JP4851735B2 - Field emission cold cathode device - Google Patents

Field emission cold cathode device Download PDF

Info

Publication number
JP4851735B2
JP4851735B2 JP2005173191A JP2005173191A JP4851735B2 JP 4851735 B2 JP4851735 B2 JP 4851735B2 JP 2005173191 A JP2005173191 A JP 2005173191A JP 2005173191 A JP2005173191 A JP 2005173191A JP 4851735 B2 JP4851735 B2 JP 4851735B2
Authority
JP
Japan
Prior art keywords
emitters
emitter
substrate
field emission
cold cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005173191A
Other languages
Japanese (ja)
Other versions
JP2006351256A (en
Inventor
利枝 相澤
淳三 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005173191A priority Critical patent/JP4851735B2/en
Publication of JP2006351256A publication Critical patent/JP2006351256A/en
Application granted granted Critical
Publication of JP4851735B2 publication Critical patent/JP4851735B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、平面型画像表示装置や電子線ディバイス、照明装置等に使用する基板面上に複数のエミッタが配置されてなる電界放出型冷陰極装置に関する。   The present invention relates to a field emission cold cathode device in which a plurality of emitters are arranged on a substrate surface used for a flat image display device, an electron beam device, an illumination device, and the like.

周知のとおり、電界電子放出現象は、先鋭形状を有するエミッタの先端部分に大きい電界強度を付加し、先端表面の電位ポテンシャルがエミッタ材料の仕事関数を超えるとトンネル効果により先端表面から電子が放出される現象である。そして、この現象を用いて電子放出を行う装置として、複数のエミッタを基板上に配置し、またこれに対向してアノード電極を配置、さらに、必要に応じてエミッタとアノード電極の間にゲート電極等を配置した電界放出型冷陰極装置が開発されてきている。また、こうした電界放出型冷陰極装置では、エミッタに大きい電界強度が付加し得るように、その先端部分の曲率半径を小さくし先鋭化することが行われており、錐体形状のエミッタ、例えば略(ほぼ)4角錐状のエミッタでは曲率半径が十数nm程度に、またカーボンナノチューブを用いたものでは数nmにまでなってきている。   As is well known, the field electron emission phenomenon adds a large electric field strength to the tip of an emitter having a sharp shape, and when the potential potential of the tip surface exceeds the work function of the emitter material, electrons are emitted from the tip surface by the tunnel effect. It is a phenomenon. As a device for emitting electrons using this phenomenon, a plurality of emitters are disposed on the substrate, an anode electrode is disposed opposite to the emitter, and a gate electrode is provided between the emitter and the anode electrode as necessary. Field emission type cold cathode devices in which the above are arranged have been developed. Further, in such a field emission type cold cathode device, the radius of curvature of the tip portion is reduced and sharpened so that a large electric field strength can be added to the emitter. The radius of curvature of a (substantially) quadrangular pyramid emitter is about several tens of nanometers, and that using carbon nanotubes is several nanometers.

そして、例えば略4角錐状のエミッタを基板面上に複数設ける方法としては、p型で(100)結晶方位のSi単結晶基板に、正方形開口部(例えば1μm角)を有するパターンを用いて異方性エッチングを行って略4角錐状の凹部を形成し、さらに凹部内を含めてSiO層を設けた後、スパッタリング法、蒸着法、印刷法、電気メッキ等のいずれかの方法を用いて凹部に充填するように例えばNi等の金属を成層して金属層を形成し、この金属層に基板を接着してからSi基板をエッチング除去して略4角錐体をなす先鋭な凸型を多数有するマスタ基板を得、またさらに、形成したマスタ基板を用いて金型モールド基板を作製し、その後に、金型モールド基板によって電界放出型冷陰極装置に用いる略4角錐状の複数のエミッタを有する基板を得る方法が示されている(例えば特許文献1参照)。 For example, as a method of providing a plurality of substantially quadrangular pyramidal emitters on the substrate surface, a p-type (100) crystal orientation Si single crystal substrate may be used by using a pattern having a square opening (for example, 1 μm square). By performing isotropic etching to form a substantially quadrangular pyramid-shaped recess and further providing a SiO 2 layer including the inside of the recess, any one of sputtering, vapor deposition, printing, electroplating, etc. is used. For example, a metal layer is formed by laminating a metal such as Ni so as to fill the recess, and the substrate is bonded to the metal layer, and then the Si substrate is etched away to form a number of sharp convex shapes that form a substantially quadrangular pyramid. A master mold substrate is obtained, and a mold mold substrate is produced using the formed master substrate. Thereafter, the mold mold substrate has a plurality of substantially quadrangular pyramidal emitters used in a field emission cold cathode device. Method of obtaining a plate is shown (for example, see Patent Document 1).

他に略4角錐状の凹部を形成したSi基板をマスタ基板として、メッキ法により凹部に充填するように金属を成層して金属層を形成し、水圧等により金属層とSiで形成されたマスタ基板から分離して金型モールド基板を作製する方法もある。例えば、金型モールド基板の金属材料としてメッキ法を用いた場合、Mo、Ta、W、Cr、Ni、Cu等がある。   In addition, an Si substrate having a substantially quadrangular pyramid-shaped recess is used as a master substrate, a metal layer is formed by depositing metal so as to fill the recess by plating, and a master formed of the metal layer and Si by water pressure or the like. There is also a method for producing a mold mold substrate by separating from the substrate. For example, when a plating method is used as the metal material of the mold mold substrate, there are Mo, Ta, W, Cr, Ni, Cu and the like.

こうした状況のもと、複数のエミッタを基板上に配設したものでは、例えば略4角錐状のエミッタを作製する過程や作製したエミッタをエージングする過程等で、エミッタの先鋭な先端が破損してしまったり、エミッタ自体が破損しまったり等することにより電子放出しないエミッタが存在するために、さらに電界放出面積を増やし単位面積当たりの電流密度を高めるために、エミッタの単位面積当たりの配設数を多くし、高集積化することが行われてきた。例えば、特許文献1に記載されているものでは、エミッタの配置間隔を4角錐状エミッタの底辺長さと略等しく、また高さの1.4倍程度にしている。   Under such circumstances, in the case where a plurality of emitters are arranged on the substrate, the sharp tip of the emitter is damaged in the process of producing a substantially quadrangular pyramid emitter or the process of aging the produced emitter, for example. Since there are emitters that do not emit electrons due to trapping or damage to the emitter itself, the number of emitters arranged per unit area can be increased to further increase the field emission area and increase the current density per unit area. Increasingly, high integration has been performed. For example, in the device described in Patent Document 1, the arrangement interval of the emitters is approximately equal to the base length of the quadrangular pyramid emitter and is about 1.4 times the height.

しかし、複数のエミッタを配置した際に局所的に高いエミッタが存在すると、高いエミッタのみに大きな電界が付加されることになって、そのエミッタからは電子が放出されるが、それ以外のエミッタからは電子が放出され難くなってしまう。このため、局所的に高いエミッタを放電等により破壊することでエミッタの高さを均一化し、エミッタ全体に均等に大きな電界強度を付加して電子放出面積を増加することがなされてきた。   However, when a plurality of emitters are arranged and a locally high emitter exists, a large electric field is applied only to the high emitter, and electrons are emitted from that emitter, but from other emitters. Makes it difficult for electrons to be emitted. For this reason, it has been possible to make the height of the emitter uniform by destroying a locally high emitter by discharge or the like, and to add a large electric field strength to the entire emitter to increase the electron emission area.

しかしながら、このような手段をとった場合には、放電によって破壊した部位の限定が難しく、また破壊した部位以外にも放電破壊によってエミッタ材料が飛散し、健全なエミッタを破損してしまう虞が生じる。例えば、健全であるエミッタの先端部分が損傷して形状の変化が生じると、電界放出の均一性が悪くなってしまい、健全なエミッタの歩留が悪くなってしまうことになる。そして、電界放出型冷陰極装置が、複数のエミッタによってエミッタ部を形成すると共に、このエミッタ部を同一基板上に複数設けるように構成したものである場合には、各エミッタ部の特性を揃ったものにしようとすると、非常にコストが高いものとなってしまう虞があった。   However, when such a measure is taken, it is difficult to limit the portion destroyed by the discharge, and there is a possibility that the emitter material may be scattered by the discharge destruction other than the destroyed portion and the healthy emitter may be damaged. . For example, if the tip of the emitter that is healthy is damaged and a shape change occurs, the uniformity of field emission becomes poor, and the yield of the healthy emitter is deteriorated. When the field emission type cold cathode device is configured such that an emitter portion is formed by a plurality of emitters and a plurality of emitter portions are provided on the same substrate, the characteristics of each emitter portion are uniformed. When trying to make it, there was a risk that it would be very expensive.

また、複数の高さの揃ったエミッタを基板上に配設し、高集積化すべく、隣り合うエミッタ同士の間隔を狭隘なものとした場合には、各エミッタの先鋭部分が近づきすぎて電界集中が起こり難くなってしまい、高い電界強度を得ることができない。このため、高電界強度が得られるように、アノード電極とエミッタの離間距離を小さくすることが考えられるが、このようにアノード電極とエミッタを近づけると、エミッタから放出された電子(一次電子)がアノード電極に衝突して発生した電子(二次電子)やイオン、スパッタ等の影響を受けて、エミッタが破損してしまう虞がある。
特開2000−285798号公報(第3頁〜第4頁)
In addition, when multiple emitters with different heights are arranged on the substrate and the intervals between adjacent emitters are narrowed for high integration, the sharpened portions of the emitters are too close to concentrate the electric field. Is difficult to occur, and high electric field strength cannot be obtained. For this reason, it is conceivable to reduce the distance between the anode electrode and the emitter so that a high electric field strength can be obtained, but when the anode electrode and the emitter are brought close to each other in this way, electrons (primary electrons) emitted from the emitter are There is a risk that the emitter may be damaged by the influence of electrons (secondary electrons), ions, sputtering, etc. generated by colliding with the anode electrode.
JP 2000-285798 A (pages 3 to 4)

上記のような状況に鑑みて本発明はなされたもので、その目的とするところは、
複数のエミッタを配置する際に、隣り合うエミッタ同士の間隔を適正なものとすることにより電界集中が起こり難くなるのを解消し、高い電界強度が得られるようにする共に、アノード電極とエミッタの離間距離を小さくせずに高い電界強度が得られることによって、アノード電極で発生した二次電子等によるエミッタの損傷を低減することができる電界放出型冷陰極装置を提供することにあり、
また、同一基板面に複数のエミッタを、電界集中が起こり難くならないよう隣り合うもの同士の間隔を適正に保持しながら多数配置することができる電界放出型冷陰極装置を提供することにある。
The present invention has been made in view of the situation as described above.
When arranging a plurality of emitters, by making the interval between adjacent emitters appropriate, it is possible to eliminate the difficulty of electric field concentration and to obtain a high electric field strength. The object is to provide a field emission cold cathode device capable of reducing the damage of the emitter due to secondary electrons or the like generated in the anode electrode by obtaining a high electric field strength without reducing the separation distance,
Another object of the present invention is to provide a field emission cold cathode device in which a plurality of emitters can be arranged on the same substrate surface while maintaining an appropriate distance between adjacent emitters so that electric field concentration does not easily occur.

本発明の電界放出型冷陰極装置は、
所定の真空状態が保持された中に、所定離間距離を設けて先鋭な先端を有する複数のエミッタとアノード電極を対向配置し、前記複数のエミッタと前記アノード電極との間に所定電位を与えて電子の放出が行われるようにした電界放出型冷陰極装置であって、
前記複数のエミッタは、それぞれ正方形に形成された底面の底辺の長さXに対し、高さHがH=Xtan(55°)/2の略4角錐状をなし、略同一高さを有して同一基板面にそれぞれ等しい間隔で配置されていると共に、隣接するもの同士の間隔が、該エミッタの高さHの3.5倍以上となっていることを特徴とするものであり、
また、基板の同一面上に略同一の所定高さにそれぞれ等しい間隔で突設された略4角錐状の複数のエミッタと、これらエミッタに対して所定離間距離を設けて配置されたアノード電極とを備えた電界放出型冷陰極装置において、
前記複数のエミッタは、それぞれ正方形に形成された底面の底辺の長さXに対し、高さHがH=Xtan(55°)/2となっており、隣接するもの同士の間隔が、該エミッタの底辺の長さXの2.5倍以上となっていることを特徴とするものであり、
さらに、前記複数のエミッタが、それぞれ前記基板面上の正三角形の頂点となる位置に配置されていることを特徴とするものである。
The field emission cold cathode device of the present invention comprises:
While a predetermined vacuum state is maintained, a plurality of emitters having a sharp tip with a predetermined separation distance are disposed opposite to an anode electrode, and a predetermined potential is applied between the plurality of emitters and the anode electrode. A field emission cold cathode device in which electrons are emitted,
Each of the plurality of emitters has a substantially quadrangular pyramid shape with a height H of H = X tan (55 °) / 2 with respect to the length X of the bottom side of the bottom formed in a square shape, and has substantially the same height. Are arranged at equal intervals on the same substrate surface, and the interval between adjacent ones is 3.5 times or more the height H of the emitter,
A plurality of substantially quadrangular pyramid-shaped emitters protruding on the same surface of the substrate at substantially the same predetermined height and at equal intervals; and an anode electrode disposed at a predetermined distance from these emitters; In a field emission cold cathode device comprising:
Each of the plurality of emitters has a height H of H = X tan (55 °) / 2 with respect to the length X of the bottom side of the bottom formed in a square shape, and the interval between adjacent ones is the emitter. It is characterized by being at least 2.5 times the length X of the bottom side of
Further, the plurality of emitters are arranged at positions that are vertices of equilateral triangles on the substrate surface, respectively.

本発明によれば、
複数のエミッタを配置する際に、隣り合うエミッタ同士の間隔が適正なものとなり、電界集中が起こり易くなって高い電界強度が得られ、さらに高い電界強度を得るためにアノード電極とエミッタの離間距離を小さくする必要がないことから、アノード電極で発生した二次電子等によるエミッタの損傷を低減することができる等の効果を有し、
また、同一基板面に複数のエミッタを、電界集中が起こり難くならないようにしながら、稠密に多数配置でき、電流密度を高いものとすることができる等の効果を奏する。
According to the present invention,
When arranging multiple emitters, the distance between adjacent emitters becomes appropriate, electric field concentration is likely to occur, and high electric field strength can be obtained. To obtain higher electric field strength, the separation distance between the anode electrode and the emitter Therefore, it is possible to reduce damage to the emitter due to secondary electrons generated in the anode electrode.
In addition, a large number of emitters can be densely arranged on the same substrate surface while preventing the concentration of the electric field from easily occurring, and the current density can be increased.

以下本発明の実施の形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず第1の実施形態を図1乃至図3により説明する。図1は概略構成を模式的に示す断面図であり、図2はカソード電極の斜視図であり、図3は電界強度特性を解析結果に基づき示す特性図である。   First, a first embodiment will be described with reference to FIGS. 1 is a cross-sectional view schematically showing a schematic configuration, FIG. 2 is a perspective view of a cathode electrode, and FIG. 3 is a characteristic diagram showing electric field strength characteristics based on analysis results.

図1及び図2において、電界放出型冷陰極装置1は、カソード電極2とアノード電極3とを、例えば10−6Torr程度の高真空状態に保持した真空空間4を間に設け、電源5によりカソード電極2とアノード電極3の間に所定の電位差を与えることで、電子がカソード電極2からアノード電極3に向けて放出されるように構成されている。またカソード電極2は、例えばガラスで形成された支持基板6のアノード電極3側の面にカソード配線を兼ねたエミッタ基板7を設け、さらに、エミッタ基板7のアノード電極3対向面に、略4角錐状に形成された例えば曲率半径が十数nm程度の先鋭な先端を有する複数のエミッタ8を突設させた構成となっている。 1 and 2, the field emission cold cathode device 1 includes a vacuum space 4 in which a cathode electrode 2 and an anode electrode 3 are maintained in a high vacuum state of, for example, about 10 −6 Torr. By applying a predetermined potential difference between the cathode electrode 2 and the anode electrode 3, electrons are emitted from the cathode electrode 2 toward the anode electrode 3. In addition, the cathode electrode 2 is provided with an emitter substrate 7 that also serves as a cathode wiring on the surface of the support substrate 6 made of glass, for example, on the anode electrode 3 side. For example, a plurality of emitters 8 having a sharp tip having a radius of curvature of about several tens of nanometers are formed in a protruding manner.

また、エミッタ基板7に突設された複数のエミッタ8は、隣接するものとの間に所定の間隔Lを設けて、直交する複数の行、列方向にそれぞれ配列されている。そして、エミッタ基板7及びこれに突設されたエミッタ8は、アノード電極3に対向する表面部分が導電部分となるように形成されており、エミッタ基板7とエミッタ8の導電部分には、例えばMo、Ta、W、Cr、Ni、Cu等の少なくとも1つの材料でなる、あるいは、いずれかを主材料としてなる導電材料が用いられている。   The plurality of emitters 8 protruding from the emitter substrate 7 are arranged in a plurality of orthogonal row and column directions with a predetermined interval L between adjacent ones. The emitter substrate 7 and the emitter 8 projecting from the emitter substrate 7 are formed so that the surface portion facing the anode electrode 3 becomes a conductive portion. The conductive portion of the emitter substrate 7 and the emitter 8 includes, for example, Mo. A conductive material made of at least one material such as Ta, W, Cr, Ni, Cu or the like, or one of them as a main material is used.

なお、複数の略4角錐状エミッタ8のエミッタ基板7への突設は、公知の技術、例えば上記した特許文献1に示されるように、p型で(100)結晶方位のSi単結晶基板に、異方性エッチングを行って開口部分が例えば1μm角の正方形の略4角錐状凹部を形成し、この形成した凹部を使って略4角錐体をなす先鋭な凸型を多数有するマスタ基板を得、さらにマスタ基板を用いて略4角錐状の凹部を有する金型モールド基板を作製し、その後に金型モールド基板によって、樹脂シートに略4角錐状の凸型を転写し、さらに樹脂シート上に導電部分として導電層を成層することによって突設させる等の方法により行われるか、あるいは同様に、略4角錐体の凸型を有するマスタ基板を得た後に、これを樹脂材料に押し当てて写し取り、得られた樹脂材料の凹部を埋め込むように前記導電材料を設ける方法により行われる。   The plurality of substantially quadrangular pyramid-shaped emitters 8 projecting from the emitter substrate 7 is formed on a p-type (100) crystal orientation Si single crystal substrate as shown in, for example, the above-mentioned Patent Document 1. Then, anisotropic etching is performed to form a substantially quadrangular pyramid-shaped concave portion having an opening of, for example, a 1 μm square, and a master substrate having a number of sharp convex shapes that form a substantially quadrangular pyramid using the formed concave portion is obtained. Further, a mold mold substrate having a substantially quadrangular pyramid-shaped recess is produced using the master substrate, and then the substantially quadrangular pyramid-shaped convex mold is transferred to the resin sheet by the mold mold substrate, and further on the resin sheet. It is carried out by a method such as projecting by forming a conductive layer as a conductive part, or similarly, after obtaining a master substrate having a convex shape of a substantially quadrangular pyramid, this is pressed against a resin material and copied. Take and get It carried out by a method of providing the conductive material so as to fill the recess of the resin material.

他に略4角錐状の凹部を形成したSi基板をマスタ基板として、メッキ法により凹部に充填するように金属を成層して金属層を形成し、水圧等により金属層とSiで形成されたマスタ基板から分離して金型モールド基板を作製する方法もある。例えば、金型モールド基板の金属材料としてメッキ法を用いた場合、Mo、Ta、W、Cr、Ni、Cu等がある。   In addition, an Si substrate having a substantially quadrangular pyramid-shaped recess is used as a master substrate, a metal layer is formed by depositing metal so as to fill the recess by plating, and a master formed of the metal layer and Si by water pressure or the like. There is also a method for producing a mold mold substrate by separating from the substrate. For example, when a plating method is used as the metal material of the mold mold substrate, there are Mo, Ta, W, Cr, Ni, Cu and the like.

本実施形態では、上記のうちの2番目の方法を用い、樹脂材料の凹部を埋め込むようにスパッタリング法で、例えばNiを凹部深さ以上に厚く成層させて、エミッタ基板7とエミッタ8の導電部分を形成した。なお、スパッタリング法に代えて蒸着法、印刷法、電気めっき等の方法を用いてもよい。   In the present embodiment, the second method of the above is used, and sputtering is performed so as to fill the concave portion of the resin material, for example, Ni is deposited thicker than the depth of the concave portion, and the conductive portions of the emitter substrate 7 and the emitter 8 are formed. Formed. Note that a method such as a vapor deposition method, a printing method, or electroplating may be used instead of the sputtering method.

また、エミッタ基板7に突設された複数のエミッタ8が、例えば上記のSi単結晶基板の結晶面を使った異方性エッチングによる方法で形成したものの場合は、略4角錐状をなす個々のエミッタ8の形状は、正方形に形成された底面の底辺の長さXに対し、
高さHが、
H=Xtan(55°)/2
となるものとなっている。
Further, in the case where the plurality of emitters 8 projecting from the emitter substrate 7 are formed by the anisotropic etching method using the crystal plane of the Si single crystal substrate, for example, each of the individual quadrangular pyramids is formed. The shape of the emitter 8 is the length X of the bottom side of the bottom formed in a square,
Height H is
H = Xtan (55 °) / 2
It becomes what becomes.

ここで、tan(55°)の項は、結晶方位(100)のSi単結晶基板面を異方性エッチングしたときに、基板面に対するエッチングされた傾斜面の傾斜角度が、55°であることを反映している。 Here, the term of tan (55 °) is that when an Si single crystal substrate surface with a crystal orientation (100) is anisotropically etched, the inclination angle of the etched inclined surface with respect to the substrate surface is 55 °. Is reflected.

また、こうした形状のエミッタ8を所定の間隔Lで複数設けたカソード電極2について、隣接するエミッタ8同士の間隔Lとエミッタ8の底辺長さXの比(L/X)を変え、各構成での電界強度を解析して求めたところ、図3に示すような電界強度特性の解析結果が得られた。すなわち、間隔Lと底辺長さXの比(L/X)が2.5以上の状態では、電界強度は一定の高い値となり、また、間隔Lと底辺長さXの比(L/X)が2.5より小さい状態では、小さくなるほど電界強度の値は低下する。なお、上記形成方法で得られる略4角錐状のエミッタ8は、上記の式(H=Xtan(55°)/2)の関係を有することから、隣接するエミッタ8同士の間隔Lとエミッタ8の高さHの比(L/H)に対する電界強度は、間隔Lと高さHの比(L/H)が3.5以上の状態では、一定の高い値をとり、3.5より小さい状態では、小さくなるほど低下する。
Further, with respect to the cathode electrode 2 in which a plurality of emitters 8 having such a shape are provided at a predetermined interval L, the ratio (L / X) between the interval L between adjacent emitters 8 and the base length X of the emitter 8 is changed. As a result, the analysis result of the electric field strength characteristic as shown in FIG. 3 was obtained. That is, when the ratio of the distance L to the base length X (L / X) is 2.5 or more, the electric field strength is a constant high value, and the ratio of the distance L to the base length X (L / X). In a state where is smaller than 2.5, the value of the electric field strength decreases as the value decreases. The substantially quadrangular pyramid-shaped emitter 8 obtained by the above forming method has the relationship of the above formula ( H = Xtan (55 °) / 2 ), so that the distance L between adjacent emitters 8 and the emitter 8 The electric field strength with respect to the ratio of the height H (L / H) takes a constant high value when the ratio of the distance L to the height H (L / H) is 3.5 or more and is smaller than 3.5. Then, it becomes so low that it becomes small.

この結果によれば、エミッタ8の高密度に配置しようとした場合に、隣接するエミッタ8同士の間隔Lを小さくしても、先鋭なエミッタ8の先端に高い電界強度を付加することができないことになる。これは、隣接するエミッタ8同士が互いの電場の影響を受けるために電界集中が妨げられるからで、互いの電場の影響を受けない範囲で複数のエミッタ8を設けるためには、間隔Lと底辺長さXの比(L/X)が2.5以上であることが必要、言い換えれば、間隔Lと高さHの比(L/H)が3.5以上であることが必要で、高電界強度の付加のためには、間隔Lと底辺長さXの比(L/X)が2.5以上、あるいは間隔Lと高さHの比(L/H)が3.5以上であることが好ましいことになる。   According to this result, when trying to arrange the emitters 8 at a high density, even if the interval L between the adjacent emitters 8 is reduced, a high electric field strength cannot be added to the tip of the sharp emitter 8. become. This is because the adjacent emitters 8 are affected by each other's electric field, so that the electric field concentration is hindered. Therefore, in order to provide a plurality of emitters 8 within the range not affected by each other's electric field, the interval L and the bottom side The length X ratio (L / X) needs to be 2.5 or more, in other words, the distance L to height H ratio (L / H) needs to be 3.5 or more. In order to add the electric field strength, the ratio of the distance L to the base length X (L / X) is 2.5 or more, or the ratio of the distance L to height H (L / H) is 3.5 or more. It will be preferable.

そして、以上のように、複数のエミッタ8を適正な間隔Lで配置することで、エミッタ8の先端に高い電界強度を付加でき、容易に電子を放出させることができる。またアノード電極3とエミッタ8の離間距離を小さくせずに高い電界強度が得られることから、アノード電極3で発生した二次電子等によるエミッタ8の損傷を低減できるので、放電によるエミッタ材料の飛散等による影響も少なくでき、電子放出特性も広範囲で均一なものになり、駆動電圧の低電圧化が可能となる。さらに、高電界強度を付加するためのエージングに、従来は多くの日数をかけていたものが、より短い期間でよく、装置製作の日数が短縮でき、装置の低コスト化が可能となる。   As described above, by arranging the plurality of emitters 8 at an appropriate interval L, a high electric field strength can be added to the tip of the emitter 8 and electrons can be easily emitted. In addition, since a high electric field strength can be obtained without reducing the distance between the anode electrode 3 and the emitter 8, damage to the emitter 8 due to secondary electrons or the like generated at the anode electrode 3 can be reduced. The electron emission characteristics can be uniform over a wide range, and the drive voltage can be lowered. Further, aging for adding a high electric field strength conventionally takes many days, but a shorter period of time may be required, the number of days for manufacturing the device can be shortened, and the cost of the device can be reduced.

次に第2の実施形態を図4乃至図6により説明する。図4は概略構成を模式的に示す断面図であり、図5はカソード電極の斜視図であり、図6はカソード電極の平面図である。なお、第1の実施形態と同一部分には同一符号を付して説明を省略し、第1の実施形態と異なる本実施形態の構成について説明する。   Next, a second embodiment will be described with reference to FIGS. 4 is a cross-sectional view schematically showing a schematic configuration, FIG. 5 is a perspective view of the cathode electrode, and FIG. 6 is a plan view of the cathode electrode. In addition, the same code | symbol is attached | subjected to the same part as 1st Embodiment, description is abbreviate | omitted, and the structure of this embodiment different from 1st Embodiment is demonstrated.

図4乃至図6において、本実施形態の電界放出型冷陰極装置11は、エミッタ8の配置パターンのみが第1の実施形態と異なるもので、カソード電極12のアノード電極3に対向する面を形成するエミッタ基板7には、略4角錐状の複数のエミッタ8が、図6に示すように、隣接するものとの間に所定の間隔Lを設けて、エミッタ基板7面上の1点鎖線で示した正三角形の頂点となる位置に配置されている。すなわち、左右方向に配列されたエミッタ8の隣接するものとの間、また、左右方向に対し60度右斜め上方向に配列されたエミッタ8の隣接するものとの間、さらに、左右方向に対し60度左斜め上方向に配列されたエミッタ8の隣接するものとの間に、それぞれ等しい間隔Lを設けたものとなっている。   4 to 6, the field emission cold cathode device 11 of this embodiment is different from the first embodiment only in the arrangement pattern of the emitters 8 and forms a surface of the cathode electrode 12 facing the anode electrode 3. As shown in FIG. 6, a plurality of emitters 8 having a substantially quadrangular pyramid shape are provided on the emitter substrate 7 with a predetermined distance L between adjacent ones, as shown in FIG. It is arranged at the position that becomes the vertex of the shown equilateral triangle. That is, between adjacent ones of the emitters 8 arranged in the left-right direction, between adjacent ones of the emitters 8 arranged obliquely upward to the right by 60 degrees with respect to the left-right direction, and further to the left-right direction. An equal interval L is provided between adjacent emitters 8 arranged in the diagonally upper left direction of 60 degrees.

そして、隣接するもの同士の間隔Lは、各エミッタ8の底辺長さX、高さHに対し、隣接するエミッタ8同士で互いの電場の影響を受けない範囲でとなる間隔Lと底辺長さXの比(L/X)が2.5以上、あるいは間隔Lと高さHの比(L/H)が3.5以上なる関係を満たすものとなっている。   The distance L between adjacent ones is such that the adjacent emitters 8 are not affected by each other's electric field with respect to the base length X and height H of each emitter 8. The ratio of X (L / X) is 2.5 or more, or the ratio of the distance L to the height H (L / H) is 3.5 or more.

この結果、上記第1の実施形態と同様の作用、効果を得ることができると共に、複数のエミッタ8がより高密度に配置でき、単位面積当たりの電流密度を高めることができる。   As a result, the same operations and effects as those of the first embodiment can be obtained, and the plurality of emitters 8 can be arranged with higher density, and the current density per unit area can be increased.

なお、上記の各実施形態では、高電界強度の付加のために、間隔Lと底辺長さXの比(L/X)が2.5以上、あるいは間隔Lと高さHの比(L/H)が3.5以上であることが好ましいとしたが、より好ましくは、間隔Lと底辺長さXの比(L/X)が3.0以上、間隔Lと高さHの比(L/H)でみると、4.2以上あればよく、また実使用的な面から装置によっては、間隔Lと底辺長さXの比(L/X)が2.0以上、あるいは間隔Lと高さHの比(L/H)でみると、2.8以上あればよい。さらに、隣接するエミッタ8同士の間隔Lについては、その許容許容される範囲の上限は、スペースファクタを考慮し、使用する機器やその仕様、性能等に基づいて適宜に設定がなされればよい。   In each of the above embodiments, in order to add a high electric field strength, the ratio of the distance L to the base length X (L / X) is 2.5 or more, or the ratio of the distance L to the height H (L / X). H) is preferably 3.5 or more, more preferably, the ratio of the distance L to the base length X (L / X) is 3.0 or more, and the ratio of the distance L to the height H (L / H), 4.2 or more is sufficient, and in terms of practical use, the ratio (L / X) of the distance L to the base length X is 2.0 or more, or the distance L, depending on the device. In terms of the ratio of the height H (L / H), it may be 2.8 or more. Furthermore, with respect to the interval L between the adjacent emitters 8, the upper limit of the allowable range may be appropriately set based on the equipment to be used, its specifications, performance, etc. in consideration of the space factor.

また、上記の各実施形態は、1つの支持基板5上に単独に設けたカソード電極2におけるものであるが、同一支持基板5にそれぞれ独立に複数設けられたカソード電極2におけるものであってもよい。さらに、上記の実施形態においては、略4角錐状のエミッタ7について説明したが、エミッタ8を導電材料で形成された先鋭な先端を有するもの、例えば、基板上に立設したカーボンナノチューブ等で構成したり、円錐状、4角錐状以外の多角錐状等としたりして、それぞれの配置間隔Lと高さHの比(L/H)を上記のようにしても、同様の効果を得ることができる。またさらに、用途によって、エミッタ8とアノード電極3の間に1つあるいは複数のゲート電極等を配置した3極以上の多極構成にしたり、アノード電極3のエミッタ8対向面側に蛍光体層を設ける等した構成としたりしたものでも、同様の効果を得ることができる。   In addition, each of the above embodiments is for the cathode electrode 2 provided independently on one support substrate 5, but it may be for the cathode electrode 2 provided independently on the same support substrate 5. Good. Furthermore, in the above-described embodiment, the substantially quadrangular pyramid-shaped emitter 7 has been described. However, the emitter 8 has a sharp tip formed of a conductive material, for example, a carbon nanotube standing on a substrate or the like. The same effect can be obtained even if the ratio of the arrangement interval L to the height H (L / H) is set as described above, such as a conical shape or a polygonal pyramid shape other than a quadrangular pyramid shape. Can do. Furthermore, depending on the application, a multipolar configuration of three or more electrodes in which one or a plurality of gate electrodes are arranged between the emitter 8 and the anode electrode 3, or a phosphor layer is provided on the surface of the anode electrode 3 facing the emitter 8. The same effect can be obtained even with a configuration such as that provided.

本発明の第1の実施形態の概略構成を模式的に示す断面図である。It is sectional drawing which shows typically schematic structure of the 1st Embodiment of this invention. 本発明の第1の実施形態におけるカソード電極の斜視図である。It is a perspective view of the cathode electrode in the 1st Embodiment of this invention. 本発明の第1の実施形態に係る電界強度特性を解析結果に基づき示す特性図である。It is a characteristic view which shows the electric field strength characteristic which concerns on the 1st Embodiment of this invention based on an analysis result. 本発明の第2の実施形態の概略構成を模式的に示す断面図である。It is sectional drawing which shows typically schematic structure of the 2nd Embodiment of this invention. 本発明の第2の実施形態におけるカソード電極の斜視図である。It is a perspective view of the cathode electrode in the 2nd Embodiment of this invention. 本発明の第2の実施形態におけるカソード電極の平面図である。It is a top view of the cathode electrode in the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1,11…電界放出型冷陰極装置
2,12…カソード電極
3…アノード電極
4…真空空間
8…エミッタ
H…高さ
L…間隔
X…底辺長さ
DESCRIPTION OF SYMBOLS 1,11 ... Field emission type cold cathode apparatus 2,12 ... Cathode electrode 3 ... Anode electrode 4 ... Vacuum space 8 ... Emitter H ... Height L ... Space | interval X ... Base length

Claims (3)

所定の真空状態が保持された中に、所定離間距離を設けて先鋭な先端を有する複数のエミッタとアノード電極を対向配置し、前記複数のエミッタと前記アノード電極との間に所定電位を与えて電子の放出が行われるようにした電界放出型冷陰極装置であって、
前記複数のエミッタは、それぞれ正方形に形成された底面の底辺の長さXに対し、高さHがH=Xtan(55°)/2の略4角錐状をなし、略同一高さを有して同一基板面にそれぞれ等しい間隔で配置されていると共に、隣接するもの同士の間隔が、該エミッタの高さHの3.5倍以上となっていることを特徴とする電界放出型冷陰極装置。
While a predetermined vacuum state is maintained, a plurality of emitters having a sharp tip with a predetermined separation distance are disposed opposite to an anode electrode, and a predetermined potential is applied between the plurality of emitters and the anode electrode. A field emission cold cathode device in which electrons are emitted,
Each of the plurality of emitters has a substantially quadrangular pyramid shape with a height H of H = X tan (55 °) / 2 with respect to the length X of the bottom side of the bottom formed in a square shape, and has substantially the same height. A field emission cold cathode device characterized in that the emitters are arranged at equal intervals on the same substrate surface, and the interval between adjacent ones is 3.5 times or more the height H of the emitter. .
基板の同一面上に略同一の所定高さにそれぞれ等しい間隔で突設された略4角錐状の複数のエミッタと、これらエミッタに対して所定離間距離を設けて配置されたアノード電極とを備えた電界放出型冷陰極装置において、
前記複数のエミッタは、それぞれ正方形に形成された底面の底辺の長さXに対し、高さHがH=Xtan(55°)/2となっており、隣接するもの同士の間隔が、該エミッタの底辺の長さXの2.5倍以上となっていることを特徴とする電界放出型冷陰極装置。
A plurality of substantially quadrangular pyramid-shaped emitters projecting at substantially equal predetermined heights on the same surface of the substrate, and an anode electrode disposed at a predetermined distance from the emitters; In the field emission cold cathode device,
Each of the plurality of emitters has a height H of H = X tan (55 °) / 2 with respect to the length X of the bottom side of the bottom formed in a square shape, and the interval between adjacent ones is the emitter. A field emission cold cathode device characterized in that it is 2.5 times or more the length X of the bottom of the cathode.
前記複数のエミッタが、それぞれ前記基板面上の正三角形の頂点となる位置に配置されていることを特徴とする請求項1又は請求項2のいずれかに記載の電界放出型冷陰極装置。   3. The field emission cold cathode device according to claim 1, wherein the plurality of emitters are arranged at positions corresponding to apexes of an equilateral triangle on the substrate surface. 4.
JP2005173191A 2005-06-14 2005-06-14 Field emission cold cathode device Expired - Fee Related JP4851735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005173191A JP4851735B2 (en) 2005-06-14 2005-06-14 Field emission cold cathode device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005173191A JP4851735B2 (en) 2005-06-14 2005-06-14 Field emission cold cathode device

Publications (2)

Publication Number Publication Date
JP2006351256A JP2006351256A (en) 2006-12-28
JP4851735B2 true JP4851735B2 (en) 2012-01-11

Family

ID=37646902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005173191A Expired - Fee Related JP4851735B2 (en) 2005-06-14 2005-06-14 Field emission cold cathode device

Country Status (1)

Country Link
JP (1) JP4851735B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199976A (en) * 2008-02-25 2009-09-03 Panasonic Corp Matrix type cold cathode electron source device
JP2011210439A (en) * 2010-03-29 2011-10-20 Toppan Printing Co Ltd Electron emission element, method of manufacturing the same, and surface light emitting element using the electron emission element
EP2784800B1 (en) * 2013-03-25 2018-12-05 LightLab Sweden AB Shaped cathode for a field emission arrangement
CN114171359B (en) * 2021-12-06 2023-06-23 国家纳米科学中心 Carbon nanotube cold cathode electron source and alignment welding method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2754175B2 (en) * 1995-03-24 1998-05-20 工業技術院長 Manufacturing method of cold electron-emitting device
JP3107007B2 (en) * 1997-08-11 2000-11-06 日本電気株式会社 Field emission cold cathode and electron tube
JPH11162336A (en) * 1997-11-26 1999-06-18 Dainippon Printing Co Ltd Manufacture of electron emitting element
JP3312015B2 (en) * 1999-10-12 2002-08-05 岡谷電機産業株式会社 Field electron emission type surge absorbing element and method of manufacturing the same
JP4707336B2 (en) * 2004-04-30 2011-06-22 国立大学法人 名古屋工業大学 Manufacturing method of electron source using carbon nanofiber

Also Published As

Publication number Publication date
JP2006351256A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
JP4854711B2 (en) Triode structure of field emission display
JP2724084B2 (en) Method of manufacturing field emission display
US6803708B2 (en) Barrier metal layer for a carbon nanotube flat panel display
EP2109132A2 (en) Electron beam apparatus and image display apparatus using the same
JP2011103303A (en) Cathode structure of emission display
JP4851735B2 (en) Field emission cold cathode device
US20050230750A1 (en) Cathode substrate and its manufacturing method
TW451239B (en) Field emission type cathode, electron emission apparatus and electron emission apparatus manufacturing method
GB2437818A (en) Field emission apparatus
KR20060019846A (en) Electron emission device
JP2000156147A (en) Cold-cathode field electron emission element and cold- cathode field electron emission type display unit
US7245067B2 (en) Electron emission device
JP2004193105A (en) Triode type field emission element and field emission display using it
JP2001283714A (en) Field-emission cold-cathode element, its manufacturing method, and field-emission-type display
US20050001536A1 (en) Field emission electron source
KR101009979B1 (en) Field emission display device
JP2009199939A (en) Electron emission device, and manufacturing method of electron emission device
KR100297546B1 (en) Field emitter and its manufacturing method
JP2007227348A (en) Electron emission device, electron emission display device using electron emission device
KR101010987B1 (en) Electron beam apparatus and image display apparatus using the same
KR100260233B1 (en) Method for producing spacer for fpd using screen print method
JP2002042635A (en) Triode
JPH1012126A (en) Electric field electron emitting element
JP2004047240A (en) Electron-emitting element, manufacturing method therefor and display device therewith
JP2007173003A (en) Electron source device and display device equipped with it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees