Emission Display). It can also be used for a self-luminous display device. When used in a self-luminous flat display, for example, circularly polarized light can be obtained by setting the in-plane retardation value Δnd of the optical film of the present invention to λ / 4, and therefore, it can be used as an antireflection filter.

つぎに、本発明の光学フィルムを備えるエレクトロルミネッセンス(EL)表示装置について説明する。このEL表示装置は、本発明の光学フィルムを有する表示装置であり、このEL表示装置は、有機ELおよび無機ELのいずれでもよい。   Next, an electroluminescence (EL) display device provided with the optical film of the present invention will be described. This EL display device is a display device having the optical film of the present invention, and this EL display device may be either organic EL or inorganic EL.

近年、EL表示装置においても、黒状態における電極からの反射防止として、例えば、偏光子や偏光板等の光学フィルムをλ/4板とともに使用することが提案されている。本発明の光学フィルムは、特に、EL層から、直線偏光、円偏光もしくは楕円偏光のいずれかの偏光が発光されている場合、あるいは、正面方向に自然光を発光していても、斜め方向の出射光が部分偏光している場合等に、非常に有用である。   In recent years, it has been proposed to use, for example, an optical film such as a polarizer or a polarizing plate together with a λ / 4 plate in an EL display device as an antireflection from an electrode in a black state. In particular, the optical film of the present invention emits light in an oblique direction even when linearly polarized light, circularly polarized light, or elliptically polarized light is emitted from the EL layer, or natural light is emitted in the front direction. This is very useful when the incident light is partially polarized.

ここで、一般的な有機EL表示装置について説明する。前記有機EL表示装置は、一般に、透明基板上に、透明電極、有機発光層および金属電極がこの順序で積層された発光体(有機EL発光体)を有している。前記有機発光層は、種々の有機薄膜の積層体であり、例えば、トリフェニルアミン誘導体等からなる正孔注入層とアントラセン等の蛍光性有機固体からなる発光層との積層体や、このような発光層とペリレン誘導体等からなる電子注入層との積層体や、また、前記正孔注入層と発光層と電子注入層との積層体等、種々の組み合わせが挙げられる。   Here, a general organic EL display device will be described. The organic EL display device generally has a light emitter (organic EL light emitter) in which a transparent electrode, an organic light emitting layer, and a metal electrode are laminated in this order on a transparent substrate. The organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer made of a fluorescent organic solid such as anthracene, or the like. Various combinations such as a laminate of a light-emitting layer and an electron injection layer made of a perylene derivative, or a laminate of the hole injection layer, the light-emitting layer, and the electron injection layer can be given.

そして、このような有機EL表示装置は、前記陽極と陰極とに電圧を印加することによって、前記有機発光層に正孔と電子とが注入され、前記正孔と電子とが再結合することによって生じるエネルギーが、蛍光物質を励起し、励起された蛍光物質が基底状態に戻るときに光を放射する、という原理で発光する。前記正孔と電子との再結合というメカニズムは、一般のダイオードと同様であり、電流と発光強度とは、印加電圧に対して整流性を伴う強い非線形性を示す。   In such an organic EL display device, by applying a voltage to the anode and the cathode, holes and electrons are injected into the organic light emitting layer, and the holes and electrons are recombined. The generated energy emits light on the principle that it excites the phosphor and emits light when the excited phosphor returns to the ground state. The mechanism of recombination of holes and electrons is the same as that of a general diode, and current and emission intensity show strong nonlinearity with rectification with respect to applied voltage.

前記有機EL表示装置においては、前記有機発光層での発光を取り出すために、少なくとも一方の電極が透明であることが必要なため、通常、酸化インジウムスズ(ITO)等の透明導電体で形成された透明電極が陽極として使用される。一方、電子注入を容易にして発光効率を上げるには、陰極に、仕事関数の小さな物質を用いることが重要であり、通常、Mg−Ag、Al−Li等の金属電極が使用される。   In the organic EL display device, in order to extract light emitted from the organic light emitting layer, at least one of the electrodes needs to be transparent. Therefore, the organic EL display device is usually formed of a transparent conductor such as indium tin oxide (ITO). A transparent electrode is used as the anode. On the other hand, in order to facilitate electron injection and increase luminous efficiency, it is important to use a material having a small work function for the cathode, and usually metal electrodes such as Mg—Ag and Al—Li are used.

このような構成の有機EL表示装置において、前記有機発光層は、例えば、厚み10nm程度の極めて薄い膜で形成されることが好ましい。これは、前記有機発光層においても、透明電極と同様に、光をほぼ完全に透過させるためである。その結果、非発光時に、前記透明基板の表面から入射して、前記透明電極と有機発光層とを透過して前記金属電極で反射した光が、再び前記透明基板の表面側へ出る。このため、外部から視認した際に、有機EL表示装置の表示面が鏡面のように見えるのである。   In the organic EL display device having such a configuration, the organic light emitting layer is preferably formed of an extremely thin film having a thickness of about 10 nm, for example. This is because the organic light-emitting layer transmits light almost completely as in the transparent electrode. As a result, at the time of non-light emission, the light incident from the surface of the transparent substrate, transmitted through the transparent electrode and the organic light emitting layer, and reflected by the metal electrode again returns to the surface side of the transparent substrate. For this reason, when viewed from the outside, the display surface of the organic EL display device looks like a mirror surface.

この有機EL表示装置は、例えば、前記有機発光層の表面側に透明電極を備え、前記有機発光層の裏面側に金属電極を備えた前記有機EL発光体を含む有機EL表示装置において、前記透明電極の表面に、本発明の光学フィルムが配置されることが好ましく、さらにλ/4板を偏光板とEL素子との間に配置することが好ましい。このように、本発明の光学フィルムを配置することによって、外界の反射を抑え、視認性向上が可能であるという効果を示す有機EL表示装置となる。また、前記透明電極と光学フィルムとの間に、さらに位相差板が配置されることが好ましい。   The organic EL display device includes, for example, the organic EL display device including the organic EL light emitting device including a transparent electrode on a front surface side of the organic light emitting layer and a metal electrode on a back surface side of the organic light emitting layer. The optical film of the present invention is preferably disposed on the surface of the electrode, and a λ / 4 plate is preferably disposed between the polarizing plate and the EL element. Thus, by arranging the optical film of the present invention, it becomes an organic EL display device that has the effect of suppressing reflection from the outside and improving the visibility. Moreover, it is preferable that a phase difference plate is further disposed between the transparent electrode and the optical film.

前記光学フィルムは、例えば、外部から入射して前記金属電極で反射してきた光を偏光する作用を有するため、その偏光作用によって前記金属電極の鏡面を外部から視認させないという効果がある。特に、位相差板として1/4波長板を使用し、かつ、光学フィルム付き偏光板と前記位相差板との偏光方向のなす角をπ/4に調整すれば、前記金属電極の鏡面を完全に遮蔽することができる。すなわち、この有機EL表示装置に入射する外部光は、前記光学フィルム付き偏光板によって直線偏光成分のみが透過する。この直線偏光は、前記位相差板によって、一般に楕円偏光となるが、特に前記位相差板が1/4波長板であり、しかも前記角がπ/4の場合には、円偏光となる。   The optical film has, for example, an effect of polarizing light incident from the outside and reflected by the metal electrode, and therefore has an effect of preventing the mirror surface of the metal electrode from being visually recognized by the polarization effect. In particular, if a quarter-wave plate is used as the retardation plate and the angle formed by the polarization direction of the polarizing plate with an optical film and the retardation plate is adjusted to π / 4, the mirror surface of the metal electrode is completely Can be shielded. That is, only the linearly polarized component of the external light incident on the organic EL display device is transmitted by the polarizing plate with the optical film. The linearly polarized light becomes generally elliptically polarized light by the retardation plate, but becomes circularly polarized light particularly when the retardation plate is a quarter wavelength plate and the angle is π / 4.

この円偏光は、例えば、透明基板、透明電極、有機薄膜を透過し、金属電極で反射して、再び、有機薄膜、透明電極、透明基板を透過して、前記位相差板で再び直線偏光となる。そして、この直線偏光は、前記光学フィルム付き偏光板の偏光方向と直交しているため、前記光学フィルム付き偏光板を透過できず、その結果、前述のように、金属電極の鏡面を完全に遮蔽することができるのである。   For example, this circularly polarized light is transmitted through the transparent substrate, the transparent electrode, and the organic thin film, reflected by the metal electrode, again transmitted through the organic thin film, the transparent electrode, and the transparent substrate, and again by the retardation plate. Become. And since this linearly polarized light is orthogonal to the polarization direction of the polarizing plate with the optical film, it cannot pass through the polarizing plate with the optical film, and as a result, the mirror surface of the metal electrode is completely shielded as described above. It can be done.

つぎに、本発明の実施例について比較例と併せて説明する。ただし、本発明はこれらに限定されるものではない。   Next, examples of the present invention will be described together with comparative examples. However, the present invention is not limited to these.

ポリビニルシンナメート(光反応性物質)を溶媒(シクロペンタノン)中に5重量%の割合で溶解させ、塗布溶液を調製した。このポリビニルシンナメート塗布溶液をグランテーラープリズム(偏光素子)の片面上にスピンコート法により塗布した。塗布後、100℃で3分間乾燥させ、厚み100nmのポリビニルシンナメートフィルム(光反応性物質フィルム)を形成し、積層物を得た。   Polyvinyl cinnamate (photoreactive substance) was dissolved in a solvent (cyclopentanone) at a ratio of 5% by weight to prepare a coating solution. This polyvinyl cinnamate coating solution was coated on one side of a Grand Taylor prism (polarizing element) by a spin coating method. After coating, the film was dried at 100 ° C. for 3 minutes to form a 100 nm thick polyvinyl cinnamate film (photoreactive substance film) to obtain a laminate.

次いで、この積層物の偏光素子の側から、照度15mW/cm2の紫外線照射装置(高圧水銀ランプ使用)で6分間照射することにより、偏光素子上に配置された異方性フィルムを得た。偏光素子に対して、入射角度は90°に調整した。この偏光素子を通過後の積算光量は1J/cm2であった。 Subsequently, the anisotropic film arrange | positioned on the polarizing element was obtained by irradiating from the polarizing element side of this laminated body for 6 minutes with the ultraviolet irradiation device (use a high pressure mercury lamp) of illumination intensity 15mW / cm < 2 >. The incident angle was adjusted to 90 ° with respect to the polarizing element. The integrated light quantity after passing through this polarizing element was 1 J / cm 2 .

光反応性物質としてスチルベンを用いた以外は、実施例1と同様にして、偏光素子上に配置された異方性フィルムを得た。   An anisotropic film disposed on the polarizing element was obtained in the same manner as in Example 1 except that stilbene was used as the photoreactive substance.

光反応性物質(商品名LPPF301、バンティコ(Vantico)製)を溶媒(シクロペンタノン)中に2重量%の割合で溶解させ、塗布溶液を調製した。この塗布溶液を偏光フィルタ(商品名:Ultraviolet Polarizer、Bolder Vision Optik社製)の片面上にスピンコート法により塗布した。塗布後、100℃で3分間乾燥させ、厚み100nmの光反応性物質フィルムを形成し、積層物を得た。   A photoreactive substance (trade name LPPF301, manufactured by Vantico) was dissolved in a solvent (cyclopentanone) at a ratio of 2% by weight to prepare a coating solution. This coating solution was applied on one surface of a polarizing filter (trade name: Ultraviolet Polarizer, manufactured by Bolder Vision Optik) by spin coating. After the application, the film was dried at 100 ° C. for 3 minutes to form a photoreactive substance film having a thickness of 100 nm to obtain a laminate.

次いで、この積層物の偏光素子の側から、照度15mW/cm2の紫外線照射装置(高圧水銀ランプ使用)で3分間照射することにより、偏光素子上に配置された異方性フィルムを得た。偏光素子に対して、入射角度は90°に調整した。この偏光素子を通過後の積算光量は0.5J/cm2であった。 Next, an anisotropic film arranged on the polarizing element was obtained by irradiating from the side of the polarizing element of this laminate with an ultraviolet irradiation device (using a high-pressure mercury lamp) having an illuminance of 15 mW / cm 2 for 3 minutes. The incident angle was adjusted to 90 ° with respect to the polarizing element. The integrated light quantity after passing through this polarizing element was 0.5 J / cm 2 .

偏光素子として、ポリメチルペンテン100重量部と、短径0.1μm、長径10μmの針状酸化チタン3重量部を二軸混練してTダイを介し270℃で厚さ300μmのフィルムに成形した後、それを190℃で6倍に延伸した。このようにして得た、針状酸化チタンがほぼ一定方向に配向したフィルムを偏光子として用いた以外は、実施例1と同様にして、偏光素子上に異方性フィルムを形成した。   As a polarizing element, after 100 parts by weight of polymethylpentene and 3 parts by weight of acicular titanium oxide having a minor axis of 0.1 μm and a major axis of 10 μm were biaxially kneaded and formed into a film having a thickness of 300 μm at 270 ° C. through a T die. It was stretched 6 times at 190 ° C. An anisotropic film was formed on the polarizing element in the same manner as in Example 1 except that the thus obtained film having acicular titanium oxide oriented in a substantially constant direction was used as a polarizer.

液晶性化合物(68.0重量%:商品名LCPCB483,Vantico社製)、光反応性物質(29.2重量%:商品名LPPF301、Vantico社製)、光開始剤(1.4重量%:イルガキュア(Irgacure369)(商標名)、チバ社製)および反応抑制剤(ブチルヒドロキシトルエン:1.4重量%)の混合物を調製した。この混合物を、シクロペンタノン中に溶解させ、5重量%の溶液とし、それを50℃で30分間攪拌後、0.2μmのフィルターでろ過して、塗布溶液を調製した。   Liquid crystalline compound (68.0 wt%: trade name LCPCB483, manufactured by Vantico), photoreactive substance (29.2 wt%: trade name LPPF301, manufactured by Vantico), photoinitiator (1.4 wt%: Irgacure) (Irgacure369) (trade name), manufactured by Ciba) and a reaction inhibitor (butylhydroxytoluene: 1.4% by weight) were prepared. This mixture was dissolved in cyclopentanone to form a 5 wt% solution, which was stirred at 50 ° C. for 30 minutes and then filtered through a 0.2 μm filter to prepare a coating solution.

前記塗布溶液を用いた以外は、実施例1と同様にして、偏光素子上に配置された異方性フィルムを得た。   An anisotropic film disposed on the polarizing element was obtained in the same manner as in Example 1 except that the coating solution was used.

比較例1Comparative Example 1

光反応性物質の代わりにポリビニルアルコールを用いた以外は、実施例1と同様にして偏光素子上にフィルムを積層した。   A film was laminated on the polarizing element in the same manner as in Example 1 except that polyvinyl alcohol was used instead of the photoreactive substance.

比較例2Comparative Example 2

実施例5において、光反応性物質を添加しない以外は、同実施例と同様の方法で偏光素子の上にフィルムを積層した。   In Example 5, a film was laminated on the polarizing element in the same manner as in Example 5 except that no photoreactive substance was added.

このようにして得られた実施例1〜5の異方性フィルムについて、その異方性を下記のようにして評価した。また、併せて比較例1,2で得られたフィルムについても同様に評価した。   Thus, about the anisotropic film of Examples 1-5 obtained in this way, the anisotropy was evaluated as follows. In addition, the films obtained in Comparative Examples 1 and 2 were similarly evaluated.

異方性フィルムの評価1
コレステリック液晶相を示す化合物(商品名Paliocolor LC242およびLC756の混合物、BASF社製)を溶媒(シクロペンタノン)に20重量%の割合で溶解させ、溶液を調製した。この溶液を、実施例1〜4で得た異方性フィルムの表面上に、スピンコート法で塗布し、層を形成した。そして、これを90℃で1分間加熱処理することによって、前記コレステリック液晶相を示す化合物層を配向させた後、光によって前記コレステリック液晶相を示す化合物層を重合させ、その配向を固定し、厚み1μmのコレステリック相を示す液晶層を形成した。この液晶層の各選択反射波長を下記表1に示す。同表に示すように、実施例1〜4のそれぞれで得た異方性フィルム上に形成された液晶層が選択反射波長を示すので、実施例1〜4のそれぞれで得た異方性フィルムが、液晶配向能を有することが確認できた。なお、比較例1のフィルムでは、コレステリック層の選択反射は確認されなかった。
Evaluation of anisotropic film 1
A compound exhibiting a cholesteric liquid crystal phase (a mixture of trade names Paliocolor LC242 and LC756, manufactured by BASF) was dissolved in a solvent (cyclopentanone) at a ratio of 20% by weight to prepare a solution. This solution was applied on the surface of the anisotropic film obtained in Examples 1 to 4 by a spin coating method to form a layer. Then, the compound layer showing the cholesteric liquid crystal phase is oriented by heating at 90 ° C. for 1 minute, and then the compound layer showing the cholesteric liquid crystal phase is polymerized by light, the orientation is fixed, and the thickness A liquid crystal layer exhibiting a 1 μm cholesteric phase was formed. Each selective reflection wavelength of this liquid crystal layer is shown in Table 1 below. As shown in the table, since the liquid crystal layer formed on the anisotropic film obtained in each of Examples 1 to 4 shows a selective reflection wavelength, the anisotropic film obtained in each of Examples 1 to 4 However, it has been confirmed that it has liquid crystal alignment ability. In the film of Comparative Example 1, selective reflection of the cholesteric layer was not confirmed.

異方性フィルムの評価2
ネマチック液晶相を示す化合物(商品名Paliocolor LC242、BASF社製)を溶媒(シクロペンタノン)に20重量%の割合で溶解し、溶液を調製した。その溶液を、実施例1〜4で得た異方性フィルムの表面上に、スピンコート法で塗布した。そして、これを90℃で1分間加熱処理することによって、前記ネマチック液晶相を示す化合物を配向させた後、光によって前記ネマチック液晶相を示す化合物を重合させ、その配向を固定し、厚み1μmのネマチック相を示す液晶層を形成した。
Evaluation of anisotropic film 2
A compound showing a nematic liquid crystal phase (trade name: Paliocolor LC242, manufactured by BASF) was dissolved in a solvent (cyclopentanone) at a ratio of 20% by weight to prepare a solution. The solution was applied on the surface of the anisotropic film obtained in Examples 1 to 4 by a spin coat method. Then, the compound showing the nematic liquid crystal phase is oriented by heating at 90 ° C. for 1 minute, and then the compound showing the nematic liquid crystal phase is polymerized by light, the orientation is fixed, and the thickness is 1 μm. A liquid crystal layer exhibiting a nematic phase was formed.

さらに、形成されたネマチック液晶層のみを、透明基材(ガラス若しくはトリアセチルセルロース(TAC))に転写した。そのネマチック液晶層の遅相軸を、分光エリプソメータ(商品名M220、日本分光製)で測定した。その結果、実施例1〜4で用いた偏光素子の偏光透過軸方向と、各ネマチック液晶層の遅相軸あるいは進相軸とが等しいことが確認できた。これに対し、比較例1のフィルムでは、ネマティック液晶は配向せず、白濁し、軸角度が検知できなかった。また、比較例2のフィルムも、白濁し、軸角度が検知できなかった。   Furthermore, only the formed nematic liquid crystal layer was transferred to a transparent substrate (glass or triacetyl cellulose (TAC)). The slow axis of the nematic liquid crystal layer was measured with a spectroscopic ellipsometer (trade name: M220, manufactured by JASCO Corporation). As a result, it was confirmed that the polarization transmission axis direction of the polarizing elements used in Examples 1 to 4 and the slow axis or the fast axis of each nematic liquid crystal layer were equal. On the other hand, in the film of Comparative Example 1, the nematic liquid crystal was not aligned, became cloudy, and the axis angle could not be detected. Further, the film of Comparative Example 2 also became cloudy and the shaft angle could not be detected.

異方性フィルムの評価3
実施例5で得た異方性フィルムを、透明基材(TACフィルム)に、接着剤を用いて貼り合わせ、ついで偏光素子を剥離し、前記透明基材上の異方性フィルムを転写した。この異方性フィルムの位相差と遅相軸を、分光エリプソメータ(商品名M220、日本分光製)で測定した。その結果、実施例5で用いた偏光素子の偏光透過軸方向と、前記異方性フィルムの遅相軸とが等しいことが確認できた。位相差値は約100nm(測定波長590nm)であった。この結果より、実施例5で得た異方性フィルムは、光学異方性を示すといえる。
Evaluation of anisotropic film 3
The anisotropic film obtained in Example 5 was bonded to a transparent substrate (TAC film) using an adhesive, the polarizing element was peeled off, and the anisotropic film on the transparent substrate was transferred. The phase difference and slow axis of this anisotropic film were measured with a spectroscopic ellipsometer (trade name: M220, manufactured by JASCO Corporation). As a result, it was confirmed that the polarization transmission axis direction of the polarizing element used in Example 5 was equal to the slow axis of the anisotropic film. The phase difference value was about 100 nm (measurement wavelength 590 nm). From this result, it can be said that the anisotropic film obtained in Example 5 exhibits optical anisotropy.

Figure 0004853976
Figure 0004853976

前記表1に示すように、各実施例1〜4で得られた異方性フィルムは、液晶配向能を有し、実施例5で得られた異方性フィルムは、光学異方性を示すことが確認できた。さらに、各実施例1〜5で得られた異方性フィルムは良好な軸精度も有していることも確認できた。   As shown in Table 1, the anisotropic films obtained in Examples 1 to 4 have liquid crystal alignment ability, and the anisotropic film obtained in Example 5 exhibits optical anisotropy. I was able to confirm. Furthermore, it was confirmed that the anisotropic films obtained in Examples 1 to 5 also had good axial accuracy.

以上のように、本発明の製造方法によれば、偏光を照射するための特殊な機構の光照射装置を必要とせず、さらに高度なアラインメント調整も必要とせずに、かつ簡便に異方性フィルムを製造することができる。   As described above, according to the production method of the present invention, an anisotropic film can be simply and without requiring a light irradiation device with a special mechanism for irradiating polarized light, without requiring a high degree of alignment adjustment. Can be manufactured.

1 光照射装置
2 偏光素子
3 光反応性物質フィルム
4 照射光
5 偏光
DESCRIPTION OF SYMBOLS 1 Light irradiation apparatus 2 Polarizing element 3 Photoreactive substance film 4 Irradiation light 5 Polarization

Claims (3)

偏光素子、液晶配向膜および液晶層とをこの順に有する光学フィルムの製造方法であって、
前記偏光素子上に、光反応性物質の溶液または溶融液を塗工し、固化させて光反応性物質フィルムを得た後、前記偏光素子を介して光を照射することにより、前記光反応性物質フィルムに異方性を付与することにより、前記偏光素子上に液晶配向膜を直接形成する工程と、
前記液晶配向膜上に、ネマチック液晶相を示す化合物の溶液を塗工し、次いで重合させ、前記液晶層の遅相軸が、前記偏光素子の透過軸と0度をなすように配向を固定させる工程とを含む製造方法。
A method for producing an optical film having a polarizing element, a liquid crystal alignment film, and a liquid crystal layer in this order,
A photoreactive substance solution or melt is applied onto the polarizing element, solidified to obtain a photoreactive substance film, and then irradiated with light through the polarizing element, whereby the photoreactive property is obtained. A step of directly forming a liquid crystal alignment film on the polarizing element by imparting anisotropy to the substance film;
On the liquid crystal alignment film, a solution of a compound exhibiting a nematic liquid crystal phase is applied and then polymerized, and the alignment is fixed so that the slow axis of the liquid crystal layer forms 0 degree with the transmission axis of the polarizing element. The manufacturing method including a process.
前記光反応性物質が、1〜780nmの範囲にある波長を有する光で反応しうる物質である請求項1に記載の製造方法。   The method according to claim 1, wherein the photoreactive substance is a substance that can react with light having a wavelength in the range of 1 to 780 nm. 前記偏光素子が、プリズム偏光子、偏光フィルタまたは偏光子である請求項1または2に記載の製造方法。   The manufacturing method according to claim 1, wherein the polarizing element is a prism polarizer, a polarizing filter, or a polarizer.
JP2009076524A 2009-03-26 2009-03-26 Method for producing anisotropic film Expired - Fee Related JP4853976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009076524A JP4853976B2 (en) 2009-03-26 2009-03-26 Method for producing anisotropic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009076524A JP4853976B2 (en) 2009-03-26 2009-03-26 Method for producing anisotropic film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003321676A Division JP4341904B2 (en) 2003-09-12 2003-09-12 Method for producing anisotropic film

Publications (2)

Publication Number Publication Date
JP2009199087A JP2009199087A (en) 2009-09-03
JP4853976B2 true JP4853976B2 (en) 2012-01-11

Family

ID=41142556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009076524A Expired - Fee Related JP4853976B2 (en) 2009-03-26 2009-03-26 Method for producing anisotropic film

Country Status (1)

Country Link
JP (1) JP4853976B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6086467B2 (en) * 2011-03-28 2017-03-01 日産自動車株式会社 Sodium ion secondary battery
EP3923263A4 (en) 2019-02-08 2022-11-09 Toyobo Co., Ltd. Foldable display and portable terminal device
US11926720B2 (en) 2019-05-28 2024-03-12 Toyobo Co., Ltd. Polyester film and application therefor
EP3978554A4 (en) 2019-05-28 2023-06-21 Toyobo Co., Ltd. Polyester film, laminated film, and use thereof
WO2020241278A1 (en) 2019-05-28 2020-12-03 東洋紡株式会社 Multilayer film and use of same
US20220236467A1 (en) * 2019-05-30 2022-07-28 Toyobo Co., Ltd. Polarization plate for folding display

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274924A (en) * 1988-09-12 1990-03-14 Sanyo Chem Ind Ltd Method for working liquid crystal
JP2990270B2 (en) * 1997-09-24 1999-12-13 工業技術院長 Oriented resin film, method for producing the same, and optical element using the oriented resin film
JP2002202408A (en) * 2000-12-28 2002-07-19 Hayashi Telempu Co Ltd Retardation film and method for manufacturing the same
JP2003075824A (en) * 2001-09-07 2003-03-12 Matsushita Electric Ind Co Ltd Optical member and liquid crystal display device

Also Published As

Publication number Publication date
JP2009199087A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP3981638B2 (en) Optical film, production method thereof, retardation film and polarizing plate using the same
US7235283B2 (en) Optical compensation plate and deflecting plate using the same
US20090252890A1 (en) Method for producing anisotropic film
TWI258033B (en) Polarizing plate with optical compensation function, and liquid crystal display device using the same
JP3960549B2 (en) Polarizing plate with optical compensation function for VA liquid crystal cell and optical compensation functional layer for VA liquid crystal cell
JP3838508B2 (en) Manufacturing method of laminated retardation plate
JP4853976B2 (en) Method for producing anisotropic film
JP4404624B2 (en) Elliptical polarizing plate and image display device
JP3813631B2 (en) Manufacturing method of optical film
JP3791806B2 (en) Manufacturing method of optical film
JP2005091480A (en) Manufacturing method for anisotropic film
JP2004226945A (en) Manufacturing method of double refraction film
JP4276496B2 (en) Method for producing optical film containing liquid crystal polymer in alignment state
JP4404606B2 (en) Polarizer, manufacturing method thereof, optical film, and image display device
JP4404623B2 (en) High brightness polarizing plate and image display device
JP2006091920A5 (en)
JP4247069B2 (en) Production method of retardation plate
KR20060036043A (en) Optical compensation plate and, including the same, polarizing plate and image display
JP2005070771A (en) Optical compensation plate and polarizing plate using the same, and image display device
JP4293595B2 (en) Phase difference plate and manufacturing method thereof
JP2003287622A (en) Optical compensation plate and polarizing plate using the same
JP2004331951A (en) New polyimide
JP2005062425A (en) Phase difference plate and its manufacturing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees