JP4853612B2 - Manufacturing method of cutting throwaway tip made of surface coated cermet whose hard coating layer exhibits excellent chipping resistance in high speed cutting - Google Patents

Manufacturing method of cutting throwaway tip made of surface coated cermet whose hard coating layer exhibits excellent chipping resistance in high speed cutting Download PDF

Info

Publication number
JP4853612B2
JP4853612B2 JP2005277962A JP2005277962A JP4853612B2 JP 4853612 B2 JP4853612 B2 JP 4853612B2 JP 2005277962 A JP2005277962 A JP 2005277962A JP 2005277962 A JP2005277962 A JP 2005277962A JP 4853612 B2 JP4853612 B2 JP 4853612B2
Authority
JP
Japan
Prior art keywords
layer
cutting
hard coating
titanium
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005277962A
Other languages
Japanese (ja)
Other versions
JP2007083374A (en
Inventor
哲彦 本間
央 原
斉 功刀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005277962A priority Critical patent/JP4853612B2/en
Publication of JP2007083374A publication Critical patent/JP2007083374A/en
Application granted granted Critical
Publication of JP4853612B2 publication Critical patent/JP4853612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

この発明は、特に各種の鋼や鋳鉄などの高速切削加工に用いた場合に、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ(以下、被覆切削チップという)の製造方法に関するものである。 The present invention is a surface-coated cermet cutting throwaway tip (hereinafter referred to as a coated cutting tip) that exhibits excellent chipping resistance with a hard coating layer, particularly when used for high-speed cutting of various steels and cast irons. It relates to a manufacturing method .

従来、一般に、図3に概略斜視図で示される通り、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成され、かつ中心部に工具取りつけ孔を有する基体(以下、これらを総称してチップ基体という)の切刃稜線部を含むすくい面および逃げ面の全面に、
(a−1)下部層として、炭化チタン(以下、TiCで示す)層、窒化チタン(以下、同じくTiNで示す)層、炭窒化チタン(以下、TiCNで示す)層、炭酸化チタン(以下、TiCOで示す)層、および炭窒酸化チタン(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(a−2)上部層として、1〜15μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層(以下、α型Al23層で示す)、
以上(a−1)および(a−2)で構成された硬質被覆層を化学蒸着形成してなる被覆切削チップが知られており、この被覆切削チップが、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることは良く知られている。
Conventionally, generally, as shown in a schematic perspective view in FIG. 3, it is composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet, and a tool at the center. On the entire surface of the rake face and the flank face including the cutting edge ridge line portion of the base body (hereinafter collectively referred to as a chip base body) having mounting holes,
(A-1) As a lower layer, a titanium carbide (hereinafter referred to as TiC) layer, a titanium nitride (hereinafter also referred to as TiN) layer, a titanium carbonitride (hereinafter referred to as TiCN) layer, a titanium carbonate (hereinafter referred to as "TiN"). A Ti compound layer composed of one or more of a layer represented by TiCO) and a titanium carbonitride oxide (hereinafter represented by TiCNO) layer and having an overall average layer thickness of 3 to 20 μm,
(A-2) As an upper layer, an aluminum oxide layer (hereinafter referred to as an α-type Al 2 O 3 layer) having an average layer thickness of 1 to 15 μm and having an α-type crystal structure in a state of chemical vapor deposition,
A coated cutting tip formed by chemical vapor deposition of the hard coating layer composed of (a-1) and (a-2) is known, and this coated cutting tip is a continuous material such as various steels and cast irons. It is well known that it is used for cutting and intermittent cutting.

また、上記の被覆切削チップにおいて、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
さらに、上記の被覆切削チップの硬質被覆層を構成するα型Al23層(上部層)の表面を、切削性能を向上させる目的でウエットブラスト処理して、平滑化することも知られている。
特開平6−31503号公報 特開平6−8010号公報 特開平8−276305号公報
In the above-mentioned coated cutting tip, the constituent layer of the hard coating layer generally has a granular crystal structure, and the TiCN layer constituting the Ti compound layer as the lower layer is intended to improve the strength of the layer itself. In a normal chemical vapor deposition apparatus, a gas mixture containing organic carbonitrides is used as a reaction gas, and it is formed by chemical vapor deposition at an intermediate temperature range of 700 to 950 ° C. so that it has a vertically grown crystal structure. It is also known to do.
Furthermore, it is also known that the surface of the α-type Al 2 O 3 layer (upper layer) constituting the hard coating layer of the above-described coated cutting tip is smoothed by wet blasting for the purpose of improving cutting performance. Yes.
Japanese Unexamined Patent Publication No. 6-31503 Japanese Patent Laid-Open No. 6-8010 JP-A-8-276305

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆切削チップにおいては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特に切削速度が350m/min.を越える高速で切削加工を行なうのに用いた場合には、硬質被覆層の上部層を構成するα型Al23層にチッピング(微少欠け)が発生し易く、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and along with this, cutting tends to be faster. The cutting tip has no problem when it is used for continuous cutting or intermittent cutting under normal conditions such as steel or cast iron, but the cutting speed is 350 m / min. When it is used for cutting at a high speed exceeding 1, the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer is likely to chip (small chipping), and as a result, in a relatively short time. At present, the service life is reached.

そこで、本発明者等は、上述のような観点から、上記のα型Al23層が硬質被覆層の上部層を構成する被覆切削チップに着目し、特に前記α型Al23層の耐チッピング性向上を図るべく研究を行った結果、
(a)上記の従来被覆切削チップにおける硬質被覆層の上部層を構成するα型Al23層の表面に、ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%の酸化アルミニウム微粒(以下、Al23微粒で示す)を配合した研磨液を噴射して、研磨すると、前記α型Al23層は、準拠規格JIS・B0601−1994に基いた測定(以下の表面粗さは全てかかる準拠規格に基いた測定値を示す)で、Ra:0.3〜0.6μmの表面粗さを示すようになるが、この結果の前記α型Al23層の表面を、ウエットブラストにてRa:0.3〜0.6μmの表面粗さに平滑化した被覆切削チップを用いても、切削速度が350m/min.を越えた高速切削加工では切刃部におけるチッピング発生を満足に抑制することはできないこと。
The present inventors have, from the viewpoint as described above, focuses on coated cutting tip α type the Al 2 O 3 layer described above constituting the upper layer of the hard coating layer, in particular the α-type the Al 2 O 3 layer As a result of research to improve chipping resistance of
(A) On the surface of the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer in the above-mentioned conventional coated cutting chip, the ratio of the wet blasting material to the total amount of water as a spraying abrasive is 15 When the polishing liquid containing -60 mass% aluminum oxide fine particles (hereinafter referred to as Al 2 O 3 fine particles) is sprayed and polished, the α-type Al 2 O 3 layer conforms to the compliant standard JIS B0601-1994. Based on the measurement (the following surface roughness is a measured value based on such a standard), the surface roughness of Ra: 0.3 to 0.6 μm is exhibited. Even when a coated cutting tip in which the surface of the Al 2 O 3 layer is smoothed to a surface roughness of Ra: 0.3 to 0.6 μm by wet blasting, the cutting speed is 350 m / min. High-speed cutting that exceeds the limit cannot effectively suppress chipping at the cutting edge.

(b)一方、図2に概略斜視図で示される通り、上記の従来被覆切削チップにおける硬質被覆層の上部層を構成するα型Al23層の切刃稜線部を含むすくい面および逃げ面の全面に、
(b−1)まず、下側層として、反応ガス組成を、体積%で、
TiCl4:0.2〜10%、
CO2:0.1〜10%、
Ar:5〜60%、
2:残り、
とし、かつ、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:4〜70kPa(30〜525torr)、
とした条件で、0.1〜3μmの平均層厚を有し、かつ、オージェ分光分析装置で測定して、Tiに対する酸素の割合が原子比で1.25〜1.90、即ち、
組成式:TiOW
で表わした場合、
W:原子比で1.25〜1.90、
を満足する酸化チタン層(以下、TiO W 層で示す)を形成し、
(b−2)ついで、上記TiO W (下側層)の上に、上側層として、通常の条件、即ち、反応ガス組成を、体積%で、
TiCl4:0.2〜10%、
2:4〜60%、
2:残り、
とし、かつ、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:4〜90kPa(30〜675torr)、
とした条件で、0.05〜2μmの平均層厚を有するTiN層を形成すると、
(b−3)上記TiN層(上側層)形成時に、上記下側層を構成するTiO W の酸素が拡散してきて前記上側層(TiN層)が、窒酸化チタン層で構成されるようになるが、この場合上記上側層(前記窒酸化チタン層)形成後の上記下側層は、厚さ方向中央部をオージェ分光分析装置で測定して、酸素の割合がTiに対する原子比で1.2〜1.7、即ち、
組成式:TiOX
で表わした場合、
X:原子比で1.2〜1.7、
を満足する酸化チタン層(以下、TiO X 層で示す)となり、
(b−4)また、上記窒酸化チタン層で構成された上側層は、同じく厚さ方向中央部をオージェ分光分析装置で測定して、拡散酸素の割合が窒素(N)に対する原子比で0.01〜0.4、即ち、
組成式:TiN1-Y(O)Y
で表わした場合(ただし、(O)は上側層蒸着形成時における上記下側層からの拡散酸素を示す)、
Y:原子比で0.01〜0.4、
を満足する窒酸化チタン層(以下、TiN(O)層で示す)となること。
(B) On the other hand, as shown in the schematic perspective view of FIG. 2, the rake face and clearance including the cutting edge ridge line portion of the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer in the conventional coated cutting tip described above. On the entire surface,
(B-1) First, as the lower layer, the reaction gas composition is in volume%,
TiCl 4 : 0.2 to 10%,
CO 2 : 0.1 to 10%,
Ar: 5 to 60%,
H 2 : Remaining
And
Reaction atmosphere temperature: 800-1100 ° C.
Reaction atmosphere pressure: 4 to 70 kPa (30 to 525 torr),
And having an average layer thickness of 0.1 to 3 μm and a ratio of oxygen to Ti of 1.25 to 1.90 as measured by an Auger spectrometer,
Composition formula: TiO W ,
In the case of
W: 1.25 to 1.90 in atomic ratio,
A titanium oxide layer ( hereinafter referred to as a TiO W layer ) that satisfies the following conditions:
(B-2) Next, on the TiO W layer (lower layer), as an upper layer, normal conditions, that is, the reaction gas composition in volume%,
TiCl 4 : 0.2 to 10%,
N 2 : 4-60%,
H 2 : Remaining
And
Reaction atmosphere temperature: 800-1100 ° C.
Reaction atmosphere pressure: 4 to 90 kPa (30 to 675 torr),
When a TiN layer having an average layer thickness of 0.05 to 2 μm is formed under the conditions described above,
(B-3) When forming the TiN layer (upper layer), oxygen in the TiO W layer constituting the lower layer is diffused so that the upper layer (TiN layer) is composed of a titanium oxynitride layer. However, in this case, the lower layer after the formation of the upper layer (the titanium oxynitride layer) is measured by an Auger spectroscopic analyzer at the center in the thickness direction, and the oxygen ratio is 1. 2 to 1.7, ie
Composition formula: TiO x ,
In the case of
X: 1.2 to 1.7 in atomic ratio,
And a titanium oxide layer ( hereinafter referred to as a TiO x layer ) satisfying
(B-4) Further, the upper layer composed of the above titanium oxynitride layer was also measured at the center in the thickness direction with an Auger spectroscopic analyzer, and the proportion of diffused oxygen was 0 in terms of atomic ratio with respect to nitrogen (N). .01-0.4, i.e.
Composition formula: TiN 1-Y (O) Y ,
(Where (O) indicates diffused oxygen from the lower layer during upper layer deposition formation),
Y: 0.01 to 0.4 in atomic ratio
A titanium oxynitride layer ( hereinafter referred to as a TiN (O) layer) satisfying

(c)上記TiN(O)層(上側層)およびTiO X (下側層)を蒸着形成した状態で、
上記(a)におけると同じくウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl23微粒を配合した研磨液を噴射すると、前記TiN(O)層およびTiO X 層は、前記Al23微粒によって粉砕微粒化し、粉砕化TiN(O)微粒および粉砕化TiO X 微粒となって前記Al23微粒の共存下で研磨材として作用し、硬質被覆層の上部層を構成するα型Al23層の表面を研磨することになり、この結果研磨後の前記α型Al23層の表面は、Ra:0.2μm以下の表面粗さにまで平滑化されるようになり、この上部層であるα型Al23層の表面がRa:0.2μm以下の表面粗さに平滑化した被覆切削チップを用いて、高速切削加工を行った場合、350m/min.を越える切削速度でも切刃部におけるチッピング発生が防止され、前記硬質被覆層は長期に亘ってすぐれた耐摩耗性を発揮するようになること。
(C) With the TiN (O) layer (upper layer) and the TiO x layer (lower layer) formed by vapor deposition,
When a polishing liquid containing 15 to 60% by mass of Al 2 O 3 fine particles as a spraying abrasive in a ratio to the total amount of water is sprayed by wet blasting as in (a) above, the TiN (O ) Layer and TiO x layer are pulverized and pulverized by the Al 2 O 3 fine particles, become pulverized TiN (O) particles and pulverized TiO X fine particles, and act as an abrasive in the presence of the Al 2 O 3 fine particles. results in polishing the surface of the hard layer α type the Al 2 O 3 layer constituting the upper layer of the α-type the Al 2 O 3 layer surface after the results polishing, Ra: 0.2 [mu] m following The surface of the α-type Al 2 O 3 layer, which is the upper layer, is smoothed to a surface roughness, using a coated cutting tip in which the surface is smoothed to a surface roughness of Ra: 0.2 μm or less. When cutting, 350 m / min. Chipping at the cutting edge is prevented even at a cutting speed exceeding 1, and the hard coating layer exhibits excellent wear resistance over a long period of time.

(d)上記の通り、切削速度が350m/min.を越えた高速切削加工では、被覆切削チップの切刃部に懸かる負荷はきわめて高いものになるため、特にフライス切削の場合、工具本体への被覆切削チップの取り付けに際しては、きわめて高い締め付け力で取り付けが行なわれることになり、この結果被覆切削チップの工具取り付け孔周辺部の硬質被覆層に対する圧縮応力はきわめて高いものとなるので、特に上部層を構成するα型Al23層は、ビッカース硬さ(Hv)で約3000の高硬度を有することと相俟って、これに割れが発生し易くなり、これが原因で硬質被覆層に剥離やチッピングが発生するようになるが、図1に概略斜視図で示される通り、前記ウエットブラストに際して、工具取り付け孔周辺部を研磨せず、この部分の研磨材層を残した状態にしておくと、上記の研磨材層を構成するTiN(O)層(上側層)およびTiO X 層(下側層)はいずれも前記α型Al23層に比して、相対的にきわめて低いHv:約2000の硬さをもつものであるため、工具本体への被覆切削チップの取り付けに際して、高い締め付け力の緩衝層として作用し、この結果前記α型Al23層に対する圧縮応力が著しく小さなものとなることから、剥離やチッピング発生の原因となる割れ発生が防止されるようになること。
以上(a)〜(d)に示される研究結果を得たのである。
(D) As described above, the cutting speed is 350 m / min. In high-speed cutting processing exceeding 1, the load applied to the cutting edge of the coated cutting tip is extremely high. Therefore, especially in the case of milling, the coated cutting tip is attached to the tool body with a very high clamping force. As a result, the compressive stress on the hard coating layer around the tool mounting hole of the coated cutting tip becomes extremely high. In particular, the α-type Al 2 O 3 layer constituting the upper layer has a Vickers hardness. In combination with having a high hardness of about 3000 at the height (Hv), cracks are likely to occur in this, and this causes peeling and chipping in the hard coating layer. As shown in the perspective view, when the wet blasting is performed, the peripheral portion of the tool mounting hole is not polished and the abrasive layer of this portion is left. The TiN (O) layer (upper layer) and the TiO x layer (lower layer) constituting the layers are both relatively low in Hv: about 2000 in hardness as compared with the α-type Al 2 O 3 layer. Therefore, when attaching the coated cutting tip to the tool body, it acts as a buffer layer with a high clamping force, and as a result, the compressive stress on the α-type Al 2 O 3 layer becomes extremely small. Preventing the occurrence of cracks that cause peeling and chipping.
The research results shown in (a) to (d) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
)WC基超硬合金またはTiCN基サーメットで構成され、かつ中心部に工具取り付け孔を有するチップ基体の切刃稜線部を含むすくい面および逃げ面の全面に、
(a−1)下部層として、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(a−2)上部層として、1〜15μmの平均層厚を有するα型Al23層、
以上(a−1)および(a−2)で構成された硬質被覆層を化学蒸着形成し、
(2)上記硬質被覆層の上部層であるα型Al23層の全面に、
(b−1)下側層として、0.1〜3μmの平均層厚を有し、かつ、
組成式:TiOX
で表わした場合、厚さ方向中央部をオージェ分光分析装置で測定して、
X:原子比で1.2〜1.7、
を満足するTiO X 層、
(b−2)上側層として、0.05〜2μmの平均層厚を有し、かつ、
組成式:TiN1-Y(O)Y
で表わした場合(ただし、(O)は上側層の蒸着形成時における上記下側層からの拡散酸素を示す)、同じく厚さ方向中央部をオージェ分光分析装置で測定して、
Y:原子比で0.01〜0.4、
を満足するTiN(O)層、
以上(b−1)および(b−2)で構成された研磨材層を化学蒸着形成し、
ついで、ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl23微粒を配合した研磨液を噴射し、
この場合工具取り付け孔周辺部の上記研磨材層を研磨せず、工具本体取り付け時における高い締め付け力の緩衝層として残した状態で、残りの研磨面における上記の研磨材層が噴射研磨材であるAl23微粒の噴射により粉砕微粒化してなる下側層の粉砕化TiO X 微粒および上側層の粉砕化TiN(O)微粒と、噴射研磨材としてのAl23微粒との共存下で、上記硬質被覆層の上部層を構成するα型Al23層の表面を研磨して、前記上部層であるα型Al23層の切刃稜線部を含むすくい面および逃げ面の表面粗さを準拠規格JIS・B0601−1994に基いた測定で、Ra:0.2μm以下としてなる、硬質被覆層が高速切削加工ですぐれた耐チッピング性を発揮する被覆切削チップの製造方法に特徴を有するものである。
This invention was made based on the above research results,
( 1 ) It is composed of a WC-based cemented carbide or a TiCN-based cermet and has a cutting edge ridge line portion of a chip base having a tool attachment hole in the center, and the entire rake face and flank face.
(A-1) As a lower layer, a Ti compound layer composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer and having an overall average layer thickness of 3 to 20 μm ,
(A-2) α-type Al 2 O 3 layer having an average layer thickness of 1 to 15 μm as an upper layer,
Chemical vapor deposition of the hard coating layer composed of (a-1) and (a-2) above,
(2) On the entire surface of the α-type Al 2 O 3 layer, which is the upper layer of the hard coating layer,
(B-1) The lower layer has an average layer thickness of 0.1 to 3 μm, and
Composition formula: TiO x ,
, Measure the central part in the thickness direction with an Auger spectrometer,
X: 1.2 to 1.7 in atomic ratio,
TiO x layer satisfying
(B-2) The upper layer has an average layer thickness of 0.05 to 2 μm, and
Composition formula: TiN 1-Y (O) Y ,
(However, (O) indicates the diffused oxygen from the lower layer at the time of vapor deposition formation of the upper layer), the central portion in the thickness direction is also measured with an Auger spectrometer,
Y: 0.01 to 0.4 in atomic ratio
A TiN (O) layer satisfying
Abrasive material layer composed of (b-1) and (b-2) above is formed by chemical vapor deposition,
( 3 ) Next , with wet blasting, a polishing liquid containing 15 to 60% by mass of Al 2 O 3 fine particles as a spraying abrasive in a proportion of the total amount with water is sprayed.
In this case, the abrasive layer around the tool mounting hole is not polished, and remains as a buffer layer having a high clamping force when the tool body is mounted, and the abrasive layer on the remaining polishing surface is a jet abrasive. in the presence of the Al 2 O 3 pulverization TiN grinding of particulate lower layer formed by grinding atomized by injection of TiO X fine and the upper layer (O) fine, and Al 2 O 3 fine as injection abrasive The surface of the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer is polished, and the rake face and the flank face including the cutting edge ridge line portion of the α-type Al 2 O 3 layer as the upper layer are polished. Characterized by the method of manufacturing coated cutting tips whose surface roughness is measured in accordance with JIS B0601-1994, Ra: 0.2 μm or less, and the hard coating layer exhibits excellent chipping resistance in high-speed cutting. It is what has.

以下に、この発明の被覆切削チップの製造方法において、硬質被覆層および研磨材層、さらにウエットブラストで用いられる研磨液のAl23微粒に関して、上記の通りに数値限定した理由を説明する。
(a)硬質被覆層
(a−1)下部層のTi化合物層
Ti化合物層は、α型Al23層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層が高温強度向上に寄与するほか、チップ基体とα型Al23層のいずれにも強固に密着し、よって硬質被覆層のチップ基体に対する密着性を向上させる作用を有するが、その全体平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その全体平均層厚が20μmを越えると、特に高熱発生を伴なう高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その全体平均層厚を3〜20μmと定めた。
The reason why the hard coating layer, the abrasive layer, and the Al 2 O 3 fine particles of the polishing liquid used in wet blasting in the manufacturing method of the coated cutting chip of the present invention are numerically limited as described above will be described below.
(A) Hard coating layer (a-1) Ti compound layer of lower layer The Ti compound layer exists as a lower layer of the α-type Al 2 O 3 layer, and the hard coating layer has a high temperature due to its excellent high temperature strength. In addition to contributing to strength improvement, it has a function of firmly adhering to both the chip base and the α-type Al 2 O 3 layer, thereby improving the adhesion of the hard coating layer to the chip base, but the overall average layer thickness is If the thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exerted. On the other hand, if the total average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation particularly in high-speed cutting accompanied by generation of high heat. Since it becomes a cause, the whole average layer thickness was set to 3-20 micrometers.

(a−2)上部層のα型Al23
上記のα型Al23層は、すぐれた高温硬さと耐熱性を有し、被覆切削チップの切削性能向上に寄与するが、その平均層厚が1μm未満では、所望のすぐれた切削性能を長期に亘って発揮させることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(A-2) α-type Al 2 O 3 layer of the upper layer The α-type Al 2 O 3 layer has excellent high-temperature hardness and heat resistance, and contributes to improving the cutting performance of the coated cutting tip. If the average layer thickness is less than 1 μm, the desired excellent cutting performance cannot be exhibited over a long period of time. On the other hand, if the average layer thickness exceeds 15 μm, chipping tends to occur. The average layer thickness was set to 1 to 15 μm.

(b)研磨材層
上側層を構成するTiN(O)層は、上記の通り、まず、酸素の割合をTiに対する原子比で1.25〜1.90(W値)としたTiO W を形成し、ついで、前記TiO W の上に通常の条件でTiN層を蒸着することにより形成されるものであり、したがって前記TiN層形成時における前記TiO W からの酸素の拡散が不可欠となるが、前記TiO W のW値が1.25未満であると、前記TiN層への酸素の拡散反応が急激に低下し、上側層における拡散酸素の割合(Y値)を原子比で0.01以上にすることができず、一方同W値が1.90を越えると、前記上側層における拡散酸素の割合(Y値)が原子比で0.40を越えて多くなってしまうことから、W値を1.25〜1.90と定めたものであり、この場合上側層形成後の下側層(TiO X 層)における酸素の割合(X値)は原子比で1.2〜1.7の範囲内の値をとるようになる、言い換えれば上側層形成後の下側層のX値が1.2〜1.7を満足する場合に、前記上側層のY値は0.01〜0.40を満足するものとなる。
また、この場合、下側層のX値および上側層のY値をそれぞれ1.2〜1.7および0.01〜0.40と定めたのは、前記X値およびY値が前記の値をとった場合に、これら研磨材層のウエットブラスト時における粉砕微粒化が好適な状態で行なわれ、すぐれた研磨機能を十分に発揮することが多くの試験結果から得られ、これらの試験結果に基いて定めたものである。したがって、前記X値およびY値がそれぞれ1.2〜1.7および0.01〜0.40の範囲から外れると、前記研磨材層のウエットブラスト時における粉砕微粒化が満足に行なわれず、すぐれた研磨機能を期待することができない。
さらに、上側層および下側層の平均層厚を、それぞれ0.05〜2μmおよび0.1〜3μmとしたのは、その平均層厚が0.05μm未満および0.1μm未満では、ウエットブラスト時における下側層の粉砕化TiO X 微粒、上側層の粉砕化TiN(O)微粒の割合が少な過ぎて、研磨機能を十分に発揮することができず、一方、その平均層厚がそれぞれ2μmおよび3μmを越えても、研磨機能が急激に低下するようになり、いずれの場合もα型Al23層の表面をRa:0.2μm以下の表面粗さに研磨することができなくなるという理由にもとづくものである。
(B) Abrasive material layer As described above, the TiN (O) layer constituting the upper layer is a TiO W layer having an oxygen ratio of 1.25 to 1.90 (W value) in terms of atomic ratio to Ti. Formed, and then deposited on the TiO W layer by depositing a TiN layer under normal conditions. Therefore, diffusion of oxygen from the TiO W layer during the TiN layer formation is indispensable. However, if the W value of the TiO W layer is less than 1.25, the diffusion reaction of oxygen into the TiN layer is abruptly reduced, and the ratio (Y value) of the diffused oxygen in the upper layer is reduced to 0. On the other hand, if the same W value exceeds 1.90, the proportion of diffused oxygen (Y value) in the upper layer increases by more than 0.40 in atomic ratio. W value is determined as 1.25 to 1.90. In this case Side layer after formation lower layer of the proportion of oxygen in the (TiO X layer) (X value) will take a value within a range of 1.2 to 1.7 in atomic ratio, after the upper layer formed in other words When the X value of the lower layer satisfies 1.2 to 1.7, the Y value of the upper layer satisfies 0.01 to 0.40.
In this case, the X value of the lower layer and the Y value of the upper layer are set to 1.2 to 1.7 and 0.01 to 0.40, respectively. It is obtained from many test results that these abrasive layers are pulverized and atomized in a suitable state at the time of wet blasting, and exhibit an excellent polishing function sufficiently. Based on this. Therefore, if the X value and Y value are out of the range of 1.2 to 1.7 and 0.01 to 0.40, respectively, the pulverization and atomization at the time of wet blasting of the abrasive layer is not satisfactorily performed, which is excellent. The polishing function cannot be expected.
Further, the average layer thicknesses of the upper layer and the lower layer were set to 0.05 to 2 μm and 0.1 to 3 μm, respectively, when the average layer thickness was less than 0.05 μm and less than 0.1 μm. The ratio of the pulverized TiO x fine particles in the lower layer and the fine pulverized TiN (O) fine particles in the upper layer is too small to sufficiently exhibit the polishing function, while the average layer thickness is 2 μm and Even if the thickness exceeds 3 μm, the polishing function suddenly decreases. In any case, the surface of the α-type Al 2 O 3 layer cannot be polished to a surface roughness of Ra: 0.2 μm or less. It is based on.

(c)研磨液のAl23微粒の割合
研磨液のAl23微粒には、ウエットブラスト時に研磨材層を構成する下側層の粉砕化TiO X 微粒および上側層の粉砕化TiN(O)微粒と共存した状態で、α型Al23層の表面を研磨する作用があるが、その割合が水との合量に占める割合で15質量%未満でも、また60質量%を越えても研磨機能が急激に低下するようになることから、その割合を15〜60質量%と定めた。
(C) The Al 2 O 3 fine of Al 2 O 3 fine fraction polishing liquid of the polishing liquid, pulverization of TiN milled TiO X fine and the upper layer of the lower layer of the abrasive layer during wet blasting ( O) The surface of the α-type Al 2 O 3 layer is polished in the state of coexisting with fine particles, but the proportion of the total amount with water is less than 15% by mass or more than 60% by mass. However, since the polishing function is abruptly lowered, the ratio is determined to be 15 to 60% by mass.

この発明の方法で製造された被覆切削チップは、硬質被覆層の上部層を構成するα型Al23層の切刃稜線部を含むすくい面および逃げ面が、Ra:0.2μm以下の表面粗さに研磨され、さらに工具取り付け孔周辺部に存在する研磨材層が、工具本体への被覆切削チップの取り付けに際して、高速切削加工では不可欠の高い締め付け力の緩衝層として作用することから、前記α型Al23層に対する圧縮応力が著しく小さなものとなり、この結果剥離やチッピング発生の原因となる割れ発生が防止されるようになることと相俟って、各種の鋼や鋳鉄などの切削加工を、切削速度が350m/min.を越える高速で行うのに用いた場合にも、すぐれた耐チッピング性を発揮し、使用寿命の一層の延命化を可能とするものである。 In the coated cutting tip manufactured by the method of the present invention, the rake face and flank face including the cutting edge ridge line portion of the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer have a Ra of 0.2 μm or less. Since the abrasive layer polished to the surface roughness and present in the periphery of the tool mounting hole acts as a buffer layer with a high clamping force, which is indispensable in high-speed cutting when attaching the coated cutting tip to the tool body, Combined with the fact that the compressive stress on the α-type Al 2 O 3 layer is remarkably small and, as a result, cracking that causes peeling and chipping is prevented, various steels, cast irons, etc. Cutting is performed at a cutting speed of 350 m / min. Even when used for high-speed operation exceeding the above, excellent chipping resistance is exhibited, and the service life can be further extended.

つぎに、この発明の被覆切削チップの製造方法を実施例により具体的に説明する。 Next, the method for producing a coated cutting tip according to the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製のチップ基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, chip bases A to F made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製のチップ基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. TiCN base cermet chip bases a to f having a standard / CNMG12041 chip shape were formed.

ついで、これらのチップ基体A〜Fおよびチップ基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、
まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表6に示される目標層厚のTi化合物層およびα型Al23層を硬質被覆層の下部層および上部層として蒸着形成し(図3参照)、
ついで、研磨材層の下側層形成用TiO層[TiO(1)〜(6)のいずれか]を表4に示される条件で形成した後、上側層形成用窒化チタン層(TiN層)を同じく表3に示される条件で、表6に示される目標層厚で蒸着形成して、表6に示される組成、すなわち厚さ方向中央部をオージェ分光分析装置で測定して、それぞれ表6に示されるX値およびY値の下側層および上側層からなる研磨材層を形成し(図2参照)、
引き続いて、上記の下側層および上側層からなる研磨材層形成の被覆切削チップに、表5に示されるブラスト条件で、かつ表6に示される組み合わせでウエットブラストを施して、工具取り付け孔周辺部に研磨材層を存在させた状態で、前記α型Al23層(上部層)の切刃稜線部を含むすくい面および逃げ面を、同じく表6に示される表面粗さに研磨することにより本発明被覆切削チップ1〜13をそれぞれ製造した(図1参照)。
Next, each of these chip bases A to F and chip bases a to f is charged into a normal chemical vapor deposition apparatus,
First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically grown crystal structure described in JP-A No. 6-8010, and other than that, a normal granular crystal structure is shown. The Ti compound layer and α-type Al 2 O 3 layer having the target layer thicknesses shown in Table 6 are vapor-deposited as the lower layer and the upper layer of the hard coating layer under the conditions shown in FIG. (See Fig. 3)
Next, after forming the lower layer forming TiO W layer [any of TiO W (1) to (6)] under the conditions shown in Table 4, the upper layer forming titanium nitride layer (TiN layer) ) Under the same conditions as shown in Table 3, and with the target layer thickness shown in Table 6, the composition shown in Table 6, that is, the central portion in the thickness direction was measured with an Auger spectroscopic analyzer. Forming an abrasive layer composed of a lower layer and an upper layer of the X and Y values shown in FIG. 6 (see FIG. 2);
Subsequently, the coated cutting tip for forming the abrasive layer composed of the lower layer and the upper layer was subjected to wet blasting under the blasting conditions shown in Table 5 and in the combinations shown in Table 6, and the periphery of the tool mounting hole The rake face and flank face including the cutting edge ridge line part of the α-type Al 2 O 3 layer (upper layer) are polished to the surface roughness shown in Table 6 in the state where the abrasive layer is present in the part. Thus, the coated cutting chips 1 to 13 of the present invention were respectively manufactured (see FIG. 1).

また、比較の目的で、表7に示される通り、下側層および上側層からなる研磨材層の形成を行なわない以外は同一の条件で従来被覆切削チップ1〜13をそれぞれ製造した。
この結果得られた従来被覆切削チップ1〜13の硬質被覆層を構成するα型Al23層のウエットブラスト後の表面粗さを表7に示した。
For comparison purposes, as shown in Table 7, conventionally coated cutting chips 1 to 13 were produced under the same conditions except that the abrasive layer composed of the lower layer and the upper layer was not formed.
Table 7 shows the surface roughness after wet blasting of the α-type Al 2 O 3 layer constituting the hard coating layer of the conventional coated cutting chips 1 to 13 obtained as a result.

また、上記本発明被覆切削チップ1〜13および従来被覆切削チップ1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Moreover, when the thickness of the constituent layer of the hard coating layer of the present invention coated cutting chips 1 to 13 and the conventional coated cutting chips 1 to 13 was measured using a scanning electron microscope (longitudinal cross section measurement), both were targets. The average layer thickness (average value of 5-point measurement) substantially the same as the layer thickness was shown.

つぎに、上記の本発明被覆切削チップ1〜13および従来被覆切削チップ1〜13の各種の被覆切削チップについて、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・FC300の丸棒、
切削速度:500m/min、
切り込み:2mm、
送り:0.35mm/rev、
切削時間:15分、
の条件(切削条件Aという)での鋳鉄の乾式連続高速切削試験(通常の切削速度は250m/min)、
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:450m/min、
切り込み:1.5mm、
送り:0.3mm/rev、
切削時間:10分、
の条件(切削条件Bという)での炭素鋼の乾式断続高速切削試験(通常の切削速度は200m/min)、さらに、
被削材:JIS・SCM440の丸棒、
切削速度:400m/min、
切り込み:1.5mm、
送り:0.4mm/rev、
切削時間:8分、
の条件(切削条件Cという)での合金鋼の乾式連続高速切削試験(通常の切削速度は200m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, for the various coated cutting chips of the present invention coated cutting chips 1 to 13 and the conventional coated cutting chips 1 to 13 described above, all of them are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / FC300 round bar,
Cutting speed: 500 m / min,
Cutting depth: 2mm,
Feed: 0.35mm / rev,
Cutting time: 15 minutes,
A dry continuous high-speed cutting test (normal cutting speed is 250 m / min) of cast iron under the above conditions (referred to as cutting conditions A),
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 450 m / min,
Incision: 1.5mm,
Feed: 0.3mm / rev,
Cutting time: 10 minutes,
Dry intermittent high speed cutting test (normal cutting speed is 200 m / min) of carbon steel under the above conditions (referred to as cutting conditions B),
Work material: JIS / SCM440 round bar,
Cutting speed: 400 m / min,
Incision: 1.5mm,
Feed: 0.4mm / rev,
Cutting time: 8 minutes
The dry continuous high-speed cutting test (normal cutting speed is 200 m / min) of the alloy steel under the above conditions (referred to as cutting condition C) was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 8.

Figure 0004853612
Figure 0004853612

Figure 0004853612
Figure 0004853612

Figure 0004853612
Figure 0004853612

Figure 0004853612
Figure 0004853612

Figure 0004853612
Figure 0004853612

Figure 0004853612
Figure 0004853612

Figure 0004853612
Figure 0004853612

Figure 0004853612
Figure 0004853612

表6〜8に示される結果から、この発明の方法で製造された本発明被覆切削チップ1〜13は、いずれも硬質被覆層の上部層を構成するα型Al23層の切刃稜線部を含むすくい面および逃げ面が、Ra:0.2μm以下の表面粗さに研磨され、さらに工具取り付け孔周辺部に存在する研磨材層が、工具本体への被覆切削チップの取り付けに際して、350m/minを越える高速切削加工では不可欠の高い締め付け力の緩衝層として作用することから、剥離やチッピング発生の原因となる割れ発生が防止され、鋼および鋳鉄の高速切削加工で、すぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するのに対して、硬質被覆層の上部層を構成するα型Al23層の表面粗さが、Ra:0.3〜0.6μmを示す従来被覆切削チップ1〜13においては、いずれも350m/minを越える高速切削加工では、工具取り付けに高い締め付け力を必要とすることと相俟って、前記α型Al23層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 6 to 8, all of the coated cutting tips 1 to 13 of the present invention manufactured by the method of the present invention are cutting edge ridge lines of α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer. The rake face and the flank face including the portion are polished to a surface roughness of Ra: 0.2 μm or less, and the abrasive layer existing around the tool attachment hole is 350 m when attaching the coated cutting tip to the tool body. Acts as a buffer layer with a high clamping force, which is indispensable for high-speed cutting exceeding / min, preventing cracking that causes peeling and chipping, and excellent chipping resistance in high-speed cutting of steel and cast iron The surface roughness of the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer is Ra: 0.3 to 0.6 μm, while exhibiting excellent cutting performance over a long period of time Conventional coating cutting In the chip 1 to 13, either in the high-speed cutting of over 350 meters / min, I coupled with the fact that require high clamping force to the tool mounting, chipping occurs in the α-type the Al 2 O 3 layer, It is clear that the service life is reached in a relatively short time.

上述のように、この発明の方法で製造された被覆切削チップは、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に切削加工を350m/minを越えた高速で行う場合にもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated cutting tip manufactured by the method of the present invention is not only continuous cutting and interrupted cutting under normal conditions such as various steels and cast iron, but particularly high speed exceeding 350 m / min. It exhibits excellent chipping resistance even when it is carried out at high temperatures, and exhibits excellent cutting performance over a long period of time. Therefore, it is possible to improve the performance of the cutting device, reduce the labor and energy of cutting, and reduce the cost. It can respond satisfactorily.

この発明の方法によって製造された被覆切削チップの硬質被覆層の一部を切り欠いて示した概略斜視図である。It is the schematic perspective view which notched and showed a part of hard coating layer of the coated cutting chip manufactured by the method of this invention. この発明の方法における研磨材層蒸着形成後の被覆切削チップの研磨材層の一部を切り欠いて示した概略斜視図である。It is the schematic perspective view which notched and showed a part of abrasive material layer of the covering cutting chip after the abrasive material layer vapor deposition formation in the method of this invention. 従来被覆切削チップの硬質被覆層の一部を切り欠いて示した概略斜視図である。It is the schematic perspective view which notched and showed a part of hard coating layer of the conventional coated cutting chip.

Claims (1)

(1)炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成され、かつ中心部に工具取り付け孔を有するチップ基体の切刃稜線部を含むすくい面および逃げ面の全面に、
(a−1)下部層として、炭化チタン層、窒化チタン層、炭窒化チタン層、炭酸化チタン層、および炭窒酸化チタン層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(a−2)上部層として、1〜15μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層、
以上(a−1)および(a−2)で構成された硬質被覆層を化学蒸着形成し、
)上記硬質被覆層の上部層である酸化アルミニウム層の全面に、
(b−1)下側層として、0.1〜3μmの平均層厚を有し、かつ、
組成式:TiOX
で表わした場合、厚さ方向中央部をオージェ分光分析装置で測定して、原子比で、
X:1.2〜1.7、
を満足する酸化チタン層、
(b−2)上側層として、0.05〜2μmの平均層厚を有し、かつ、
組成式:TiN1-Y(O)Y
で表わした場合(ただし、(O)は上側層の蒸着形成時における上記下側層である酸化チタン層からの拡散酸素を示す)、同じく厚さ方向中央部をオージェ分光分析装置で測定して、同じく原子比で、
Y:0.01〜0.4、
を満足する窒酸化チタン層、
以上(b−1)および(b−2)で構成された研磨材層を化学蒸着形成し、
)ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%の酸化アルミニウム微粒を配合した研磨液を噴射し、
この場合工具取り付け孔周辺部の上記研磨材層を研磨せず、工具本体取り付け時における高い締め付け力の緩衝層として残した状態で、残りの研磨面における上記の研磨材層が噴射研磨材である酸化アルミニウム微粒の噴射により粉砕微粒化してなる下側層の粉砕化酸化チタン微粒および上側層の粉砕化窒酸化チタン微粒と、噴射研磨材としての酸化アルミニウム微粒との共存下で、上記硬質被覆層の上部層を構成する酸化アルミニウム層の表面を研磨して、前記上部層である酸化アルミニウム層の切刃稜線部を含むすくい面および逃げ面の表面粗さを準拠規格JIS・B0601−1994に基いた測定で、Ra:0.2μm以下としたことを特徴とする、硬質被覆層が高速切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップの製造方法
(1) The rake face and the flank face including the cutting edge ridge line portion of the tip base body, which is made of tungsten carbide base cemented carbide or titanium carbonitride base cermet and has a tool mounting hole in the center,
(A-1) The lower layer is composed of one or more of a titanium carbide layer, a titanium nitride layer, a titanium carbonitride layer, a titanium carbonate layer, and a titanium carbonitride oxide layer, and has a thickness of 3 to 20 μm. A Ti compound layer having an overall average layer thickness,
(A-2) As an upper layer, an aluminum oxide layer having an average layer thickness of 1 to 15 μm and having an α-type crystal structure in a state of chemical vapor deposition,
Chemical vapor deposition of the hard coating layer composed of (a-1) and (a-2) above,
( 2 ) On the entire surface of the aluminum oxide layer that is the upper layer of the hard coating layer,
(B-1) The lower layer has an average layer thickness of 0.1 to 3 μm, and
Composition formula: TiO x ,
, The central part in the thickness direction is measured with an Auger spectrometer, and the atomic ratio is
X: 1.2 to 1.7,
Satisfying titanium oxide layer,
(B-2) The upper layer has an average layer thickness of 0.05 to 2 μm, and
Composition formula: TiN 1-Y (O) Y ,
(However, (O) indicates the diffused oxygen from the titanium oxide layer, which is the lower layer when the upper layer is formed by vapor deposition). Similarly, the central portion in the thickness direction is measured with an Auger spectrometer. , Also in atomic ratio,
Y: 0.01 to 0.4
Satisfying titanium oxynitride layer,
Abrasive material layer composed of (b-1) and (b-2) above is formed by chemical vapor deposition,
( 3 ) In wet blasting, a polishing liquid containing 15 to 60% by mass of aluminum oxide fine particles in a proportion of the total amount with water is sprayed as a spray abrasive.
In this case, the abrasive layer around the tool mounting hole is not polished, and remains as a buffer layer having a high clamping force when the tool body is mounted, and the abrasive layer on the remaining polishing surface is a jet abrasive. The above hard coating layer in the coexistence of pulverized titanium oxide particles in the lower layer and pulverized titanium oxynitride particles in the upper layer formed by spraying aluminum oxide particles and aluminum oxide particles as the spray abrasive The surface of the aluminum oxide layer constituting the upper layer is polished, and the surface roughness of the rake face and the flank face including the cutting edge ridge line portion of the aluminum oxide layer, which is the upper layer, is based on the compliant standard JIS B0601-1994. The surface coating cermet with a hard coating layer exhibiting excellent chipping resistance in high-speed cutting processing, characterized in that Ra: 0.2 μm or less. Ltd. cutting throw-away chip manufacturing method.
JP2005277962A 2005-09-26 2005-09-26 Manufacturing method of cutting throwaway tip made of surface coated cermet whose hard coating layer exhibits excellent chipping resistance in high speed cutting Active JP4853612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005277962A JP4853612B2 (en) 2005-09-26 2005-09-26 Manufacturing method of cutting throwaway tip made of surface coated cermet whose hard coating layer exhibits excellent chipping resistance in high speed cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005277962A JP4853612B2 (en) 2005-09-26 2005-09-26 Manufacturing method of cutting throwaway tip made of surface coated cermet whose hard coating layer exhibits excellent chipping resistance in high speed cutting

Publications (2)

Publication Number Publication Date
JP2007083374A JP2007083374A (en) 2007-04-05
JP4853612B2 true JP4853612B2 (en) 2012-01-11

Family

ID=37970878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005277962A Active JP4853612B2 (en) 2005-09-26 2005-09-26 Manufacturing method of cutting throwaway tip made of surface coated cermet whose hard coating layer exhibits excellent chipping resistance in high speed cutting

Country Status (1)

Country Link
JP (1) JP4853612B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9028953B2 (en) * 2013-01-11 2015-05-12 Kennametal Inc. CVD coated polycrystalline c-BN cutting tools

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE509201C2 (en) * 1994-07-20 1998-12-14 Sandvik Ab Aluminum oxide coated tool
US6015614A (en) * 1997-11-03 2000-01-18 Seco Tools Ab Cemented carbide body with high wear resistance and extra tough behavior
JP3989664B2 (en) * 1999-04-13 2007-10-10 三菱マテリアル株式会社 Slow-away tip made of surface-coated cemented carbide with excellent chipping resistance
KR100688923B1 (en) * 2000-07-12 2007-03-09 스미토모덴키고교가부시키가이샤 Coated cutting tool
SE528929C2 (en) * 2005-04-18 2007-03-20 Sandvik Intellectual Property Cut coated with a layer system and method of making this

Also Published As

Publication number Publication date
JP2007083374A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
JP4844873B2 (en) Manufacturing method of cutting throwaway tip made of surface-covered cermet with excellent wear resistance of hard coating layer in high-speed cutting
JP4853612B2 (en) Manufacturing method of cutting throwaway tip made of surface coated cermet whose hard coating layer exhibits excellent chipping resistance in high speed cutting
JP4857711B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP4849376B2 (en) Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials
JP4900652B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP4857751B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP2007118155A (en) Surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting
JP4853621B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP4853822B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP4853613B2 (en) Manufacturing method of cutting throwaway tip made of surface coated cermet whose hard coating layer exhibits excellent chipping resistance in high speed cutting
JP4900653B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP4883389B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP4888689B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP4888688B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP4888759B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP4857752B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP4888762B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP2007118108A (en) Non-hole surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting
JP2007090457A (en) Surface coated cermet-made cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting
JP4857705B2 (en) Surface polishing method for surface-coated cermet cutting throwaway tips with hard coating layer providing excellent chipping resistance in high-speed cutting
JP4873289B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP2007111814A (en) Throwaway cutting tip of surface-coated cermet with hard coating layer achieving excellent anti-chipping performance in high-speed cutting work
JP2007090455A (en) Surface coated cermet-made cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting
JP4853820B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP2007118104A (en) Surface coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110811

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4853612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150