JP4850357B2 - Method for producing high thermal conductivity material - Google Patents

Method for producing high thermal conductivity material Download PDF

Info

Publication number
JP4850357B2
JP4850357B2 JP2001194585A JP2001194585A JP4850357B2 JP 4850357 B2 JP4850357 B2 JP 4850357B2 JP 2001194585 A JP2001194585 A JP 2001194585A JP 2001194585 A JP2001194585 A JP 2001194585A JP 4850357 B2 JP4850357 B2 JP 4850357B2
Authority
JP
Japan
Prior art keywords
thermal conductivity
high thermal
copper
tungsten carbide
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001194585A
Other languages
Japanese (ja)
Other versions
JP2003013168A (en
Inventor
宏之 津戸
一郎 青木
義文 武井
達也 塩貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2001194585A priority Critical patent/JP4850357B2/en
Publication of JP2003013168A publication Critical patent/JP2003013168A/en
Application granted granted Critical
Publication of JP4850357B2 publication Critical patent/JP4850357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高熱伝導性材料の製造方法に関し、特にICパッケージや多層配線基板などに供するヒートシンク材等の放熱体に用いられる高熱伝導性材料の製造方法に関する。
【0002】
【従来の技術】
半導体、とりわけLSIは、高集積化、高速化されているため発熱が増加しており、それがために、半導体内の回路に誤動作を発生させたり、ひいては半導体回路自身を破壊させたりしている。そのため、高集積半導体を収納するパッケージの熱放散が必要とされている。
【0003】
そのパッケージの熱放散については、従来、絶縁基板として熱伝導率が約20W/mK程度の熱伝導率の低いアルミナセラミックスからなる材料が用いられているので、熱放散を高めるためにヒートシンクが備えられたパッケージが使用されている。
【0004】
そのヒートシンクには、高熱伝導性に加えてアルミナセラミックスとの熱膨張係数を一致させるという観点から、その含有割合を変えることにより熱膨張係数を一致させることのでき得る銅とSiCとの複合材料からなるヒートシンクが提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、この材料では、複合化はできるものの、SiCが銅に対して濡れ性が悪いためにSiCと銅との密着性が悪く、それがためにSiCによる銅の拘束が十分に働かないで銅の膨張を抑えることができず、複合化した複合材料の熱膨張係数が思ったより小さくならないという問題があった。
【0006】
本発明は、上述した材料が有する課題に鑑みなされたものであって、その目的は、高い熱伝導性を維持しつつ、熱膨張係数を低くすることのできる高熱伝導性材料の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者等は、上記目的を達成するため鋭意研究した結果、SiCと銅との複合材料の代わりに炭化タングステン(WC)と銅との複合材料とすれば、高い熱伝導性を維持しつつ、熱膨張係数の低い高熱伝導性材料が得られるとの知見を得て本発明を完成するに至った。
【0008】
即ち本発明は、(1)強化材である炭化タングステンを20〜70体積%含み、残部が銅からなり、かつ160W/mK以上の熱伝導率を有し、10×10-6/℃以下の熱膨張係数を有することを特徴とする高熱伝導性材料とし、(2) 炭化タングステン粉末で20〜70体積%の粉末充填率を有するプリフォームを形成し、そのプリフォームに溶融した銅を不活性ガス雰囲気中で非加圧で浸透させることにより、160W/mK以上の熱伝導率を有し、10×10-6/℃以下の熱膨張係数を有する炭化タングステンと銅との複合材料からなる高熱伝導性材料を作製することを特徴とする高熱伝導性材料の製造方法(請求項)とすることを要旨とする。以下さらに詳細に説明する。
【0009】
上記で述べたように、本発明の高熱伝導性材料としては、強化材である炭化タングステンを20〜70体積%含み、残部が銅からなり、かつ160W/mK以上の熱伝導率を有し、10×10-6/℃以下の熱膨張係数を有することとする高熱伝導性材料とした。
【0010】
これは、SiCの代わりに銅との濡れ性の良い炭化タングステンとすることにより、炭化タングステンと銅との密着性が良くなり、それがために炭化タングステンによる銅の拘束が十分に働いて銅の膨張を抑えることができ、複合化した複合材料の熱膨張係数を期待通り小さくすることができるものとしたものである。
【0011】
その複合材料中の炭化タングステンの含有率としては、20〜70体積%とした。炭化タングステンの含有率が20体積%より低いと、熱膨張係数が大きくなって低い熱膨張係数が得られず、70体積%より高いと、高い熱伝導率が得られない。その銅と炭化タングステンとの割合で複合化された材料の熱伝導率は、160W/mK以上の高い熱伝導率が得られ、10×10-6/℃以下の低い熱膨張係数が得られる。
【0012】
その高熱伝導性材料の製造方法としては、先ず炭化タングステン粉末で20〜70体積%の粉末充填率を有するプリフォームを形成し、そのプリフォームに溶融した銅を不活性ガス雰囲気中で非加圧で浸透させることとする製造方法とした(請求項)。
【0013】
炭化タングステンと銅とを複合化させる方法としては、慣用の方法が用いられ、例えば、炭化タングステン粉末と銅粉末とを混合し、成形し、焼成して作製する粉末冶金法、炭化タングステン粉末でプリフォームを形成し、そのプリフォームに溶融した銅を加圧して浸透させ作製する高圧鋳造法、あるいはそのプリフォームに溶融した銅を非加圧で浸透させ作製する非加圧浸透法などがある。
【0014】
その中で非加圧浸透法は、機械的な加圧を行わなくても溶融した銅を浸透できるという特徴があるので、高価で大掛かりな装置を必要とせず、容易で安価に作製できるという特徴があり、しかも炭化タングステンは銅に対する濡れ角が30°以下とSiCに比べて濡れ性がはるかに良いので、SiCの場合には難しかったこの非加圧浸透法で簡単に安価に作製できるので、本発明が特に好ましいものとなる。
【0015】
【発明の実施の形態】
本発明の製造方法を詳しく述べると、ここでは先の非加圧浸透法で製造する方法を述べるので、先ず炭化タングステン粉末を用意し、それに複合化させる銅のインゴットも用意する。
【0016】
用意した炭化タングステン粉末で20〜70体積%の粉末充填率を有するプリフォームを形成する。プリフォームの形成方法はプレス法でもよいし、鋳込み法でもよく、プリフォームを形成できる方法であればどんな方法でもよい。
【0017】
得られたプリフォームに用意した銅のインゴットを接触させ、それを不活性ガス雰囲気中、例えばアルゴンガス雰囲気中で所定温度で熱処理し、溶融した銅を非加圧でプリフォーム中に浸透させ、それを冷却して炭化タングステンと銅との複合材料からなる高熱伝導性材料を作製する。
【0018】
以上の方法で高熱伝導性材料を作製すれば、高い熱伝導性を維持しつつ、熱膨張係数の低い高熱伝導性材料が得られる。
【0019】
【実施例】
以下本発明の実施例を比較例と共に具体的に挙げ、本発明をより詳細に説明する。
【0020】
(実施例1)
(1)高熱伝導性材料の作製
強化材である炭化タングステン粉末(日本新金属社製、平均粒径100μm)100重量部にコロイダルシリカ液(常磐電気社製、FJ294)を3重量部加え、これにさらにイオン交換水を30重量部加え混合してスラリーを調整した。
【0021】
得られたスラリーをフィルタープレスして成形体を成形した後、その成形体を1000℃の温度で焼成して50体積%の粉末充填率を有するプリフォームを形成した。得られたプリフォームに銅(平野商店扱い、純度99.9%)のインゴットを接触させ、それをアルゴンガス雰囲気中で1200℃の温度で加熱処理し、溶融した銅をプリフォーム中に非加圧で浸透させ、冷却して炭化タングステンと銅との複合材料からなる高熱伝導性材料を作製した。
【0022】
(2)評価
得られた高熱伝導性材料から3×4×15mmの試験片を切り出し、その試験片の熱膨張係数をJIS R1618に準拠して求めた(測定機器:理学電気社製、TMA8410)。また、得られた高熱伝導性材料からφ10×2mmの試験片を切り出し、その試験片の熱伝導率をレーザーフラッシュ法で測定した(測定機器:理学電気社製、LF/TCM−FA8510B)。それらの結果を表1に示す。
【0023】
(実施例2)
実施例1のフィルタープレス圧を増加して炭化タングステン粉末の充填率を60体積%とするプリフォームを形成した他は実施例1と同様に高熱伝導性材料を作製し、評価した。その結果も表1に示す。
【0024】
(比較例1)
比較のために比較例1では、炭化タングステン粉末に銅粉末(昭和化学社製、平均粒径5μm)を加えて混合した粉末で炭化タングステン粉末の充填率が15体積%のプリフォームを形成した他は実施例1と同様に高熱伝導性材料を作製し、評価した。その結果も表1に示す。
【0025】
(比較例2)
比較のために比較例2では、炭化タングステン粉末に銅粉末(昭和化学社製、平均粒径5μm)を加えて混合した粉末をφ20mmの金型に充填し、それをプレスして成形した成形体をアルゴンガス雰囲気中で1150℃の温度で燒結して炭化タングステンの含有率が85体積%の高熱伝導性材料を作製し、それを実施例1と同様に評価した。その結果も表1に示す。
【0026】
(比較例3)
比較のために比較例3では、炭化タングステン粉末の代わりにSiC粉末(信濃電気精錬社製、平均粒径15μm)を用いた他は実施例2と同様に高熱伝導性材料を作製し、評価した。その結果も表1に示す。
【0027】
【表1】

Figure 0004850357
【0028】
表1から明らかなように、実施例1、2とも本発明で規定した160W/mK以上の熱伝導率を有する高熱伝導性材料が得られ、また10×10-6 /℃以下の熱膨張係数を有する高熱伝導性材料が得られた。このことは、本発明の製造方法で製造した高熱伝導性材料であれば、高い熱伝導性を維持しつつ、熱膨張係数を低くすることのできる高熱伝導性材料とすることができることを示している。
【0029】
これに対して比較例1では、炭化タングステンの含有率が少な過ぎたので、高い熱伝導率が得られるものの、熱膨張係数が本発明の規定した値より大きくなってしまっていた。また、比較例2では、炭化タングステンの含有率が多過ぎたので、低い熱膨張係数が得られるものの、熱伝導率が本発明の規定した値より小さくなってしまっていた。さらに、比較例3では、SiCによる拘束の働きが十分でないため、熱伝導率は本発明の規定した値より大きくなるものの、熱膨張係数が本発明の規定した値より大きくなってしまっていた。
【0030】
【発明の効果】
以上の通り、本発明の製造方法で製造した高熱伝導性材料であれば、高い熱伝導性を維持しつつ、熱膨張係数を低くすることのできる高熱伝導性材料とすることができるようになった。このことにより、熱放散のより良好なヒートシンク材等の放熱体に用いられる高熱伝導性材料を提供できるようになった。さらに、非加圧浸透法で作製できるので、複雑な形状のヒートシンク材等であっても、簡単にしかも安価に作製できるようになった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for the preparation of high thermal conductivity materials, more particularly, to a method of manufacturing an IC package and the multilayer wiring substrate such as providing high thermal conductive materials for use in the heat radiator of the heat sink material and the like.
[0002]
[Prior art]
Semiconductors, especially LSIs, have increased heat generation due to higher integration and higher speeds, which causes malfunctions in the circuits in the semiconductors and eventually destroys the semiconductor circuits themselves. . Therefore, there is a need for heat dissipation of a package that houses a highly integrated semiconductor.
[0003]
Regarding the heat dissipation of the package, since a material made of alumina ceramics having a low thermal conductivity of about 20 W / mK is conventionally used as an insulating substrate, a heat sink is provided to increase the heat dissipation. Used packages.
[0004]
From the viewpoint of matching the thermal expansion coefficient with alumina ceramics in addition to high thermal conductivity, the heat sink is made of a composite material of copper and SiC that can match the thermal expansion coefficient by changing the content ratio. A heat sink has been proposed.
[0005]
[Problems to be solved by the invention]
However, although this material can be compounded, SiC has poor wettability to copper, so the adhesion between SiC and copper is poor, which prevents the copper from being restrained sufficiently by SiC. There was a problem that the thermal expansion coefficient of the composite material could not be made smaller than expected.
[0006]
The present invention was made in view of the problems with the above materials is, its object, while maintaining high thermal conductivity, a manufacturing method of the high thermal conductivity materials capable of lowering the thermal expansion coefficient there to be subjected Hisage.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have maintained a high thermal conductivity if a composite material of tungsten carbide (WC) and copper is used instead of a composite material of SiC and copper. The present invention has been completed with the knowledge that a high thermal conductivity material having a low thermal expansion coefficient can be obtained.
[0008]
That is, the present invention includes (1) 20 to 70% by volume of tungsten carbide as a reinforcing material, the balance is made of copper, and has a thermal conductivity of 160 W / mK or more and 10 × 10 −6 / ° C. or less. and high thermal conductive materials characterized by having a thermal expansion coefficient, (2) to form a preform having a powder filling rate of 20 to 70% by volume of tungsten carbide powder was melted in the preform copper From a composite material of tungsten carbide and copper having a thermal conductivity of 160 W / mK or more and a thermal expansion coefficient of 10 × 10 −6 / ° C. or less by infiltration in an inert gas atmosphere without pressure. The gist of the present invention is to provide a method for producing a high thermal conductivity material (Claim 1 ). This will be described in more detail below.
[0009]
As described above, the high thermal conductivity material of the present invention includes 20 to 70% by volume of tungsten carbide as a reinforcing material, the balance is made of copper, and has a thermal conductivity of 160 W / mK or more. A highly thermally conductive material having a thermal expansion coefficient of 10 × 10 −6 / ° C. or less was obtained.
[0010]
This is because tungsten carbide with good wettability with copper instead of SiC improves the adhesion between tungsten carbide and copper, so that the restraint of copper by tungsten carbide works sufficiently and the copper The expansion can be suppressed, and the thermal expansion coefficient of the composite material can be reduced as expected.
[0011]
The content of tungsten carbide in the composite material was 20 to 70% by volume. When the content of tungsten carbide is lower than 20% by volume, the thermal expansion coefficient becomes large and a low thermal expansion coefficient cannot be obtained. When the content is higher than 70% by volume, high thermal conductivity cannot be obtained. As for the thermal conductivity of the material compounded in the ratio of copper and tungsten carbide, a high thermal conductivity of 160 W / mK or more is obtained, and a low thermal expansion coefficient of 10 × 10 −6 / ° C. or less is obtained.
[0012]
As a method for producing the high thermal conductivity material, first, a preform having a powder filling rate of 20 to 70% by volume is formed with tungsten carbide powder, and the molten copper is non-pressurized in an inert gas atmosphere. ( 1 ).
[0013]
As a method for compounding tungsten carbide and copper, a conventional method is used. For example, a powder metallurgy method in which tungsten carbide powder and copper powder are mixed, molded, and fired, and a tungsten carbide powder is used. There are a high-pressure casting method in which a preform is formed and melted copper is pressed and permeated into the preform, or a non-pressurized infiltration method in which melted copper is permeated into the preform without pressure.
[0014]
Among them, the non-pressure permeation method has the feature that it can permeate the molten copper without performing mechanical pressurization, so it does not require an expensive and large-scale device, and can be easily and inexpensively produced. In addition, tungsten carbide has a wetting angle with respect to copper of 30 ° or less and is much better in wettability than SiC, so it can be easily and inexpensively produced by this non-pressure infiltration method, which was difficult in the case of SiC. The present invention is particularly preferred.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The manufacturing method of the present invention will be described in detail. Here, since the method of manufacturing by the above-mentioned non-pressurized infiltration method will be described, first, a tungsten carbide powder is prepared, and a copper ingot to be compounded therewith is also prepared.
[0016]
A preform having a powder filling rate of 20 to 70% by volume is formed from the prepared tungsten carbide powder. The forming method of the preform may be a pressing method, a casting method, or any method that can form the preform.
[0017]
A prepared copper ingot is brought into contact with the obtained preform, and it is heat-treated at a predetermined temperature in an inert gas atmosphere, for example, an argon gas atmosphere, and the molten copper is infiltrated into the preform without pressure. It is cooled to produce a highly thermally conductive material made of a composite material of tungsten carbide and copper.
[0018]
If a high thermal conductivity material is produced by the above method, a high thermal conductivity material having a low thermal expansion coefficient can be obtained while maintaining high thermal conductivity.
[0019]
【Example】
Examples of the present invention will be specifically described below together with comparative examples to explain the present invention in more detail.
[0020]
Example 1
(1) Production of a high thermal conductivity material 3 parts by weight of colloidal silica liquid (FJ294, manufactured by Joban Electric Co., Ltd.) is added to 100 parts by weight of tungsten carbide powder (manufactured by Nippon Shin Metals Co., Ltd., average particle size 100 μm). Further, 30 parts by weight of ion exchange water was added and mixed to prepare a slurry.
[0021]
The obtained slurry was filter-pressed to form a formed body, and then the formed body was fired at a temperature of 1000 ° C. to form a preform having a powder filling rate of 50% by volume. The obtained preform is brought into contact with an ingot of copper (treated by Hirano Shoten, purity 99.9%), which is heat-treated at a temperature of 1200 ° C. in an argon gas atmosphere, and the molten copper is not added to the preform. A high thermal conductivity material made of a composite material of tungsten carbide and copper was produced by infiltration with pressure and cooling.
[0022]
(2) Evaluation A 3 × 4 × 15 mm test piece was cut out from the obtained high thermal conductivity material, and the thermal expansion coefficient of the test piece was determined in accordance with JIS R1618 (measuring instrument: RMA, TMA8410). . Moreover, a φ10 × 2 mm test piece was cut out from the obtained high thermal conductivity material, and the thermal conductivity of the test piece was measured by a laser flash method (measuring instrument: LF / TCM-FA8510B, manufactured by Rigaku Corporation). The results are shown in Table 1.
[0023]
(Example 2)
A high thermal conductivity material was prepared and evaluated in the same manner as in Example 1 except that the preform was formed by increasing the filter press pressure of Example 1 to make the filling rate of the tungsten carbide powder 60% by volume. The results are also shown in Table 1.
[0024]
(Comparative Example 1)
For comparison, in Comparative Example 1, a preform in which the filling rate of tungsten carbide powder was 15% by volume was formed by adding and mixing copper powder (made by Showa Chemical Co., Ltd., average particle size 5 μm) with tungsten carbide powder. Were produced and evaluated in the same manner as in Example 1. The results are also shown in Table 1.
[0025]
(Comparative Example 2)
For comparison, in Comparative Example 2, a powder obtained by adding and mixing a tungsten powder with a copper powder (manufactured by Showa Chemical Co., Ltd., average particle size: 5 μm) is filled in a φ20 mm mold, and is molded by pressing it. Was sintered in an argon gas atmosphere at a temperature of 1150 ° C. to produce a highly thermally conductive material having a tungsten carbide content of 85% by volume, which was evaluated in the same manner as in Example 1. The results are also shown in Table 1.
[0026]
(Comparative Example 3)
For comparison, in Comparative Example 3, a highly thermally conductive material was prepared and evaluated in the same manner as in Example 2 except that SiC powder (manufactured by Shinano Denki Seiki Co., Ltd., average particle size 15 μm) was used instead of tungsten carbide powder. . The results are also shown in Table 1.
[0027]
[Table 1]
Figure 0004850357
[0028]
As is clear from Table 1, a high thermal conductivity material having a thermal conductivity of 160 W / mK or more as defined in the present invention was obtained in both Examples 1 and 2, and a thermal expansion coefficient of 10 × 10 −6 / ° C. or less. A highly thermally conductive material having was obtained. This indicates that a highly thermally conductive material produced by the production method of the present invention can be a highly thermally conductive material capable of reducing the thermal expansion coefficient while maintaining high thermal conductivity. Yes.
[0029]
On the other hand, in Comparative Example 1, since the content of tungsten carbide was too small, a high thermal conductivity was obtained, but the thermal expansion coefficient was larger than the value defined in the present invention. In Comparative Example 2, since the content of tungsten carbide was too large, a low thermal expansion coefficient was obtained, but the thermal conductivity was smaller than the value defined in the present invention. Further, in Comparative Example 3, since the action of restraint by SiC is not sufficient, the thermal conductivity is larger than the value defined in the present invention, but the thermal expansion coefficient is larger than the value defined in the present invention.
[0030]
【The invention's effect】
As described above, if the high thermal conductivity material manufactured by the manufacturing method of the present invention is used, a high thermal conductivity material capable of reducing the thermal expansion coefficient while maintaining high thermal conductivity can be obtained. It was. As a result, it has become possible to provide a highly thermally conductive material used for a heat radiator such as a heat sink material with better heat dissipation. Furthermore, since it can be produced by a non-pressure infiltration method, even a heat sink material having a complicated shape can be produced easily and inexpensively.

Claims (1)

炭化タングステン粉末で20〜70体積%の粉末充填率を有するプリフォームを形成し、そのプリフォームに溶融した銅を不活性ガス雰囲気中で非加圧で浸透させることにより、160W/mK以上の熱伝導率を有し、10×10-6/℃以下の熱膨張係数を有する炭化タングステンと銅との複合材料からなる高熱伝導性材料を作製することを特徴とする高熱伝導性材料の製造方法。By forming a preform having a powder filling rate of 20 to 70% by volume with tungsten carbide powder, and infiltrating the molten copper into the preform in an inert gas atmosphere under no pressure, heat of 160 W / mK or more A method for producing a high thermal conductivity material, comprising producing a high thermal conductivity material made of a composite material of tungsten carbide and copper having conductivity and a thermal expansion coefficient of 10 × 10 −6 / ° C. or less.
JP2001194585A 2001-06-27 2001-06-27 Method for producing high thermal conductivity material Expired - Fee Related JP4850357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001194585A JP4850357B2 (en) 2001-06-27 2001-06-27 Method for producing high thermal conductivity material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001194585A JP4850357B2 (en) 2001-06-27 2001-06-27 Method for producing high thermal conductivity material

Publications (2)

Publication Number Publication Date
JP2003013168A JP2003013168A (en) 2003-01-15
JP4850357B2 true JP4850357B2 (en) 2012-01-11

Family

ID=19032691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001194585A Expired - Fee Related JP4850357B2 (en) 2001-06-27 2001-06-27 Method for producing high thermal conductivity material

Country Status (1)

Country Link
JP (1) JP4850357B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100733107B1 (en) * 2006-06-09 2007-06-28 안헌상 Cake decorating device
CN100443624C (en) * 2007-02-14 2008-12-17 西安建筑科技大学 Preparing technique of activated charcoal carbonide silk net copper-based composite material
CN117602909B (en) * 2024-01-22 2024-05-17 湖南瑞砂环境科技有限公司 Floor heating special cement mortar based on tungsten tailings and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08239712A (en) * 1995-02-28 1996-09-17 Nippon Steel Corp Lance nozzle for blowing of converter
JP3794042B2 (en) * 1995-10-13 2006-07-05 住友電気工業株式会社 Method for producing composite alloy member

Also Published As

Publication number Publication date
JP2003013168A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
TWI357788B (en)
JP5275625B2 (en) Heat sink made of boron-containing diamond and copper composite
TWI796503B (en) Metal-silicon carbide composite body, and method for manufacturing metal-silicon carbide composite body
JP5645048B2 (en) Heat dissipation member, semiconductor device, and method for manufacturing composite material
JP4187739B2 (en) Aluminum alloy-silicon carbide silicon nitride composite
JP4850357B2 (en) Method for producing high thermal conductivity material
JP2004128451A (en) Method of manufacturing low expansive material and semiconductor device using it
JP3698571B2 (en) Silicon carbide based composite and method for producing the same
JP5172232B2 (en) Aluminum-ceramic composite and its manufacturing method
JP3449683B2 (en) Ceramic circuit board and method of manufacturing the same
JP6617153B2 (en) Method for producing aluminum alloy-silicon carbide composite
WO2002077304A1 (en) Heat dissipation member for electronic apparatus and method for producing the same
JP3999989B2 (en) Copper-tungsten carbide composite material
JP4407858B2 (en) Module structure
JP4233133B2 (en) Silicon carbide composite and heat dissipation component using the same
JP3847009B2 (en) Method for producing silicon carbide composite
JP2002294358A (en) Thermally conductive composite material
JP2003073756A (en) Composite material and manufacturing method therefor
JP2002121639A (en) Heat radiation substrate, and high-power high-frequency transistor package using it
TWI674251B (en) Aluminum-carbonized tantalum composite and manufacturing method thereof
JP4247960B2 (en) Method for producing aluminum-ceramic composite
JPH11157964A (en) Tabular composite and heat dissipating component using the same
JP2001217364A (en) Al-SiC COMPOSITE
JP2006040992A (en) Aluminum-alloy silicon-carbide composite
JPH11171672A (en) Composite and heat sink using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111019

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees