JP4852595B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP4852595B2
JP4852595B2 JP2008320897A JP2008320897A JP4852595B2 JP 4852595 B2 JP4852595 B2 JP 4852595B2 JP 2008320897 A JP2008320897 A JP 2008320897A JP 2008320897 A JP2008320897 A JP 2008320897A JP 4852595 B2 JP4852595 B2 JP 4852595B2
Authority
JP
Japan
Prior art keywords
exhaust gas
hours
catalyst
mass
ceo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008320897A
Other languages
Japanese (ja)
Other versions
JP2009241057A (en
Inventor
雅識 橋本
義幸 中西
浩樹 竹折
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008320897A priority Critical patent/JP4852595B2/en
Publication of JP2009241057A publication Critical patent/JP2009241057A/en
Application granted granted Critical
Publication of JP4852595B2 publication Critical patent/JP4852595B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、排ガス浄化触媒に関し、特に、従来に比して少ない貴金属量であるにも関わらず、耐久性が高く、低温域においても優れた触媒活性を有する排ガス浄化触媒に関する。   The present invention relates to an exhaust gas purifying catalyst, and more particularly to an exhaust gas purifying catalyst having high durability and excellent catalytic activity even in a low temperature range despite the fact that the amount of noble metal is smaller than that in the past.

従来より、内燃機関から排出される排ガスを浄化する目的で、三元触媒等の排ガス浄化触媒が用いられている。三元触媒は、排ガス中に含まれる一酸化炭素(以下、COともいう)及び炭化水素(以下、HCともいう)を酸化して浄化するとともに、排ガス中に含まれる窒素酸化物(以下、NOxともいう)を還元して浄化する。このような三元触媒としては、例えばコージェライト等からなる耐熱性ハニカム基材に、γ−Alからなる担体層を形成し、その担体層に白金(Pt)やロジウム(Rh)等の貴金属を担持させたものが広く知られている。 Conventionally, exhaust gas purification catalysts such as three-way catalysts have been used for the purpose of purifying exhaust gas discharged from an internal combustion engine. The three-way catalyst oxidizes and purifies carbon monoxide (hereinafter also referred to as CO) and hydrocarbons (hereinafter also referred to as HC) contained in the exhaust gas, and nitrogen oxide (hereinafter referred to as NOx) contained in the exhaust gas. (Also called) to reduce and purify. As such a three-way catalyst, for example, a carrier layer made of γ-Al 2 O 3 is formed on a heat-resistant honeycomb substrate made of cordierite or the like, and platinum (Pt), rhodium (Rh) or the like is formed on the carrier layer. Those carrying a noble metal are widely known.

三元触媒等の排ガス浄化触媒に用いられる担体としては、比表面積が大きく、且つ耐熱性が高いことが求められる。このため、一般的には、Al、SiO、ZrO、TiO等の担体が多く用いられている。また、排ガスの雰囲気変動を緩和する目的で、上記担体に加えて、酸素吸蔵放出能(以下、OSCともいう)を有するCeOが併用されている。さらには、CeOのOSC耐久性を向上させる目的で、CeOとZrOとの複合酸化物が用いられている。 A carrier used for an exhaust gas purification catalyst such as a three-way catalyst is required to have a large specific surface area and high heat resistance. For this reason, carriers such as Al 2 O 3 , SiO 2 , ZrO 2 , and TiO 2 are generally used in many cases. In addition to the above carrier, CeO 2 having an oxygen storage / release capability (hereinafter also referred to as OSC) is used in combination for the purpose of alleviating the atmospheric fluctuation of the exhaust gas. Furthermore, for the purpose of improving the OSC durability of CeO 2, a composite oxide of CeO 2 and ZrO 2 are used.

ところで、近年の排ガス規制の強化により、エンジン始動直後から排ガスを浄化する必要性が極めて高くなってきている。このため、より低温域で触媒を活性化でき、エンジン始動直後の低温域から高い触媒活性を発揮し得る排ガス浄化触媒が求められている。   By the way, due to the recent tightening of exhaust gas regulations, the necessity of purifying exhaust gas immediately after engine startup has become extremely high. For this reason, there is a need for an exhaust gas purification catalyst that can activate the catalyst in a lower temperature range and that can exhibit high catalytic activity from the low temperature range immediately after engine startup.

例えば、セリウム酸化物を含む担体と、遷移金属及び貴金属からなり少なくとも該セリウム酸化物に担持された触媒金属と、を含み、該遷移金属のセリウム原子に対する原子比と、該遷移金属の該貴金属に対する原子比とが特定の関係にあることを特徴とする排ガス浄化用触媒が提案されている(例えば、特許文献1参照)。この排ガス浄化触媒によれば、貴金属の担持量を増大させることなく、触媒を早期活性化させることができるとされている。   For example, a carrier containing cerium oxide and a catalyst metal composed of a transition metal and a noble metal and supported on at least the cerium oxide, the atomic ratio of the transition metal to the cerium atom, and the transition metal to the noble metal An exhaust gas purifying catalyst characterized by a specific relationship with the atomic ratio has been proposed (see, for example, Patent Document 1). According to this exhaust gas purifying catalyst, the catalyst can be activated early without increasing the amount of noble metal supported.

また、活性成分としてパラジウム(Pd)を触媒全体容量に対し0.5〜10g/l含み、且つセリウムを触媒全体容量に対し酸化セリウム(CeO)換算で10〜150g/l含む排ガス浄化触媒が提案されている(例えば、特許文献2参照)。この排ガス浄化触媒によれば、高濃度のCO及びHCを含む排ガスを供給することにより、触媒を早期に活性化できる結果、エンジン始動直後の排ガス中に多量に含まれているCO及びHCを速やかに浄化できるとされている。 Further, an exhaust gas purifying catalyst containing 0.5 to 10 g / l of palladium (Pd) as an active component with respect to the total volume of the catalyst and 10 to 150 g / l of cerium in terms of cerium oxide (CeO 2 ) with respect to the total volume of the catalyst. It has been proposed (see, for example, Patent Document 2). According to this exhaust gas purifying catalyst, by supplying exhaust gas containing high concentrations of CO and HC, the catalyst can be activated at an early stage. As a result, CO and HC contained in a large amount in exhaust gas immediately after engine startup can be quickly It can be purified.

また、セリアを含む担体に貴金属を担持してなる触媒に、CO濃度が1%以上の排ガスを供給してCOを酸化燃焼させ、その燃焼熱によって触媒を昇温し、排ガス中のHCを酸化燃焼することを特徴とする排ガス浄化方法が提案されている(例えば、特許文献3参照)。この排ガス浄化方法によれば、CO濃度が高い排ガスを、酸素吸放出能を有する触媒に供給することにより、低温域からCOを酸化燃焼できるとされている。また、酸化燃焼により生ずる燃焼熱によって、HCの酸化燃焼が可能な温度まで速やかに触媒を昇温できるため、低温域からHCを効率良く酸化除去できるとされている。
特開2003−220336号公報 特開平5−285387号公報 特開2004−26872号公報
Further, exhaust gas with a CO concentration of 1% or more is supplied to a catalyst in which a noble metal is supported on a carrier containing ceria to oxidize and burn CO, and the temperature of the catalyst is raised by the heat of combustion to oxidize HC in the exhaust gas. An exhaust gas purification method characterized by combustion has been proposed (see, for example, Patent Document 3). According to this exhaust gas purification method, it is said that CO can be oxidized and combusted from a low temperature range by supplying exhaust gas having a high CO concentration to a catalyst having oxygen absorption / release capability. In addition, it is said that HC can be efficiently oxidized and removed from a low temperature range because the temperature of the catalyst can be quickly raised to a temperature at which HC can be oxidized and burned by the combustion heat generated by oxidative combustion.
JP 2003-220336 A JP-A-5-285387 JP 2004-26872 A

ところで、高出力エンジンでは、排圧を低減する目的でエキマニの等長化やターボの使用が行われる。このため、排温が低下して触媒が温まり難い傾向があることから、より低温域での浄化性能が求められる。例えば、Pt及びPdをCeOに担持してなる触媒によれば、CeOのOSCがさらに向上し、より低温域からCOを浄化できるとされている。また、このような触媒を用いることにより、COが低温で着火するため、COの浄化によって発生する反応熱により、触媒を早期活性化できるとされている。 By the way, in a high-power engine, an exhaust manifold is made equal and a turbo is used for the purpose of reducing exhaust pressure. For this reason, since the exhaust temperature tends to decrease and the catalyst does not easily warm, purification performance in a lower temperature range is required. For example, according to the catalyst obtained by supporting Pt and Pd on CeO 2, CeO 2 of OSC is further improved, which is more can purify CO from a low temperature range. Further, by using such a catalyst, CO is ignited at a low temperature, so that the catalyst can be activated early by reaction heat generated by the purification of CO.

しかしながら、近年、厳しさを増す排ガス規制をクリアするためには、エンジン始動時に排出される未燃HC等の浄化も必要であり、触媒のさらなる早期活性化が求められている。触媒のさらなる早期活性化を図るためには、触媒作用を司る貴金属の担持量を増加させることが考えられるが、貴金属の価格は益々高騰しており、貴金属の増量は触媒のコストの増加に直結するため好ましくない。このため、単価の高いPtからPdへの移行が併せて進められている。   However, in recent years, in order to clear exhaust gas regulations that are becoming stricter, it is also necessary to purify unburned HC discharged at the start of the engine, and further early activation of the catalyst is required. In order to achieve further early activation of the catalyst, it is conceivable to increase the amount of noble metal supported to catalyze, but the price of noble metal is increasing rapidly, and the increase in the amount of noble metal directly leads to an increase in the cost of the catalyst. Therefore, it is not preferable. For this reason, the transition from Pt to Pd, which has a high unit price, is also being promoted.

また、高出力エンジンでは、排ガス浄化触媒は高熱環境下に晒されるため、高い耐久性を有する排ガス浄化触媒が求められる。しかしながら、要求レベルを満足し得る高耐久性の排ガス浄化触媒については、これまでのところ見出されておらず、貴金属量を増やすことで対応しているのが現状である。従って、貴金属量を抑えつつ、高い耐久性を有し、且つ低温域においても優れた触媒活性を有する排ガス浄化触媒の開発が望まれる。   Further, in a high-power engine, since the exhaust gas purification catalyst is exposed to a high heat environment, an exhaust gas purification catalyst having high durability is required. However, a highly durable exhaust gas purifying catalyst that can satisfy the required level has not been found so far, and is currently being dealt with by increasing the amount of noble metal. Therefore, it is desired to develop an exhaust gas purification catalyst having high durability while suppressing the amount of noble metal and having excellent catalytic activity even in a low temperature range.

本発明は、以上のような課題に鑑みてなされたものであり、その目的は、従来に比して少ない貴金属量であるにも関わらず、高い耐久性を有し、且つ低温域においても優れた触媒活性を有する排ガス浄化触媒を提供することにある。   The present invention has been made in view of the problems as described above, and its purpose is to have high durability and excellent in a low temperature range even though the amount of noble metal is smaller than that of the prior art. Another object of the present invention is to provide an exhaust gas purification catalyst having a catalytic activity.

本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、パラジウム(Pd)が担持されたセリウム(Ce)含有酸化物を主体とする三元触媒組成に、所定量の亜鉛(Zn)を含有させることにより、従来に比して少ない貴金属量であるにも関わらず、高い耐久性を有し、且つ低温域においても優れた触媒活性が得られることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のようなものを提供する。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, by adding a predetermined amount of zinc (Zn) to a three-way catalyst composition mainly composed of a cerium (Ce) -containing oxide on which palladium (Pd) is supported, the amount of noble metal can be reduced as compared with the prior art. Nevertheless, it has been found that the catalyst has high durability and excellent catalytic activity even in a low temperature range, and the present invention has been completed. More specifically, the present invention provides the following.

請求項1記載の排ガス浄化触媒は、内燃機関から排出される排ガス中に含まれる一酸化炭素、炭化水素、及び窒素酸化物を浄化するために用いられる排ガス浄化触媒であって、酸化セリウムを主成分とし、貴金属として前記酸化セリウムに担持されたパラジウムのみと、前記酸化セリウムに担持された亜鉛と、を含み、前記亜鉛の含有量が、前記酸化セリウムと前記亜鉛の総量に対して1質量%〜15質量%であることを特徴とする。 The exhaust gas purifying catalyst of claim 1 wherein the carbon monoxide contained in exhaust gas discharged from an internal combustion engine, an exhaust gas purifying catalyst used for purifying hydrocarbons, and nitrogen oxides, mainly cerium oxide and components, only palladium the supported on cerium oxide as the noble metal, the saw including a zinc supported on cerium oxide, the content of the zinc, 1 mass relative to the total amount of said zinc and said cerium oxide % To 15% by mass .

請求項2記載の排ガス浄化触媒は、請求項1記載の排ガス浄化触媒において、前記パラジウムの含有量が、前記排ガス浄化触媒に対して0.5質量%〜7質量%であることを特徴とする。 The exhaust gas purification catalyst according to claim 2 is the exhaust gas purification catalyst according to claim 1, wherein the palladium content is 0.5 mass% to 7 mass% with respect to the exhaust gas purification catalyst. .

本発明によれば、従来に比して少ない貴金属量であるにも関わらず、高い耐久性を有し、低温域においても優れた触媒活性を有する排ガス浄化触媒を提供できる。   According to the present invention, it is possible to provide an exhaust gas purifying catalyst having high durability and having excellent catalytic activity even in a low temperature range, although the amount of noble metal is small as compared with the prior art.

以下、本発明の実施形態について、図面を参照しながら詳しく説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<排ガス浄化触媒>
本実施形態に係る排ガス浄化触媒は、内燃機関から排出される排ガス中に含まれるCO、HC、及びNOxを浄化するために用いられる。中でも、ガソリンエンジン用の排ガス浄化装置に好適に用いられ、特に、高出力エンジン(等長エキマニ、ターボ)や低燃費エンジンから排出されるCO、HC、及びNOxの浄化に好ましく用いられる。
<Exhaust gas purification catalyst>
The exhaust gas purifying catalyst according to the present embodiment is used for purifying CO, HC, and NOx contained in exhaust gas discharged from an internal combustion engine. Especially, it is used suitably for the exhaust gas purification apparatus for gasoline engines, and is particularly preferably used for the purification of CO, HC, and NOx discharged from a high-power engine (isometric exhaust manifold, turbo) or a fuel-efficient engine.

本実施形態に係る排ガス浄化触媒は、Ce含有酸化物を主成分とする。また、Ce含有酸化物に担持されたPdと、Ce含有酸化物に担持されたZnと、を含むことを特徴とする。即ち、従来から見られる、Pdが担持されたCe含有酸化物に対して、さらにZnを担持させたことを特徴とする。   The exhaust gas purifying catalyst according to the present embodiment includes a Ce-containing oxide as a main component. Moreover, it is characterized by including Pd supported on Ce-containing oxide and Zn supported on Ce-containing oxide. That is, it is characterized in that Zn is further supported on a Ce-containing oxide on which Pd is supported, which is conventionally observed.

[Zn]
本実施形態に係る排ガス浄化触媒で用いられるZnは、Ce含有酸化物に担持されている。Ce含有酸化物にZnを担持させることにより、低温域における優れた浄化性能を保持しつつ、高い耐久性が得られるため、高価なPdの含有量を低減できる。
[Zn]
Zn used in the exhaust gas purification catalyst according to the present embodiment is supported on a Ce-containing oxide. By supporting Zn on the Ce-containing oxide, high durability can be obtained while maintaining excellent purification performance in a low temperature range, and therefore the content of expensive Pd can be reduced.

また、Ce含有酸化物にZnを担持させることにより、CeOに酸素欠陥又は活性酸素種を多く発現させることができると考えられる。このため、後述する水性ガスシフト反応特性がさらに向上する結果、触媒のさらなる早期活性化が達成されると考えられる。 Further, it is considered that CeO 2 can express many oxygen defects or active oxygen species by supporting Zn on the Ce-containing oxide. For this reason, it is thought that the further early activation of a catalyst is achieved as a result of further improving the water gas shift reaction characteristic mentioned later.

Znの含有量は、本発明の効果を奏する範囲内であれば特に限定されないが、Ce含有酸化物とZnの総量に対して、1質量%〜20質量%であることが好ましい。Znの含有量が1質量%以上であれば、水性ガスシフト反応を促進させることができ、COを効率良く浄化できる。Znの含有量が20質量%以下であれば、CeO等のCe含有酸化物のOSC能力を阻害することがなく、優れた浄化性能を発揮できる。より好ましいZn含有量は、Ce含有酸化物とZnの総量に対して、1質量%〜15質量%である。 Although content of Zn will not be specifically limited if it exists in the range with the effect of this invention, It is preferable that it is 1 mass%-20 mass% with respect to the total amount of Ce containing oxide and Zn. If the Zn content is 1% by mass or more, the water gas shift reaction can be promoted, and CO can be efficiently purified. When the Zn content is 20% by mass or less, the OSC ability of Ce-containing oxides such as CeO 2 is not impaired, and excellent purification performance can be exhibited. A more preferable Zn content is 1% by mass to 15% by mass with respect to the total amount of the Ce-containing oxide and Zn.

[Ce含有酸化物]
Ce含有酸化物は、担体として触媒金属であるPdやZnを担持する他に、OSC剤として機能する。Ce含有酸化物としては、Ceを含有する酸化物であれば特に限定されず、従来公知のものを用いることができる。具体的には、酸化セリウムが好ましく用いられる他、セリウムと、ジルコニウム、イットリウム、プラセオジム、ネオジム、テルビウム、サマリウム、ガドリニウム、及びランタンからなる群より選ばれる少なくとも1種の元素と、を含む混合酸化物及び/若しくはこれらの少なくとも1種の元素を基本組成とする複合酸化物が好ましく用いられる。
[Ce-containing oxide]
The Ce-containing oxide functions as an OSC agent in addition to supporting catalytic metals such as Pd and Zn as a support. The Ce-containing oxide is not particularly limited as long as it is an oxide containing Ce, and conventionally known ones can be used. Specifically, cerium oxide is preferably used, and mixed oxide containing cerium and at least one element selected from the group consisting of zirconium, yttrium, praseodymium, neodymium, terbium, samarium, gadolinium, and lanthanum A composite oxide having at least one of these elements as a basic composition is preferably used.

Ce含有酸化物は、本実施形態に係る排ガス浄化触媒の主成分である。   The Ce-containing oxide is a main component of the exhaust gas purification catalyst according to the present embodiment.

[Pd]
触媒金属であるPdは、担体であるCe含有酸化物に担持されている。PdはPtよりも安価であり、良好な触媒活性を有する。Pdの含有量は、排ガス浄化触媒に対して0.5質量%〜7質量%であることが好ましい。Pdの含有量が0.5質量%以上であれば、十分な触媒活性を発揮することができる。Pdの含有量が7質量を超えてもそれ以上の効果は望めないため、7質量以下であればコスト的にも有利である。より好ましいPdの含有量は、排ガス浄化触媒に対して0.5質量%〜5質量%である。
[Pd]
Pd which is a catalytic metal is supported on a Ce-containing oxide which is a support. Pd is cheaper than Pt and has good catalytic activity. The content of Pd is preferably 0.5% by mass to 7% by mass with respect to the exhaust gas purification catalyst. If the content of Pd is 0.5% by mass or more, sufficient catalytic activity can be exhibited. Even if the content of Pd exceeds 7 masses, no further effect can be expected, so if it is 7 masses or less, it is advantageous in terms of cost. A more preferable content of Pd is 0.5% by mass to 5% by mass with respect to the exhaust gas purification catalyst.

PdをCeO等のセリウム含有酸化物に担持させる理由について、図1を参照しながら説明する。先ず、本実施形態に係る排ガス浄化触媒に排ガスが流通すると、排ガス中のCOがPdに吸着した後、Pd近傍のCeO中の酸素が、吸着したCOにアタックすることにより、COがCOに変換される。次いで、CeO中の脱離格子欠陥に、HOがアタックして下記式で表される水性ガスシフト反応が進行し、Hが生成、脱離する。以上の作用が繰り返されることにより、CeO中の酸素(欠陥)を利用した水性ガスシフト反応が促進される。このように、Pdをセリウム含有酸化物に担持させることにより、水性ガスシフト反応を促進できるとともに、HC及びCOの燃焼反応も同時に促進されて開始される結果、生じた反応熱により触媒が早期活性化されるからである。

Figure 0004852595
The reason why Pd is supported on a cerium-containing oxide such as CeO 2 will be described with reference to FIG. First, when exhaust gas flows through the exhaust gas purifying catalyst according to the present embodiment, after CO in the exhaust gas is adsorbed by Pd, oxygen in CeO 2 in the vicinity of Pd attacks the adsorbed CO, so that CO becomes CO 2. Is converted to Next, H 2 O attacks the desorbed lattice defects in CeO 2 , and the water gas shift reaction represented by the following formula proceeds to generate and desorb H 2 . By repeating the above operation, the water gas shift reaction using oxygen (defects) in CeO 2 is promoted. As described above, by supporting Pd on the cerium-containing oxide, the water gas shift reaction can be promoted, and the combustion reaction of HC and CO is also promoted at the same time. Because it is done.
Figure 0004852595

[その他]
本実施形態に係る排ガス浄化触媒は、本発明の効果が奏される限りにおいて、上記成分以外の他の成分を含有していてもよい。例えば、Pd以外の他の触媒金属成分や、Ce含有酸化物以外の酸化物等を含有していてもよく、他の添加剤等を含有していてもよい。
[Others]
The exhaust gas purification catalyst according to the present embodiment may contain components other than the above components as long as the effects of the present invention are achieved. For example, it may contain other catalytic metal components other than Pd, oxides other than Ce-containing oxides, and may contain other additives.

なお、本実施形態に係る排ガス浄化触媒の調製方法は特に限定されず、従来公知のスラリー法等を採用することができる。また、本実施形態に係る排ガス浄化触媒は、例えばコージェライト製ハニカム支持体に、Ce含有酸化物やPd、Znを含有するスラリーをコートして焼成することにより得られる。   In addition, the preparation method of the exhaust gas purification catalyst which concerns on this embodiment is not specifically limited, A conventionally well-known slurry method etc. are employable. Further, the exhaust gas purifying catalyst according to the present embodiment can be obtained, for example, by coating a cordierite honeycomb support with a slurry containing Ce-containing oxide, Pd, or Zn, and firing it.

<実施例1:Pd/Zn/CeOCeO とZnの総量に対するZnの含有量=5質量%、排ガス浄化触媒に対するPdの含有量=1質量%)触媒の製造>
[操作(a)]
酸化セリウム((株)ニッキ製)95g、硝酸亜鉛6水和物(関東化学製、鹿特級)22.75g、イオン交換水1000gをナス型フラスコに入れ、ロータリーエバポレーターにて余分な水分を取り除いた。次いで、乾燥炉にて200℃×2時間、マッフル炉にて500℃×2時間焼成し、粉末Aを得た。
<Example 1: Pd / Zn / CeO 2 ( Zn content with respect to the total amount of CeO 2 and Zn = 5 mass%, Pd content with respect to exhaust gas purification catalyst = 1 mass%) Production of catalyst>
[Operation (a)]
Cerium oxide (made by Nikki Co., Ltd.) 95g, zinc nitrate hexahydrate (made by Kanto Chemical Co., Ltd., deer special grade) 22.75g , ion-exchanged water 1000g was put into an eggplant-shaped flask, and excess water was removed with a rotary evaporator. It was. Subsequently, the powder A was obtained by baking at 200 ° C. for 2 hours in a drying furnace and at 500 ° C. for 2 hours in a muffle furnace.

[操作(b)]
DL−リンゴ酸(関東化学製、鹿特級)2.268g、硝酸パラジウム((株)小島化学薬品製)2.329g、イオン交換水600gをビーカーに入れ、1時間攪拌した。攪拌後の水溶液と、粉末A89.lgとをナス型フラスコに入れ、ロータリーエバポレーターにて余分な水分を取り除き、乾燥炉にて200℃×2時間、マッフル炉にて800℃×2時間焼成し、粉末Bを得た。
[Operation (b)]
DL-malic acid (manufactured by Kanto Chemical Co., Ltd., deer grade) 2.268 g, palladium nitrate (manufactured by Kojima Chemical Co., Ltd.) 2.329 g, and ion-exchanged water 600 g were placed in a beaker and stirred for 1 hour. The aqueous solution after stirring and powder A89. 1 g was placed in an eggplant-shaped flask, excess water was removed with a rotary evaporator, and the mixture was baked in a drying furnace at 200 ° C. for 2 hours and in a muffle furnace at 800 ° C. for 2 hours to obtain Powder B.

[操作(c)]
粉末B40g、アルミナゾル(日産化学工業株式会社製)50g(Al濃度20%)、及びアルミナボールをポリエチレン製容器(250ml)に入れ、14時間湿式粉砕することにより、スラリーCを得た。
[Operation (c)]
40 g of powder B, 50 g of alumina sol (manufactured by Nissan Chemical Industries, Ltd.) (Al 2 O 3 concentration 20%), and alumina balls were placed in a polyethylene container (250 ml), and wet pulverized for 14 hours to obtain slurry C.

[操作(d)]
得られたスラリーCに、ハニカムφ25.4mm×L60mm(30cc)、400セル/in2、3.5ミルのコージエライト製ハニカム支持体を浸漬した。次いで、そのハニカム支持体をスラリーから取り出し、過剰分をエア噴射により除去した。除去後、ハニカム支持体を200℃×2時間加熱した。この操作を所定の担持量が得られるまで繰り返した。所定の担持量が得られた後、マッフル炉で500℃×2時間焼成し、Pd/Zn/CeOCeO とZnの総量に対するZnの含有量=5質量%、排ガス浄化触媒に対するPdの含有量=1質量%)を得た。ウオッシュコート量は200g/Lであった。
[Operation (d)]
In the obtained slurry C, a honeycomb support made of cordierite having a honeycomb diameter of 25.4 mm × L 60 mm (30 cc), 400 cells / in 2 and 3.5 mil was immersed. Next, the honeycomb support was taken out from the slurry, and the excess was removed by air injection. After removal, the honeycomb support was heated at 200 ° C. for 2 hours. This operation was repeated until a predetermined loading amount was obtained. After a predetermined loading amount is obtained, it is fired in a muffle furnace at 500 ° C. for 2 hours, Pd / Zn / CeO 2 ( Zn content with respect to the total amount of CeO 2 and Zn = 5% by mass, Pd with respect to the exhaust gas purification catalyst) Content = 1 mass%) was obtained. The amount of washcoat was 200 g / L.

<実施例2:Pd/Zn/CeOCeO とZnの総量に対するZnの含有量=1質量%、排ガス浄化触媒に対するPdの含有量=1質量%)触媒の製造>
[操作(a)]
酸化セリウム((株)ニッキ製)99g、硝酸亜鉛6水和物(関東化学製、鹿特級)4.549g、イオン交換水1000gをナス型フラスコに入れ、ロータリーエバポレーターにて余分な水分を取り除いた。次いで、乾燥炉にて200℃×2時間、マッフル炉にて500℃×2時間焼成し、粉末Dを得た。
<Example 2: Pd / Zn / CeO 2 ( Zn content with respect to the total amount of CeO 2 and Zn = 1 mass%, Pd content with respect to exhaust gas purification catalyst = 1 mass%) Production of catalyst>
[Operation (a)]
99 g of cerium oxide (made by Nikki Co., Ltd.), 4.549 g of zinc nitrate hexahydrate (manufactured by Kanto Chemical Co., Ltd., deer special grade), and 1000 g of ion-exchanged water are placed in an eggplant-shaped flask, and excess water is removed with a rotary evaporator. It was. Subsequently, it was fired in a drying furnace at 200 ° C. for 2 hours and in a muffle furnace at 500 ° C. for 2 hours to obtain powder D.

[操作(b)]
DL−リンゴ酸(関東化学製、鹿特級)2.268g、硝酸パラジウム((株)小島化学薬品製)2.329g、イオン交換水600gをビーカーに入れ、1時間攪拌した。攪拌後の水溶液と、粉末D89.1gとをナス型フラスコに入れ、ロータリーエバポレーターにて余分な水分を取り除き、乾燥炉にて200℃×2時間、マッフル炉にて800℃×2時間焼成し、粉末Eを得た。
[Operation (b)]
DL-malic acid (manufactured by Kanto Chemical Co., Ltd., deer grade) 2.268 g, palladium nitrate (manufactured by Kojima Chemical Co., Ltd.) 2.329 g, and ion-exchanged water 600 g were placed in a beaker and stirred for 1 hour. The aqueous solution after stirring and 89.1 g of powder D were placed in an eggplant-shaped flask, excess water was removed with a rotary evaporator, and baked at 200 ° C. for 2 hours in a drying furnace and at 800 ° C. for 2 hours in a muffle furnace, Powder E was obtained.

[操作(c)]
粉末E40g、アルミナゾル(日産化学工業株式会社製)50g(Al濃度20%)、及びアルミナボールをポリエチレン製容器(250ml)に入れ、14時間湿式粉砕することにより、スラリーFを得た。
[Operation (c)]
40 g of powder E, 50 g of alumina sol (manufactured by Nissan Chemical Industries, Ltd.) (Al 2 O 3 concentration 20%), and alumina balls were placed in a polyethylene container (250 ml), and wet pulverized for 14 hours to obtain slurry F.

[操作(d)]
得られたスラリーFに、ハニカムφ25.4mm×L60mm(30cc)、400セル/in2、3.5ミルのコージエライト製ハニカム支持体を浸漬した。次いで、そのハニカム支持体をスラリーから取り出し、過剰分をエア噴射により除去した。除去後、ハニカム支持体を200℃×2時間加熱した。この操作を所定の担持量が得られるまで繰り返した。所定の担持量が得られた後、マッフル炉で500℃×2時間焼成し、Pd/Zn/CeOCeO とZnの総量に対するZnの含有量=1質量%、排ガス浄化触媒に対するPdの含有量=1質量%)を得た。ウオッシュコート量は200g/Lであった。
[Operation (d)]
In the obtained slurry F, a honeycomb support made of cordierite having a honeycomb diameter of 25.4 mm × L 60 mm (30 cc), 400 cells / in 2 and 3.5 mil was immersed. Next, the honeycomb support was taken out from the slurry, and the excess was removed by air injection. After removal, the honeycomb support was heated at 200 ° C. for 2 hours. This operation was repeated until a predetermined loading amount was obtained. After a predetermined loading amount is obtained, firing at 500 ° C. for 2 hours in a muffle furnace, Pd / Zn / CeO 2 ( Zn content to the total amount of CeO 2 and Zn = 1 mass%, Pd to the exhaust gas purification catalyst) Content = 1 mass%) was obtained. The amount of washcoat was 200 g / L.

<実施例3:Pd/Zn/CeOCeO とZnの総量に対するZnの含有量=10質量%、排ガス浄化触媒に対するPdの含有量=1質量%)触媒の製造>
[操作(a)]
酸化セリウム((株)ニッキ製)90g、硝酸亜鉛6水和物(関東化学製、鹿特級)45.49g、イ才ン交換水1000gをナス型フラスコに入れ、ロータリーエバポレーターにて余分な水分を取り除いた。次いで、乾燥炉にて200℃×2時間、マッフル炉にて500℃×2時間焼成し、粉末Gを得た。
<Example 3: Pd / Zn / CeO 2 ( Zn content with respect to the total amount of CeO 2 and Zn = 10 mass%, Pd content with respect to exhaust gas purification catalyst = 1 mass%) Production of catalyst>
[Operation (a)]
90 g of cerium oxide (manufactured by Nikki Co., Ltd.), 45.49 g of zinc nitrate hexahydrate (manufactured by Kanto Chemical Co., Ltd.) Removed. Next, it was fired in a drying furnace at 200 ° C. for 2 hours and in a muffle furnace at 500 ° C. for 2 hours to obtain powder G.

[操作(b)]
DL−リンゴ酸(関東化学製、鹿特級)2.268g、硝酸パラジウム((株)小島化学薬品製)2.329g、イオン交換水600gをビーカーに入れ、1時間攪拌した。攪拌後の水溶液と、粉末G89.1gとをナス型フラスコに入れ、ロータリーエバポレーターにて余分な水分を取り除き、乾燥炉にて200℃×2時間、マッフル炉にて800℃×2時間焼成し、粉末Hを得た。
[Operation (b)]
DL-malic acid (manufactured by Kanto Chemical Co., Ltd., deer grade) 2.268 g, palladium nitrate (manufactured by Kojima Chemical Co., Ltd.) 2.329 g, and ion-exchanged water 600 g were placed in a beaker and stirred for 1 hour. The stirred aqueous solution and 89.1 g of powder G were put into an eggplant-shaped flask, excess water was removed with a rotary evaporator, and baked at 200 ° C. for 2 hours in a drying furnace and at 800 ° C. for 2 hours in a muffle furnace, Powder H was obtained.

[操作(c)]
粉末H40g、アルミナゾル(日産化学工業株式会社製)50g(Al濃度20%)、及びアルミナボールをポリエチレン製容器(250ml)に入れ、14時間湿式粉砕することにより、スラリーIを得た。
[Operation (c)]
40 g of powder H, 50 g of alumina sol (manufactured by Nissan Chemical Industries, Ltd.) (Al 2 O 3 concentration 20%), and alumina balls were placed in a polyethylene container (250 ml) and wet pulverized for 14 hours to obtain slurry I.

[操作(d)]
得られたスラリーIに、ハニカムφ25.4mm×L60mm(30cc)、400セル/in2、3.5ミルのコージエライト製ハニカム支持体を浸漬した。次いで、そのハニカム支持体をスラリーから取り出し、過剰分をエア噴射により除去した。除去後、ハニカム支持体を200℃×2時間加熱した。この操作を所定の担持量が得られるまで繰り返した。所定の担持量が得られた後、マッフル炉で500℃×2時間焼成し、Pd/Zn/CeOCeO とZnの総量に対するZnの含有量=10質量%、排ガス浄化触媒に対するPdの含有量=1質量%)を得た。ウオッシュコート量は200g/Lであった。
[Operation (d)]
In the obtained slurry I, a honeycomb support made of cordierite having a honeycomb diameter of 25.4 mm × L 60 mm (30 cc), 400 cells / in 2 and 3.5 mil was immersed. Next, the honeycomb support was taken out from the slurry, and the excess was removed by air injection. After removal, the honeycomb support was heated at 200 ° C. for 2 hours. This operation was repeated until a predetermined loading amount was obtained. After a predetermined loading amount is obtained, it is fired in a muffle furnace at 500 ° C. for 2 hours, Pd / Zn / CeO 2 ( Zn content with respect to the total amount of CeO 2 and Zn = 10% by mass, Pd with respect to the exhaust gas purification catalyst) Content = 1 mass%) was obtained. The amount of washcoat was 200 g / L.

参考例1:Pd/Zn/CeOCeO とZnの総量に対するZnの含有量=20質量%、排ガス浄化触媒に対するPdの含有量=1質量%)触媒の製造>
[操作(a)]
酸化セリウム((株)ニッキ製)80g、硝酸亜鉛6水和物(関東化学製、鹿特級)90.99g、イオン交換水1000gをナス型フラスコに入れ、ロータリーエバポレーターにて余分な水分を取り除いた。次いで、乾燥炉にて200℃×2時間、マッフル炉にて500℃×2時間焼成し、粉末Jを得た。
< Reference Example 1 : Pd / Zn / CeO 2 ( Zn content with respect to the total amount of CeO 2 and Zn = 20 mass%, Pd content with respect to exhaust gas purification catalyst = 1 mass%) Production of catalyst>
[Operation (a)]
Cerium oxide (manufactured by Nikki Co., Ltd.) 80 g, zinc nitrate hexahydrate (manufactured by Kanto Chemical Co., Ltd., deer special grade) 90.99 g, ion-exchanged water 1000 g are placed in an eggplant-shaped flask, and excess water is removed with a rotary evaporator. It was. Next, it was fired in a drying furnace at 200 ° C. for 2 hours and in a muffle furnace at 500 ° C. for 2 hours, whereby powder J was obtained.

[操作(b)]
DL−リンゴ酸(関東化学製、鹿特級)2.268g、硝酸パラジウム((株)小島化学薬品製)2.329g、イオン交換水600gをビーカーに入れ、1時間攪拌した。攪拌後の水溶液と、粉末J89.lgとをナス型フラスコに入れ、ロータリーエバポレーターにて余分な水分を取り除き、乾燥炉にて200℃×2時間、マッフル炉にて800℃×2時間焼成し、粉末Kを得た。
[Operation (b)]
DL-malic acid (manufactured by Kanto Chemical Co., Ltd., deer grade) 2.268 g, palladium nitrate (manufactured by Kojima Chemical Co., Ltd.) 2.329 g, and ion-exchanged water 600 g were placed in a beaker and stirred for 1 hour. The aqueous solution after stirring and powder J89. 1 g was placed in an eggplant-shaped flask, excess water was removed with a rotary evaporator, and baked in a drying furnace at 200 ° C. for 2 hours and in a muffle furnace at 800 ° C. for 2 hours to obtain powder K.

[操作(c)]
粉末K40g、アルミナゾル(日産化学工業株式会社製)50g(Al濃度20%)、及びアルミナボールをポリエチレン製容器(250ml)に入れ、14時間湿式粉砕することにより、スラリーLを得た。
[Operation (c)]
40 g of powder K, 50 g of alumina sol (manufactured by Nissan Chemical Industries, Ltd.) (Al 2 O 3 concentration 20%), and alumina balls were placed in a polyethylene container (250 ml) and wet pulverized for 14 hours to obtain slurry L.

[操作(d)]
得られたスラリーLに、ハニカムφ25.4mm×L60mm(30cc)、400セル/in2、3.5ミルのコージエライト製ハニカム支持体を浸漬した。次いで、そのハニカム支持体をスラリーから取り出し、過剰分をエア噴射により除去した。除去後、ハニカム支持体を200℃×2時間加熱した。この操作を所定の担持量が得られるまで繰り返した。所定の担持量が得られた後、マッフル炉で500℃×2時間焼成し、Pd/Zn/CeOCeO とZnの総量に対するZnの含有量=20質量%、排ガス浄化触媒に対するPdの含有量=1質量%)を得た。ウオッシュコート量は200g/Lであった。
[Operation (d)]
In the obtained slurry L, a honeycomb support made of cordierite having a honeycomb diameter of 25.4 mm × L 60 mm (30 cc), 400 cells / in 2 and 3.5 mil was immersed. Next, the honeycomb support was taken out from the slurry, and the excess was removed by air injection. After removal, the honeycomb support was heated at 200 ° C. for 2 hours. This operation was repeated until a predetermined loading amount was obtained. After a predetermined loading amount is obtained, it is fired in a muffle furnace at 500 ° C. for 2 hours, Pd / Zn / CeO 2 ( Zn content with respect to the total amount of CeO 2 and Zn = 20% by mass, Pd with respect to the exhaust gas purification catalyst) Content = 1 mass%) was obtained. The amount of washcoat was 200 g / L.

参考例2:Pd/Zn/CeOCeO とZnの総量に対するZnの含有量=50質量%、排ガス浄化触媒に対するPdの含有量=1質量%)触媒の製造>
[操作(a)]
酸化セリウム((株)ニッキ製)50g、硝酸亜鉛6水和物(関東化学製、鹿特級)227.5g、イオン交換水1000gをナス型フラスコに入れ、ロータリーエバポレーターにて余分な水分を取り除いた。次いで、乾燥炉にて200℃×2時間、マッフル炉にて500℃×2時間焼成し、粉末Mを得た。
< Reference Example 2 : Pd / Zn / CeO 2 ( Zn content with respect to the total amount of CeO 2 and Zn = 50 mass%, Pd content with respect to exhaust gas purification catalyst = 1 mass%) Production of catalyst>
[Operation (a)]
50 g of cerium oxide (manufactured by Nikki Co., Ltd.), 227.5 g of zinc nitrate hexahydrate (manufactured by Kanto Chemical Co., Ltd., deer special grade) and 1000 g of ion-exchanged water are placed in an eggplant-shaped flask, and excess water is removed with a rotary evaporator. It was. Subsequently, the powder M was obtained by baking at 200 ° C. for 2 hours in a drying furnace and at 500 ° C. for 2 hours in a muffle furnace.

[操作(b)]
DL−リンゴ酸(関東化学製、鹿特級)2.268g、硝酸パラジウム((株)小島化学薬品製)2.329g、イオン交換水600gをビーカーに入れ、1時間攪拌した。攪拌後の水溶液と、粉末M89.lgとをナス型フラスコに入れ、ロータリーエバポレーターにて余分な水分を取り除き、乾燥炉にて200℃×2時間、マッフル炉にて800℃×2時間焼成し、粉末Nを得た。
[Operation (b)]
DL-malic acid (manufactured by Kanto Chemical Co., Ltd., deer grade) 2.268 g, palladium nitrate (manufactured by Kojima Chemical Co., Ltd.) 2.329 g, and ion-exchanged water 600 g were placed in a beaker and stirred for 1 hour. The aqueous solution after stirring and powder M89. 1 g was put into an eggplant-shaped flask, excess water was removed with a rotary evaporator, and the mixture was baked in a drying furnace at 200 ° C. for 2 hours and in a muffle furnace at 800 ° C. for 2 hours to obtain powder N.

[操作(c)]
粉末N40g、アルミナゾル(日産化学工業株式会社製)50g(Al濃度20%)、及びアルミナボールをポリエチレン製容器(250ml)に入れ、14時間湿式粉砕することにより、スラリーOを得た。
[Operation (c)]
40 g of powder N, 50 g of alumina sol (manufactured by Nissan Chemical Industries, Ltd.) (Al 2 O 3 concentration 20%), and alumina balls were placed in a polyethylene container (250 ml), and wet pulverized for 14 hours to obtain slurry O.

[操作(d)]
得られたスラリーOに、ハニカムφ25.4mm×L60mm(30cc)、400セル/in2、3.5ミルのコージエライト製ハニカム支持体を浸漬した。次いで、そのハニカム支持体をスラリーから取り出し、過剰分をエア噴射により除去した。除去後、ハニカム支持体を200℃×2時間加熱した。この操作を所定の担持量が得られるまで繰り返した。所定の担持量が得られた後、マッフル炉で500℃×2時間焼成し、Pd/Zn/CeOCeO とZnの総量に対するZnの含有量=50質量%、排ガス浄化触媒に対するPdの含有量=1質量%)を得た。ウオッシュコート量は200g/Lであった。
[Operation (d)]
In the obtained slurry O, a honeycomb support made of cordierite having a honeycomb diameter of 25.4 mm × L 60 mm (30 cc), 400 cells / in 2 and 3.5 mil was immersed. Next, the honeycomb support was taken out from the slurry, and the excess was removed by air injection. After removal, the honeycomb support was heated at 200 ° C. for 2 hours. This operation was repeated until a predetermined loading amount was obtained. After a predetermined loading amount is obtained, firing at 500 ° C. for 2 hours in a muffle furnace, Pd / Zn / CeO 2 ( Zn content with respect to the total amount of CeO 2 and Zn = 50 mass%, Pd with respect to the exhaust gas purification catalyst) Content = 1 mass%) was obtained. The amount of washcoat was 200 g / L.

<実施例6:Pd/Zn/CeOCeO とZnの総量に対するZnの含有量=5質量%、排ガス浄化触媒に対するPdの含有量=0.5質量%)触媒の製造>
[操作(a)]
実施例1と同様の操作により、粉末Aを得た。
<Example 6: Pd / Zn / CeO 2 ( Zn content with respect to the total amount of CeO 2 and Zn = 5 mass%, Pd content with respect to exhaust gas purification catalyst = 0.5 mass%) Production of catalyst>
[Operation (a)]
Powder A was obtained in the same manner as in Example 1.

[操作(b)]
DL−リンゴ酸(関東化学製、鹿特級)1.134g、硝酸パラジウム((株)小島化学薬品製)1.164g、イオン交換水600gをビーカーに入れ、1時間攪拌した。攪拌後の水溶液と、粉末A89.6gとをナス型フラスコに入れ、ロータリーエバポレーターにて余分な水分を取り除き、乾燥炉にて200℃×2時間、マッフル炉にて800℃×2時間焼成し、粉末Pを得た。
[Operation (b)]
DL-malic acid (manufactured by Kanto Chemical Co., Ltd., deer grade) 1.134 g, palladium nitrate (manufactured by Kojima Chemical Co., Ltd.) 1.164 g, and ion-exchanged water 600 g were placed in a beaker and stirred for 1 hour. The aqueous solution after stirring and 89.6 g of powder A were put into an eggplant-shaped flask, excess water was removed with a rotary evaporator, and baked at 200 ° C. for 2 hours in a drying furnace and at 800 ° C. for 2 hours in a muffle furnace, Powder P was obtained.

[操作(c)]
粉末P40g、アルミナゾル(日産化学工業株式会社製)50g(Al濃度20%)、及びアルミナボールをポリエチレン製容器(250ml)に入れ、14時間湿式粉砕することにより、スラリーQを得た。
[Operation (c)]
40 g of powder P, 50 g of alumina sol (manufactured by Nissan Chemical Industries, Ltd.) (Al 2 O 3 concentration 20%), and alumina balls were placed in a polyethylene container (250 ml) and wet pulverized for 14 hours to obtain slurry Q.

[操作(d)]
得られたスラリーQに、ハニカムφ25.4mm×L60mm(30cc)、400セル/in2、3.5ミルのコージエライト製ハニカム支持体を浸漬した。次いで、そのハニカム支持体をスラリーから取り出し、過剰分をエア噴射により除去した。除去後、ハニカム支持体を200℃×2時間加熱した。この操作を所定の担持量が得られるまで繰り返した。所定の担持量が得られた後、マッフル炉で500℃×2時間焼成し、Pd/Zn/CeOCeO とZnの総量に対するZnの含有量=5質量%、排ガス浄化触媒に対するPdの含有量=0.5質量%)を得た。ウオッシュコート量は200g/Lであった。
[Operation (d)]
In the obtained slurry Q, a honeycomb support made of cordierite having a honeycomb diameter of 25.4 mm × L 60 mm (30 cc), 400 cells / in 2 and 3.5 mil was immersed. Next, the honeycomb support was taken out from the slurry, and the excess was removed by air injection. After removal, the honeycomb support was heated at 200 ° C. for 2 hours. This operation was repeated until a predetermined loading amount was obtained. After a predetermined loading amount is obtained, it is fired in a muffle furnace at 500 ° C. for 2 hours, Pd / Zn / CeO 2 ( Zn content with respect to the total amount of CeO 2 and Zn = 5% by mass, Pd with respect to the exhaust gas purification catalyst) Content = 0.5 mass%) was obtained. The amount of washcoat was 200 g / L.

<実施例7:Pd/Zn/CeOCeO とZnの総量に対するZnの含有量=5質量%、排ガス浄化触媒に対するPdの含有量=2質量%)触媒の製造>
[操作(a)]
実施例1と同様の操作により、粉末Aを得た。
<Example 7: Pd / Zn / CeO 2 ( Zn content with respect to the total amount of CeO 2 and Zn = 5 mass%, Pd content with respect to exhaust gas purification catalyst = 2 mass%) Production of catalyst>
[Operation (a)]
Powder A was obtained in the same manner as in Example 1.

[操作(b)]
DL−リンゴ酸(関東化学製、鹿特級)4.536g、硝酸パラジウム((株)小島化学薬品製)4.658g、イオン交換水600gをビーカーに入れ、1時間攪拌した。攪拌後の水溶液と、粉末A88.2gとをナス型フラスコに入れ、ロータリーエバポレーターにて余分な水分を取り除き、乾燥炉にて200℃×2時間、マッフル炉にて800℃×2時間焼成し、粉末Rを得た。
[Operation (b)]
DL-malic acid (manufactured by Kanto Chemical Co., Ltd., deer grade) 4.536 g, palladium nitrate (manufactured by Kojima Chemical Co., Ltd.) 4.658 g, and ion-exchanged water 600 g were placed in a beaker and stirred for 1 hour. The aqueous solution after stirring and 88.2 g of powder A were put into a eggplant-shaped flask, excess water was removed with a rotary evaporator, and the mixture was baked at 200 ° C. for 2 hours in a drying furnace and at 800 ° C. for 2 hours in a muffle furnace. Powder R was obtained.

[操作(c)]
粉末R40g、アルミナゾル(日産化学工業株式会社製)50g(Al濃度20%)、及びアルミナボールをポリエチレン製容器(250ml)に入れ、14時間湿式粉砕することにより、スラリーSを得た。
[Operation (c)]
Powder R40g, alumina sol (manufactured by Nissan Chemical Industries, Ltd.) 50 g (Al 2 O 3 concentration of 20%), and alumina balls were placed in a polyethylene container (250 ml), by 14 hours wet milling to obtain a slurry S.

[操作(d)]
得られたスラリーSに、ハニカムφ25.4mm×L60mm(30cc)、400セル/in2、3.5ミルのコージエライト製ハニカム支持体を浸漬した。次いで、そのハニカム支持体をスラリーから取り出し、過剰分をエア噴射により除去した。除去後、ハニカム支持体を200℃×2時間加熱した。この操作を所定の担持量が得られるまで繰り返した。所定の担持量が得られた後、マッフル炉で500℃×2時間焼成し、Pd/Zn/CeOCeO とZnの総量に対するZnの含有量=5質量%、排ガス浄化触媒に対するPdの含有量=2質量%)を得た。ウオッシュコート量は200g/Lであった。
[Operation (d)]
In the obtained slurry S, a honeycomb support made of cordierite having a honeycomb diameter of 25.4 mm × L 60 mm (30 cc), 400 cells / in 2 and 3.5 mil was immersed. Next, the honeycomb support was taken out from the slurry, and the excess was removed by air injection. After removal, the honeycomb support was heated at 200 ° C. for 2 hours. This operation was repeated until a predetermined loading amount was obtained. After a predetermined loading amount is obtained, it is fired in a muffle furnace at 500 ° C. for 2 hours, Pd / Zn / CeO 2 ( Zn content with respect to the total amount of CeO 2 and Zn = 5% by mass, Pd with respect to the exhaust gas purification catalyst) Content = 2 mass%) was obtained. The amount of washcoat was 200 g / L.

<実施例8:Pd/Zn/CeOCeO とZnの総量に対するZnの含有量=5質量%、排ガス浄化触媒に対するPdの含有量=5質量%)触媒の製造>
[操作(a)]
実施例1と同様の操作により、粉末Aを得た。
<Example 8: Pd / Zn / CeO 2 ( Zn content with respect to the total amount of CeO 2 and Zn = 5 mass%, Pd content with respect to exhaust gas purification catalyst = 5 mass%) Production of catalyst>
[Operation (a)]
Powder A was obtained in the same manner as in Example 1.

[操作(b)]
DL−リンゴ酸(関東化学製、鹿特級)11.34g、硝酸パラジウム((株)小島化学薬品製)11.65g、イオン交換水600gをビーカーに入れ、1時間攪拌した。攪拌後の水溶液と、粉末A85.5gとをナス型フラスコに入れ、ロータリーエバポレーターにて余分な水分を取り除き、乾燥炉にて200℃×2時間、マッフル炉にて800℃×2時間焼成し、粉末Tを得た。
[Operation (b)]
DL-malic acid (manufactured by Kanto Chemical Co., Ltd., deer grade) 11.34 g, palladium nitrate (manufactured by Kojima Chemical Co., Ltd.) 11.65 g, and ion-exchanged water 600 g were placed in a beaker and stirred for 1 hour. The stirred aqueous solution and 85.5 g of powder A were placed in an eggplant-shaped flask, excess water was removed with a rotary evaporator, and baked at 200 ° C. for 2 hours in a drying furnace and at 800 ° C. for 2 hours in a muffle furnace, Powder T was obtained.

[操作(c)]
粉末T40g、アルミナゾル(日産化学工業株式会社製)50g(Al濃度20%)、及びアルミナボールをポリエチレン製容器(250ml)に入れ、14時間湿式粉砕することにより、スラリーUを得た。
[Operation (c)]
40 g of powder T, 50 g of alumina sol (manufactured by Nissan Chemical Industries, Ltd.) (Al 2 O 3 concentration 20%), and alumina balls were placed in a polyethylene container (250 ml) and wet pulverized for 14 hours to obtain slurry U.

[操作(d)]
得られたスラリーUに、ハニカムφ25.4mm×L60mm(30cc)、400セル/in2、3.5ミルのコージエライト製ハニカム支持体を浸漬した。次いで、そのハニカム支持体をスラリーから取り出し、過剰分をエア噴射により除去した。除去後、ハニカム支持体を200℃×2時間加熱した。この操作を所定の担持量が得られるまで繰り返した。所定の担持量が得られた後、マッフル炉で500℃×2時間焼成し、Pd/Zn/CeOCeO とZnの総量に対するZnの含有量=5質量%、排ガス浄化触媒に対するPdの含有量=5質量%)を得た。ウオッシュコート量は200g/Lであった。
[Operation (d)]
In the obtained slurry U, a honeycomb support made of cordierite having a honeycomb diameter of 25.4 mm × L 60 mm (30 cc), 400 cells / in 2 and 3.5 mil was immersed. Next, the honeycomb support was taken out from the slurry, and the excess was removed by air injection. After removal, the honeycomb support was heated at 200 ° C. for 2 hours. This operation was repeated until a predetermined loading amount was obtained. After a predetermined loading amount is obtained, it is fired in a muffle furnace at 500 ° C. for 2 hours, Pd / Zn / CeO 2 ( Zn content with respect to the total amount of CeO 2 and Zn = 5% by mass, Pd with respect to the exhaust gas purification catalyst) Content = 5 mass%) was obtained. The amount of washcoat was 200 g / L.

<実施例9:Pd/Zn/CeOCeO とZnの総量に対するZnの含有量=5質量%、排ガス浄化触媒に対するPdの含有量=7質量%)触媒の製造>
[操作(a)]
実施例1と同様の操作により、粉末Aを得た。
<Example 9: Pd / Zn / CeO 2 ( Zn content with respect to the total amount of CeO 2 and Zn = 5 mass%, Pd content with respect to exhaust gas purification catalyst = 7 mass%) Production of catalyst>
[Operation (a)]
Powder A was obtained in the same manner as in Example 1.

[操作(b)]
DL−リンゴ酸(関東化学製、鹿特級)15.88g、硝酸パラジウム((株)小島化学薬品製)16.31g、イオン交換水600gをビーカーに入れ、1時間攪拌した。攪拌後の水溶液と、粉末A83.7gとをナス型フラスコに入れ、ロータリーエバポレーターにて余分な水分を取り除き、乾燥炉にて200℃×2時間、マッフル炉にて800℃×2時間焼成し、粉末Vを得た。
[Operation (b)]
DL-malic acid (manufactured by Kanto Chemical Co., Ltd., deer grade) 15.88 g, palladium nitrate (manufactured by Kojima Chemical Co., Ltd.) 16.31 g, and ion-exchanged water 600 g were placed in a beaker and stirred for 1 hour. The stirred aqueous solution and 83.7 g of powder A were placed in an eggplant-shaped flask, excess water was removed with a rotary evaporator, and the mixture was baked at 200 ° C. for 2 hours in a drying furnace and at 800 ° C. for 2 hours in a muffle furnace. Powder V was obtained.

[操作(c)]
粉末V40gとアルミナゾル(日産化学工業株式会社製)50g(Al濃度20%)、及びアルミナボールをポリエチレン製容器(250ml)に入れ、14時間湿式粉砕することにより、スラリーWを得た。
[Operation (c)]
40 g of powder V, 50 g of alumina sol (manufactured by Nissan Chemical Industries, Ltd.) (Al 2 O 3 concentration 20%), and alumina balls were placed in a polyethylene container (250 ml) and wet pulverized for 14 hours to obtain slurry W.

[操作(d)]
得られたスラリーWに、ハニカムφ25.4mm×L60mm(30cc)、400セル/in2、3.5ミルのコージエライト製ハニカム支持体を浸漬した。次いで、そのハニカム支持体をスラリーから取り出し、過剰分をエア噴射により除去した。除去後、ハニカム支持体を200℃×2時間加熱した。この操作を所定の担持量が得られるまで繰り返した。所定の担持量が得られた後、マッフル炉で500℃×2時間焼成し、Pd/Zn/CeOCeO とZnの総量に対するZnの含有量=5質量%、排ガス浄化触媒に対するPdの含有量=10質量%)を得た。ウオッシュコート量は200g/Lであった。
[Operation (d)]
In the obtained slurry W, a honeycomb support made of cordierite having a honeycomb diameter of 25.4 mm × L 60 mm (30 cc), 400 cells / in 2 and 3.5 mil was immersed. Next, the honeycomb support was taken out from the slurry, and the excess was removed by air injection. After removal, the honeycomb support was heated at 200 ° C. for 2 hours. This operation was repeated until a predetermined loading amount was obtained. After a predetermined loading amount is obtained, it is fired in a muffle furnace at 500 ° C. for 2 hours, Pd / Zn / CeO 2 ( Zn content with respect to the total amount of CeO 2 and Zn = 5% by mass, Pd with respect to the exhaust gas purification catalyst) Content = 10 mass%) was obtained. The amount of washcoat was 200 g / L.

<実施例10:Pd/Zn/CeOCeO とZnの総量に対するZnの含有量=5質量%、排ガス浄化触媒に対するPdの含有量=10質量%)触媒の製造>
[操作(a)]
実施例1と同様の操作により、粉末Aを得た。
<Example 10: Pd / Zn / CeO 2 ( Zn content with respect to the total amount of CeO 2 and Zn = 5 mass%, Pd content with respect to exhaust gas purification catalyst = 10 mass%) Production of catalyst>
[Operation (a)]
Powder A was obtained in the same manner as in Example 1.

[操作(b)]
DL−リンゴ酸(関東化学製、鹿特級)22.68g、硝酸パラジウム((株)小島化学薬品製)23.29g、イオン交換水600gをビーカーに入れ、1時間攪拌した。攪拌後の水溶液と、粉末A81gとをナス型フラスコに入れ、ロータリーエバポレーターにて余分な水分を取り除き、乾燥炉にて200℃×2時間、マッフル炉にて800℃×2時間焼成し、粉末Xを得た。
[Operation (b)]
DL-malic acid (manufactured by Kanto Chemical Co., Ltd., deer grade) 22.68 g, palladium nitrate (manufactured by Kojima Chemical Co., Ltd.) 23.29 g, and ion-exchanged water 600 g were placed in a beaker and stirred for 1 hour. After stirring, the aqueous solution and 81 g of powder A were placed in an eggplant-shaped flask, excess water was removed with a rotary evaporator, and the mixture was baked at 200 ° C. for 2 hours in a drying furnace and 800 ° C. for 2 hours in a muffle furnace. Got.

[操作(c)]
粉末X40g、アルミナゾル(日産化学工業株式会社製)50g(Al濃度20%)、及びアルミナボールをポリエチレン製容器(250ml)に入れ、14時間湿式粉砕することにより、スラリーYを得た。
[Operation (c)]
40 g of powder X, 50 g of alumina sol (manufactured by Nissan Chemical Industries, Ltd.) (Al 2 O 3 concentration 20%), and alumina balls were placed in a polyethylene container (250 ml), and wet pulverized for 14 hours to obtain slurry Y.

[操作(d)]
得られたスラリーYに、ハニカムφ25.4mm×L60mm(30cc)、400セル/in2、3.5ミルのコージエライト製ハニカム支持体を浸漬した。次いで、そのハニカム支持体をスラリーから取り出し、過剰分をエア噴射により除去した。除去後、ハニカム支持体を200℃×2時間加熱した。この操作を所定の担持量が得られるまで繰り返した。所定の担持量が得られた後、マッフル炉で500℃×2時間焼成し、Pd/Zn/CeOCeO とZnの総量に対するZnの含有量=5質量%、排ガス浄化触媒に対するPdの含有量=10質量%)を得た。ウオッシュコート量は200g/Lであった。
[Operation (d)]
In the obtained slurry Y, a honeycomb support made of cordierite having a honeycomb diameter of 25.4 mm × L 60 mm (30 cc), 400 cells / in 2 and 3.5 mil was immersed. Next, the honeycomb support was taken out from the slurry, and the excess was removed by air injection. After removal, the honeycomb support was heated at 200 ° C. for 2 hours. This operation was repeated until a predetermined loading amount was obtained. After a predetermined loading amount is obtained, it is fired in a muffle furnace at 500 ° C. for 2 hours, Pd / Zn / CeO 2 ( Zn content with respect to the total amount of CeO 2 and Zn = 5% by mass, Pd with respect to the exhaust gas purification catalyst) Content = 10 mass%) was obtained. The amount of washcoat was 200 g / L.

<比較例1:Pd/CeO触媒の製造>
[操作(a)]
DL−リンゴ酸(関東化学製、鹿特級)2.268g、硝酸パラジウム((株)小島化学薬品製)2.329g、イオン交換水600gをビーカーに入れ、1時間攪拌した。攪拌後の水溶液と、酸化セリウム((株)ニッキ製)89.lgとをナス型フラスコに入れ、ロータリーエバポレーターにて余分な水分を取り除き、乾燥炉にて200℃×2時間、マッフル炉にて800℃×2時間焼成し、粉末Zを得た。
<Comparative Example 1: Production of Pd / CeO 2 catalyst>
[Operation (a)]
DL-malic acid (manufactured by Kanto Chemical Co., Ltd., deer grade) 2.268 g, palladium nitrate (manufactured by Kojima Chemical Co., Ltd.) 2.329 g, and ion-exchanged water 600 g were placed in a beaker and stirred for 1 hour. The aqueous solution after stirring and cerium oxide (manufactured by Nikki) 89. 1 g was placed in an eggplant-shaped flask, excess water was removed with a rotary evaporator, and calcination was carried out in a drying furnace at 200 ° C. for 2 hours and in a muffle furnace at 800 ° C. for 2 hours to obtain powder Z.

[操作(b)]
粉末Z40g、アルミナゾル(日産化学工業株式会社製)50g(Al濃度20%)、及びアルミナボールをポリエチレン製容器(250ml)に入れ、14時間湿式粉砕することにより、スラリーAAを得た。
[Operation (b)]
40 g of powder Z, 50 g of alumina sol (manufactured by Nissan Chemical Industries, Ltd.) (Al 2 O 3 concentration 20%), and alumina balls were placed in a polyethylene container (250 ml) and wet pulverized for 14 hours to obtain slurry AA.

[操作(c)]
得られたスラリーAAに、ハニカムφ25.4mm×L60mm(30cc)、400セル/in2、3.5ミルのコージエライト製ハニカム支持体を浸漬した。次いで、そのハニカム支持体をスラリーから取り出し、過剰分をエア噴射により除去した。除去後、ハニカム支持体を200℃×2時間加熱した。この操作を所定の担持量が得られるまで繰り返した。所定の担持量が得られた後、マッフル炉で500℃×2時間焼成し、Pd/CeOを得た。ウオッシュコート量は200g/Lであった。
[Operation (c)]
In the obtained slurry AA, a honeycomb support made of cordierite having a honeycomb diameter of 25.4 mm × L 60 mm (30 cc), 400 cells / in 2 and 3.5 mil was immersed. Next, the honeycomb support was taken out from the slurry, and the excess was removed by air injection. After removal, the honeycomb support was heated at 200 ° C. for 2 hours. This operation was repeated until a predetermined loading amount was obtained. After a predetermined loading amount was obtained, Pd / CeO 2 was obtained by firing at 500 ° C. for 2 hours in a muffle furnace. The amount of washcoat was 200 g / L.

<比較例2:Pd/Al触媒の製造>
[操作(a)]
硝酸パラジウム((株)小島化学薬品製)2.2329g、イオン交換水600gをビーカーに入れ、1時間攪拌した。攪拌後の水溶液と、アルミナ(SASOL製)89.1gとをナス型フラスコに入れ、ロータリーエバポレーターにて余分な水分を取り除き、乾燥炉にて200℃×2時間、マッフル炉にて500℃×2時間焼成し、粉末ABを得た。
<Comparative Example 2: Production of Pd / Al 2 O 3 catalyst>
[Operation (a)]
Palladium nitrate (manufactured by Kojima Chemical Co., Ltd.) (2.2329 g) and ion-exchanged water (600 g) were placed in a beaker and stirred for 1 hour. The aqueous solution after stirring and 89.1 g of alumina (manufactured by SASOL) are placed in an eggplant-shaped flask, excess water is removed by a rotary evaporator, 200 ° C. × 2 hours in a drying furnace, and 500 ° C. × 2 in a muffle furnace. Calcination was performed for a time to obtain a powder AB.

[操作(b)]
粉末AB40g、アルミナゾル(日産化学工業株式会社製)50g(Al濃度20%)、及びアルミナボールをポリエチレン製容器(250ml)に入れ、14時間湿式粉砕することにより、スラリーACを得た。
[Operation (b)]
A slurry AC was obtained by placing 40 g of powder AB, 50 g of alumina sol (manufactured by Nissan Chemical Industries, Ltd.) (Al 2 O 3 concentration: 20%), and alumina balls in a polyethylene container (250 ml) and performing wet grinding for 14 hours.

[操作(c)]
得られたスラリーACに、ハニカムφ25.4mm×L60mm(30cc)、400セル/in2、3.5ミルのコージエライト製ハニカム支持体を浸漬した。次いで、そのハニカム支持体をスラリーから取り出し、過剰分をエア噴射により除去した。除去後、ハニカム支持体を200℃×2時間加熱した。この操作を所定の担持量が得られるまで繰り返した。所定の担持量が得られた後、マッフル炉で500℃×2時間焼成し、Pd/Alを得た。ウオッシュコート量は200g/Lであった。
[Operation (c)]
A honeycomb support made of cordierite having a honeycomb diameter of 25.4 mm × L 60 mm (30 cc), 400 cells / in 2 and 3.5 mil was immersed in the obtained slurry AC. Next, the honeycomb support was taken out from the slurry, and the excess was removed by air injection. After removal, the honeycomb support was heated at 200 ° C. for 2 hours. This operation was repeated until a predetermined loading amount was obtained. After a predetermined loading amount was obtained, Pd / Al 2 O 3 was obtained by firing at 500 ° C. for 2 hours in a muffle furnace. The amount of washcoat was 200 g / L.

<比較例3:Pd/Al(Pd5倍量)触媒の製造>
[操作(a)]
硝酸パラジウム((株)小島化学薬品製)11.645g、イオン交換水600gをビーカーに入れ、1時間攪拌した。攪拌後の水溶液と、アルミナ(SASOL製)85.5gとを、ナス型フラスコに入れ、ロータリーエバポレーターにて余分な水分を取り除き、乾燥炉にて200℃×2時間、マッフル炉にて500℃×2時間焼成し、粉末ADを得た。
<Comparative Example 3: Production of Pd / Al 2 O 3 (Pd 5 times amount) catalyst>
[Operation (a)]
11.645 g of palladium nitrate (manufactured by Kojima Chemical Co., Ltd.) and 600 g of ion-exchanged water were placed in a beaker and stirred for 1 hour. The aqueous solution after stirring and 85.5 g of alumina (manufactured by SASOL) are placed in an eggplant type flask, excess water is removed with a rotary evaporator, 200 ° C. × 2 hours in a drying furnace, and 500 ° C. × in a muffle furnace. Firing was performed for 2 hours to obtain a powder AD.

[操作(b)]
粉末AD40g、アルミナゾル(日産化学工業株式会社製)50g(Al濃度20%)、及びアルミナボールをポリエチレン製容器(250ml)に入れ、14時間湿式粉砕することにより、スラリーAEを得た。
[Operation (b)]
Powder AD40g, alumina sol (manufactured by Nissan Chemical Industries, Ltd.) 50 g (Al 2 O 3 concentration of 20%), and alumina balls were placed in a polyethylene container (250 ml), by 14 hours wet milling to obtain slurry AE.

[操作(c)]
得られたスラリーAEに、ハニカムφ25.4mm×L60mm(30cc)、400セル/in2、3.5ミルのコージエライト製ハニカム支持体を浸漬した。次いで、そのハニカム支持体をスラリーから取り出し、過剰分をエア噴射により除去した。除去後、ハニカム支持体を200℃×2時間加熱した。この操作を所定の担持量が得られるまで繰り返した。所定の担持量が得られた後、マッフル炉で500℃×2時間焼成し、Pd/Al(Pd5倍量)を得た。ウオッシュコート量は200g/Lであった。
[Operation (c)]
In the obtained slurry AE, a honeycomb support made of cordierite having a honeycomb diameter of 25.4 mm × L 60 mm (30 cc), 400 cells / in 2 and 3.5 mil was immersed. Next, the honeycomb support was taken out from the slurry, and the excess was removed by air injection. After removal, the honeycomb support was heated at 200 ° C. for 2 hours. This operation was repeated until a predetermined loading amount was obtained. After a predetermined loading amount was obtained, Pd / Al 2 O 3 (Pd 5 times amount) was obtained by firing at 500 ° C. for 2 hours in a muffle furnace. The amount of washcoat was 200 g / L.

<比較例4:Pd/CeO(Pd5倍量)触媒の製造>
[操作(a)]
DL−リンゴ酸(関東化学製、鹿特級)11.34g、硝酸パラジウム((株)小島化学薬品製)11.645g、イオン交換水600gをビーカーに入れ、1時間攪拌した。攪拌後の水溶液と、酸化セリウム((株)ニッキ製)89.1gとをナス型フラスコに入れ、ロータリーエバポレーターにて余分な水分を取り除き、乾燥炉にて200℃×2時間、マッフル炉にて800℃×2時間焼成し、粉末AFを得た。
<Comparative Example 4: Production of Pd / CeO 2 (Pd 5 times amount) catalyst>
[Operation (a)]
DL-malic acid (manufactured by Kanto Chemical Co., Ltd., deer grade) 11.34 g, palladium nitrate (manufactured by Kojima Chemical Co., Ltd.) 11.645 g, and ion-exchanged water 600 g were placed in a beaker and stirred for 1 hour. After stirring, the aqueous solution and 89.1 g of cerium oxide (manufactured by Nikki Co., Ltd.) are placed in an eggplant-shaped flask, excess water is removed with a rotary evaporator, and 200 ° C. × 2 hours in a drying furnace in a muffle furnace. The powder AF was obtained by baking at 800 ° C. for 2 hours.

[操作(b)]
粉末AF40g、アルミナゾル(日産化学工業株式会社製)50g(Al濃度20%)、及びアルミナボールをポリエチレン製容器(250ml)に入れ、14時間湿式粉砕することにより、スラリーAGを得た。
[Operation (b)]
40 g of powder AF, 50 g of alumina sol (manufactured by Nissan Chemical Industries, Ltd.) (Al 2 O 3 concentration 20%), and alumina balls were placed in a polyethylene container (250 ml), and wet pulverized for 14 hours to obtain slurry AG.

[操作(c)]
得られたスラリーAGに、ハニカムφ25.4mm×L60mm(30cc)、400セルin2、3.5ミルのコージエライト製ハニカム支持体を浸漬した。次いで、そのハニカム支持体をスラリーから取り出し、過剰分をエア噴射により除去した。除去後、ハニカム支持体を200℃×2時間加熱した。この操作を所定の担持量が得られるまで繰り返した。所定の担持量が得られた後、マッフル炉で500℃×2時間焼成し、Pd/CeO(Pd5倍量)を得た。ウオッシュコート量は200g/Lであった。
[Operation (c)]
A cordierite honeycomb support having a honeycomb diameter of 25.4 mm × L 60 mm (30 cc), 400 cells in 2 and 3.5 mil was immersed in the obtained slurry AG. Next, the honeycomb support was taken out from the slurry, and the excess was removed by air injection. After removal, the honeycomb support was heated at 200 ° C. for 2 hours. This operation was repeated until a predetermined loading amount was obtained. After a predetermined loading amount was obtained, Pd / CeO 2 (5 times the amount of Pd) was obtained by firing at 500 ° C. for 2 hours in a muffle furnace. The amount of washcoat was 200 g / L.

<比較例5:Pd/CeO(ウオッシュコート量100g/L)触媒の製造>
[操作(a)、(b)]
比較例1と同様の操作により、スラリーAAを得た。
<Comparative Example 5: Production of Pd / CeO 2 (wash coat amount 100 g / L) catalyst>
[Operation (a), (b)]
By the same operation as in Comparative Example 1, slurry AA was obtained.

[操作(c)]
得られたスラリーAAに、ハニカムφ25.4mm×L60mm(30cc)、400セル/in2、3.5ミルのコージエライト製ハニカム支持体を浸漬した。次いで、そのハニカム支持体をスラリーから取り出し、過剰分をエア噴射により除去した。除去後、ハニカム支持体を200℃×2時間加熱した。この操作を所定の担持量が得られるまで繰り返した。所定の担持量が得られた後、マッフル炉で500℃×2時間焼成し、Pd/CeO(ウオッシュコート量100g/L)を得た。
[Operation (c)]
In the obtained slurry AA, a honeycomb support made of cordierite having a honeycomb diameter of 25.4 mm × L 60 mm (30 cc), 400 cells / in 2 and 3.5 mil was immersed. Next, the honeycomb support was taken out from the slurry, and the excess was removed by air injection. After removal, the honeycomb support was heated at 200 ° C. for 2 hours. This operation was repeated until a predetermined loading amount was obtained. After a predetermined loading amount was obtained, it was fired in a muffle furnace at 500 ° C. for 2 hours to obtain Pd / CeO 2 (wash coat amount 100 g / L).

<比較例6:Pd/Al(ウオッシュコート量100g/L)触媒の製造>
[操作(a)、(b)]
比較例2と同様の操作により、スラリーACを得た。
<Comparative Example 6: Production of Pd / Al 2 O 3 (washcoat amount 100 g / L) catalyst>
[Operation (a), (b)]
A slurry AC was obtained in the same manner as in Comparative Example 2.

[操作(c)]
得られたスラリーACに、ハニカムφ25.4mm×L60mm(30cc)、400セル/in2、3.5ミルのコージエライト製ハニカム支持体を浸漬した。次いで、そのハニカム支持体をスラリーから取り出し、過剰分をエア噴射により除去した。除去後、ハニカム支持体を200℃×2時間加熱した。この操作を所定の担持量が得られるまで繰り返した。所定の担持量が得られた後、マッフル炉で500℃×2時間焼成し、Pd/Al(ウオッシュコート量100g/L)を得た。
[Operation (c)]
A honeycomb support made of cordierite having a honeycomb diameter of 25.4 mm × L 60 mm (30 cc), 400 cells / in 2 and 3.5 mil was immersed in the obtained slurry AC. Next, the honeycomb support was taken out from the slurry, and the excess was removed by air injection. After removal, the honeycomb support was heated at 200 ° C. for 2 hours. This operation was repeated until a predetermined loading amount was obtained. After a predetermined loading amount was obtained, it was fired in a muffle furnace at 500 ° C. for 2 hours to obtain Pd / Al 2 O 3 (wash coat amount 100 g / L).

<比較例7:CeO触媒の製造>
[操作(a)]
酸化セリウム((株)ニッキ製)40g、アルミナゾル(日産化学工業株式会社製)50g(Al濃度20%)、及びアルミナボールをポリエチレン製容器(250ml)に入れ、14時間湿式粉砕することにより、スラリーAIを得た。
<Comparative Example 7: Production of CeO 2 catalyst>
[Operation (a)]
Put cerium oxide (made by Nikki Co., Ltd.) 40 g, alumina sol (made by Nissan Chemical Industries, Ltd.) 50 g (Al 2 O 3 concentration 20%), and alumina balls in a polyethylene container (250 ml) and wet pulverize for 14 hours. As a result, slurry AI was obtained.

[操作(b)]
得られたスラリーAIに、ハニカムφ25.4mml×L60mm(30cc)、400セル/in2、3.5ミルのコージエライト製ハニカム支持体を浸漬した。次いで、そのハニカム支持体をスラリーから取り出し、過剰分をエア噴射により除去した。除去後、ハニカム支持体を200℃×2時間加熱した。この操作を所定の担持量が得られるまで繰り返した。所定の担持量が得られた後、マッフル炉で500℃×2時間焼成し、CeO触媒を得た。ウオッシュコート量は100g/Lであった。
[Operation (b)]
In the obtained slurry AI, a honeycomb support made of cordierite having a honeycomb diameter of 25.4 mm × L 60 mm (30 cc), 400 cells / in 2 and 3.5 mil was immersed. Next, the honeycomb support was taken out from the slurry, and the excess was removed by air injection. After removal, the honeycomb support was heated at 200 ° C. for 2 hours. This operation was repeated until a predetermined loading amount was obtained. After a predetermined loading amount was obtained, it was calcined in a muffle furnace at 500 ° C. for 2 hours to obtain a CeO 2 catalyst. The amount of washcoat was 100 g / L.

<評価>
各実施例及び比較例で得られた排ガス浄化触媒に対して、先ず、以下の条件で耐久試験を実施した。耐久試験後、下記に示す組成、条件でモデルガスA〜Cを流通させたときのCO、HC、及びNOの浄化率、及びこれら成分の50%浄化時の温度T50(℃)を評価した。評価結果を図2〜7に示した。
<Evaluation>
First, an endurance test was performed on the exhaust gas purification catalysts obtained in each of the examples and comparative examples under the following conditions. After the durability test, the purification rates of CO, HC, and NO when the model gases A to C were circulated under the following compositions and conditions, and the temperature T50 (° C.) during the 50% purification of these components were evaluated. The evaluation results are shown in FIGS.

[耐久試験条件]
実施例及び比較例で得られた排ガス浄化触媒に、ストイキモデルガスを980℃の耐久温度にて20時間流通させた。ここで、ストイキとは、完全燃焼反応における化学量論比を意味する。
[Endurance test conditions]
The stoichiometric model gas was allowed to flow through the exhaust gas purification catalysts obtained in the examples and comparative examples at a durable temperature of 980 ° C. for 20 hours. Here, stoichiometric means a stoichiometric ratio in a complete combustion reaction.

[モデルガスA]
NOx:500ppm
HC:l200ppm(C
CO:5000ppm
CO:14%
:0.49%
:バランスガス
SV(空間速度):50000h−1
リニア昇温:50℃〜450℃
[Model gas A]
NOx: 500ppm
HC: 1200 ppm (C 3 H 6 )
CO: 5000 ppm
CO 2 : 14%
O 2 : 0.49%
N 2 : Balance gas SV (space velocity): 50000h −1
Linear temperature rise: 50 ° C to 450 ° C

[モデルガスB]
NOx:500ppm
HC:l200ppmC(C
CO:20000ppm
CO:14%
:1.24%
O:10%
:バランスガス
SV(空間速度):50000h−1
リニア昇温:50℃〜450℃
[Model gas B]
NOx: 500ppm
HC: 1200 ppmC (C 3 H 6 )
CO: 20000 ppm
CO 2 : 14%
O 2 : 1.24%
H 2 O: 10%
N 2 : Balance gas SV (space velocity): 50000h −1
Linear temperature rise: 50 ° C to 450 ° C

[モデルガスC]
CO:5000ppm
O:10%
:バランスガス
SV(空間速度):50000h−1
リニア昇温:50℃〜450℃
[Model gas C]
CO: 5000 ppm
H 2 O: 10%
N 2 : Balance gas SV (space velocity): 50000h −1
Linear temperature rise: 50 ° C to 450 ° C

実施例1及び比較例1〜4で調製された排ガス浄化触媒に、モデルガスAを流通させたときのT50(℃)を図2に示した。図2に示される通り、触媒中にZnを含有させた実施例1は、Znを含有させていない比較例1に比して、低温活性を維持しつつ、耐久性を向上させることができた。また、Znを含有させた実施例1は、Pdを5倍量担持させた比較例3及び4と同等以上の耐久性が得られた。これらの結果から、Znを含有させることにより、Pd量の低減が可能であることが確認された。   FIG. 2 shows T50 (° C.) when the model gas A is circulated through the exhaust gas purifying catalysts prepared in Example 1 and Comparative Examples 1 to 4. As shown in FIG. 2, Example 1 in which Zn was contained in the catalyst was able to improve durability while maintaining low-temperature activity as compared with Comparative Example 1 in which Zn was not contained. . Further, in Example 1 containing Zn, durability equal to or higher than that of Comparative Examples 3 and 4 in which Pd was supported by 5 times amount was obtained. From these results, it was confirmed that the amount of Pd can be reduced by containing Zn.

実施例1及び比較例1で調製された排ガス浄化触媒に、モデルガスCを流通させたときの温度とCO浄化率との関係を図3に示した。図3に示される通り、Znを含有していない比較例1に比して、Znを含有させた実施例1は、より低温でCOを浄化できた。このことから、Znを含有させることにより、水性ガスシフト反応特性が向上し、より低温でCOを浄化できることが分かった。これは、Znを含有させることにより、CeOに酸素欠陥又は活性酸素種が多く存在するようになるためであると考えられた。 FIG. 3 shows the relationship between the temperature and the CO purification rate when the model gas C is circulated through the exhaust gas purification catalyst prepared in Example 1 and Comparative Example 1. As shown in FIG. 3, compared with Comparative Example 1 not containing Zn, Example 1 containing Zn could purify CO at a lower temperature. From this, it was found that by containing Zn, the water gas shift reaction characteristics were improved and CO could be purified at a lower temperature. This was thought to be due to the presence of many oxygen defects or active oxygen species in CeO 2 by containing Zn.

比較例5のPd/CeO触媒、比較例6のPd/Al触媒、及び比較例7のCeO単独触媒に、モデルガスCを流通させたときの温度とCO浄化率との関係を図4に示した。図4に示されるように、Pd/CeO触媒(比較例5)に比して、Pd/Al触媒(比較例6)では水性ガスシフト反応特性が低く、CeO単独触媒(比較例7)では水性ガスシフト反応がほとんど進行しなかった。この結果から、CeOにPdを担持させることにより、水性ガスシフト反応特性を向上させることができることが確認された。これは、上述した通り、PdがCeO上に存在することにより、CeO中の酸素欠陥のやり取りが促進される結果、少量のPdでも優れた浄化性能を発揮できるからであると考えられた。 Relationship between temperature and CO purification rate when model gas C is circulated through Pd / CeO 2 catalyst of Comparative Example 5, Pd / Al 2 O 3 catalyst of Comparative Example 6 and CeO 2 single catalyst of Comparative Example 7 Is shown in FIG. As shown in FIG. 4, the Pd / Al 2 O 3 catalyst (Comparative Example 6) has a lower water gas shift reaction characteristic than the Pd / CeO 2 catalyst (Comparative Example 5), and the CeO 2 single catalyst (Comparative Example). In 7), the water gas shift reaction hardly proceeded. From this result, it was confirmed that water gas shift reaction characteristics can be improved by supporting Pd on CeO 2 . As described above, it was considered that the presence of Pd on CeO 2 promotes the exchange of oxygen defects in CeO 2 , and as a result, excellent purification performance can be exhibited even with a small amount of Pd. .

Pd/Zn/CeO触媒において、Zn含有量を0質量%(比較例5)、1質量%(実施例2)、5質量%(実施例1)、10質量%(実施例3)、20質量%(参考例1)、50質量%(参考例2)と段階的に変化させた各触媒に、モデルガスAを流通させたときのT50(℃)を図5に示した。図5に示されるように、Znが含有されていない若しくはZnの含有量が少ない場合には、水性ガスシフト特性が得られず、特にCOの浄化率が悪い結果であった。一方、Zn量が多すぎるとCeOのOSC(酸素放出)能力が低下してしまい、触媒活性が低下してしまう傾向にあった。これらの結果から、Zn含有量は、セリウム含有酸化物と亜鉛との総量に対して、1質量%〜20質量%の範囲(図5におけるXの範囲)が好ましいことが確認された。 In the Pd / Zn / CeO 2 catalyst, the Zn content was 0% by mass (Comparative Example 5), 1% by mass (Example 2), 5% by mass (Example 1), 10% by mass (Example 3), 20 FIG. 5 shows T50 (° C.) when the model gas A was circulated through each catalyst which was changed stepwise by mass% ( Reference Example 1 ) and 50 mass% ( Reference Example 2 ). As shown in FIG. 5, when Zn was not contained or the content of Zn was small, the water gas shift characteristics were not obtained, and the CO purification rate was particularly poor. On the other hand, when the amount of Zn is too large, the OSC (oxygen releasing) ability of CeO 2 is lowered, and the catalytic activity tends to be lowered. From these results, it was confirmed that the Zn content is preferably in the range of 1 % by mass to 20% by mass (the range of X1 in FIG. 5) with respect to the total amount of the cerium-containing oxide and zinc.

Pd/Zn/CeO触媒において、Pd含有量を0.5質量%(実施例6)、1質量%(実施例1)、2質量%(実施例7)、5質量%(実施例8)、7質量%(実施例9)、10質量%(実施例10)と段階的に変化させた各触媒に、モデルガスAを流通させたときのT50(℃)を図6に示した。図6に示されるように、Pd量が少なすぎると十分な触媒活性が得られない一方、Pd量が一定量に達すると、それ以上Pd量を増加させても触媒活性の向上は認められなかった。この結果から、Pdの含有量は、排ガス浄化触媒に対して0.5質量%〜7質量%の範囲(図6におけるXの範囲)が好ましいことが確認された。 In the Pd / Zn / CeO 2 catalyst, the Pd content was 0.5 mass% (Example 6), 1 mass% (Example 1), 2 mass% (Example 7), and 5 mass% (Example 8). FIG. 6 shows T50 (° C.) when the model gas A was circulated through each catalyst which was changed stepwise from 7 mass% (Example 9) to 10 mass% (Example 10). As shown in FIG. 6, when the amount of Pd is too small, sufficient catalytic activity cannot be obtained. On the other hand, when the amount of Pd reaches a certain amount, no further improvement in catalytic activity is observed even if the amount of Pd is increased further. It was. From this result, the content of Pd is in the range of 0.5 wt% to 7 wt% with respect to the exhaust gas purifying catalyst (range of X 2 in FIG. 6) is preferably confirmed.

実施例1、比較例1及び3で調製された排ガス浄化触媒に、CO濃度が高いモデルガスBを流通させたときのT50(℃)を図7に示した。図7に示されるように、Znを含有させた実施例1は、Znを含有させていない比較例1及び3に比して、排ガス中のCO濃度が増加した場合であっても、高い耐久性を有し、低温域で優れた浄化活性を有することが確認された。また、実施例1の排ガス浄化触媒にモデルガスAを流通させたときと比較して(図2参照)、CO濃度がモデルガスAより1.5%多いモデルガスBを流通させた場合であっても、COの低温浄化性能は同等であり、且つHC、NOの低温浄化性能はより向上していることが確認された。これにより、本実施例に係る排ガス浄化触媒は、CO濃度が高い排ガスの浄化に特に好ましいことが分かった。   FIG. 7 shows T50 (° C.) when the model gas B having a high CO concentration was circulated through the exhaust gas purification catalysts prepared in Example 1 and Comparative Examples 1 and 3. As shown in FIG. 7, Example 1 containing Zn has high durability even when the CO concentration in the exhaust gas is increased as compared with Comparative Examples 1 and 3 not containing Zn. It has been confirmed that it has excellent purification activity at low temperatures. In addition, compared to when the model gas A was circulated through the exhaust gas purification catalyst of Example 1 (see FIG. 2), the model gas B having a CO concentration 1.5% higher than the model gas A was circulated. However, it was confirmed that the low-temperature purification performance of CO is equivalent and the low-temperature purification performance of HC and NO is further improved. Thereby, it turned out that the exhaust gas purification catalyst which concerns on a present Example is especially preferable for purification | cleaning of the exhaust gas with high CO concentration.

本実施形態に係る排ガス浄化触媒のメカニズムを説明するための図である。It is a figure for demonstrating the mechanism of the exhaust gas purification catalyst which concerns on this embodiment. 実施例及び比較例のT50を示す図である。It is a figure which shows T50 of an Example and a comparative example. 実施例及び比較例における温度とCO浄化率との関係を示す図である。It is a figure which shows the relationship between the temperature and CO purification rate in an Example and a comparative example. 比較例における温度とCO浄化率との関係を示す図である。It is a figure which shows the relationship between the temperature and CO purification rate in a comparative example. 実施例及び比較例におけるZn含有量とT50との関係を示す図である。It is a figure which shows the relationship between Zn content and T50 in an Example and a comparative example. 実施例及び比較例におけるPd量とT50との関係を示す図である。It is a figure which shows the relationship between Pd amount and T50 in an Example and a comparative example. 実施例及び比較例のT50を示す図である。It is a figure which shows T50 of an Example and a comparative example.

Claims (2)

内燃機関から排出される排ガス中に含まれる一酸化炭素、炭化水素、及び窒素酸化物を浄化するために用いられる排ガス浄化触媒であって、
酸化セリウムを主成分とし、貴金属として前記酸化セリウムに担持されたパラジウムのみと、前記酸化セリウムに担持された亜鉛と、を含み、
前記亜鉛の含有量が、前記酸化セリウムと前記亜鉛の総量に対して1質量%〜15質量%であることを特徴とする排ガス浄化触媒。
An exhaust gas purification catalyst used for purifying carbon monoxide, hydrocarbons, and nitrogen oxides contained in exhaust gas discharged from an internal combustion engine,
Cerium oxide as a main component, including only palladium supported on the cerium oxide as a noble metal, and zinc supported on the cerium oxide,
The exhaust gas purification catalyst, wherein the zinc content is 1% by mass to 15% by mass with respect to the total amount of the cerium oxide and the zinc.
前記パラジウムの含有量が、前記排ガス浄化触媒に対して0.5質量%〜7質量%であることを特徴とする請求項記載の排ガス浄化触媒。 When the content of palladium, according to claim 1, wherein the exhaust gas purifying catalyst, wherein the 0.5 wt% to 7 wt% with respect to the exhaust gas purifying catalyst.
JP2008320897A 2008-03-12 2008-12-17 Exhaust gas purification catalyst Active JP4852595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008320897A JP4852595B2 (en) 2008-03-12 2008-12-17 Exhaust gas purification catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008063327 2008-03-12
JP2008063327 2008-03-12
JP2008320897A JP4852595B2 (en) 2008-03-12 2008-12-17 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2009241057A JP2009241057A (en) 2009-10-22
JP4852595B2 true JP4852595B2 (en) 2012-01-11

Family

ID=41303594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008320897A Active JP4852595B2 (en) 2008-03-12 2008-12-17 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP4852595B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5324414B2 (en) * 2009-12-22 2013-10-23 本田技研工業株式会社 Exhaust purification catalyst
JP5992192B2 (en) * 2012-03-30 2016-09-14 三井金属鉱業株式会社 Palladium catalyst
JP5677682B2 (en) 2012-03-30 2015-02-25 本田技研工業株式会社 Exhaust purification catalyst
PL3618956T3 (en) * 2017-05-01 2024-02-19 Dsm Ip Assets B.V. Metal powderdous catalyst for hydrogenation processes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176544A (en) * 1986-01-31 1987-08-03 Cataler Kogyo Kk Catalyst for purifying exhaust gas
DE3830319C1 (en) * 1988-09-07 1989-07-20 Degussa Ag, 6000 Frankfurt, De
CA2011484C (en) * 1989-04-19 1997-03-04 Joseph C. Dettling Palladium-containing, ceria-supported platinum catalyst and catalyst assembly including the same
JPH05285387A (en) * 1992-04-13 1993-11-02 Hitachi Ltd Catalyst for purification of exhaust gas and purification method
JP3882627B2 (en) * 2002-01-29 2007-02-21 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP2006159021A (en) * 2004-12-03 2006-06-22 Toyota Motor Corp Catalyst for cleaning exhaust gas

Also Published As

Publication number Publication date
JP2009241057A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP5386121B2 (en) Exhaust gas purification catalyst device and exhaust gas purification method
JP4752977B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
WO2017203863A1 (en) Gasoline engine exhaust gas purification three-way catalyst
JP3965676B2 (en) Exhaust gas purification catalyst and exhaust gas purification system
JP4923412B2 (en) Exhaust gas purification catalyst
JP4852595B2 (en) Exhaust gas purification catalyst
JPH09248462A (en) Exhaust gas-purifying catalyst
JPH1157477A (en) Exhaust gas cleaning catalyst and method of using the same
JP2007239616A (en) Exhaust emission control device, exhaust emission control method, and purification catalyst
JP2007330879A (en) Catalyst for cleaning exhaust gas
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
JP2005081250A (en) Exhaust emission control device
JP4674264B2 (en) Exhaust gas purification catalyst
JP5677682B2 (en) Exhaust purification catalyst
JP4503314B2 (en) Exhaust gas purification catalyst
JP2002168117A (en) Exhaust emission control system
JP5324414B2 (en) Exhaust purification catalyst
JP2015183587A (en) Emission control device, emission control method and emission control catalyst for heat engine
JP5051009B2 (en) NOx storage reduction catalyst
JPH1190235A (en) Catalyst for purifying exhaust gas from diesel engine and purification method
JP2003200061A (en) Exhaust gas purifying catalyst and exhaust gas purifying device
JP4727140B2 (en) Exhaust gas treatment catalyst and method for producing the same
JP2003326164A (en) Exhaust gas purifying catalyst, its manufacturing method, and exhaust gas purifier
JP2001009288A (en) Catalyst for purification of exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111024

R150 Certificate of patent or registration of utility model

Ref document number: 4852595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250