JP4851000B2 - Optical electric field sensor device - Google Patents

Optical electric field sensor device Download PDF

Info

Publication number
JP4851000B2
JP4851000B2 JP2000313385A JP2000313385A JP4851000B2 JP 4851000 B2 JP4851000 B2 JP 4851000B2 JP 2000313385 A JP2000313385 A JP 2000313385A JP 2000313385 A JP2000313385 A JP 2000313385A JP 4851000 B2 JP4851000 B2 JP 4851000B2
Authority
JP
Japan
Prior art keywords
electric field
optical
thermometer
sensor device
field sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000313385A
Other languages
Japanese (ja)
Other versions
JP2002122622A (en
Inventor
成典 鳥畑
良和 鳥羽
正俊 鬼澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikoh Giken Co Ltd
Original Assignee
Seikoh Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikoh Giken Co Ltd filed Critical Seikoh Giken Co Ltd
Priority to JP2000313385A priority Critical patent/JP4851000B2/en
Publication of JP2002122622A publication Critical patent/JP2002122622A/en
Application granted granted Critical
Publication of JP4851000B2 publication Critical patent/JP4851000B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光を用いて電界の測定を行う光電界センサ装置に係り、特に、EMC分野における電界測定や放送用あるいは通信用電波の中継装置に用いて好適な干渉型光導波路を有する高感度の光電界センサ装置に係る。
【0002】
【従来の技術】
干渉型光導波路を有し、電気光学効果を利用して、電界測定を行う光電界センサは、以下のような優れた特徴を持っている。
【0003】
即ち、(1)金属部をほとんど持たないために被測定電界を乱さないこと、(2)光ファイバで検出信号を伝送するので途中で誘導や電気的雑音の影響を受けないこと、(3)結晶の電気光学効果を利用するので、高速応答が可能であり、かつ、その検出信号をそのまま少ない損失で伝送できること、(4)センサ部に電源を必要としないこと、さらには、(5)光導波路部とアンテナ部を一体化でき、小型化が可能なことなどである。
【0004】
このような特質のゆえに、光電界センサは、EMC分野などの電界測定や放送用あるいは通信用電波の中継装置における電波受信装置として用いられている。
【0005】
図7は、従来から用いられている光電界センサの構造を示す図である。光ファイバ71aを通して入射した光は、LiNbO単結晶基板75上の光導波路76を経て、2本の分岐光導波路73aおよび73bに分岐される。そのとき、金属電極72a、72bには、アンテナから導かれた電圧が印加され、分岐光導波路73aと73bには、逆向きの電界が印加され、電気光学効果により、屈折率の変化が生じている。
【0006】
その結果、2つの分岐光導波路73aと73bを導波して、光導波路77で合波される光は、位相差に応じて、光強度が変調される。この変調光は、光ファイバ71bに結合して出射する。
【0007】
図8は、図7に示した光電界センサを光変調器として用いる従来の光電界センサ装置を示す図である。光源86から出射した一定強度の光は、偏波保持ファイバ84を経て光変調器82に入射し、アンテナ81から導かれた被測定電圧により、強度変調を受けた後、シングルモードファイバ83を経て、受光器85に入射して、電気信号に変換される。光源86と電界を測定しようとする点、即ち、光変調器62の設置点が、さほど離れていないときは、このような構成が従来よく用いられていた。
【0008】
【発明が解決しようとする課題】
しかしながら、光変調部が温度変化の大きな環境で使用されると、電界測定値の確度が低下するという問題があった。それは、電気光学結晶の上に作製された光導波路の光路長が温度に依存して変化するために、バイアス点がずれるということによっている。
【0009】
そこで、本発明の目的は、使用環境の温度変化に係わらず、確度の高い電界測定が可能な光電界センサ装置を提供することである。
【0010】
【課題を解決するための手段】
まず、電界の測定値が温度によって変動する原因を探るために、以下のような考察を行った。
【0011】
電極への印加電圧Vに対し、光変調器からの出力光強度Pは、次式(1)で表される。
【0012】
=α(P/2){1+sin(πV/Vπ)}・・・・・・・(1)
【0013】
ここで、Pは入射光強度、Vπは半波長電圧、αは光変調器の挿入損失の項である。この様子を図2に示す。f(V)は電極への印加電圧Vの関数として、(1)式を表したものである。この曲線の谷から山までの電圧差が半波長電圧Vπである。なお、測定する電圧は、半波長電圧Vπに比べて小さいので、入力電圧として図の下部に示した。f(V)に従って変調された出力光の強度を図の右側部分に示した。
【0014】
ところで、温度変化があると、導波路の光路長の変化により、f(V)は横軸方向にずれる。その結果、出力光強度Pは次式(2)で表される。
【0015】
P=α(P/2)[1+sin{(π(V+Δ)/Vπ}]・・・・・・・(2)
ここで、Δは温度変化によるバイアス点のずれを表す項である。
【0016】
図3は、(2)式に基づいて、ΔとPに依存して出力光強度が変化する様子を示す図である。曲線aは温度変化がない場合を示し、曲線bは温度変化によりバイアス点がずれた場合を示し、さらに曲線cは温度変化はないが、入射光強度が80%に減少した場合を示している。
【0017】
(2)式において、実際のVはVπに比べて小さいので、sinX=Xと近似する。さらに、Vは交流電圧なので、簡略化して、V=Vcos(2πft)、ただし、fは周波数、tは時間、と置くと、(2)式は、以下の(3)式のように書き換えることができる。
【0018】
P=α(P/2)(1+πΔ/Vπ)+α(P/2)(V/Vπ)cos(2πft)・・・・・(3)
【0019】
第1項が直流成分(DC成分)であり、第2項が高周波成分(RF成分)である。被測定電圧Vcos(2πft)は、第2項に含まれる。
【0020】
次に、DC成分に着目して、入射光強度Pを求めることを考える。もし、温度変化をモニタすることができれば、バイアス点のずれを表す量であるΔを求めることができる。そして、Δが分かれば、(3)式の第1項であるDC成分から、入射光強度Pを求めることができる。このPを用いて、(3)式の第2項であるRF成分から、被測定電圧、Vcos(2πft)を正しく求めることができる。
【0021】
このような考察に基づき、光変調部の温度をモニタしながら、感度係数の補正を行う実験を行ったところ、温度依存性の少ない、確度の高い電界測定が可能となった。
【0022】
また、光電界センサは、金属部による測定電界の乱れがないことを特徴としているので、温度計としては、光によるセンサ部を有し、光ファイバで温度信号を伝送する光温度計を使用するのが好適であった。
【0023】
そこで、本発明の光電界センサ装置は、光温度計と上記感度補正の演算部を備え、以下のように構成されている。
【0024】
即ち、本発明の光電界センサ装置の一例は、アンテナと、光源と、電界強度によって光強度を変調する光変調器と、変調光を電気信号に変換する光検出器と、前記光変調器の温度をモニタする温度計と、この温度計からの温度信号を用いて電界測定の感度係数を補正する感度補正演算部とを備え、前記光検出器は、電気信号を直流成分と高周波成分とに分けて出力する手段を備え、前記感度補正演算部は、前記温度計からの温度信号を用いてバイアス点のずれを求める演算手段と、前記光変調器の挿入損失を含む前記直流成分と前記バイアス点のずれとから入射光強度を求める演算手段と、前記入射光強度と前記高周波成分とから被測定電界の強度を求める演算手段とを備えている。
【0025】
また、本発明の光電界センサ装置の他の一例は、アンテナと、光源と、電界強度によって光強度を変調する光変調器と、変調光を電気信号に変換する光検出器と、前記光変調器の温度をモニタする温度計と、この温度計からの温度信号を用いて電界測定の感度係数を補正する感度補正演算部とを備え、前記光検出器は、電気信号を直流成分と高周波成分とに分けて出力する手段を備え、前記感度補正演算部は、前記温度計からの温度信号を用いてバイアス点のずれを求める演算手段と、前記光変調器の挿入損失を含む前記直流成分と前記バイアス点のずれとから入射光強度を求める演算手段と、前記入射光強度と前記バイアス点のずれと前記高周波成分とから被測定電界の強度を求める演算手段とを備えている。
【0026】
本発明の光電界センサ装置の他の一例として、前記温度計が光ファイバで温度信号を伝送する手段を備えている温度計である。
【0027】
本発明の光電界センサ装置の他の一例として、前記光変調器が電気光学結晶に設けられた導波路型マッハツェンダ干渉計である。
【0028】
本発明の光電界センサ装置の他の一例として、前記電気光学結晶がLiNbO単結晶である。
【0029】
本発明の光電界センサ装置の他の一例として、前記導波路型マッハツェンダ干渉計がLiNbO結晶基板上にTiイオンを拡散してなる光導波路を備えて構成されている。
【0030】
【発明の実施の形態】
以下に、図面を参照して、本発明の光電界センサ装置の発明の実施の形態を説明する。
【0031】
本発明の光電界センサ装置は、アンテナと、光源と、電界強度によって光強度を変調する光変調器と、変調光を電気信号に変換する光検出器を備え、さらに、前記光変調器の温度をモニタする温度計と、この温度計からの温度信号を用いて、電界測定の感度係数を補正する感度補正演算部とを備えた光電界センサ装置とするものである。
【0032】
(第1の実施の形態)図1は、本発明の第1の実施の形態に係る光電界センサ装置の構成を説明するブロック図である。11は半導体レーザ(LD)光源、12はアンテナ、13は光変調器、14は光変調器13の温度をモニタする光温度計、15は変調光を電気信号に変換し、直流成分と高周波成分に分けて出力する光検出器、16は光温度計14からの温度信号と、直流成分と高周波成分から、感度係数を補正して、電界信号を出力する感度補正演算部である。
【0033】
ここで用いる光変調器13は、従来例として説明した図7のLiNbO光変調器と同じである。LiNbO単結晶基板上にTiイオンを熱拡散させて、マッハツェンダ型光導波路を形成し、分岐導波路には被測定電界を印加する金属電極膜が形成されている。
【0034】
次に、図4は、本実施の形態の光電界センサ装置において用いた光温度計14の構成を示す図である。図4において、半導体レーザ光源を出射した光は、光サーキュレータを経て、光ファイバによって測定点まで伝送され、測定点である光変調器部分に設置された光ルミネッセンス素子に入射する。この光で励起された、2種類の発光スペクトルを持つルミネッセンス光は、光ファイバを逆行し、光サーキュレタを経て、スペクトル比較演算部に導かれる。このとき、一方の発光スペクトルは、温度にほとんど依存しない発光強度を持ち、もう一方の発光スペクトルは温度に大きく依存して強度変化する。従って、両者の比をとることによって、温度を測定することができる。
【0035】
さらに、感度補正演算部16について詳しく説明する。
【0036】
図5は、本実施の形態における感度係数の補正の流れを示す図である。図1の光温度計14からの温度信号によって、バイアス点のずれ量、即ち、(2)式に示したΔを求める。Δは光導波路の屈折率が温度によって変化することによって生じるので、その温度依存性は、半波長電圧Vπと同様に、LiNbO光変調器の導波路の設計によって定まっている。
【0037】
バイアス点のずれΔが求まれば、光検出器から出力されたDC成分と合わせて、(3)式の第1項で表した式による演算を行い、入射光強度Piと挿入損失αの積を定める。このとき、(3)式では入射光強度Piと挿入損失αは積として用いられるので、高周波成分測定のために分離する必要は無い。
【0038】
次に、光検出器15からの高周波成分と入射光強度Pに(3)式の第2項による演算を加え、測定する電界強度を決定する。
【0039】
このようにして、感度係数に温度補正を加えた電界強度の測定ができた。また、光温度計には、光ファイバで温度信号を伝送するタイプのものを用いたので、測定電界を乱さないという光電界センサの特徴を維持することができた。特に、測定点の経時的な温度変動による測定確度の低下を防ぐことができた。
【0040】
(第2の実施の形態)次に、本発明の第2の実施の形態における光電界センサ装置について説明する。本実施の形態において、第1の実施の形態と異なる部分は、感度補正演算部のみであるので、この部分に説明を絞る。
【0041】
図6は、本実施の形態における感度係数の補正の流れを示す図である。光温度計14からの温度信号によって、バイアス点のずれを定める。
【0042】
【0043】
そこで、本実施の形態においては、得られたバイアス点のずれ量と高周波成分とに演算を加え、電界強度を決定する。
【0044】
このような感度係数の補正演算を行うことによって、経時的な温度変動に伴う電界測定値のばらつきは、さらに低減することができた。
【0045】
【発明の効果】
以上、説明したように、本発明によれば、使用環境の温度変化にかかわらず、経時的に安定した、確度の高い電界測定が可能な光電界センサ装置を提供することができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態による光電界センサ装置を示すブロック図。
【図2】 光変調器の電極に印加する入力電圧と出力光強度の関係を示す図。
【図3】 バイアス点の変動を示す説明図。
【図4】 本発明の実施の形態において用いられた光温度計の構成を示す図。
【図5】 本発明の第1の実施の形態における感度係数の補正処理の流れを示す図。
【図6】 本発明の第2の実施の形態における感度係数の補正処理の流れを示す図。
【図7】 従来の光電界センサ装置の構成を示す斜視図。
【図8】 従来の光電界センサ装置の構成を示す図。
【符号の説明】
11 半導体レーザ光源
12 アンテナ
13 光変調器
14 光温度計
15 光検出器
16 感度補正演算部
71a,71b 光ファイバ
72a,72b 金属電極
73a,73b 分岐光導波路
75 LiNbO単結晶基板
76,77 光導波路
86 光源
62,82 光変調器
81 アンテナ
84 偏波保持ファイバ
85 受光器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical electric field sensor device that measures an electric field by using light, and in particular, has a high sensitivity having an interference optical waveguide suitable for use in electric field measurement and broadcast or communication radio wave relay devices in the field of EMC. This relates to an optical electric field sensor device.
[0002]
[Prior art]
An optical electric field sensor that has an interference optical waveguide and performs electric field measurement using the electro-optic effect has the following excellent features.
[0003]
(1) The electric field under measurement is not disturbed because it has almost no metal part. (2) Since the detection signal is transmitted through the optical fiber, it is not affected by induction or electrical noise. (3) Since the electro-optic effect of the crystal is used, high-speed response is possible, and the detection signal can be transmitted as it is with little loss, (4) no power supply is required for the sensor unit, and (5) optical For example, the waveguide portion and the antenna portion can be integrated, and the size can be reduced.
[0004]
Because of these characteristics, the optical electric field sensor is used as a radio wave receiver in an electric field measurement, broadcast, or communication radio wave relay device in the EMC field.
[0005]
FIG. 7 is a diagram showing the structure of a conventional optical electric field sensor. The light incident through the optical fiber 71a is branched into two branched optical waveguides 73a and 73b via the optical waveguide 76 on the LiNbO 3 single crystal substrate 75. At that time, a voltage derived from an antenna is applied to the metal electrodes 72a and 72b, and an electric field in the opposite direction is applied to the branch optical waveguides 73a and 73b, and the refractive index changes due to the electro-optic effect. Yes.
[0006]
As a result, the light intensity of the light guided through the two branched optical waveguides 73a and 73b and combined by the optical waveguide 77 is modulated according to the phase difference. The modulated light is coupled to the optical fiber 71b and emitted.
[0007]
FIG. 8 is a diagram showing a conventional optical electric field sensor device using the optical electric field sensor shown in FIG. 7 as an optical modulator. Light having a constant intensity emitted from the light source 86 enters the optical modulator 82 via the polarization maintaining fiber 84, undergoes intensity modulation by the measured voltage guided from the antenna 81, and then passes through the single mode fiber 83. Then, the light enters the light receiver 85 and is converted into an electric signal. When the point where the light source 86 and the electric field are to be measured, that is, the installation point of the light modulator 62 is not so far away, such a configuration has been often used.
[0008]
[Problems to be solved by the invention]
However, when the light modulation unit is used in an environment with a large temperature change, there is a problem that the accuracy of the electric field measurement value decreases. This is because the bias point shifts because the optical path length of the optical waveguide fabricated on the electro-optic crystal changes depending on the temperature.
[0009]
Accordingly, an object of the present invention is to provide an optical electric field sensor device capable of measuring an electric field with high accuracy regardless of a temperature change in a use environment.
[0010]
[Means for Solving the Problems]
First, in order to find out the cause of the variation in the measured electric field value with temperature, the following considerations were made.
[0011]
The output light intensity P 0 from the optical modulator with respect to the voltage V applied to the electrode is expressed by the following equation (1).
[0012]
P 0 = α (P i / 2) {1 + sin (πV / V π )} (1)
[0013]
Here, Pi is the incident light intensity, is the half-wave voltage, and α is the term of the insertion loss of the optical modulator. This is shown in FIG. f (V) represents the expression (1) as a function of the voltage V applied to the electrode. The voltage difference from the valley to the peak of this curve is the half-wave voltage . Since the voltage to be measured is smaller than the half-wave voltage , it is shown at the bottom of the figure as the input voltage. The intensity of the output light modulated according to f (V) is shown in the right part of the figure.
[0014]
By the way, when there is a temperature change, f (V) shifts in the horizontal axis direction due to a change in the optical path length of the waveguide. As a result, the output light intensity P is expressed by the following equation (2).
[0015]
P = α (P i / 2) [1 + sin {(π (V + Δ) / V π }) (2)
Here, Δ is a term representing a deviation of the bias point due to a temperature change.
[0016]
Figure 3 is a diagram showing a state in which the output light intensity varies, depending on Δ and P i based on the equation (2). A curve a shows a case where there is no temperature change, a curve b shows a case where the bias point is shifted due to the temperature change, and a curve c shows a case where there is no temperature change but the incident light intensity is reduced to 80%. .
[0017]
(2) In the equation, the actual V is smaller than the V [pi, approximates the sin X = X. Furthermore, since V is an AC voltage, it is simplified and V = V 0 cos (2πft), where f is a frequency, and t is a time, the equation (2) becomes the following equation (3): Can be rewritten.
[0018]
P = α (P i / 2) (1 + πΔ / V π ) + α (P i / 2) (V 0 / V π ) cos (2πft) (3)
[0019]
The first term is a direct current component (DC component), and the second term is a high frequency component (RF component). The measured voltage V 0 cos (2πft) is included in the second term.
[0020]
Next , it is considered to obtain the incident light intensity P i by paying attention to the DC component. If the temperature change can be monitored, Δ which is an amount representing the deviation of the bias point can be obtained. Then, if Δ is known, the incident light intensity P i can be obtained from the DC component which is the first term of the equation (3). Using this P i, (3) from the RF component is a second term of the equation can be obtained voltage to be measured, V 0 cos a (2.pi.ft) correctly.
[0021]
Based on such considerations, an experiment was performed to correct the sensitivity coefficient while monitoring the temperature of the light modulation unit. As a result, it was possible to measure the electric field with low temperature dependence and high accuracy.
[0022]
Further, since the optical electric field sensor is characterized in that there is no disturbance of the measurement electric field due to the metal part, as the thermometer, an optical thermometer having a sensor part by light and transmitting a temperature signal through an optical fiber is used. Was suitable.
[0023]
Accordingly, the optical electric field sensor device of the present invention includes an optical thermometer and the above-described sensitivity correction calculation unit, and is configured as follows.
[0024]
That is, an example of the optical electric field sensor device of the present invention includes an antenna, a light source, an optical modulator that modulates light intensity by electric field intensity, a photodetector that converts modulated light into an electric signal, and the optical modulator. A thermometer for monitoring the temperature, and a sensitivity correction calculation unit for correcting the sensitivity coefficient of the electric field measurement using the temperature signal from the thermometer, and the optical detector converts the electric signal into a DC component and a high-frequency component. Means for separately outputting, the sensitivity correction calculation unit is configured to calculate a bias point shift using a temperature signal from the thermometer, the DC component including insertion loss of the optical modulator, and the bias Calculation means for obtaining the incident light intensity from the point shift and calculation means for obtaining the intensity of the electric field to be measured from the incident light intensity and the high-frequency component are provided.
[0025]
Further, another example of the optical electric field sensor device of the present invention includes an antenna, a light source, an optical modulator that modulates light intensity by electric field intensity, a photodetector that converts modulated light into an electric signal, and the optical modulation A thermometer that monitors the temperature of the vessel, and a sensitivity correction calculation unit that corrects the sensitivity coefficient of the electric field measurement using the temperature signal from the thermometer, and the photodetector detects a direct current component and a high frequency component. The sensitivity correction calculation unit is configured to calculate a bias point shift using a temperature signal from the thermometer, and the DC component including an insertion loss of the optical modulator; Computation means for obtaining the incident light intensity from the bias point deviation and computation means for obtaining the intensity of the electric field to be measured from the incident light intensity, the bias point deviation and the high frequency component.
[0026]
As another example of the optical electric field sensor device of the present invention, the thermometer includes a means for transmitting a temperature signal through an optical fiber.
[0027]
Another example of the optical electric field sensor device of the present invention is a waveguide type Mach-Zehnder interferometer in which the optical modulator is provided in an electro-optic crystal.
[0028]
As another example of the optical electric field sensor device of the present invention, the electro-optic crystal is a LiNbO 3 single crystal.
[0029]
As another example of the optical electric field sensor device of the present invention, the waveguide type Mach-Zehnder interferometer includes an optical waveguide formed by diffusing Ti ions on a LiNbO 3 crystal substrate.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an optical electric field sensor device according to the present invention will be described below with reference to the drawings.
[0031]
The optical electric field sensor device of the present invention comprises an antenna, a light source, an optical modulator that modulates the light intensity according to the electric field intensity, and a photodetector that converts the modulated light into an electric signal, and further the temperature of the optical modulator The optical electric field sensor device includes a thermometer that monitors the temperature and a sensitivity correction calculation unit that corrects the sensitivity coefficient of the electric field measurement using a temperature signal from the thermometer.
[0032]
(First Embodiment) FIG. 1 is a block diagram illustrating the configuration of an optical electric field sensor device according to a first embodiment of the present invention. 11 is a semiconductor laser (LD) light source, 12 is an antenna, 13 is an optical modulator, 14 is an optical thermometer that monitors the temperature of the optical modulator 13, and 15 is a device that converts modulated light into an electrical signal, which is a direct current component and a high frequency component. A photo detector 16 that outputs the signals separately is a sensitivity correction calculation unit that outputs an electric field signal by correcting the sensitivity coefficient from the temperature signal from the optical thermometer 14, the direct current component, and the high frequency component.
[0033]
The optical modulator 13 used here is the same as the LiNbO 3 optical modulator of FIG. 7 described as a conventional example. Ti ions are thermally diffused on a LiNbO 3 single crystal substrate to form a Mach-Zehnder type optical waveguide, and a metal electrode film for applying an electric field to be measured is formed on the branch waveguide.
[0034]
Next, FIG. 4 is a diagram showing a configuration of the optical thermometer 14 used in the optical electric field sensor device of the present embodiment. In FIG. 4, the light emitted from the semiconductor laser light source passes through the optical circulator, is transmitted to the measurement point by the optical fiber, and enters the photoluminescence element installed in the optical modulator portion that is the measurement point. The luminescence light excited by this light and having two types of emission spectra travels backward through the optical fiber, and is guided to the spectrum comparison calculation unit via the optical circulator. At this time, one emission spectrum has an emission intensity almost independent of temperature, and the other emission spectrum changes in intensity greatly depending on the temperature. Therefore, the temperature can be measured by taking the ratio between the two.
[0035]
Further, the sensitivity correction calculation unit 16 will be described in detail.
[0036]
FIG. 5 is a diagram showing a flow of correction of the sensitivity coefficient in the present embodiment. Based on the temperature signal from the optical thermometer 14 of FIG. 1, the deviation amount of the bias point, that is, Δ shown in the equation (2) is obtained. Since Δ is generated when the refractive index of the optical waveguide varies with temperature, the temperature dependence is determined by the design of the waveguide of the LiNbO 3 optical modulator, as with the half-wave voltage V π .
[0037]
If the deviation Δ of the bias point is obtained, the calculation by the expression represented by the first term of the expression (3) is performed together with the DC component output from the photodetector, and the product of the incident light intensity Pi and the insertion loss α is obtained. Determine. At this time, in the equation (3), the incident light intensity Pi and the insertion loss α are used as a product, so that it is not necessary to separate them for measuring the high frequency component.
[0038]
Then, the high-frequency component as the incident light intensity P i from the photodetector 15 (3) the calculation by the second term of the formula is added, to determine the field strength to be measured.
[0039]
In this way, the electric field strength obtained by adding temperature correction to the sensitivity coefficient could be measured. In addition, since the optical thermometer is of a type that transmits a temperature signal through an optical fiber, the characteristics of the optical electric field sensor that does not disturb the measurement electric field can be maintained. In particular, it was possible to prevent a decrease in measurement accuracy due to temperature fluctuations at the measurement points over time.
[0040]
(Second Embodiment) Next, an optical electric field sensor device according to a second embodiment of the present invention will be described. In the present embodiment, the only part that differs from the first embodiment is the sensitivity correction calculation unit, so the description will be focused on this part.
[0041]
FIG. 6 is a diagram illustrating a flow of sensitivity coefficient correction in the present embodiment. The deviation of the bias point is determined by the temperature signal from the optical thermometer 14.
[0042]
[0043]
Therefore, in the present embodiment, the electric field strength is determined by adding a calculation to the obtained deviation amount of the bias point and the high frequency component.
[0044]
By performing the correction calculation of the sensitivity coefficient, the variation in the electric field measurement value due to the temperature variation with time can be further reduced.
[0045]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an optical electric field sensor device capable of measuring an electric field which is stable with time and has high accuracy regardless of a temperature change in a use environment.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an optical electric field sensor device according to a first embodiment of the present invention.
FIG. 2 is a view showing a relationship between an input voltage applied to an electrode of an optical modulator and an output light intensity.
FIG. 3 is an explanatory diagram showing fluctuation of a bias point.
FIG. 4 is a diagram showing a configuration of an optical thermometer used in the embodiment of the present invention.
FIG. 5 is a diagram showing a flow of sensitivity coefficient correction processing according to the first embodiment of the present invention.
FIG. 6 is a diagram showing a flow of sensitivity coefficient correction processing according to the second embodiment of the present invention.
FIG. 7 is a perspective view showing a configuration of a conventional optical electric field sensor device.
FIG. 8 is a diagram showing a configuration of a conventional optical electric field sensor device.
[Explanation of symbols]
11 semiconductor laser light source 12 antenna 13 optical modulator 14 optical thermometer 15 optical detector 16 sensitivity correction calculation unit 71a, 71b optical fiber 72a, 72b metal electrodes 73a, 73b branched optical waveguides 75 LiNbO 3 single crystal substrate 76 and 77 optical waveguide 86 Light sources 62 and 82 Optical modulator 81 Antenna 84 Polarization maintaining fiber 85 Light receiver

Claims (6)

アンテナと、光源と、電界強度によって光強度を変調する光変調器と、変調光を電気信号に変換する光検出器と、前記光変調器の温度をモニタする温度計と、この温度計からの温度信号を用いて電界測定の感度係数を補正する感度補正演算部とを備え、前記光検出器は、電気信号を直流成分と高周波成分とに分けて出力する手段を備え、前記感度補正演算部は、前記温度計からの温度信号を用いてバイアス点のずれを求める演算手段と、前記光変調器の挿入損失を含む前記直流成分と前記バイアス点のずれとから入射光強度を求める演算手段と、前記入射光強度と前記高周波成分とから被測定電界の強度を求める演算手段とを備えていることを特徴とする光電界センサ装置。  An antenna, a light source, an optical modulator that modulates the light intensity according to the electric field intensity, a photodetector that converts the modulated light into an electrical signal, a thermometer that monitors the temperature of the optical modulator, and a thermometer from the thermometer A sensitivity correction calculation unit that corrects a sensitivity coefficient of electric field measurement using a temperature signal, and the photodetector includes means for outputting an electric signal divided into a direct current component and a high frequency component, and the sensitivity correction calculation unit Calculating means for obtaining a bias point shift using a temperature signal from the thermometer, and calculating means for obtaining an incident light intensity from the DC component including the insertion loss of the optical modulator and the bias point deviation; An optical electric field sensor device comprising: an operation means for obtaining the intensity of the electric field to be measured from the incident light intensity and the high frequency component. アンテナと、光源と、電界強度によって光強度を変調する光変調器と、変調光を電気信号に変換する光検出器と、前記光変調器の温度をモニタする温度計と、この温度計からの温度信号を用いて電界測定の感度係数を補正する感度補正演算部とを備え、前記光検出器は、電気信号を直流成分と高周波成分とに分けて出力する手段を備え、前記感度補正演算部は、前記温度計からの温度信号を用いてバイアス点のずれを求める演算手段と、前記光変調器の挿入損失を含む前記直流成分と前記バイアス点のずれとから入射光強度を求める演算手段と、前記入射光強度と前記バイアス点のずれと前記高周波成分とから被測定電界の強度を求める演算手段とを備えていることを特徴とする光電界センサ装置。  An antenna, a light source, an optical modulator that modulates the light intensity according to the electric field intensity, a photodetector that converts the modulated light into an electrical signal, a thermometer that monitors the temperature of the optical modulator, A sensitivity correction calculation unit that corrects a sensitivity coefficient of electric field measurement using a temperature signal, and the photodetector includes means for outputting an electric signal divided into a DC component and a high frequency component, and the sensitivity correction calculation unit Calculating means for obtaining a bias point shift using a temperature signal from the thermometer, and calculating means for obtaining an incident light intensity from the DC component including the insertion loss of the optical modulator and the bias point deviation; An optical electric field sensor device comprising: an arithmetic means for obtaining an intensity of an electric field to be measured from the incident light intensity, the deviation of the bias point, and the high frequency component. 前記温度計は、光ファイバで温度信号を伝送する手段を備えている温度計であることを特徴とする請求項1または請求項2に記載の光電界センサ装置。  3. The optical electric field sensor device according to claim 1, wherein the thermometer is a thermometer provided with means for transmitting a temperature signal through an optical fiber. 前記光変調器は、電気光学結晶に設けられた導波路型マッハツェンダ干渉計であることを特徴とする請求項1ないし請求項3いずれかに記載の光電界センサ装置。  4. The optical electric field sensor device according to claim 1, wherein the optical modulator is a waveguide type Mach-Zehnder interferometer provided in an electro-optic crystal. 前記電気光学結晶は、LiNbO単結晶であることを特徴とする請求項4に記載の光電界センサ装置。The optical electric field sensor device according to claim 4, wherein the electro-optic crystal is a LiNbO 3 single crystal. 前記導波路型マッハツェンダ干渉計は、LiNbO結晶基板上にTiイオンを拡散してなる光導波路を備えて構成されることを特徴とする請求項4または請求項5に記載の光電界センサ装置。6. The optical electric field sensor device according to claim 4, wherein the waveguide type Mach-Zehnder interferometer includes an optical waveguide formed by diffusing Ti ions on a LiNbO 3 crystal substrate.
JP2000313385A 2000-10-13 2000-10-13 Optical electric field sensor device Expired - Lifetime JP4851000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000313385A JP4851000B2 (en) 2000-10-13 2000-10-13 Optical electric field sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000313385A JP4851000B2 (en) 2000-10-13 2000-10-13 Optical electric field sensor device

Publications (2)

Publication Number Publication Date
JP2002122622A JP2002122622A (en) 2002-04-26
JP4851000B2 true JP4851000B2 (en) 2012-01-11

Family

ID=18792813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000313385A Expired - Lifetime JP4851000B2 (en) 2000-10-13 2000-10-13 Optical electric field sensor device

Country Status (1)

Country Link
JP (1) JP4851000B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127777A (en) * 2008-11-27 2010-06-10 Sumitomo Osaka Cement Co Ltd Electric field measuring device
JP5218587B2 (en) * 2011-03-29 2013-06-26 住友大阪セメント株式会社 Electric field measuring device
US9568506B2 (en) 2013-05-22 2017-02-14 Panasonic Intellectual Property Management Co., Ltd. Electric field measurement device
JP6557630B2 (en) * 2016-04-06 2019-08-07 日本電信電話株式会社 Electric field strength measuring instrument
JP2020051871A (en) 2018-09-26 2020-04-02 横河電機株式会社 Electric field sensor
JP6989852B2 (en) 2019-01-22 2022-02-03 横河電機株式会社 Electric field sensor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2621750B2 (en) * 1992-10-19 1997-06-18 株式会社高岳製作所 Optical temperature measurement device
JPH07159464A (en) * 1993-12-06 1995-06-23 Tokin Corp Method for adjusting optical bias of opto-electric field sensor
JPH08247853A (en) * 1995-03-08 1996-09-27 Shimadzu Corp Liquid crystal light modulator
JPH08248365A (en) * 1995-03-10 1996-09-27 Toshiba Corp Optical modulation device of external modulation system
JPH08316909A (en) * 1995-05-16 1996-11-29 Toshiba Corp Optical transmission system and module and driving method for optical modulator
JPH09304494A (en) * 1996-05-10 1997-11-28 Toyo Commun Equip Co Ltd Sensor unit for sensing magnetic field or electric field utilizing magneto-optic effect, and method for compensating temperature characteristic thereof, and temperature sensor unit
JPH10111177A (en) * 1996-10-04 1998-04-28 Nissin Electric Co Ltd Light modulator and sensor using it
JPH10115813A (en) * 1996-10-14 1998-05-06 Anritsu Corp Optical modulation device
JPH11183539A (en) * 1997-12-16 1999-07-09 Tokin Corp Light modulating device and electric field sensor utilizing magneto-optic effect
JPH11183540A (en) * 1997-12-22 1999-07-09 Tokin Corp Sensor head and electric field sensor utilizing magneto-optic effect
JPH11202010A (en) * 1998-01-14 1999-07-30 Tokin Corp Optical electric field sensor
JPH11211580A (en) * 1998-01-20 1999-08-06 Takaoka Electric Mfg Co Ltd Optical fiber type fluorescence thermometer

Also Published As

Publication number Publication date
JP2002122622A (en) 2002-04-26

Similar Documents

Publication Publication Date Title
CA2571515C (en) Distributed optical fiber sensor
US6946827B2 (en) Optical electric field or voltage sensing system
US6479979B1 (en) Opto-electric device for measuring the root-mean-square value of an alternating current voltage
JP2866186B2 (en) Electromagnetic field strength measuring device
US5907426A (en) Stabilizing device for optical modulator
CN105425033B (en) Microwave photon frequency measuring system containing dual-ring coupling silicon-substrate photonic chip
JP2619981B2 (en) Electromagnetic field strength measuring device
US6285182B1 (en) Electro-optic voltage sensor
JP4851000B2 (en) Optical electric field sensor device
WO2022184443A1 (en) A controller for an electromagnetic field detector
Zhang et al. Measurement of modulation index and half-wave voltage of an electro-optical phase modulator with a dispersion-based phase filter
JP2012027161A (en) Frequency characteristic calibration method of conversion efficiency in photoelectric conversion device
US6421483B1 (en) Optical monitoring in optical interferometric modulators
US6211982B1 (en) Remote sensor with waveguide optics telemetry
US5022754A (en) Determining the wavelength of optical radiation
Morozov et al. Double-frequency method for the instantaneous frequency and amplitude measurement
JP2011033501A (en) Electric field, magnetic field and voltage detector with feedback circuit
JP3210957B2 (en) Semiconductor laser light frequency modulation device and interference measurement device using the same
US6243401B1 (en) Methods and apparatus for wavelength measurement and tracking using a semiconductor laser amplifier
US20240167818A1 (en) Method for reducing the kerr effect in an interferometry measuring device, and interferometry measuring device configured to implement this method
JP5904566B2 (en) Frequency characteristics calibration system for conversion efficiency in photoelectric conversion devices
Xingliu High resolution relatively short fiber length measurement system based on microwave photonic link
KR100335244B1 (en) An apparatus and a method for the measurement of phase fluctuation of optical fiber
CN113295308B (en) Nonlinear static working point adjusting device and method
JP3478063B2 (en) Optical modulator stabilizer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111020

R150 Certificate of patent or registration of utility model

Ref document number: 4851000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250